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ardi,piazza,srossig�dsi.unive.itAbstra
t. Persistent BNDC (P BNDC, for short) is a se
urity propertyfor pro
esses in dynami
 
ontexts, i.e., 
ontexts that 
an be re
on�guredat runtime.We study how to eÆ
iently de
ide if a pro
ess is P BNDC. Weexploit a 
hara
terization of P BNDC through a suitable notion of WeakBisimulation up to high level a
tions. In the 
ase of �nite-state pro
esses,we study two methods for 
omputing the largest weak bisimulation up tohigh level a
tions: (1) via Chara
teristi
 Formulae and Model Che
kingfor �-
al
ulus and (2) via Closure up to a set of a
tions and StrongBisimulation. This se
ond method seems to be parti
ularly appealing: it
an be performed using already existing tools at a low time 
omplexity.1 Introdu
tionSystems are be
oming more and more 
omplex, and the se
urity 
ommunityhas to fa
e this by 
onsidering, e.g., issues like pro
ess mobility among di�erentar
hite
tures and systems. A mobile pro
ess moving on the network 
an be in
u-en
ed and re
on�gured by the environments it 
rosses, possibly leading to newse
urity brea
hes. A program exe
uting in a \se
ure way" inside one environ-ment 
ould �nd itself in a di�erent setting (with di�erent mali
ious atta
kers)at runtime, e.g., if the pro
ess de
ides to migrate during its exe
ution.Persistent BNDC (P BNDC, for short) [11, 12℄, is a se
urity property basedon the idea of Non-Interferen
e [13℄ (formalized as BNDC [10℄), whi
h is sui-table to analyze pro
esses in dynami
 environments. The basi
 idea is to re-quire that every state whi
h is rea
hable by the system still satis�es a basi
Non-Interferen
e property. If this holds, we are assured that even if the systemmigrates during its exe
ution no mali
ious atta
ker will be able to 
ompromiseit, as every possible rea
hable state is guaranteed to be se
ure. This extensionof BNDC leads to some interesting results, as it 
an be equivalently de�ned as aWeak Bisimulation up to high level a
tions. This result, allowing to avoid boththe universal quanti�
ation over all the possible atta
kers, present in BNDC, andthe universal quanti�
ation over all possible rea
hable states, required by the def-inition of P BNDC, naturally suggests the e�e
tive 
omputability of P BNDC.? Partially supported by the MURST proje
ts \Interpretazione astratta, type systemse analisi 
ontrol-
ow" and \Modelli formali per la si
urezza" and the EU Contra
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In this paper we 
onsider the spe
i�
 problem of automati
ally 
he
kingP BNDC. In parti
ular, we des
ribe two methods for determining whether asystem is P BNDC. The �rst method is based on the derivation of Chara
teris-ti
 Formulae [21, 24℄ in the language of modal �-
al
ulus [16℄. The 
hara
teristi
formulae 
an be automati
ally veri�ed using model 
he
kers for �-
al
ulus, su
has NCSU Con
urren
y Workben
h [4℄. The se
ond method is in the spirit of [24℄:it is based on the 
omputation of a sort of transitive 
losure (Closure up to highlevel a
tions) of the system and on the veri�
ation of a Strong Bisimulation. Thisallows us to use existing tools as a large number of algorithms for 
omputingthe largest strong bisimulation between two pro
esses have been proposed [22, 2,17, 7℄ and are integrated in model 
he
kers, su
h as NCSU Con
urren
y Work-ben
h, XEVE [1℄, FDR2 [23℄. In parti
ular, this se
ond approa
h improves onthe polynomial time 
omplexity of the Compositional Se
urity Che
ker CoSeCpresented in [9℄, sin
e only one bisimulation test is ne
essary.The paper is organized as follows. In Se
tion 2 we re
all the Se
urity Pro
essAlgebra (SPA, for short) and the notions of Strong and Weak bisimulation. InSe
tion 3 we introdu
e the P BNDC property and we re
all its 
hara
terizationin terms of weak bisimulation up to high level a
tions. In Se
tion 4 we proposetwo methods to prove the weak bisimulation up high level a
tions and we demon-strate some 
omplexity results. Finally, in Se
tion 5 we draw some 
on
lusions.2 PreliminariesThe Se
urity Pro
ess Algebra (SPA, for short) [10℄ is a slight extension of Milner'sCCS [20℄, where the set of visible a
tions is partitioned into high level a
tionsand low level ones in order to spe
ify multilevel systems. SPA syntax is based onthe same elements as CCS that is: a set L of visible a
tions su
h that L = I [Owhere I = fa; b; : : :g is a set of input a
tions and O = f�a;�b; : : :g is a set of outputa
tions; a spe
ial a
tion � whi
h models internal 
omputations, i.e., not visibleoutside the system; a 
omplementation fun
tion �� : L ! L, su
h that ��a = a,for all a 2 L, and �� = � ; A
t = L [ f�g is the set of all a
tions. The set ofvisible a
tions is partitioned into two sets, A
tH and A
tL, of high and low levela
tions su
h that A
tH = A
tH and A
tL = A
tL, and A
tH [ A
tL = L andA
tH \A
tL = ;. The syntax of SPA agents (or pro
esses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�) and f(�) = � ,and Z is a 
onstant that must be asso
iated with a de�nition Z def= E.Intuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
ess that
an perform an a
tion a and then behaves as E; E1 + E2 represents the nondeterministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is the parallel
omposition of E1 and E2, where exe
utions are interleaved, possibly syn
hro-nized on 
omplementary input/output a
tions, produ
ing an internal a
tion � ;



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restri
tion if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0Constant if A def= EA a! E0Fig. 1. The operational rules for SPAE n v is a pro
ess E prevented from performing a
tions in v1; E[f ℄ is the pro
essE whose a
tions are renamed via the relabelling fun
tion f .The operational semanti
s of SPA agents is given in terms of Labelled Tran-sition Systems. A Labelled Transition System (LTS) is a triple (S;A;!) whereS is a set of states, A is a set of labels (a
tions),!� S�A�S is a set of labelledtransitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) means thatthe system 
an move from the state S1 to the state S2 through the a
tion a.The operational semanti
s of SPA is the LTS (E ;A
t ;!), where the states arethe terms of the algebra and the transition relation !� E �A
t � E is de�nedby stru
tural indu
tion as the least relation generated by the axioms and infer-en
e rules reported in Fig. 1. The operational semanti
s for an agent E is thesubpart of the SPA LTS rea
hable from the initial state E and we refer to it asLTS (E) = (SE ;A
t ;!), where SE is the set of pro
esses rea
hable from E. Apro
ess E is said to be �nite-state if SE is �nite.The 
on
ept of observation equivalen
e between two pro
esses is based onthe idea that two systems have the same semanti
s if and only if they 
annot bedistinguished by an external observer. This is obtained by de�ning an equivalen
erelation over E , equating two pro
esses when they are indistinguishable. In thefollowing, we report the de�nitions of two observation equivalen
es 
alled strongbisimulation and weak bisimulation [20℄.1 In CCS the operator n requires that the a
tions of E n v do not belong to v [ �v.



De�nition 1 (Strong Bisimulation).A binary relation R � E�E over agentsis a strong bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F a! F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E a! E0 and (E0; F 0) 2 R.Two agents E;F 2 E are strongly bisimilar, denoted by E � F , if there exists astrong bisimulation R 
ontaining the pair (E;F ).A weak bisimulation is a bisimulation whi
h does not 
are about internal� a
tions. So, when F simulates an a
tion of E, it 
an also exe
ute some �a
tions before or after that a
tion. We will use the following auxiliary notations.If t = a1 � � �an 2 A
t� and E a1! � � � an! E0, then we write E t! E0. We alsowrite E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a(possibly empty) sequen
e of � labelled transitions. If t 2 A
t�, then t̂ 2 L� isthe sequen
e gained by deleting all o

urren
es of � from t. Hen
e, E â=) E0stands for E a=) E0 if a 2 L, and for E( �!)�E0 if a = � .De�nition 2 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=) E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R 
ontaining the pair (E;F ).In [20℄ it is proved that � is the largest strong bisimulation, � is the largestweak bisimulation and they are equivalen
e relations.3 Se
urity PropertiesWe re
all the Persistent BNDC (P BNDC, for short) se
urity property and its
hara
terization in terms of weak bisimulation up to high level a
tions [11, 12℄.We �rst give the de�nition of Bisimulation-based Non Dedu
ibility on Com-positions (BNDC, for short) [8, 10℄. The BNDC se
urity property aims at guar-anteeing that no information 
ow from the high to the low level is possible,even in the presen
e of mali
ious pro
esses. The main motivation is to prote
ta system also from internal atta
ks, whi
h 
ould be performed by the so 
alledTrojan Horse programs. Property BNDC is based on the idea of 
he
king thesystem against all high level potential intera
tions, representing every possiblehigh level mali
ious program. In parti
ular, a system E is BNDC if for everyhigh level pro
ess � a low level user 
annot distinguish E from (Ej�) n A
tH ,i.e., if � 
annot interfere [13℄ with the low level exe
ution of the system E.De�nition 3 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nA
tH � (Ej�) nA
tH :



In [11, 12℄ it is shown that the BNDC property is not strong enough to analy-se systems in dynami
 exe
ution environments. For example, if 
ode mobilityis allowed, a program 
ould migrate to a di�erent host in the middle of its
omputation. In this setting we have to guarantee that every rea
hable state ofthe pro
ess is se
ure. Another interesting example is the exe
ution of an appleton a Java Card, where an atta
ker 
ould try to bring the 
ard in an unstable(inse
ure) state by powering o� the 
ard in the middle of applet 
omputation.To deal with these situations, in [11, 12℄ it has been introdu
ed the se
urityproperty named P BNDC.De�nition 4 (Persistent BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 rea
hable from E and 8 � 2 EH ;E0 nA
tH � (E0j�) nA
tH :; i.e., E0 2 BNDC :Example 1. Consider the pro
ess E1 = l:h:j:0+ l:(�:j:0+ �:0) where l; j 2 A
tLand h 2 A
tH . E1 
an be proved to be BNDC . Indeed, the 
ausality betweenh and j in the �rst bran
h of the pro
ess is \hidden" by the se
ond bran
hl:(�:j:0 + �:0), whi
h may simulate all the possible intera
tions with a highlevel pro
ess. Suppose now that E1 is moved in the middle of a 
omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexe
uted). Now it is 
lear that this pro
ess is not se
ure, as a dire
t 
ausalitybetween h and j is present. In parti
ular h:j:0 is not BNDC and this giveseviden
e that E1 is not P BNDC. The pro
ess may be \repaired" as follows:E2 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [12℄ it has been proven that property P BNDC is equivalent to the se
urityproperty SBSNNI [9, 10℄ whi
h is automati
ally 
he
kable over �nite state pro-
esses. However, this property still requires a universal quanti�
ation over all thepossible rea
hable states from the initial pro
ess. In [11, 12℄ it has been shownthat this 
an be avoided, by in
luding the idea of \being se
ure in every state"inside the bisimulation equivalen
e notion. This is done by de�ning an equiva-len
e notion whi
h just fo
us on observable a
tions not belonging to A
tH . Morein detail, it is de�ned an observation equivalen
e, named weak bisimulation up toA
tH , where a
tions from A
tH are allowed to be ignored, i.e., they are allowedto be mat
hed by zero or more � a
tions. To do this, it is used a transitionrelation whi
h does not take 
are of both internal and high level a
tions.We use the following notations. For an a
tion a 2 A
t , we write ( a!)f0;1gto denote a sequen
e of zero or one a a
tions. The expression E â=)nA
tH E0is a shorthand for E â=) E0 if a 62 A
tH , and for E( ��!)�( a�!)f0;1g( ��!)�E0 ifa 2 A
tH . Noti
e that the relation â=)nA
tH is a generalization of the relationâ=) used in the de�nition of weak bisimulation [20℄. In fa
t, if A
tH = ;, thenfor all a 2 A
t , E â=)nA
tH E0 
oin
ides with E â=) E0.



De�nition 5 (Weak Bisimulation up to A
tH). A binary relation R � E�Eover agents is a weak bisimulation up to A
tH if (E;F ) 2 R implies, for alla 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=)nA
tH F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=)nA
tH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up to A
tH , written E �nA
tH F , if(E;F ) 2 R for some weak bisimulation R up to A
tH .The relation �nA
tH is the largest weak bisimulation up to A
tH and it is anequivalen
e relation. In [12℄ it is proven that P BNDC 
an be 
hara
terized interms of �nA
tH as follows. We will exploit this result for verifying P BNDC.Theorem 1. Let E 2 E. Then, E 2 P BNDC i� E �nA
tH E nA
tH :4 Che
king P BNDCIn this se
tion we present two methods to determine whether E �nA
tH EnA
tH ,in the 
ase that E is a �nite-state pro
ess. In parti
ular, we ta
kle the problem ofproving E �nA
tH F , when E and F are �nite-state pro
esses. The �rst methodwe propose 
onsists in de�ning from a given pro
essE a modal �-
al
ulus formula��nA
tH (E) su
h that F satis�es ��nA
tH (E) if and only if E �nA
tH F . These
ond method 
onsists in deriving from the LTS's of E and F two transformedLTS's that are strongly bisimilar if and only if E �nA
tH F .4.1 Chara
teristi
 FormulaeThe modal �-
al
ulus [16℄ is a small, yet expressive pro
ess logi
. We 
onsidermodal �-
al
ulus formulae 
onstru
ted a

ording to the following grammar:� ::= true j false j �1 ^ �2 j �1 _ �2 j hai� j [a℄� j X j �X:� j �X:�where X ranges over an in�nite set of variables and a over a set of a
tions A
t .The �xpoint operators �X and �X bind the respe
tive variable X and we adoptthe usual notion of 
losed formula. For a �nite setM of formulae, we write VMand WM for the 
onjun
tion and disjun
tion of the formulae in M .Modal �-
al
ulus formulae are interpreted over pro
esses, whi
h are modelledby LTS's. Let E be a pro
ess and LTS (E) = (SE ;A
tH ;!). The subset of statesthat satisfy a formula �, denoted by ME(�)(�), is intuitively de�ned in Fig. 2.We use the notion of environment that is a partial mapping � : Var 6! 2SE whi
hinterprets at least the free variables of � by subsets of SE . For a set x � SE anda variable X , we write �[X 7! x℄ for the environment that maps X to x and thatis de�ned on a variable Y 6= X i� � is de�ned on Y and maps Y then to �(Y ).Intuitively, true and false hold for all resp. no states and ^ and _ areinterpreted by 
onjun
tion and disjun
tion, hai� holds for a state E0 2 SE ifthere is a state E00 rea
hable from E0 with an a
tion a whi
h satis�es �, and [a℄�



ME(true)(�) = SEME(false)(�) = ;ME(�1 ^ �2)(�) = ME(�1)(�) \ME(�2)(�)ME(�1 _ �2)(�) = ME(�1)(�) [ME(�2)(�)ME(hai�)(�) = fE0 j 9E00 : E0 a! E00 ^ E0 2ME(�)(�)gME([a℄�)(�) = fE0 j 8E00 : E0 a! E00 ) E00 2ME(�)(�)gME(X)(�) = �(X)ME(�X:�)(�) = Tfx � SE j ME(�)(�[X 7! x℄) � xgME(�X:�)(�) = Sfx � Se j ME(�)(�[X 7! x℄) � xgFig. 2. Semanti
s of modal mu-
al
ulusholds for E0 if all states E00 rea
hable from E0 with an a
tion a satisfy �. Theinterpretation of a variable X is as pres
ribed by the environment. The formula�X:�, 
alled least �xpoint formula, is interpreted by the smallest subset x of SEthat re
urs when � is interpreted with the substitution of x for X . Similarly,�X:�, 
alled greatest �xpoint formula, is interpreted by the largest su
h set. Exi-sten
e of su
h sets follow from the well-known Knaster-Tarski �xpoint theorem.As the meaning of a 
losed formula � does not depend on the environment, wesometimes write ME(�) for ME(�)(�) where � is an arbitrary environment.The set of pro
esses satisfying a 
losed formula � is Pro
(�) = fF j F 2MF (�)g. We also refer to (
losed) equation systems of modal �-
al
ulus formulae,Eqn : X1 = �1; : : : ; Xn = �nwhere X1; : : : ; Xn are mutually distin
t variables and �1; : : : ; �n are modal �-
al
ulus formulae having at most X1; : : : ; Xn as free variables.An environment � : fX1; : : : ; Xng ! 2SE is a solution of an equation sys-tem Eqn, if �(Xi) = ME(�i)(�). The fa
t that solutions always exist, is againa 
onsequen
e of the Knaster-Tarski �xpoint theorem. In fa
t the set of envi-ronments that are 
andidates for solutions, EnvE = f� j � : fX1; : : : ; Xng !2SEg, together with the lifting v of the in
lusion order on 2SE , de�ned by� v �0 i� �(Xi) � �0(Xi) for i 2 [1::n℄ forms a 
omplete latti
e. Now, we 
ande�ne the equation fun
tional Fun
EqnE : EnvE ! EnvE by Fun
EqnE (�)(Xi) =ME(�i)(�) for i 2 [1::n℄, the �xpoints of whi
h are just the solutions of Eqn .Fun
EqnE is monotoni
 asME(�i) is monotoni
. In parti
ular, there is the largestsolution �Fun
EqnE of Eqn (with respe
t to v), whi
h we denote by ME(Eqn).This de�nition interprets equation systems on the states of a given pro
ess E.We lift this to pro
esses by agreeing that a pro
ess satis�es an equation systemEqn , if its initial state is in the largest solution of the �rst equation. Thus the setof pro
esses satisfying the system Eqn is Pro
(Eqn) = fF j F 2MF (Eqn)(X1)g.The relation �nA
tH� E � E 
an be 
hara
terized as the greatest �xpoint�Fun
�nA
tH of the monotoni
 fun
tional Fun
�nA
tH on the 
omplete latti
e ofrelations R � E � E ordered by set in
lusion, where (E;F ) 2 Fun
�nA
tH (R) ifand only if points (1) and (2) of De�nition 5 hold. Thus a relation R is a weak



bisimulation up to A
tH if and only if R � Fun
�nA
tH (R), i.e., R is a post-�xpoint of Fun
�nA
tH . By the Knaster-Tarski �xpoint theorem, �Fun
�nA
tH isthe union of all post-�xpoints of Fun
�nA
tH , i.e., it is the largest weak bisimula-tion up to A
tH . If we restri
t to the 
omplete latti
e of relations R � SE �SFwe obtain a monotoni
 fun
tional Fun
(E;F )�nA
tH whose greatest �xpoint is exa
tly�Fun
�nA
tH \ (SE � SF ), and this is enough to determine if E �nA
tH F .Let E be a �nite-state pro
ess, E1; : : : ; En its jSE j = n states, and E1 = Eits initial state. We 
onstru
t a 
hara
teristi
 equation system [21℄Eqn�nA
tH : XE1 = ��nA
tHE1 ; : : : ; XEn = ��nA
tHEn
onsisting of one equation for ea
h state E1; : : : ; En 2 SE . We de�ne the formu-lae ��nA
tHEi su
h that the largest solution MF (Eqn�nA
tH ) of Eqn�nA
tH on anarbitrary pro
ess F asso
iates the variables XE0 just with the states F 0 of Fwhi
h are weakly bisimilar up to A
tH to E0. Theorem 2 is in the spirit of [21℄and shows the exa
t form of su
h formulae. We use these notations:hhaiinA
tH� def= 8<: hh�ii� if a = �hhaii� if a 62 A
tH and a 6= �hhaii� _ hh�ii� if a 2 A
tH and a 6= �where hh�ii� def= �X:� _ h�iX and hhaii� def= hh�iihaihh�ii�: Noti
e that hhaiinA
tH ,hh�ii and hhaii 
orrespond to a=)nA
tH , �̂) and a), respe
tively, sin
eME(hhaiinA
tH�)(�) = fE0 j 9E00 : E0 â=)nA
tH E00 ^E00 2ME(�)(�)g;ME(hh�ii�)(�) = fE0 j 9E00 : E0 �̂=) E00 ^ E00 2ME(�)(�)g;ME(hhaii�)(�) = fE0 j 9E00 : E0 a=) E00 ^ E00 2ME(�)(�)g:Theorem 2. MF (Eqn�nA
tH )(XE0) = fF 0 2 SF j E0 �nA
tH F 0g when��nA
tHE0 def= VfVfhhâiinA
tHXE00 j E0 a! E00g j a 2 A
tg^Vf[a℄WfXE00 j E0 â=)nA
tH E00g j a 2 A
tg:Example 2. Consider the pro
ess E1 of Example 1. For every state E0 rea
hablefrom E0, let  E0 denote ��nA
tHE0 . Then E1 = hhliinA
tHXh:j:0 ^ hhliinA
tHX�:j:0+�:0^[l℄(Xh:j:0 _X�:j:0+�:0 _Xj:0 _X0) ^ [� ℄XE1 ^ [h℄XE1 �:j:0+�:0 = hh�iinA
tHXj:0 ^ hh�iinA
tHX0^[� ℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)^[h℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0) �:j:0 = hh�iinA
tHXj:0 ^ [� ℄(X�:j:0 _Xj:0) ^ [h℄(X�:j:0 _Xj:0) h:j:0 = hhhiinA
tHXj:0 ^ [� ℄Xh:j:0 ^ [h℄(Xh:j:0 _Xj:0) j:0 = hhjiinA
tHX0 ^ [h℄Xj:0 ^ [� ℄Xj:0 ^ [j℄X0 �:0 = hh�iinA
tHX0 ^ [� ℄(X�:0 _X0) ^ [h℄(X�:0 _X0) 0 = [h℄X0 ^ [� ℄X0



Corollary 1. Pro
(Eqn�nA
tH ) = fF j E �nA
tH Fg:This result holds for all pro
esses F as Eqn�nA
tH does not depend on F .Chara
teristi
 formulae, i.e., single formulae 
hara
terizing pro
esses 
an be
onstru
ted by applying simple semanti
s-preserving transformation rules onequation systems as des
ribed in [21℄. These rules are similar to the ones usedby A. Mader in [19℄ as a mean of solving Boolean equation systems (with alter-nation) by Gauss elimination. Hen
e, sin
e for any equation system Eqn thereis a formula � su
h that Pro
(Eqn) = Pro
(�), we obtain that:Theorem 3. For all �nite-state pro
esses E there is a modal �-
al
ulus formu-lae ��nA
tH (E) su
h that Pro
(��nA
tH (E)) = fF j E �nA
tH Fg:Using this method we 
an for instan
e exploit the model 
he
ker NCSUCon
urren
y Workben
h ([4℄) to 
he
k whether E �nA
tH F . Unfortunately,in the �-
al
ulus formula we obtain for a pro
ess E there are both � and �operators (see [21℄). In the worst 
ase the number of � and � alternations in��nA
tH (E) is 2jSEj+1 (when LST (E) has a unique strongly 
onne
ted 
ompo-nent) and in that 
ase the 
omplexity of model 
he
king ��nA
tH (E) on LTS(F )is O(jSF j(2jSEj+1)=2) (see [18, 3℄).4.2 Strong BisimulationWe show now how to redu
e the problem of testing whether two pro
esses areweakly bisimilar up to A
tH to a strong bisimulation problem. The next propertyfollows from the de�nition of â=)nA
tH .Proposition 1. A binary relation R � E�E over agents is a weak bisimulationup to A
tH if and only if (E;F ) 2 R implies, for all a 2 A
t� if E â=)nA
tH E0, there is F 0 2 E su
h that F â=)nA
tH F 0 and (E0; F 0) 2 R;� if F â=)nA
tH F 0, there is E0 2 E su
h that E â=)nA
tH E0 and (E0; F 0) 2 R.Proof. ()). We prove that if R � E �E is a weak bisimulation up to A
tH , and(E;F ) 2 R, then, for all a 2 A
t we have� if E â=)nA
tH E0, there is F 0 2 E su
h that F â=)nA
tH F 0 and (E0; F 0) 2 R;� if F â=)nA
tH F 0, there is E0 2 E su
h that E â=)nA
tH E0 and (E0; F 0) 2 R.We distinguish three 
ases.Case 1. a = � . In this 
ase E â=)nA
tH E0 
oin
ides with E( �!)�E0. Theproof follows by indu
tion on the number of � a
tions in E( �!)�E0. The base
ase arises when zero � a
tions are performed and it is trivial. For the indu
tionstep, let E �! E00( �!)�E0. Sin
e, (E;F ) 2 R, by De�nition 5 there exists F 00 2 Esu
h that F �̂=)nA
tH F 00, i.e., F ( �!)�F 00 and (E00; F 00) 2 R. By the indu
tionhypothesis, there exists F 0 2 E su
h that F 00 �̂=)nA
tH F 0, i.e., F 00( �!)�F 0 and(E0; F 0) 2 R. This proves the thesis sin
e F ( �!)�F 00( �!)�F 0, i.e., F �̂=)nA
tH F 0.



Case 2. a 2 L and a 62 A
tH . In this 
ase we have that E â=)nA
tH E0
oin
ides with E( �!)�E00 a! E000( �!)�E0. By Case 1 above, there exists �F 00 2 Esu
h that F ( �!)� �F 00 and (E00; �F 00) 2 R. By De�nition 5 there exists �F 000 2 Esu
h that �F 00 â=)nA
tH �F 000, i.e., �F 00( �!)�F 00 a! F 000( �!)� �F 000 and (E000; �F 000) 2 R.Again, by Case 1 above, there exists F 0 2 E su
h that �F 000( �!)�F 0 and (E0; F 0) 2R. This proves the thesis sin
e F ( �!)�F 00 a! F 000( �!)�F 0, i.e., F â=)nA
tH F 0.Case 3. a 2 A
tH . In this 
aseE â=)nA
tH E0 
oin
ides either with E( �!)�E0or with E( �!)�E00 a! E000( �!)�E0. The proof follows by Case 1 and Case 2 above.((). It is easy to prove that if R � E � E is a binary relation over agentssu
h that for all (E;F ) 2 R, a 2 A
t it holds� if E â=)nA
tH E0, there is F 0 2 E su
h that F â=)nA
tH F 0 and (E0; F 0) 2 R;� if F â=)nA
tH F 0, there is E0 2 E su
h that E â=)nA
tH E0 and (E0; F 0) 2 R;then R is a weak bisimulation up to A
tH . In parti
ular, this follows from thefa
t that, by the de�nition of â=)nA
tH , E a! E0 implies E â=)nA
tH E0 for ea
hE;E0 2 E and a 2 A
t.A dire
t 
onsequen
e of this theorem is that two systems E and F are weaklybisimilar up to A
tH if and only if they are strongly bisimilar when in pla
e ofthe transition relation a! we 
onsider the set of labelled transitions â=)nA
tH .We 
an exploit this fa
t to determine whether E �nA
tH F by: (i) translatingthe two labelled transition systems LTS(E) and LTS(F ), into LTSH(E) andLTSH(F ); (ii) 
omputing the largest strong bisimulation � between LTSH(E)and LTSH(F ). More formally we de�ne:De�nition 6 (Closure up to A
tH). Let E 2 E with LTS(E) = (SE ;A
t ;!).The 
losure up to A
tH of E is the labelled transition system LTSH(E) =(SE ;A
t ; ,!), where a,! is de�ned as â=)nA
tH , i.e.:E0 a,! E00 = 8<:E0( �!)�E00 if a = �E0( �!)�F 0 a! F 00( �!)�E00 if a 62 A
tHE0( �!)�F 0 a! F 00( �!)�E00 or E0( �!)�E00 if a 2 A
tHLet us denote with EH a pro
ess whose operational semanti
s is given bythe transformed transition system LTSH(E), i.e., LTS(EH) = LTSH(E). Thenext result is an immediate 
onsequen
e of Proposition 1.Corollary 2. Let E;F 2 E. Then, E �nA
tH F i� EH � FH :Now, our �rst problem is to 
ompute LTSH(E) from LTS (E), using De�ni-tion 6. This 
an be immediately obtained with the following algorithm:Algorithm 1 Let E 2 E with LTS(E) = (SE ;A
t ;!). The 
losure up to A
tHof E, LTSH(E) = (SE ;A
t ; ,!), is 
omputed as follows:



1. 
al
ulate �,! as ( �!)�, i.e., as the re
exive and transitive 
losure of �!;2. 
al
ulate a,! as the 
omposition �,! Æ a! Æ �,!;3. if a 2 A
tH then add E a,! F , every time E �,! F .Corre
tness of algorithm above is trivially obtained by observing that (byDe�nition 6): �,! is equivalent to ( �!)�; a,! with a 2 L n A
tH is equivalent to( �!)�Æ a! Æ( �!)�, i.e., to �,! Æ a! Æ �,!; a,! with a 2 A
tH is equivalent to theunion of ( �!)�Æ a! Æ( �!)� (
al
ulated in step 2 above) and ( �!)� (
al
ulated instep 3 above). As far as time and spa
e 
omplexities are 
on
erned, we noti
e thatthey depend on the algorithms used for 
omputing the re
exive and transitive
losure and the 
omposition of relations. We start by �xing some notations. Letn = jSE j be the number of states in LTS (E), for ea
h a 2 A
t, let ma be thenumber of a! transitions in LTS (E), and m =Pa2A
tma. Similarly, let m̂a bethe number of a,! transitions in LTSH(E), and m̂ =Pa2A
t m̂a.The next theorem shows that E �nA
tH F 
an be 
he
ked in polynomial timewith respe
t to the number of states of the system.Theorem 4. Algorithm 1 
an be exe
uted in time O(nm̂� + nw) and spa
eO(n2), where w denotes the exponent in the running time of the matrix mul-tipli
ation algorithm used.2 If m̂ � n, then it is possible to work in time O(nm̂)and spa
e O(n).Proof. First of all we have to determine the transitive 
losure of �!. The algo-rithm proposed in [14℄ 
omputes the transitive 
losure of a graph representedwith adja
en
y-lists in time O(m� + ne), where e is the number of edges inthe transitive 
losure of the graph of the strongly 
onne
ted 
omponents. Sin
em� ; e � m̂� , an upper bound to the 
ost of the 
omputation of ( �!)� is O(nm̂� ).Let us 
onsider the 
omputation of the 
omposition ( �!)�Æ a! Æ( �!)�. Giventwo transition relations!1 and!2 on a set of n nodes, the problem of determi-ning the 
omposition !1 Æ !2 is known to be equivalent to the n� n Booleanmatrix multipli
ation problem (see [6℄). In parti
ular, if Ai is the adja
en
y-matrix de�ned by !i, for i = 1; 2, then the adja
en
y-matrix of !1 Æ !2 isthe matrix A1 �A2. Hen
e, in our 
ase, we have to: (i) determine the adja
en
y-matrixes A�� and Aa asso
iated to ( �!)� and a! respe
tively; (ii) 
ompute theprodu
t (A�� � Aa) � A��; (iii) rebuild the adja
en
y-list representation (in the
omputation of the strong bisimulation it is important to use the adja
en
y-listrepresentation). Starting from the adja
en
y-list representations of ( �!)� and a!in time O(n2) we obtain their adja
en
y-matrix representations A�� and Aa.The matrix produ
t (A�� � Aa) �A�� 
an be determined in time O(n2:376) usingtwi
e the algorithm in [5℄. Then, again in time O(n2), we rebuild the adja
en
y-list representation. So, the global 
ost of the 
omputation of ( �!)�Æ a! Æ( �!)� isO(n2:376). We have to perform this step on
e for ea
h a 2 L, assuming that jLj is2 In the algorithm in [5℄, whi
h is at the moment the fastest in literature, we havethat w = 2:376.



a 
onstant wrt. n. Noti
e that we 
ould work using only 2 matrix multipli
ations,instead of 2jLj matrix multipli
ations, but in this 
ase we would have to usematrixes in whi
h ea
h element is an array of length L of bits, hen
e also in thisway it is not possible to drop the assumption that jLj is a 
onstant wrt. n.Hen
e, we have des
ribed a pro
edure whi
h maps E into LTSH(E) in timeO(nm̂� + nw) and spa
e O(n2), where w is the exponent in the running time ofthe matrix multipli
ation algorithm used (w = 2:376 using [5℄).In the pro
edure just des
ribed we use the adja
en
y-matrix representationto 
ompute a! Æ( �!)�. If we know that m̂ � n, then using the adja
en
y-listrepresentation and a na��ve algorithm (two iterations of the na��ve algorithm forthe transitive 
losure [6℄) we 
an perform this step in time O(nm̂). Thus, whenm̂ � n, we determine LTSH(E) in time O(nm̂) and spa
e O(n + m̂) = O(n).The theorem above is appli
able to the general 
ase E �nA
tH F . However,sin
e in our 
ase F = E nA
tH , we 
an interleave the 
omputation of LTSH(E)and LTSH(E n A
tH), lowering the 
onstant involved in the time 
omplexity.To do so, we need the notion of A
tH -Completion de�ned as follows:De�nition 7 (A
tH-Completion). Let E 2 E with LTS(E) = (SE ;A
t ;!).The A
tH-Completion of E, LTSC(E) = (SE ;A
t ; ,!), is de�ned as follows:we have E a,! E0 every time E a! E0. Moreover, every time E �! E0 we haveE a,! E0 for all a 2 A
tH .Intuitively, the A
tH -
ompletion extends a given LTS by adding an edge a,!,with a 2 A
tH , ea
h time that there is an edge �! in the original LTS.Let us denote with E; a pro
ess whose operational semanti
s is given by the
losure up to ; of LTS(E). Note that this amounts to saying that LTS(E;) =(SE ; A
t; â=)). In fa
t, re
all that if A
tH = ;, then E â=)nA
tH E0 
oin
ideswith E â=) E0 for all a 2 A
t . The following holds:Proposition 2. Let E 2 E be a pro
ess.(i) LTSH(E) = LTSC(E;)(ii) LTSH(E nA
tH) = LTSC(E; nA
tH)Proof. The �rst equation follows immediately from the de�nitions and statesthat the A
tH -Completion of E; is the 
losure up to high level a
tions of E.We prove the se
ond equation. By de�nition, LTSH(E n A
tH) is the LTSobtained by substituting a! with â=) in LTS(E n A
tH), as E n A
tH 
annotexe
ute high level a
tions. Thus, if E0 is a state in LTSH(E nA
tH), then E0 isalso a state in LTS(E nA
tH), i.e., there is a path from E to E0 whi
h does notinvolve a
tions of A
tH . This implies that E0 is a state of LTS(E; nA
tH), andhen
e it belongs also to LTSC(E; n A
tH). Similarly we 
an prove that if E0 isa state in LTSC(E; nA
tH), then E0 is a state in LTSH(E nA
tH).Now, we prove that E0 a,! E00 in LTSH(E nA
tH) if and only if E0 a,! E00 inLTSC(E; nA
tH). We distinguish three 
ases.



Case 1. a = � . Sin
e operation nA
tH has no e�e
ts on � transitions in both
ases the � transitions are exa
tly those in the transitive 
losure ( �!)� of E.Case 2. a 2 L and a 62 A
tH . Again, sin
e operation nA
tH has no e�e
tson the a transitions in both 
ases the a transitions are exa
tly the transitions in( �!)�Æ a! Æ( �!)� 
omputed on E.Case 3. a 2 A
tH . The a transitions whi
h are in LTSH(E n A
tH) areexa
tly the transitions in ( �!)� 
omputed on E and also the a transitions whi
hare in LTSC(E; nA
tH) are exa
tly the transitions in ( �!)� 
omputed on E.Hen
e we 
an determine LTSH(E) and LTSH(E nA
tH) as follows:Algorithm 2 Let E 2 E . We 
al
ulate LTSH(E) and LTSH(EnA
tH) throughthe following steps:1. 
ompute E;;2. 
ompute and give as output LTSC(E;);3. 
ompute E; nA
tH ;4. 
ompute and give as output LTSC(E; nA
tH).The 
orre
tness of the algorithm is given by Proposition 2 whi
h proves thatLTSC(E;) = LTSH(E) (step 2 above) and LTSC(E;nA
tH) = LTSH(EnA
tH)(step 4 above). The time and spa
e 
omplexity of the algorithm are the ones inTheorem 4, sin
e steps 2, 3, and 4 
an be performed using three visits.On
e we have the LTS's LTSH(E) and LTSH(E n A
tH) there are manyalgorithms whi
h 
an be used to de
ide whether EH � (E n A
tH)H (e.g., [22,15, 17, 2, 7℄). Some of these algorithms are integrated in model 
he
kers [1, 4, 23℄.The worst 
ase time 
omplexity of the algorithms in [22, 7℄ to de
ide EH � (E nA
tH)H is O(m̂ logn), assuming that the LTS's are represented using adja
en
y-lists. Using these 
omplexity results together with Theorem 4 we obtain that:Corollary 3. It is possible to de
ide E �nA
tH E nA
tH in time O(nm̂� +nw+m̂ logn) and spa
e O(n2), where w denotes the exponent in the running time ofthe matrix multipli
ation algorithm used. If m̂ � n, then it is possible to work intime O(nm̂) and spa
e O(n).Noti
e that using this approa
h in many pra
ti
al 
ases there are a largenumber of states whi
h o

ur both in LTSH(E) and in LTSH(EnA
tH). We 
anavoid to repli
ate these states, share them among the two LTS's, and test whetherthe two roots are bisimilar. In parti
ular, this 
an be done in the following way:after the 
omputation of E;, using a ba
kward visit, mark all the nodes ofE; whi
h do not rea
h a transition whose label is in A
tH ; while 
omputingLTSC(E; nA
tH) with a breath-�rst visit 
onsider that if E0 is a marked node,then E0 is also a node in LTSC(E;), hen
e share E0 with LTSC(E;) and donot 
all the breath-�rst visit on E0. In this way we lower again the 
onstantsinvolved in the e�e
tive time and spa
e 
omplexities: if we mark n0 nodes, thenin steps 3. and 4. of Algorithm 2 we have to visit only n � n0 nodes, and thetotal spa
e required to store the nodes is 2n� n0 instead of 2n.
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Fig. 4. The labelled transition systems LTSH(E1) and LTSH(E1 n A
tH).Example 3. Consider again pro
ess E1 = l:h:j:0+ l:(�:j:0+ �:0) of Example 1.In Fig. 3 we show LTS(E1) and LTS (E1 n A
tH). By performing the 
losureup to A
tH (Algorithm 1) we obtain the transformed labelled transition systemsLTSH(E1) and LTSH(E1 nA
tH) reported in Fig. 4. In parti
ular, the �rst stepjust adds the � -loops in every state; the se
ond one, adds two transitions labelledwith l 
orresponding to l:� and one transition labelled with j 
orresponding to�:j; �nally, step 3 adds a h-labelled transition every time there is a � transition.The two transformed transition systems are not strongly bisimilar: the leftmostnode after l in LTSH(E1) is not bisimilar to any node in LTSH(E1 n A
tH),sin
e in LTSH(E1 n A
tH) all the nodes are either \sink-nodes" (whi
h onlyexe
utes � and h loops) or they have at least one outgoing edge with label j orl. Indeed, that node in LTSH(E1) may exe
ute only h and � a
tions and 
ouldthus be simulated only by sink-nodes in LTSH(E1 nA
tH). However, di�erentlyfrom sink-nodes, after one h, it is also able to exe
ute a j. This proves that
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Fig. 5. The labelled transition systems LTSH(E1) and LTSH(E1nA
tH) with sharing.EH1 6� (E1 n A
tH)H , thus, by Corollary 2, E1 62 P BNDC . In Fig. 5 we showagain LTSH(E1) and LTSH(E1nA
tH), now sharing the 
ommon states, i.e., weavoid to repeat the states (and the sub-LTS's) whi
h do not rea
h an a
tion h.5 Con
lusionsWe 
onsider the se
urity property P BNDC and we present two methods toprove it. While the �rst method exploit model 
he
kers for the �-
al
ulus, these
ond one is based on the use of bisimulation algorithms. We show that thisse
ond approa
h 
an perform the P BNDC -
he
k in polynomial time with re-spe
t to the number of states of the system and improves on the polynomialtime 
omplexity of the Compositional Se
urity Che
ker CoSeC presented in [9℄.Referen
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