
Extending the FOLON Environment for Automatically DerivingTotally Correct Prolog Procedures from Logic Descriptions1Baudouin Le Charlier and Sabina RossiUniversity of Namur, 21 rue Grandgagnage, B-5000 Namur (Belgium)fble,srog@info.fundp.ac.beAbstractThe FOLON environment [2, 8] is based on Deville's methodology for logic program development [6]. In thiscontext, we propose an algorithm which proves the total correctness of a Prolog procedure with respect toa formal speci�cation. Another algorithm for automatically deriving such procedures is also presented.IntroductionThe FOLON environment (see [2, 4, 8]) was designed with the goal of supporting the automatable aspects ofDeville's methodology for logic program development presented in [6]. In this context, we aim at specifying acomplete tool in order to automatically derive (totally) correct Prolog procedures from a formal speci�cation(consisting of a pure logic description of the relation, type information and a set of behavioural assumptions).First, we present an analyzer which combines various static analysis techniques in order to verify thecorrectness criteria for a Prolog procedure. This is a re�nement and an extension of the analyzer presentedin [3] which only performs mode and type veri�cation. The main novelties of our analyzer are the following:1: abstract sequences (see [1, 10]) are used instead of abstract substitutions: this allows us to inferinformation about the number of solutions and termination;2: completeness and termination analyses are performed (they were not considered in [3]): we adapt theframework proposed by De Schreye, Verschaetse and Bruynooghe in [5] for proving termination in thecase of recursive calls.A synthesizer, based on the analyzer, is also proposed. It �nds correct permutations (of literals andclauses) of a procedure and returns one according to some minimality criteria.The paper is organized as follows. In section 1, the context of the FOLON environment is illustrated.Section 2 contains some basic de�nitions. In section 3, the analyzer is described. An example illustrates themain operations. In section 4, the synthesizer is presented. Section 5 concludes the paper.1 The ContextAccording to Deville's methodology for logic program development, the FOLON environment is based onthree main development steps:1: elaboration of a speci�cation,2: construction of a correct logic description,3: derivation of a correct and e�cient Prolog procedure.1Partly supported by the EEC Human Capital Mobility individual grant: \Logic Program Synthesis and Transformation"CHRX-CT93-0414. 1



Let us illustrate this context with the construction of the procedure efface=3 which removes the �rstoccurrence of X from the list L containing it and returns the list LEff.A speci�cation for efface=3 is given in �gure 1. Indeed, we extend the general speci�cation form proposedby Deville in [6] with extra information which is useful for proving termination of the derived procedures.First, the name and the formal parameters of the procedure are speci�ed. The type, the relation and thesize relation components express properties on the formal parameters which are intended to be satis�ed afterany successful execution. The semi-linear norm (see [5]) jj � jj� associates to each term t a natural numberjjtjj� by: jj[t1jt2]jj� = 1+ jjt2jj� and jjtjj� = 0 if t is not of the form [t1jt2].procedure efface(X; L; LEff)Type: X : term; L; LEff : Lists;Relation: X is an element of L and LEff is the list L without the �rst occurence of X in LSemi-linear norm: jj � jj�Size relation: L = LEff+ 1Application conditions: in(ground; ground;any) :: out(ground; ground;ground) < 0; 1 > Lin(ground; any; ground) :: out(ground; ground;ground) < 0; � > LEffFigure 1: Speci�cation for efface=3The size relation is a system of linear equations on the formal parameters of the procedure expressing arelation between the corresponding norms. In the example, after any successful execution, the norm of L isrequired to be equal to the norm of LEff plus 1. The application conditions consist of three components:directionality, multiplicity and size expression. Each directionality speci�es the allowed modes of the param-eters before the execution (in part) and the corresponding modes after a successful execution (out part). Amultiplicity is a pair < Min; Max > with Min2N[ f1g and Max2N[ f1; �g. For any call satisfying the inpart of the corresponding directionality and producing the sequence S of answer substitutions, the followingis expected to hold: Min � jSj and if Max = � then jSj is �nite, otherwise jSj � Max. The size expression isa positive linear expression2 on the formal parameters of the procedure. It associates to each possible call,respecting the corresponding in part, a weight from a well-founded set which will be not a�ected by anyfurther instantion of the parameters. Such a weight is obtained by replacing the formal parameters, in thesize expression, with the norm of the corresponding actual ones. In order to prove termination of a recursivecall we need to prove that its weight is smaller than the weight for the initial one. In the example, theweight for the calls of efface=3 respecting the �rst (resp. the last) in part is given by the norm of the actualparameter corresponding to L (resp. LEff). Since this parameter is required to be ground, such a weight isguaranteed to be invariant for any further instantiation.A correct logic description for efface=3 is depicted in �gure 2.efface(X; L; LEff) () L = [HjT] ^ (H = X ^ LEff = T ^ list(T)_ H 6= X ^ efface(X; T; TEff)^ LEff = [HjTEff])Figure 2: Logic description for efface=3It can be syntactically translated into the Prolog procedure LP1(efface=3) in �gure 33.efface(X; L; LEff)  L = [HjT]; H = X; LEff = T; list(T)efface(X; L; LEff)  L = [HjT]; not(H = X); efface(X; T; TEff); LEff = [HjTEff]Figure 3: LP1(efface=3)2It corresponds, in a sense, to the natural level mapping used by De Schreye et al. in [5].3This translation step can be easily automated using a well-de�ned set of rules as described by Deville in [6].2



To be correct the procedure has to respect the following criteria: during any execution (based on theSLDNF-resolution) of efface=3 called with arguments respecting at least one in part of its speci�cation andproducing the sequence S of answer substitutions,1: the computation rule is safe, i.e., when selected, the negative literals are ground;2: any subcall is called with arguments respecting at least one in part of its speci�cation;3: the arguments of the procedure after the execution respect the types, the size relation and the outpart of each directionality whose in part is satis�ed by the initial call;4: S respects the multiplicity of each directionality whose in part is satis�ed by the initial call;5: completeness: every computed answer substitution in the SLDNF-tree belongs to S (i.e. it musteventually be reached according to Prolog search rule);6: termination: if S is �nite then the execution terminates.Information about the length of S is given by the speci�cation (multiplicity). When S is �nite, points 5and 6 are satis�ed if the execution of each clause of the procedure terminates. Termination of a clauseis achieved when each literal in its body which is not a recursive call terminates and the weights for therecursive calls are smaller than the weight for the initial call. When S can be in�nite then only completenesshas to be veri�ed. A su�cient criterion for completeness is the following: at most one literal in a clauseof the procedure produces an in�nite sequence of answer substitutions and either this literal is in the lastclause or the following clauses are �nitely failed (i.e. they terminate without producing any result).Let us check the correctness of the procedure LP1(efface=3). Consider the second clause for the calls ofefface(X; L; LEff) respecting the �rst directionality in(ground; ground;any), i.e. X and L are ground termsand LEff is any term. After the execution of the �rst literal, H and T are ground terms and L is a ground list.So, when selected, the negative literal is ground, i.e. the computation rule is safe. In order to analyze thenext literal, which is a procedure call, its speci�cation is used instead of its code. efface(X; T; TEff) is calledwith X and T being ground terms and TEff being a variable, i.e. it satis�es the �rst directionality. Lookingat the speci�cation we can state that, after the execution, X is a ground term and T and TEff are groundlists. The last built-in binds LEff to a ground list. According to the approach proposed by De Schreye et al.in [5] for proving termination, at each execution point, we infer information about the size relations betweenthe parameters and then we check if such information implies that the weight for the recursive call is smallerthan the weight for the initial one. After the execution of the �rst literal, we can state that the norm ofL is equal to the norm of T plus 1, i.e. L = T+ 1. This still holds after the execution of the second literal.Therefore, when the recursive call is reached, we can infer that its weight, the norm of T, is smaller than theweight of the initial call, the norm of L.Consider now the calls of efface(X; L; LEff) satisfying the second directionality in(ground; any; ground), i.e.X and LEff are ground terms and L is any term. With the same kind of static analysis, we �nd a problemwhen the negative literal is called since H is any term, i.e. the computation rule is not guaranteed to be safe.This problem can be solved by permuting literals in the clause. The procedure LP2(efface=3) in �gure 4can be proved to be correct for any call respecting some of the speci�ed directionalities.efface(X; L; LEff)  L = [HjT]; H = X; LEff = T; list(T)efface(X; L; LEff)  L = [HjT]; LEff = [HjTEff]; efface(X; T; TEff); not(H = X)Figure 4: LP2(efface=3)3



2 Basic De�nitionsIn this section we brie
y describe the abstract domains used by the analyzer. First, we introduce the notionof mode-type which encompasses mode and type information.A mode-type represents some set of terms with the same form and/or structure given by the con-cretization function 
. For instance, var; ground; ngv;any; list;groundlist; anylist represent the sets:
(var)=ft : t is a variable termg, 
(ground) = ft : t is a ground termg, 
(ngv) = ft : t is neither a groundnor a variable termg, 
(any) = 
(var) [ 
(ground) [ 
(ngv), 
(list) = ft : t is a list g, 
(groundlist) =ft : t is a ground list g and 
(anylist) = ft : t has at least one instance which is a ground listg.De�nition 2.1 [mode-type assignment]A mode-type assignment � is a �nite set fX1=mt1; : : : ; Xn=mtng where n � 0, X1; : : : ; Xn are distinct variablesand mt1; : : : ; mtn are mode-types.An abstract substitution gives information about modes, types, nosharing and size relations. In order torepresent information about modes and types, it binds the variables of its domain to special terms calledmode-typed terms de�ned as follows.De�nition 2.2 [mode-typed term]A mode-typed term is either an indexed mode-type < mt; i > where mt is a mode-type and i is an index,or an expression of the form f(mtt1; : : : ; mttn) where n � 0, f is an n-ary functor and mtt1; : : : ; mttn aremode-typed terms.A mode-typed term mtt denotes the set of terms 
(mtt) = ft : t is a term obtained from mtt by replacingeach indexed mode-type < mt; i > with a term belonging to 
(mt)g.Note that indexed mode-types with the same mode-type but distinct indices may receive distinct terms orthe same term. Only indexed mode-types with the same mode-type and the same index are forced to beinstantiated to the same value.Abstract substitutions express nosharing constraints in the form of pairs of indexed mode-types. The sizerelations are represented by means of a (possibly empty) system of linear equations4.De�nition 2.3 [abstract substitution]An abstract substitution � is either ? or a term (fX1=mtt1; : : : ; Xn=mttng; nosh; E) where1: X1; : : : ; Xn (n � 0) are distinct variables and form the domain of the abstract substitution;2: mtt1; : : : ; mttn are mode-typed terms;3: nosh is a set of pairs (imt1; imt2) where imt1 and imt2 are distinct indexed mode-types used in[mtt1; : : : ; mttn];4: E is a (possibly empty) system of linear equations only using variables in X1; : : : ; Xn.An abstract substitution � represents the set, 
(�), of all concrete substitutions fX1=t1; : : : ; Xn=tng suchthat each ti is a term obtained from mtti by replacing all indexed mode-types < mt; i > with a termbelonging to 
(mt) such that if (<mt1; i1>;<mt2; i2>)2nosh then the term substituted to <mt1; i1>has no common variables with the one substituted to < mt2; i2 > and (jjt1jj; : : : ; jjtnjj) is a solution of E.Example 2.1 Let X be a groundlist and Y; Z be both anylist whose heads have no common variables andwhose tails are X itself. This statement can be expressed by the abstract substitution4For more precise details about the use of systems of linear equations for automatically computing size relations the readeris referred to [5]. 4



(fX= < groundlist; 1>; Y=[< any; 1 > j < groundlist; 1>]; Z=[< any; 2 > j < groundlist; 1>g;f(< any; 1 >;< any; 2 >)g; fY = X + 1; Y = Zg):At each execution point, the analyzer computes (so-called) abstract sequences giving information aboutvariables in the form of an abstract substitution, and also information about the number of solutions andthe termination of the execution.De�nition 2.4 [abstract sequence]An abstract sequence B is a pair (�;< Min; Max >) where � is an abstract substitution, Min2N[ f1g andMax2N[ f1; �g.An abstract sequence B represents the set, 
(B), of sequences S of concrete substitutions such that for all�2S, �2
(�), Min � jSj and if Max = � then jSj is �nite, otherwise jSj � Max.A behaviour for a procedure is a formalization of its speci�cation (excluding the relation part which isformalized by the logic description).De�nition 2.5 [behaviour]A behaviour for a procedure p=n is a 4-tuple of the form (p; [Y1; : : : ; Yn]; E; Prepost) where1: Y1; : : : ; Yn are distinct variables representing the formal parameters of the procedure p=n;2: E is a system of linear equations only using variables in Y1; : : : ; Yn;3: Prepost is a set of 4-tuples of the form (�in; �out; < Min; Max>; sizexp) such that �in and �out aremode-type assignments, Min2N[ f1g, Max2N[ f1; �g and sizexp is a positive linear expressionon the parameters Y1; : : : ; Yn.Example 2.2 A behaviour for efface=3 formalizing the speci�cation depicted in �gure 1 has the form(efface; [Y1; Y2; Y3]; E = fY2 = Y3 + 1g; Prepost= fprepost1; prepost2g)with prepost1 = (�in1 ; �out1 ; < 0; 1 >; Y2)prepost2 = (�in2 ; �out2 ; < 0; � >; Y3)wherein �in1 =fY1=ground; Y2=ground; Y3=anyg, �in2 =fY1=ground; Y2=any; Y3=groundg and �out1 =�out2= fY1=ground; Y2=groundlist; Y3=groundlistg.3 The AnalyzerWe �rst describe a clause analyzer which veri�es the correctness of a clause. It receives as inputs a Prologclause CL of the form p(X1; : : : ; Xn) L1; : : : ; Lf where X1; : : : ; Xn are distinct variables, a behaviour foreach subprocedure (including p=n) in CL, an element prepostin = (�in; �out; < Min; Max >; sizexp) fromthe behaviour of p=n and an abstract substitution �in on X1; : : : ; Xn respecting �in (i.e. if mtti is assignedto Xi by �in and mti is assigned to Yi by �in then 
(mtti) � 
(mti) (1 � i � n)). It checks the following:1: any subcall in the body of CL is called with arguments respecting at least one �inj in its behaviour;2: the arguments of p after the execution of the clause CL respect the size relation and �out;3: if Max is 1 then at least one subcall in the body of CL can produce in�nite solutions, otherwise, if Maxis either a natural number or � then the execution of CL terminates.5



If all these properties are satis�ed then a pair < MinCL; MaxCL > expressing information about the length ofthe sequence of answer substitutions and the termination of the execution of CL is returned. In particular, aset B0;B1; : : : ;Bf of abstract sequences on the variables in CL and an abstract sequence Bout on X1; : : : ; Xnare computed. The following main operations are required to analyze a clause.Initial operation: it extends �in to an abstract sequence B0 on all variables in CL.Derivation operation: it computes Bi from Bi�1 and Li (1 � i � f).Reduction operation: it computes Bout from Bf by restricting it to the variables X1; : : : ; Xn.Exit operation: it veri�es whether Bout respects the size relation and �out.Let us illustrate the derivation operation with an example5. Consider the second clause of LP2(efface=3),CL = efface(X; L; LEff) L = [HjT]; LEff= [HjTEff]; efface(X; T;TEff); not(H= X):Let prepostin = prepost1 in the behaviour for efface=3 and B2 be the abstract sequence (�2; < 0; 1 >)holding after the execution of the second literal where�2 = (fX=< ground; 1 >; L=[< ground; 2> j< groundlist; 1>]; H=< ground; 2 >; T=< groundlist; 1>;LEff=[< ground; 2 > j < var; 1 >]; TEff= < var; 1 >g; nosh2 = f g; E2 = fL = T+ 1; LEff = TEff+ 1g).B3 is obtained from B2 and the literal efface(X; T; TEff). Eight main steps are distinguished.1: mode-projection: it returns a mode-type assignment � associating to each Yj (1 � j � 3) a mode modjsuch that if mttj is the mode-typed term assigned to the j-th argument of efface(X; T; TEff) by �2 then
(mttj) � 
(modj); in the example, � = fY1=ground; Y2=ground; Y3=varg.2: selection: it selects the maximal set S of preposti in the behaviour for efface=3 such that � "re-spects" �ini in preposti. If S = ; then the clause analyzer fails since it is not guaranteed that the literal iscalled with arguments respecting at least one in part of its directionalities. In our example, S = fprepost1g.3: conjunction: it returns an abstract sequence Bpost on the variables Y1; Y2; Y3 which approximatesthe sequence of substitutions obtained by executing efface(Y1; Y2; Y3) called with arguments respecting atleast one precondition in S. In the example, Bpost is (�post; < 0; 1 >) where�post = (fY1= < ground; 1>; Y2= < groundlist; 1>; Y3= < groundlist; 2>g; f g; fY2 = Y3 + 1g).4: extraction: it returns an abstract sequence Bext on the variables in efface(X; T; TEff) whose valuesare determined by the values of Y1; Y2; Y3 in Bpost. In our example, Bext is (�ext; < 0; 1 >) where�ext = (fX= < ground; 1 >; T= < groundlist; 1>; TEff= < groundlist; 2>g; f g; fT = TEff+ 1g).5: extension: it returns Bcl obtained by extending Bext to all the other variables in CL, stating that thenew variables are not instantiated and used nowhere else. In the example, Bcl is (�cl; < 0; 1 >) where�cl = (fX= < ground; 1 > L= < var; 2 >; H= < var; 3 >; T= < groundlist; 1>; TEff= < groundlist; 2>;LEff=<var; 4>g;f(<var; 2>;<var; 3>); (<var;2>;<var;4>); (<var;3>;<var;4>)g;fT= TEff+ 1g).6: instantiation: it computes Binst on all variables in CL expressing all possible instantiations of B2a�ecting only the indexed mode-types used in mtt1; mtt2; mtt3 (see step 1). Binst is (�inst; < 0; 1 >)where5A detailed technical description of these operations is given in [9].6



�inst = (fX=<ground; 1>;L=[<ground;2> j<groundlist;1>]; H=<ground;2>;T=<groundlist; 1>;LEff=[< ground; 2 > j < any; 1 >]; TEff= < any; 1 >g; f g; fL = T+ 1; LEff = TEff+ 1g)7: re�nement: it computes B3 by making the conjunction of Bcl and �inst. In the example, B3 is(�3; < Min3; Max3 >) where < Min3; Max3 >=< 0; 1 > and�3 = (fX=< ground; 1 >; L=[< ground; 2> j< groundlist; 1>]; H=< ground; 2 >; T=<groundlist; 1>;LEff=[< ground; 2 > j< groundlist; 2>]; TEff=< groundlist; 2>g; f g; fL = T+ 1; LEff = TEff+ 1;T = TEff+ 1g)8: completeness-termination-test: �rst, the multiplicity < Min3; Max3 > is checked to respect the multi-plicity < 0; 1 > in prepostin. Moreover, since the sequence of answer substitutions is �nite and we are inthe case of a recursive call, it is checked whether the weight for the recursive call, i.e. the norm of the actualparameter T, is smaller than the weight for the initial call, i.e. the norm of the actual parameter L. Thisamounts to verify that E2 = fL = T+ 1; LEff = TEff+ 1g implies T < L6. In the example, this clearly holds.The analyzer uses the clause analyzer as follows. It receives as inputs a Prolog procedure P de�ning a pred-icate p=n and a behaviour for each subprocedure in P. Let prepostin = (�in; �out; < Min; Max>; sizexp)from the behaviour of p=n and �in be an abstract substitution respecting �in. It checks the following:1: for each clause CL of P the clause analyzer does not fail;2: the sequence of answer substitutions for the whole procedure satis�es < Min; Max>;3: if Max is 1 then at least one clause of P can produce an in�nite number of solutions and if this is notthe last one then the executions of all the following clauses in P are �nitely failed.When computing the sequence of answers for the whole procedure, input/output patterns are used to deter-mine whether some clauses are mutually exclusive (see [1]).4 The SynthesizerThe synthesizer receives the same inputs as the analyzer. First, for each clause of P all correct permutationsof the literals in its body are computed and one correct permutation is selected according to some minimalitycriteria (e.g. minimum number of solutions). Then, a correct permutation of the selected clauses is reached(e.g. if only one clause is not proved to terminate then the sequence with such a clause at the end is returned).The main operation of the synthesizer is realized by the find-perm function7 which given a pre�x of somepermutation of literals in the body of a clause CL which is correct according to the clause analyzer and anabstract sequence B holding after the execution of such a pre�x, returns the set of all correct permutationsof literals in the body of CL which begin with the same pre�x. The function find-perm uses the operationsof the clause analyzer as follows:- find-perm(prefix;B) = f(prefix; < Minout; Maxout >)g if prefix is a complete permutation of CLand Bout = (�out; < Minout; Maxout >) is obtained from B with the reduction operation of the clauseanalyzer and respects both the size relation and �out in prepostin;- find-perm(prefix;B) = ; if prefix is a complete permutation of CL and Bout does not respect eitherthe size relation or �out;6This operation can be automated by using linear algebra techniques [7] to prove that the system E2 [ fT � Lg is unsolvable.7It is inspired by the permut function de�ned in [4]. 7



- find-perm(prefix;B) = S find-perm((prefix; L);B0) if prefix is not a complete permutation of CL,L is a literal in the body of CL but not in prefix and B0 is the abstract sequence obtained from L andB with the derivation operation of the clause analyzer, i.e. such an operation does not fail and B0 isthe computed abstract sequence holding after the execution of L called with B which respects at leastone precondition of the behaviour of L.5 Conclusion and Future WorkThis paper extends and re�nes previous tools presented in [2, 3, 4, 8] which are part of the FOLON en-vironment. Future work will consider the actual implementation of the algorithms and their experimentalevaluation on practical problems. Lower level transformations such as introduction of control information,e.g. cut, and partial evaluation will also be investigated.References[1] C. Braem, B. Le Charlier, S. Modart, P. Van Hentenryck. Cardinality Analysis of Prolog. In Proc. Int'lLogic Programming Symposium, (ILPS'94), Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.[2] P. De Boeck, J. Henrard, B. Le Charlier. FOLON an environment for Declarative construction of Logicprograms. In JCSLP'92 Post-Conference Workshop on Logic Programming Environment, Washington,U.S.A., 1992.[3] P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures for Ensuring Correctness.In P. Deransart and J. Maluszy�nski, editors, Proc. Second Int'l Symposium on Programming LanguageImplementation and Logic Programming, (PLILP'90), vol. 456 of Lecture Notes in Computer Science.Springer-Verlag, 1990.[4] P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic De�nitions Augmented with TypeInformation into Prolog Procedures: Some Experiments. In Proc. Int'l Workshop on Logic ProgramSynthesis and Transformation, (LOPSTR'93). Springer Verlag, July 1993.[5] D. De Schreye, K. Verschaetse, M. Bruynooghe. A Framework for analysing the termination of de�nitelogic programs with respect to call patterns. In H. Tanaka, editor, FGCS'92, 1992.[6] Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.[7] P. E. Gill, W. Murray, M. H. Wright. Numerical Linear Algebra and Optimization, vol. 1. Addison-Wesley, 1991.[8] J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Construction of Logic Pro-grams (extended abstract). In M. Bruynooghe and M. Wirsing, editors, Proc. Fourth Int'l Workshop onProgramming Language Implementation and Logic Programming (PLILP'92), Lecture Notes in Com-puter Science. Springer-Verlag, Berlin, 1992.[9] B. Le Charlier and S Rossi. Automatic Derivation of Totally Correct Prolog Procedures from LogicDescriptions. Technical Report No. RP-95-009, Institut d'Informatique, University of Namur, Belgium,1995.[10] B. Le Charlier, S. Rossi, P. Van Hentenryck. An Abstract Interpretation Framework which AccuratelyHandles Prolog Search-Rule and the Cut. In Proc. Int'l Logic Programming Symposium, (ILPS'94),Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.8


