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ardi,piazza,srossig�dsi.unive.itAbstra
t. We study bisimulation-based information 
ow se
urity pro-perties whi
h are persistent, in the sense that if a system is se
ure, thenall states rea
hable from it are se
ure too. We show that su
h properties
an be 
hara
terized in terms of bisimulation-like equivalen
e relationsbetween the system and the system itself prevented from performing 
on-�dential a
tions. Moreover, we provide a 
hara
terization of su
h prop-erties in terms of unwinding 
onditions whi
h demand properties of in-dividual a
tions. These two di�erent 
hara
terizations naturally lead toeÆ
ient methods for the veri�
ation and 
onstru
tion of se
ure systems.We also prove several 
ompositionality results and dis
uss a suÆ
ient
ondition to de�ne re�nement operators preserving se
urity.1 Introdu
tionNon-interferen
e was introdu
ed by Goguen and Meseguer [11, 12℄ as a 
on
eptfor formalizing se
urity within deterministi
 systems. Given a system in whi
h
on�dential (i.e., high level) and publi
 (i.e., low level) information may 
oexist,non-interferen
e requires that 
on�dential inputs never a�e
t the output on thepubli
 interfa
e of the system, i.e., never interfere with the low level users. If su
ha property holds, one 
an 
on
lude that no information 
ow is ever possible fromhigh to low level.A possibilisti
 se
urity property 
an be regarded as an extension of non-interferen
e to non-deterministi
 systems. Starting with Sutherland [34℄, varioussu
h extensions have been proposed, e.g., [4, 9, 16, 21{24, 28, 33, 35℄. Most of theseproperties are based on tra
es, i.e., the behavior of a system that may possibly beobserved is the set of its exe
ution sequen
es. Examples are non-inferen
e [28℄,generalized non-interferen
e [21℄, restri
tiveness [21℄, and the perfe
t se
urityproperty [35℄.In [4℄, Fo
ardi and Gorrieri express the 
on
ept of non-interferen
e in theSe
urity Pro
ess Algebra (SPA, for short) language in terms of bisimulationsemanti
s. In parti
ular, they introdu
e the notion of Bisimulation-based nonDedu
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a low level user sees of the system is not modi�ed (in the sense of the bisimulationsemanti
s) by 
omposing any high level pro
ess � with E. The main advantageof BNDC with respe
t to tra
e-based properties is that it is powerful enough todete
t information 
ows due to the possibility for a high level mali
ious pro
essto blo
k or unblo
k a system (see [4, 6℄ for more detail). As a matter of fa
t,although Martinelli [20℄ has shown that BNDC is de
idable over �nite statepro
esses, the problem of verifying BNDC is still open. The main diÆ
ulty
onsists of getting rid of the universal quanti�
ation on high level pro
esses � .A way to over
ome this problems is to adopt suÆ
ient 
onditions for BNDC.We re
all from [6, 8℄ two of them, named Strong BNDC (SBNDC, for short)and Persistent BNDC (P BNDC, for short) 1. In parti
ular, P BNDC has beenshown to be suitable for analysing systems in dynami
 
ontexts [8℄.In this paper we 
onsider P BNDC and SBNDC and for both these propertieswe study two di�erent 
hara
terizations that allow to exploit di�erent veri�
a-tion te
hniques. The �rst kind of 
hara
terization is based on bisimulation-likeequivalen
e relation between the system E to be analysed and the low level viewof the system itself, denoted by E nH (the system E prevented from performing
on�dential a
tions). These bisimulation-based 
hara
terizations allow to exploitvery eÆ
ient te
hniques for verifying the properties over �nite-state pro
essesusing existing algorithms for the veri�
ation of strong bisimulation. The se
ondkind of 
hara
terization is given in terms of unwinding 
onditions whi
h demandproperties of individual a
tions. Unwinding 
onditions aim at \distilling" the lo-
al e�e
t of performing high level a
tions and are useful to de�ne both proofsystems (see, e.g., [2℄) and re�nement operators that preserve se
urity proper-ties, as done in [17℄. Proof systems allow to in
rementally build systems whi
hare se
ure by 
onstru
tion. Similarly re�nement operators are useful in a step-wise development pro
ess as properties whi
h have been already investigated insome phase need not to be re-investigated in later phases.In parti
ular, we start by 
onsidering the two 
hara
terizations above, givenin [2℄ for P BNDC . By studying the relation between su
h two 
hara
teriza-tions, we are able to give a new bisimulation-based 
hara
terization for SBNDC,whi
h was originally de�ned through unwinding 
onditions. As a next step weinvestigate the 
ompositionality of P BNDC and SBNDC. Compositionality isuseful for both veri�
ation and synthesis: if a property is preserved when systemsare 
omposed, then the analysis may be performed on subsystems and, in 
ase ofsu

ess, the system as a whole 
an be proved to satisfy the desired property. Wenoti
e that both P BNDC and SBNDC are 
ompositional with respe
t to theparallel operator, but they are not fully 
ompositional, sin
e they are not 
om-positional with respe
t to the non-deterministi
 
hoi
e operator, whi
h allows usto built a system that may 
hoose to behave as one of two spe
i�ed subsystems.It would be intuitive to require that a 
hoi
e between two se
ure pro
esses isstill se
ure as observed in [10℄. To this aim we introdu
e a new se
urity prop-erty, named Compositional P BNDC (CP BNDC, for short), properly in
ludedin P BNDC, whi
h is fully 
ompositional, i.e., it is 
ompositional also with re-1 In [8℄, P BNDC has been shown to be equivalent to the SBSNNI property of [6℄.2



spe
t to the non-deterministi
 
hoi
e. CP BNDC 
an be equivalently expressedthrough both a bisimulation-like equivalen
e and unwinding 
onditions.We show that the bisimulation-based 
hara
terizations of our persistent se
u-rity properties allow us to perform the veri�
ation task for �nite state pro
essesin polynomial time with respe
t to the number of states of the system, alsoimproving on the polynomial time 
omplexity required by the CompositionalSe
urity Che
ker Cose
 presented in [5℄. Finally, we provide a suÆ
ient 
ondi-tion to de�ne re�nement operators preserving all our se
urity properties.The paper is organized as follows. In Se
tion 2 we introdu
e some basi
notions on the SPA language and the se
urity properties BNDC and P BNDC.In Se
tion 3 we study the property SBNDC and provide a bisimulation-based
hara
terization of it. In Se
tion 4 we introdu
e the 
lass of CP BNDC pro
essesand prove that it is fully 
ompositional. Se
tion 5 is devoted to 
omplexity resultsfor the bisimulation-based 
hara
terizations of the three properties. In Se
tion 6we propose a suÆ
ient 
ondition to de�ne re�nement operators for SPA pro
essespreserving se
urity. Finally, in Se
tion 7 we dis
uss related works and draw some
on
lusions. All the proofs of propositions and theorems 
an be found in [1℄.2 Basi
 NotionsIn this se
tion we report the syntax and semanti
s of the Se
urity Pro
ess Algebra(SPA, for short) [6℄ and the de�nition of the se
urity properties BNDC [4℄ andP BNDC [8℄ together with some main results [2℄.The SPA Language. The Se
urity Pro
ess Algebra [6℄ is a variation of Milner'sCCS [27℄, where the set of visible a
tions is partitioned into high level a
tionsand low level ones in order to spe
ify multilevel systems. SPA syntax is based onthe same elements as CCS that is: a set L of visible a
tions su
h that L = I [Owhere I = fa; b; : : :g is a set of input a
tions and O = f�a;�b; : : :g is a set of outputa
tions; a spe
ial a
tion � whi
h models internal 
omputations, i.e., not visibleoutside the system; a 
omplementation fun
tion �� : L ! L, su
h that ��a = a, forall a 2 L. Fun
tion �� is extended to A
t by de�ning �� = � . A
t = L [ f�g is theset of all a
tions. The set of visible a
tions is partitioned into two sets, H andL, of high and low a
tions su
h that H = H and L = L. The syntax of SPAterms (or pro
esses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�), f(�) = � ,f(H) � H[f�g, and f(L) � L[f�g, and Z is a 
onstant that must be asso
iatedwith a de�nition Z def= E.We denote by E the set of all SPA pro
esses and by EH the set of all high levelpro
esses, i.e., those 
onstru
ted only using a
tions in H [ f�g. The operationalsemanti
s of SPA agents is given in terms of Labelled Transition Systems (LTS,for short) as de�ned in [6℄. 3



The 
on
ept of observation equivalen
e is used to establish equalities amongpro
esses and it is based on the idea that two systems have the same semanti
s ifand only if they 
annot be distinguished by an external observer. This is obtainedby de�ning an equivalen
e relation over E . The weak bisimulation relation [27℄equates two pro
esses if they are able to mutually simulate their behavior stepby step. Weak bisimulation does not 
are about internal � a
tions.We will use the following auxiliary notations. If t = a1 � � � an 2 A
t� andE a1! � � � an! E0, then we write E t! E0. We also write E t=) E0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a (possibly empty) sequen
e of �labelled transitions. If t 2 A
t�, then t̂ 2 L� is the sequen
e gained by deletingall o

urren
es of � from t. As a 
onsequen
e, E â=) E0 stands for E a=) E0 ifa 2 L, and for E( �!)�E0 if a = � (note that �=) requires at least one � labelledtransition while �̂=) means zero or more � labelled transitions).De�nition 1 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=) E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R 
ontaining the pair (E;F ).The relation� is the largest weak bisimulation and is an equivalen
e relation [27℄.Se
urity Properties. The BNDC [4℄ se
urity property aims at guaranteeingthat no information 
ow from the high to the low level is possible, even in thepresen
e of mali
ious pro
esses. The main motivation is to prote
t a systemalso from internal atta
ks, whi
h 
ould be performed by the so 
alled TrojanHorse programs, i.e., programs that are apparently honest but hide inside somemali
ious 
ode. Property BNDC is based on the idea of 
he
king the systemagainst all high level potential intera
tions, representing every possible high levelmali
ious program. In parti
ular, a system E is BNDC if for every high levelpro
ess � a low level user 
annot distinguish E from (Ej�), i.e., if � 
annotinterfere with the low level exe
ution of the system E.De�nition 2 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:Example 1. The BNDC property is powerful enough to dete
t information 
owsdue to the possibility for a high level mali
ious pro
ess to blo
k or unblo
ka system. Let H = fhg, L = fl; jg and E1 = l:h:j:0 + l:j:0. Consider thepro
ess � = �h:0. We have that (E1j�) nH � l:j:0, while E1 nH � l:0+ l:j:0.Note that the latter may (nondeterministi
ally) blo
k after the l input. Havingmany instan
es of this pro
ess, a low level user 
ould dedu
e if �h is exe
utedby observing whether the system always performs j or not. Pro
ess E1 may be\repaired", by in
luding the possibility of 
hoosing to exe
ute j or not inside thepro
ess. Indeed, pro
ess E2 = l:h:j:0+ l:(�:j:0+ �:0) is BNDC.4



In [8℄, it is introdu
ed a se
urity property 
alled Persistent BNDC (P BNDC,for short), whi
h is suitable for analysing systems in dynami
 exe
ution environ-ments. Intuitively, a system E is P BNDC if it never rea
hes inse
ure states.De�nition 3 (P BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 rea
hable from E; E0 2 BNDC :Example 2. Consider the pro
ess E2 of Example 1, i.e., E2 = l:h:j:0+ l:(�:j:0+�:0) where l; j 2 L and h 2 H . Suppose now that E2 is moved in the middle ofa 
omputation. This might happen when it �nd itself in the state h:j:0 (afterthe �rst l is exe
uted). Now it is 
lear that this pro
ess is not se
ure, as a dire
t
ausality between h and j is present. In parti
ular h:j:0 is not BNDC and thisgives eviden
e that E2 is not P BNDC. The pro
ess may be \repaired" as follows:E3 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E3 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [8℄ it has been shown that even if the de�nition of P BNDC introdu
es anuniversal quanti�
ation over all the possible rea
hable states, this 
an be avoidedby in
luding the idea of \being se
ure in every state" inside the bisimulationequivalen
e notion. This is done by de�ning an equivalen
e notion whi
h justfo
us on observable a
tions whi
h do not belong to H . More in details, it isde�ned an observation equivalen
e, named weak bisimulation up to H wherea
tions from H are allowed to be ignored, i.e., they are allowed to be mat
hedby zero or more � a
tions. To this aim, the following transition relation is used.De�nition 4. Let a 2 A
t. We de�ne the transition relation â=)nH as follows:â=)nH = ( â=) if a 62 Ha=) or �̂=) if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used inthe de�nition of weak bisimulation [27℄. In fa
t, if H = ;, then for all a 2 A
t ,E â=)nH E0 
oin
ides with E â=) E0.De�nition 5 (Weak Bisimulation up to H). A binary relation R � E � Eover agents is a weak bisimulation up toH if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=)nH F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=)nH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up toH, written E �nH F , if (E;F ) 2R for some weak bisimulation R up to H.The relation �nH is the largest weak bisimulation up to H and it is anequivalen
e relation. In [8℄ P BNDC has been 
hara
terized in terms of �nH .Theorem 1 (P BNDC - Bisimulation). Let E 2 E. E 2 P BNDC i� E �nHE nH: 5



In [2℄ we give a further 
hara
terization of P BNDC pro
esses in terms ofunwinding 
onditions. This new 
hara
terization provides a better understandingof the operational semanti
s of P BNDC pro
esses. In pra
ti
e, whenever a stateE0 of a P BNDC pro
ess may exe
ute a high level a
tion moving to a state E00,then E0 should be also able to simulate su
h high move through a � sequen
emoving to a state E000 whi
h is equivalent to E00 for a low level user.Theorem 2 (P BNDC - Unwinding). Let E 2 E be a pro
ess. E 2 P BNDCi� for all E0 rea
hable from E, if E0 h! E00, then E0 �̂=) E000 and E00 n H �E000 nH.Here we observe that there is a stri
t relation between the bisimulation-based
hara
terization of P BNDC given in Theorem 1 and the unwinding 
ondition ofTheorem 2: the equivalen
e �nH between E and E nH in Theorem 1 states thathigh level a
tions of E are simulated by zero or more � a
tions of E nH , whilethe unwinding 
ondition in Theorem 2 say that for every high level a
tion theremust exists a path of zero or more � a
tions leading to equivalent states fromthe low level view. This suggests us that 
onsistent 
hanges in the way of dealingwith high level a
tions in �nH and in the 
orresponding unwinding 
ondition,may lead to di�erent bisimulation-like and unwinding 
hara
terizations of novelinformation 
ow se
urity properties.This idea will be exploited in the next se
tions when we study the propertiesSBNDC and CP BNDC.In [8℄ it is also proved that P BNDC is 
ompositional with respe
t to theparallel 
omposition, restri
tion and low level pre�x operators. Unfortunately,P BNDC is not 
ompositional with respe
t to the nondeterministi
 
hoi
e op-erator as illustrated in Example 4 in the next se
tion.3 Strong BNDCThe property Strong BNDC (SBNDC, for short) has been introdu
ed in [4℄ asa suÆ
ient 
ondition for verifying BNDC. It just requires that before and afterevery high step, the system appears to be the same, from a low level perspe
tive.It has been de�ned through unwinding 
onditions as follows.De�nition 6 (SBNDC - Unwinding). Let E 2 E. E 2 SBNDC i� for all E0rea
hable from E, if E0 h! E00, then E0 nH � E00 nH.SBNDC is persistent in the sense that if a pro
ess E is SBNDC then allpro
esses E0 rea
hable from E are SBNDC, i.e., every state rea
hable from ase
ure system is still se
ure. From Theorem 2 it is easy to prove the following:Corollary 1. SBNDC � P BNDC � BNDC :By exploiting the relationships between the unwinding and the bisimulation
hara
terizations dis
ussed for the property P BNDC in the previous se
tion,6



we show that we 
an avoid the universal quanti�
ation over all the possiblerea
hable states in the de�nition of SBNDC by de�ning a suitable bisimulationequivalen
e notion. Note that De�nition 6 requires that high level a
tions of Eare simulated by no moves, i.e. by zero � a
tions, thus we de�ne an observationequivalen
e, named weak bisimulation up to H with zero � , where a
tions fromH are allowed to be totally ignored, i.e., they are allowed to be mat
hed by zeroa
tions. To this aim, we use the following transition relation whi
h does not take
are of internal a
tions and may totally ignore a
tions from H .De�nition 7. Let a 2 A
t. We de�ne the transition relation â=)0nH as follows:â=)0nH = ( â=) if a 62 Ha=) or ! if a 2 Hwhere ! denotes a sequen
e of zero a
tions 2.Note that relation â=) 0nH is in
luded into â=)nH , introdu
ed in De�nition 4,sin
e the empty sequen
e is a parti
ular sequen
e of � a
tions.The 
on
ept of weak bisimulation up to H with zero � is de�ned as follows.De�nition 8 (Weak Bisimulation up to H with zero �). A weak bisimu-lation up to H with zero � is a weak bisimulation where the transition relationâ=) is repla
ed by â=)0nH . Two agents E;F 2 E are weakly bisimilar up to Hwith zero � , written E �0nH F , if (E;F ) 2 R for some weak bisimulation R upto H with zero � .The relation �0nH is the largest weak bisimulation up to H with zero � andit is an equivalen
e relation.SBNDC pro
esses 
an be 
hara
terized in terms of �0nH as follows.Theorem 3 (SBNDC - Bisimulation). Let E 2 E. E 2 SBNDC i� E �0nHE nH:Example 3. Let us 
onsider the pro
ess depi
ted below, modelling the use ofa shared resour
e by a low level produ
er and an high level 
onsumer, i.e.,produ
e 2 L and 
onsume 2 H .R0 = produ
e :R1Ri = produ
e :Ri+1 + 
onsume:Ri�1 for i 2 [1; n� 1℄Rn = produ
e :Rn + 
onsume:Rn�1Note that the resour
e has a maximum 
apa
ity of n and the low level produ
ea
tion is ignored when su
h a limit is rea
hed. This non-intuitive behavior isneeded in order to avoid a potential 
ow from high to low level. In parti
ular,if the low level produ
er 
ould observe when the resour
e is full, this will beexploited to dedu
e how many high level 
onsume a
tions have been performed.2 If E ! E0 then E 
oin
ides with E0. 7



It is easy to see that this pro
ess is SBNDC by dire
tly applying De�nition 6.In fa
t all the Rj states are equivalent when restri
ted on high level a
tions, asthey may only perform a produ
e a
tion moving to another restri
ted Rj0 .In [6℄ (see Theorem 4) it is proved that SBNDC is 
ompositional with respe
tto the parallel and restri
tion operators. It is easy to extend the 
ompositionalityresult by showing that SBNDC is also 
ompositional with respe
t to low levelpre�x and relabelling.Proposition 1. Let E;F 2 E. If E;F 2 SBNDC, then� a:E 2 SBNDC, for all a 2 L [ f�g;� (EjF ) 2 SBNDC;� E n v 2 SBNDC, for all v � L;� E[f ℄ 2 SBNDC.As P BNDC also SBNDC is not 
ompositional with respe
t to the nondeter-ministi
 
hoi
e operator. The following example 
on
erns SBNDC, but a similarreasoning 
an be done for P BNDC.Example 4. Consider the pro
esses E4 = h:0 with h 2 H and E5 = l:0 withl 2 L. It is easy to see that both E4 and E5 are SBNDC but E4 + E5 is notSBNDC. In fa
t E4 + E5 h! 0 while E4 + E5 ! E4 + E5 = h:0 + l:0, but(h:0+ l:0) nH 6� 0. The problem lies in the fa
t that while the high level a
tionin E4 is safely simulated by a sequen
e of zero � in E4 nH , the same high levela
tion in E4+E5 is not safely simulated by a sequen
e of zero � in (E4+E5)nHdue to the presen
e of the additional 
omponent E5. This problem would notarise if h were be simulated by at least one � a
tion. This observation will beexploited in the next se
tion to de�ne a fully 
ompositional se
urity property.4 Compositional P BNDCIt is well-known that se
urity properties are, in general, not preserved under
omposition [21℄. We have seen in the previous se
tions that P BNDC and SB-NDC are both non-
ompositional with respe
t to the nondeterministi
 
hoi
eoperator. However, 
ompositionality results are 
ru
ial for making the develop-ment of large and 
omplex systems feasible [23, 25, 19℄. In this se
tion we showhow the notion of P BNDC 
an be slightly restri
ted in order to obtain a 
lass ofpro
esses whi
h is fully 
ompositional (i.e., it is 
ompositional also with respe
tto the nondeterministi
 
hoi
e). We 
all su
h a 
lass Compositional P BNDC(CP BNDC, for short). We also show that this 
lass 
an be equivalently 
hara
-terized in terms of a bisimulation-like relation and unwinding 
onditions.We start by modifying the way of dealing with high level a
tions in the �rst
hara
terization of P BNDC given in terms of �nH . The idea is that of de�ningan observation equivalen
e, named weak bisimulation up to H with at least one� , where a
tions from H are allowed to be mat
hed by one or more � a
tions, but8



not zero � . To this aim, we use the following transition relation whi
h generalizesthe relation â=). As in De�nition 4, a high level move 
an be simulated by asequen
e of � moves, but now we require that the sequen
e is not empty.De�nition 9. Let a 2 A
t. We de�ne the transition relation â=)+nH as follows:â=)+nH = ( â=) if a 62 Ha=) or �=) if a 2 HThe 
on
ept of weak bisimulation up to H with at least one � is as follows.De�nition 10 (Weak Bisimulation up to H with at least one �). A weakbisimulation up to H with zero � is a weak bisimulation where the transitionrelation â=) is repla
ed by â=)+nH . Two agents E;F 2 E are weakly bisimilarup to H with at least one � , written E �+nH F , if (E;F ) 2 R for some weakbisimulation R up to H with at least one � .The relation �+nH is the largest weak bisimulation up to H with at least one� and it is an equivalen
e relation. The relation â=)+nH is in
luded in â=)nH .The 
lass of CP BNDC pro
esses is de�ned in terms of �+nH as follows.De�nition 11 (CP BNDC - Bisimulation). Let E 2 E.E 2 CP BNDC i� E �+nH E nH:CP BNDC 
an be 
hara
terized in terms of unwinding 
onditions.Theorem 4 (CP BNDC - Unwinding). Let E 2 E. E 2 CP BNDC i� forall E0 rea
hable from E, if E0 h! E00 then E0 �=) E000 and E00 nH � E000 nH.Corollary 2. CP BNDC � P BNDC � BNDC:Noti
e that neither SBNDC implies CP BNDC nor CP BNDC implies SB-NDC. For example, pro
ess h:0 is SBNDC but it is not CP BNDC, as no �transitions simulate the high level h. On the other side, pro
ess h:0+ l:0+ �:0is CP BNDC but not SBNDC, as, after performing h, the low level a
tion l isno longer exe
utable. However, there are pro
esses whi
h are both SBNDC andCP BNDC, e.g., pro
esses whi
h perform only low level a
tions. The situationis summarized in Fig. 1. Noti
e that all the in
lusions are stri
t.Example 5. Consider the pro
ess C (
hannel) des
ribed through a value-passingextension of SPA by: C = in(x):(out(x):C + �:C):C may a

ept a value x at the left-hand port, labelled in. When it holds avalue, it either delivers it at the right-hand port, labelled out, or resets itselfperforming an internal transition. 9
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Fig. 1. Se
urity Properties.If the domain of x is f0; 1g, then the 
hannel C 
an be translated into SPAin a standard way by following [27℄ as:C = in0:(out0:C + �:C) + in1:(out1:C + �:C):Let us assume that C is used as 
ommuni
ation 
hannel from low to highlevel. This 
an be expressed as in0; in1 2 L and out0; out1 2 H . Sin
e, in 
or-responden
e of ea
h high level a
tion (out0; out1) there is a � transition leadingto the same state, by Theorem 4 we 
an 
on
lude that C is CP BNDC . The �transitions basi
ally makes the 
hannel a lossy one, as high level outputs may benon-deterministi
ally lost. However, note that non-determinism is used to ab-stra
t away implementation details. For example, su
h � 's 
ould 
orrespond, atimplementation time, to time-outs for the high level output a
tions, i.e., eventsthat empty the 
hannel and allow a new low level input, whenever high outputsare not a

epted within a 
ertain amount of time. Analogously, it is possibleto see that C is also SBNDC . Note that pro
ess C 0 = in(x):out(x):C 0 with no� 's is neither CP BNDC nor SBNDC . Indeed, a high level user may blo
k andunblo
k C 0 in order to transmit information to low level user. utExploiting the unwinding 
hara
terization we are now ready to prove thatCP BNDC is 
ompositional with respe
t to the nondeterministi
 
hoi
e operator.Proposition 2. Let E;F 2 E. If E;F 2 CP BNDC, then� a:E 2 CP BNDC , for all a 2 L [ f�g;� (E + F ) 2 CP BNDC ;� (EjF ) 2 CP BNDC;� E n v 2 P BNDC, for all v � L;� E[f ℄ 2 CP BNDC .5 Veri�
ation ComplexityLet us denote with ��nH the relation �nH . By adopting this notation we havethat a pro
ess E is P BNDC, SBNDC, and CP BNDC if and only if E �snH EnHfor s = �, s = 0 and s = +, respe
tively.10



The 
hara
terizations of properties in terms of bisimulation equivalen
es al-low us to eÆ
iently verify them. Let n = jSE j be the number of states in LTS (E),for ea
h a 2 A
t, let ma be the number of a! transitions in LTS(E), andm = Pa2A
tma. Similarly, let m̂a be the number of â=)snH transitions, andm̂ =Pa2A
t m̂a.Theorem 5. Let s 2 f0; �;+g. The test E �snH E nH 
an be performed in timeO(nm̂� + nw + m̂ logn) and spa
e O(n2), where w denotes the exponent in therunning time of the matrix multipli
ation algorithm used.3The proof of this 
omplexity result follows exa
tly the lines of the proof presentedin the 
ase of P BNDC in [7℄ paying some attention to modify the third point ofthe algorithm. In parti
ular the time 
omplexity depends on the fa
t that in allthe 
ases it is ne
essary to 
ompute the transitive 
losure of the � -transitions.Noti
e that in the 
omplexity result m̂ logn 
omes from the fa
t that we use thealgorithm by Paige and Tarjan ([30℄) to 
ompute the maximum bisimulation.6 Preserving Se
urity under Re�nementIn a stepwise development pro
ess, one usually starts with a very abstra
t spe
-i�
ation of the desired system. The spe
i�
ation is then re�ned and de
omposeduntil one arrives at a 
on
rete spe
i�
ation that 
an be dire
tly implemented.Naturally, one expe
ts that a system whi
h is formally developed in this waysatis�es all properties that are satis�ed by the abstra
t spe
i�
ation (plus pos-sibly additional ones). While this holds for safety and liveness properties, it isnot true for most information 
ow properties. This problem has been widelydis
ussed in [14℄ and some progress toward a solution has been made in [13, 29,31, 18℄. In parti
ular, in [18℄ Mantel shows how from unwinding 
onditions one
an easily de�ne re�nement operators whi
h preserve se
urity.A re�nement for a pro
ess is de�ned in terms of a basi
 re�nement opera-tor ref : E ! E that, given a pro
ess E, returns a pro
ess ref (E) whi
h is are�nement of E.Following [18℄, we identify a suÆ
ient 
ondition to be satis�ed by basi
 re�ne-ment operators in order to preserve the bisimulation-based possibilisti
 se
urityproperties studied in this paper.De�nition 12. A basi
 re�nement operator ref preserves the low level obser-vations if for all E;F 2 E if E nH � F nH, then ref (E) nH � ref (F ) nH.Example 6. Let v � L. The restri
tion operator nv is a basi
 re�nement operatorwhi
h preserves the low level observations. In fa
t, if E nH � F nH then it iseasy to prove that (E n v) nH � (E n v) nH .3 In the algorithm in [3℄, whi
h is at the moment the fastest in literature, we havethat w = 2:376. 11



Given a basi
 re�nement operator ref , a re�nement re�ne(E; ref ; S) for a
omplex system E is the pro
ess obtained by applying ref to all E0 2 S rea
hablefrom E. If E satis�es P BNDC (or CP BNDC or SBNDC ) then we would likethat also the resulting system satis�es it. However, by simply applying the refoperator to all the pro
esses in S one may obtain a system whi
h does not satisfythe desired property.Example 7. Consider the pro
ess E6 = E7 + h:E8, where E7 = l:h:0 and E8 =l:0, with h 2 H and l 2 L. The pro
ess E6 is SBNDC. If we 
onsider the basi
 re-�nement operator nflg and the set S = fE8g we obtain that re�ne(E6; ref ; S) =l:h:0+ h:0 whi
h is not SBNDC. The problem is due to the fa
t that by re�n-ing E8 we loose the unwinding property: re�ne(E6; ref ; S) does not 
ontain anysubpro
ess E0 rea
hable with zero � a
tions and su
h that E0 nH � ref (E8)nH .On the other hand, re�ne(E6; ref ; fE7; E8g) = h:0 is SBNDC.The above example suggests how to guarantee the unwinding 
onditions, andthen our se
urity properties, in re�ning a pro
ess: when we re�ne a subpro
essE0 we have to re�ne also all the subpro
esses E00 su
h that E0 nH � E00 nH .Theorem 6. Let E 2 E, ref be a basi
 re�nement operator whi
h preserves thelow level observations. Let S be a set of states su
h that for all E0; E00 rea
hablefrom E if E0 2 S and E0 nH � E00 nH then E00 2 S too.If E satis�es P BNDC (CP BNDC, SBNDC) then re�ne(E; ref ; S) satis�esP BNDC (CP BNDC, SBNDC, respe
tively).Proof. Immediate by the unwinding Theorems 2 and 4, and De�nition 6.Given an intended re�nement re�ne(E; ref ; S) whi
h does not satisfy thehypothesis on S of the above theorem, there are two natural ways for obtain-ing an approximation of it whi
h preserves our se
urity properties. We denotethem by re�ne+(E; ref ; S) and re�ne�(E; ref ; S). While re�ne+(E; ref ; S) re-�nes through ref all the states whi
h are in S (plus possibly states not in S),re�ne�(E; ref ; S) only re�nes through ref states whi
h are in S (but possibly notall states in S). The formal de�nition of re�ne+(E; ref ; S) and re�ne�(E; ref ; S)are as follows.De�nition 13 (re�ne+ and re�ne�). Let E 2 E, let ref be a basi
 re�nementoperator whi
h preserves the low level observations and let S be a set of statesrea
hable from E.re�ne+(E; ref ; S) = re�ne(E; ref ; S [ S0) whereS0 = fE00 rea
hable from E j 9E0 2 S and E0 nH � E00 nHgre�ne�(E; ref ; S) = re�ne(E; ref ; S0) whereS0 is the greatest subset of S su
h that if E0 2 S0 and E00 isrea
hable from E and E0 nH � E00 nH then E00 2 S.If a state E0 2 S is re�ned through ref then re�ne+(E; ref ; S) re�nes alsoall states E00 whi
h are equivalent to E0 from the low level view. On the otherhand, re�ne�(E; ref ; S) re�nes through ref a state E0 2 S only if all states E00whi
h are equivalent to E0 from the low level view belong to S.12



Corollary 3. Let E 2 E, ref be a basi
 re�nement operator whi
h preserves thelow level observations, and S be a set of states rea
hable from E. If E satis�esP BNDC (CP BNDC , SBNDC) then re�ne+(E; ref ; S) and re�ne�(E; ref ; S)both satisfy P BNDC (CP BNDC, SBNDC, respe
tively).7 Related Works and Con
lusionsIn this paper we study three persistent information 
ow se
urity properties basedon the bisimulation semanti
s model. For these properties we provide two 
hara
-terizations: one in terms of a bisimulation-like equivalen
e relation and anotherone in terms of unwinding 
onditions.The �rst 
hara
terization allows us to perform the veri�
ation of the proper-ties for �nite state pro
esses in polynomial time with respe
t to the number ofstates of the system, also improving on the polynomial time 
omplexity requiredby the Compositional Se
urity Che
ker Cose
 presented in [5℄.The se
ond 
hara
terization is based on unwinding 
onditions. This kind of
onditions for possibilisti
 se
urity properties have been previously proposed inmany papers, see, e.g., [13, 32, 26, 17℄. All su
h 
onditions have been proposedfor tra
es-based models and are, in most 
ases, only suÆ
ient for the respe
tivese
urity properties. Here we propose new ne
essary and suÆ
ient unwinding
onditions for bisimulation-based properties.In [2℄ we show how unwinding 
onditions 
an be exploited for de�ning aproof system whi
h provides a very eÆ
ient te
hnique for the veri�
ation andthe development of P BNDC se
ure pro
esses. Indeed, the proof system allowsus to verify whether a pro
ess is se
ure just by inspe
ting its syntax, and thusavoiding the state-explosion problem. In parti
ular, it allows us to deal withre
ursive pro
esses whi
h may perform unbounded sequen
es of a
tions, possiblyrea
hing an in�nite number of states. Moreover, the system o�ers a mean tobuilt pro
esses whi
h are P BNDC by 
onstru
tion in an in
remental way. Su
ha proof system 
ould be easily adapted to deal with the CP BNDC and SBNDCproperties studied in this paper.We show that P BNDC and SBNDC are 
ompositional with respe
t to allthe operators of SPA, ex
ept the non-deterministi
 
hoi
e. Moreover, we provethat the new property named CP BNDC is fully 
ompositional. Compositional-ity of possibilisti
 se
urity properties has been widely studied in the literature.There are several information 
ow properties based on the tra
es model whi
hhave been proved to be fully 
ompositional like, e.g., restri
tiveness [21℄, for-ward 
orre
tability [15℄ or separability [23℄. In [23, 25℄ it has been studied howto restri
t 
omposition in order to preserve 
ertain se
urity properties whi
hare not preserved by (more general) 
omposition. To the best of our knowledge,CP BNDC is the only bisimulation-based se
urity property in literature whi
his fully 
ompositional.Finally, we provide a suÆ
ient 
ondition to de�ne re�nement operators pre-serving our persistent se
urity properties. The problem of �nding re�nementsunder whi
h se
urity is preserved has been widely dis
ussed in [14℄ and some13



progress toward a solution has been made in [13, 29, 31, 18℄. In parti
ular, in [18℄Mantel shows how one 
an easily de�ne re�nement operators whi
h preserve se-
urity, starting from unwinding 
onditions. The approa
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