Extending the FOLON Environment for Automatically Deriving
Totally Correct Prolog Procedures from Logic Descriptions!

Baudouin Le Charlier and Sabina Rossi

University of Namur, 21 rue Grandgagnage, B-5000 Namur (Belgium)
{ble,sro}@info.fundp.ac.be

Abstract

The FOLON environment [2, 8] is based on Deville’s methodology for logic program development [6]. In this
context, we propose an algorithm which proves the total correctness of a Prolog procedure with respect to
a formal specification. Another algorithm for automatically deriving such procedures is also presented.

Introduction

The FOLON environment (see [2, 4, 8]) was designed with the goal of supporting the automatable aspects of
Deville’s methodology for logic program development presented in [6]. In this context, we aim at specifying a
complete tool in order to automatically derive (totally) correct Prolog procedures from a formal specification
(consisting of a pure logic description of the relation, type information and a set of behavioural assumptions).

First, we present an analyzer which combines various static analysis techniques in order to verify the
correctness criteria for a Prolog procedure. This is a refinement and an extension of the analyzer presented
in [3] which only performs mode and type verification. The main novelties of our analyzer are the following:

1. abstract sequences (see [1, 10]) are used instead of abstract substitutions: this allows us to infer
information about the number of solutions and termination;

2. completeness and termination analyses are performed (they were not considered in [3]): we adapt the
framework proposed by De Schreye, Verschaetse and Bruynooghe in [5] for proving termination in the
case of recursive calls.

A synthesizer, based on the analyzer, is also proposed. Tt finds correct permutations (of literals and
clauses) of a procedure and returns one according to some minimality criteria.

The paper is organized as follows. In section 1, the context of the FOLON environment is illustrated.
Section 2 contains some basic definitions. In section 3, the analyzer is described. An example illustrates the
main operations. In section 4, the synthesizer is presented. Section 5 concludes the paper.

1 The Context

According to Deville’s methodology for logic program development, the FOLON environment is based on
three main development steps:

1. elaboration of a specification,
2. construction of a correct logic description,

3. derivation of a correct and efficient Prolog procedure.

1Partly supported by the EEC Human Capital Mobility individual grant: “Logic Program Synthesis and Transformation”
CHRX-CT93-0414.

Let us illustrate this context with the construction of the procedure efface/3 which removes the first
occurrence of X from the list L containing it and returns the list LEff.

A specification for efface/3is given in figure 1. Indeed, we extend the general specification form proposed
by Deville in [6] with extra information which is useful for proving termination of the derived procedures.
First, the name and the formal parameters of the procedure are specified. The type, the relation and the
size relation components express properties on the formal parameters which are intended to be satisfied after
any successful execution. The semi-linear norm (see [5]) || - |A associates to each term t a natural number
[tlx by: [[t1ltalla =1+ |ta]s and |t]s = 0 if t is not of the form [t{|ts].

procedure efface(X,L,LEff)

Type: X:term; L, LEff:Lists;

Relation: X is an element of L and LEff is the list L without the first occurence of X in L

Semi-linear norm: |- |

Size relation: L =LEff +1

Application conditions: in(ground,ground,any):: out(ground, ground,ground) < 0,1> L
in(ground, any, ground) :: out(ground, ground, ground) < 0,% > LEff

Figure 1: Specification for efface/3

The size relation 1s a system of linear equations on the formal parameters of the procedure expressing a
relation between the corresponding norms. In the example, after any successful execution, the norm of L is
required to be equal to the norm of LEff plus 1. The application conditions consist of three components:
directionality, multiplicity and size expression. Each directionality specifies the allowed modes of the param-
eters before the execution (in part) and the corresponding modes after a successful execution (out part). A
multiplicity is a pair < Min, Max > with Min€ N U {oo} and Max€ N U {oo, *}. For any call satisfying the in
part of the corresponding directionality and producing the sequence S of answer substitutions, the following
is expected to hold: Min < |S| and if Max = then |S]| is finite, otherwise |S| < Max. The size expression is
a positive linear expression? on the formal parameters of the procedure. It associates to each possible call,
respecting the corresponding in part, a weight from a well-founded set which will be not affected by any
further instantion of the parameters. Such a weight is obtained by replacing the formal parameters, in the
size expression, with the norm of the corresponding actual ones. In order to prove termination of a recursive
call we need to prove that its weight is smaller than the weight for the initial one. In the example, the
weight for the calls of efface/3 respecting the first (resp. the last) in part is given by the norm of the actual
parameter corresponding to L (resp. LEff). Since this parameter is required to be ground, such a weight is
guaranteed to be invariant for any further instantiation.
A correct logic description for efface/3 is depicted in figure 2.

efface(X,L,LEff) <= L =[H|T] A (H=XALEff =TAlist(T)
V H# X Aefface(X,T, TEff) ALEff = [H|TEf{))

Figure 2: Logic description for efface/3
It can be syntactically translated into the Prolog procedure LP4(efface/3) in figure 33.

efface(X,L,LEfT)
efface(X,L,LEfT)

= [H|T], E = X, LEff = T, 1ist(T)
[H|T], not(H = X), efface(X, T, TEff), LEff = [H|TEff]

— L
— L

Figure 3: LP4(efface/3)

It corresponds, in a sense, to the natural level mapping used by De Schreye et al. in [5].
3This translation step can be easily automated using a well-defined set of rules as described by Deville in [6].

To be correct the procedure has to respect the following criteria: during any execution (based on the
SLDNF-resolution) of efface/3 called with arguments respecting at least one in part of its specification and
producing the sequence S of answer substitutions,

1. the computation rule is safe, i.e., when selected, the negative literals are ground;
2. any subcall is called with arguments respecting at least one in part of its specification;

3. the arguments of the procedure after the execution respect the types, the size relation and the out
part of each directionality whose in part is satisfied by the initial call;

4. S respects the multiplicity of each directionality whose in part is satisfied by the initial call;

5. completeness: every computed answer substitution in the SLDNF-tree belongs to S (i.e. it must
eventually be reached according to Prolog search rule);

6. termination: if S is finite then the execution terminates.

Information about the length of S is given by the specification (multiplicity). When S is finite, points 5
and 6 are satisfied if the execution of each clause of the procedure terminates. Termination of a clause
is achieved when each literal in its body which is not a recursive call terminates and the weights for the
recursive calls are smaller than the weight for the initial call. When S can be infinite then only completeness
has to be verified. A sufficient criterion for completeness is the following: at most one literal in a clause
of the procedure produces an infinite sequence of answer substitutions and either this literal is in the last
clause or the following clauses are finitely failed (i.e. they terminate without producing any result).

Let us check the correctness of the procedure LPq(efface/3). Consider the second clause for the calls of

efface(X,L,LEfT) respecting the first directionality in(ground, ground, any), i.e. X and L are ground terms
and LEff is any term. After the execution of the first literal, H and T are ground terms and L is a ground list.
So, when selected, the negative literal is ground, i.e. the computation rule is safe. In order to analyze the
next literal, which is a procedure call, its specification is used instead of its code. efface(X, T, TEff)is called
with X and T being ground terms and TEff being a variable, i.e. it satisfies the first directionality. Looking
at the specification we can state that, after the execution, X 1s a ground term and T and TEff are ground
lists. The last built-in binds LEff to a ground list. According to the approach proposed by De Schreye et al.
in [5] for proving termination, at each execution point, we infer information about the size relations between
the parameters and then we check if such information implies that the weight for the recursive call is smaller
than the weight for the initial one. After the execution of the first literal, we can state that the norm of
L is equal to the norm of T plus 1, i.e. L = T+ 1. This still holds after the execution of the second literal.
Therefore, when the recursive call is reached, we can infer that its weight, the norm of T, is smaller than the
weight of the initial call, the norm of L.
Consider now the calls of efface(X, L, LEff) satisfying the second directionality in(ground, any, ground), i.e.
X and LEff are ground terms and L is any term. With the same kind of static analysis, we find a problem
when the negative literal is called since H 1s any term, i.e. the computation rule is not guaranteed to be safe.
This problem can be solved by permuting literals in the clause. The procedure LPo(efface/3) in figure 4
can be proved to be correct for any call respecting some of the specified directionalities.

efface(X,L,LEfT)
efface(X,L,LEfT)

= [H|T], E = X, LEff = T, 1ist(T)
[H|T], LEff = [H|TEff], efface(X, T, TEff), not(H = X)

— L
— L

Figure 4: LPo(efface/3)

2 Basic Definitions

In this section we briefly describe the abstract domains used by the analyzer. First, we introduce the notion
of mode-type which encompasses mode and type information.

A mode-lype represents some set of terms with the same form and/or structure given by the con-
cretization function 5. For instance, var,ground, ngv,any,1list, groundlist, anylist represent the sets:
y(var)={t : t is a variable term}, y(ground) = {t : t is a ground term}, y(ngv) = {t : t is neither a ground
nor a variable term}, y(any) = y(var) U y(ground) U y(ngv), v(list) = {t : t isalist }, y(groundlist) =
{t : t is a ground list } and y(anylist) = {t : t has at least one instance which is a ground list}.

Definition 2.1 [mode-type assignment]
A mode-type assignment « is a finite set {X1/mtq,...,Xn/mtn} where n > 0, X4, ..., Xp are distinct variables
and mtq,...,mty are mode-types.

An abstract substitution gives information about modes, types, nosharing and size relations. In order to
represent information about modes and types, it binds the variables of its domain to special terms called
mode-typed terms defined as follows.

Definition 2.2 [mode-typed terml]

A mode-typed term is either an indezed mode-type < mt,i > where mt is a mode-type and i is an index,
or an expression of the form f(mttq,...,mtty) where n > 0, £ is an n-ary functor and mttq,... , mtty are
mode-typed terms.

A mode-typed term mtt denotes the set of terms y(mtt) = {t : t is a term obtained from mtt by replacing
each indexed mode-type < mt, i > with a term belonging to y(mt)}.

Note that indexed mode-types with the same mode-type but distinct indices may receive distinct terms or
the same term. Only indexed mode-types with the same mode-type and the same index are forced to be
instantiated to the same value.

Abstract substitutions express nosharing constraints in the form of pairs of indexed mode-types. The size

relations are represented by means of a (possibly empty) system of linear equations?.

Definition 2.3 [abstract substitution]
An abstract substitution (3 is either L or a term ({X{/mttq,...,Xn/mttn}, nosh E) where

1. X4,...,Xn (n > 0) are distinct variables and form the domain of the abstract substitution;
2. mttq,...,mtty are mode-typed terms;

3. nosh is a set of pairs (imtq, imts) where imt4 and imto are distinct indexed mode-types used in
[mttq,...,mttn];

4. Eis a (possibly empty) system of linear equations only using variables in X4, ..., Xn.

An abstract substitution /5 represents the set, v(3), of all concrete substitutions {Xq/t{,...,Xn/tn} such
that each tj is a term obtained from mtt; by replacing all indexed mode-types < mt,i > with a term
belonging to v(mt) such that if (<mtq,14>,<mto,iy>)Enosh then the term substituted to <mtq,iq>
has no common variables with the one substituted to < mto,is > and (|t4],..., |tn]) is a solution of E.

Example 2.1 Let X be a groundlist and Y,Z be both anylist whose heads have no common variables and
whose tails are X itself. This statement can be expressed by the abstract substitution

4For more precise details about the use of systems of linear equations for automatically computing size relations the reader
is referred to [5].

({X/ < groundlist,1>,Y/[< any,1 > | < groundlist,1>],Z/[< any,2 > | < groundlist, 1 >},
{(<any, 1> <any,2>)},{Y=%X+1,Y=2}).

At each execution point, the analyzer computes (so-called) abstract sequences giving information about
variables in the form of an abstract substitution, and also information about the number of solutions and
the termination of the execution.

Definition 2.4 [abstract sequence]

An abstract sequence B is a pair (4, < Min, Max >) where /5 is an abstract substitution, Mine N U {oo} and
Maxe N U {00, *}.

An abstract sequence B represents the set, y(B3), of sequences S of concrete substitutions such that for all
o €8, o€y(f), Min < |S| and if Max = * then |S] is finite, otherwise |S| < Max.

A behaviour for a procedure is a formalization of its specification (excluding the relation part which is
formalized by the logic description).

Definition 2.5 [behaviour]
A behaviour for a procedure p/n is a 4-tuple of the form (p,[Y4,..., Yn], E,Prepost) where

1. Y4,...,Yn are distinct variables representing the formal parameters of the procedure p/n;
2. E1is a system of linear equations only using variables in Yq,..., Yn;

3. Prepost is a set of 4-tuples of the form («iy, @out, < Min, Max >, sizexp) such that aj, and eyt are
mode-type assignments, Min€ N U {oo}, Maxe N U {oo, *} and sizexp is a positive linear expression
on the parameters Yq,..., ¥n.

Example 2.2 A behaviour for efface/3 formalizing the specification depicted in figure 1 has the form
(efface,[Yq,Yo,Y3],E= {Y9 = Y3 + 1}, Prepost = {prepostq,preposto})
with
prepostq = (ai‘n, ofi’ut, < 0,1>,Ys)
preposty = (az™, agut’ < 0,% > Y3)
out

wherein ai‘n:{Yi/ground, Yo/ground,Yg/any}, a%n:{Yi/ground, Y5/any,Yg/ground} and ofi’ut =ag
= {Y{/ground, Yo/groundlist, Yg/groundlist}.

3 The Analyzer

We first describe a clause analyzer which verifies the correctness of a clause. It receives as inputs a Prolog
clause CL of the form p(X{,...,Xn) — Lq,...,Ls where X4,...,Xn are distinct variables, a behaviour for
each subprocedure (including p/n) in CL, an element prepostiy = (@i, @out, < Min, Max >, sizexp) from
the behaviour of p/n and an abstract substitution #j on X4, ..., Xn respecting ajp (i.e. if mtt; is assigned
to X4 by Bin and mt4 is assigned to Y4 by ajp then y(mtti) C y(mti) (1 < i <m)). It checks the following:

1. any subcall in the body of CL is called with arguments respecting at least one ozf']rn in its behaviour;

2. the arguments of p after the execution of the clause CL respect the size relation and agyt;

3. if Max 1s 0o then at least one subcall in the body of CL can produce infinite solutions, otherwise, if Max
is either a natural number or * then the execution of CL terminates.

If all these properties are satisfied then a pair < Mingr,, Maxeq, > expressing information about the length of
the sequence of answer substitutions and the termination of the execution of CL is returned. In particular, a
set Bg, Bq,..., Bf of abstract sequences on the variables in CL and an abstract sequence Boyt on Xq,...,%n
are computed. The following main operations are required to analyze a clause.

Initial operation: it extends 8, to an abstract sequence Bg on all variables in CL.
Derivation operation: it computes B; from 5; 1 and L (1 < i <f).
Reduction operation: it computes Boyt from B by restricting it to the variables Xq, ..., Xn.

Exit operation: it verifies whether Byt respects the size relation and agyt.
Let us illustrate the derivation operation with an example®. Consider the second clause of LP(efface/3),
CL = efface(X,L,LEff) — L = [H|T], LEff = [H|TEff], efface(X, T, TEff), not(H = X).

Let prepostip = prepostq in the behaviour for efface/3 and By be the abstract sequence (85,< 0,1 >)
holding after the execution of the second literal where

B9 = ({X/ < ground, 1 >,L/[< ground, 2 >|< groundlist,1 >],H/ < ground,2 >, T/ < groundlist, 1>,
LEff/[< ground,2 > | < var,1 >],TEff/ < var,1 >}, noshy = { },Eo = {L = T+ 1,LEff = TEff + 1}).

Bs is obtained from By and the literal efface(X, T, TEff). Eight main steps are distinguished.

1. mode-projection: it returns a mode-type assignment « associating to each Y (1 <j<3)amode mod 4
such that if mtt 5 is the mode-typed term assigned to the j-th argument of efface(X, T, TEff) by fB5 then
7(mtt) C y(mody); in the example, @ = {Y4 /ground, Yo/ground, Y3/var}.

2. selection: it selects the maximal set S of prepost; in the behaviour for efface/3 such that a "re-

spects” a%n in preposty. If S =) then the clause analyzer fails since it is not guaranteed that the literal is
called with arguments respecting at least one in part of its directionalities. In our example, S = {prepostq}.

3. conjunction: it returns an abstract sequence Bpost on the variables Y{,Y5, Y3 which approximates
the sequence of substitutions obtained by executing efface(Yq, Yy, Y3) called with arguments respecting at
least one precondition in S. In the example, Bpogt 1s (ﬁpost, < 0,1 >) where

Ppost = ({¥1/ < ground, 1 >, Y5/ < groundlist,1> Y3/ < groundlist,2>},{ } {Yo = Y3+ 1}).

4. extraction: it returns an abstract sequence Bgyt on the variables in efface(X, T, TEff) whose values
are determined by the values of Y4, Y5, Y3 in Bpost. In our example, Bext 1s (Bext,< 0,1 >) where

Bext = ({X/ < ground,1 > T/ < groundlist,1 > TEff/ < groundlist,2>},{ },{T = TEff +1}).

5. extension: 1t returns By obtained by extending Bext to all the other variables in CL, stating that the
new variables are not instantiated and used nowhere else. In the example, B.q is (8¢1,< 0,1 >) where

Be1 = ({X/ < ground, 1> L/ < var,2 > H/ < var,3 >, T/ < groundlist, 1> TEff/ < groundlist,2 >,
LEff/<var, 4>} {(Kvar,2> <var,3>) (<var,2> <var,4>), (Kvar,3> <var,4>)}{T = TEff + 1}).

6. nstantiation: it computes Bipgqy on all variables in CL expressing all possible instantiations of By
affecting only the indexed mode-types used in mttq,mtto, mtts (see step 1). Bipgt 18 (Fingt, < 0,1>)
where

5A detailed technical description of these operations is given in [9].

Binst = ({X/<ground, 1> L/[<ground, 2> |<groundlist,1>],H/<ground, 2>, T/<groundlist, 1>,
LEff/[< ground,2 > | < any, 1 >], TEff/ < any,1 >},{ },{L =T+ 1,LEff = TEff + 1})

7. refinement: it computes By by making the conjunction of B.y and fingt. In the example, B is
(A3, < Ming,Maxg >) where < Ming,Maxz >=< 0,1 > and

B3 = ({X/ < ground, 1 >,L/[< ground, 2 >|< groundlist,1 >],H/ < ground,2 >, T/ <groundlist, 1>,
LEff/[< ground, 2 > |< groundlist,2 >], TEff/ < groundlist,2 >}, { }, {L = T+ 1,LEff = TEff + 1,
T = TEff + 1})

8. completeness-termination-test: first, the multiplicity < Ming, Maxg > is checked to respect the multi-
plicity < 0,1 > in prepostiy. Moreover, since the sequence of answer substitutions is finite and we are in
the case of a recursive call, it 1s checked whether the weight for the recursive call; i.e. the norm of the actual
parameter T, is smaller than the weight for the initial call, i.e. the norm of the actual parameter L. This
amounts to verify that Ey = {L = T+ 1, LEff = TEff + 1} implies T < L°. In the example, this clearly holds.

The analyzer uses the clause analyzer as follows. It receives as inputs a Prolog procedure P defining a pred-
icate p/n and a behaviour for each subprocedure in P. Let prepostiy = (@in, Yout, < Min,Max >, sizexp)
from the behaviour of p/n and Fip be an abstract substitution respecting aiy. It checks the following:

1. for each clause CL of P the clause analyzer does not fail;
2. the sequence of answer substitutions for the whole procedure satisfies < Min, Max >;

3. if Max is oo then at least one clause of P can produce an infinite number of solutions and if this is not
the last one then the executions of all the following clauses in P are finitely failed.

When computing the sequence of answers for the whole procedure, input/output patterns are used to deter-
mine whether some clauses are mutually exclusive (see [1]).

4 The Synthesizer

The synthesizer receives the same inputs as the analyzer. First, for each clause of P all correct permutations
of the literals in its body are computed and one correct permutation is selected according to some minimality
criteria (e.g. minimum number of solutions). Then, a correct permutation of the selected clauses is reached
(e.g. if only one clause is not proved to terminate then the sequence with such a clause at the end is returned).

The main operation of the synthesizer is realized by the find-perm function” which given a prefix of some
permutation of literals in the body of a clause CL which is correct according to the clause analyzer and an
abstract sequence B holding after the execution of such a prefix, returns the set of all correct permutations
of literals in the body of CL which begin with the same prefix. The function find-perm uses the operations
of the clause analyzer as follows:

- find-perm(prefix, B) = {(prefix, < Mingyt,Maxeut >)} if prefix is a complete permutation of CL
and Bout = (Bout, < Mingut,Maxoyut >) is obtained from B with the reduction operation of the clause
analyzer and respects both the size relation and agyt In prepostyy;

- find-perm(prefix, B) = () if prefix is a complete permutation of CL and Boyut does not respect either
the size relation or aeyt;

®This operation can be automated by using linear algebra techniques [7] to prove that the system E5 U {T > L} is unsolvable.
Tt is inspired by the permut function defined in [4].

5

- find-perm(prefix, B) = |J find-perm((prefix,L), 5’) if prefix is not a complete permutation of CL,
L is a literal in the body of CL but not in prefix and 3’ is the abstract sequence obtained from L and
B with the derivation operation of the clause analyzer, i.e. such an operation does not fail and B’ is
the computed abstract sequence holding after the execution of L called with B which respects at least
one precondition of the behaviour of L.

Conclusion and Future Work

This paper extends and refines previous tools presented in [2, 3, 4, 8] which are part of the FOLON en-
vironment. Future work will consider the actual implementation of the algorithms and their experimental
evaluation on practical problems. Lower level transformations such as introduction of control information,

e.g.

cut, and partial evaluation will also be investigated.

References

(1]

[2]

[5]

[6]
[7]

(8]

[10]

C. Braem, B. Le Charlier, S. Modart, P. Van Hentenryck. Cardinality Analysis of Prolog. In Proc. Int’l
Logic Programming Symposium, (ILPS’94), Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.

P. De Boeck, J. Henrard, B. Le Charlier. FOLON an environment for Declarative construction of Logic
programs. In JOSLP’92 Post-Conference Workshop on Logic Programming Environment, Washington,
U.S.A., 1992.

P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures for Ensuring Correctness.
In P. Deransart and J. Maluszynski, editors, Proc. Second Int’l Symposium on Programming Language
Implementation and Logic Programming, (PLILP’90), vol. 456 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic Definitions Augmented with Type
Information into Prolog Procedures: Some Experiments. In Proc. Int’l Workshop on Logic Program

Synthesis and Transformation, (LOPSTR’93). Springer Verlag, July 1993.

D. De Schreye, K. Verschaetse, M. Bruynooghe. A Framework for analysing the termination of definite
logic programs with respect to call patterns. In H. Tanaka, editor, FGCS’92, 1992.

Y. Deville. Logic Programmaing: Systematic Program Development. Addison-Wesley, 1990.

P. E. Gill, W. Murray, M. H. Wright. Numerical Linear Algebra and Optimization, vol. 1. Addison-
Wesley, 1991.

J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Construction of Logic Pro-
grams (extended abstract). In M. Bruynooghe and M. Wirsing, editors, Proc. Fourth Int’l Workshop on
Programming Language Implementation and Logic Programming (PLILP’92), Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1992.

B. Le Charlier and S Rossi. Automatic Derivation of Totally Correct Prolog Procedures from Logic
Descriptions. Technical Report No. RP-95-009, Institut d’Informatique, University of Namur, Belgium,
1995.

B. Le Charlier, S. Rossi, P. Van Hentenryck. An Abstract Interpretation Framework which Accurately
Handles Prolog Search-Rule and the Cut. In Proc. Int’l Logic Programming Symposium, (ILPS’94),
Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.

