Proofs Methods for Bisimulation based
Information Flow Security*

Riccardo Focardi, Carla Piazza, and Sabina Rossi

Dipartimento di Informatica, Universitd Ca’ Foscari di Venezia
{focardi,piazza,srossi}@dsi.unive.it

Abstract. Persistent-BNDC (P_BNDC, for short) is a security property
for processes in dynamic contexts, i.e., contexts that can be reconfigured
at runtime. We study how to efficiently decide if a process is P-.BNDC. We
exploit a characterization of P_.BNDC through a suitable notion of Weak
Bisimulation up to high level actions. In the case of finite-state processes,
we study two methods for computing the largest weak bisimulation up to
high level actions: (1) via Characteristic Formulae and Model Checking
for p-calculus and (2) via Closure up to a set of actions and Strong
Bisimulation. This second method seems to be particularly appealing: it
can be performed using already existing tools at a low time complexity.

1 Introduction

Systems are becoming more and more complex, and the security community
has to face this by considering, e.g., issues like process mobility among different
architectures and systems. A mobile process moving on the network can be influ-
enced and reconfigured by the environments it crosses, possibly leading to new
security breaches. A program executing in a “secure way” inside one environ-
ment could find itself in a different setting (with different malicious attackers)
at runtime, e.g., if the process decides to migrate during its execution.
Persistent_ BNDC (P_BNDC, for short) [11,12], is a security property based
on the idea of Non-Interference [13] (formalized as BNDC' [10]), which is sui-
table to analyze processes in dynamic environments. The basic idea is to re-
quire that every state which is reachable by the system still satisfies a basic
Non-Interference property. If this holds, we are assured that even if the system
migrates during its execution no malicious attacker will be able to compromise
it, as every possible reachable state is guaranteed to be secure. This extension
of BNDC leads to some interesting results, as it can be equivalently defined as a
Weak Bisimulation up to high level actions. This result, allowing to avoid both
the universal quantification over all the possible attackers, present in BNDC, and
the universal quantification over all possible reachable states, required by the def-
inition of P_.BNDC, naturally suggests the effective computability of P_.BNDC.

* Partially supported by the MURST projects “Interpretazione astratta, type systems
e analisi control-flow” and “Modelli formali per la sicurezza” and the EU Contract
IST-2001-32617 “Models and Types for Security in Mobile Distributed Systems”.

In this paper we consider the specific problem of automatically checking
P_BNDC. In particular, we describe two methods for determining whether a
system is P_.BND(. The first method is based on the derivation of Characteris-
tic Formulae [21,24] in the language of modal p-calculus [16]. The characteristic
formulae can be automatically verified using model checkers for p-calculus, such
as NCSU Concurrency Workbench [4]. The second method is in the spirit of [24]:
it is based on the computation of a sort of transitive closure (Closure up to high
level actions) of the system and on the verification of a Strong Bisimulation. This
allows us to use existing tools as a large number of algorithms for computing
the largest strong bisimulation between two processes have been proposed [22, 2,
17,7] and are integrated in model checkers, such as NCSU Concurrency Work-
bench, XEVE [1], FDR2 [23]. In particular, this second approach improves on
the polynomial time complexity of the Compositional Security Checker CoSeC
presented in [9], since only one bisimulation test is necessary.

The paper is organized as follows. In Section 2 we recall the Security Process
Algebra (SPA, for short) and the notions of Strong and Weak bisimulation. In
Section 3 we introduce the P_BNDC(' property and we recall its characterization
in terms of weak bisimulation up to high level actions. In Section 4 we propose
two methods to prove the weak bisimulation up high level actions and we demon-
strate some complexity results. Finally, in Section 5 we draw some conclusions.

2 Preliminaries

The Security Process Algebra (SPA, for short) [10] is a slight extension of Milner’s
CCS [20], where the set of visible actions is partitioned into high level actions
and low level ones in order to specify multilevel systems. SPA syntax is based on
the same elements as CCS that is: a set £ of visible actions such that £L=TUQO
where I = {a,b,...} is a set of input actions and O = {a,b, ...} is a set of output
actions; a special action 7 which models internal computations, i.e., not visible
outside the system; a complementation function = : £ — £, such that a = a,
for all @ € £, and 7 = 7; Act = L U {7} is the set of all actions. The set of
visible actions is partitioned into two sets, Acty and Acty,, of high and low level
actions such that Acty = Acty and Act; = Acty, and Acty U Acty = £ and
Actg N Act, = 0. The syntax of SPA agents (or processes) is defined as follows:

E:=0|a.E|E+E|EE|E\v|E[f]|Z

where a € Act,v C L, f: Act — Act is such that f(a) = f(a) and f(7) = 7,

and Z is a constant that must be associated with a definition Z % E.
Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; E, + E- represents the non
deterministic choice between the two processes E; and Es; E1|E, is the parallel
composition of F; and E,, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing an internal action T;

Prefix

a,

aFE — F
E\ % E} E» % E}
Sum
E\+E, % E} E,+E, % E)
E\ % E, Ey % EY E\ % E, B, S E)
Parallel a€eLl
Ei|E: % E}|E» E\|E: % E\|E) E\|E: & E}|E}
ESFE
Restriction ifadwv
E\v3 E'\v
ESE
Relabelling
B[]S B[]
ESLFE
Constant if A def E
ASFE

Fig. 1. The operational rules for SPA

E\ v is a process E prevented from performing actions in v'; E[f] is the process
E whose actions are renamed via the relabelling function f.

The operational semantics of SPA agents is given in terms of Labelled Tran-
sition Systems. A Labelled Transition System (LTS) is a triple (S, A, —) where
S is a set of states, A is a set of labels (actions), -C S x A xS is a set of labelled
transitions. The notation (S1,a,S2) €= (or equivalently S; % S) means that
the system can move from the state S; to the state Ss through the action a.
The operational semantics of SPA is the LTS (&, Act, —), where the states are
the terms of the algebra and the transition relation —C £ x Act x £ is defined
by structural induction as the least relation generated by the axioms and infer-
ence rules reported in Fig. 1. The operational semantics for an agent E is the
subpart of the SPA LTS reachable from the initial state E and we refer to it as
LTS(E) = (Sg, Act, —), where Sg is the set of processes reachable from E. A
process FE is said to be finite-state if Sg is finite.

The concept of observation equivalence between two processes is based on
the idea that two systems have the same semantics if and only if they cannot be
distinguished by an external observer. This is obtained by defining an equivalence
relation over £, equating two processes when they are indistinguishable. In the
following, we report the definitions of two observation equivalences called strong
bisimulation and weak bisimulation [20].

! Tn CCS the operator \ requires that the actions of E \ v do not belong to v U ©.

Definition 1 (Strong Bisimulation). A binary relation R C ExE over agents
is a strong bisimulation if (E, F) € R implies, for all a € Act,

o if E% E', then there exists F' such that F % F' and (E',F') € R;
o if F % F', then there exists E' such that E > E' and (E',F') € R.

Two agents E, F € £ are strongly bisimilar, denoted by E ~ F, if there exists a
strong bisimulation R containing the pair (E, F).

A weak bisimulation is a bisimulation which does not care about internal
T actions. So, when F' simulates an action of F, it can also execute some T
actions before or after that action. We will use the following auxiliary notations.
Ift=a1---a, € Act* and E 5 --- 3 E', then we write E L E'. We also
write B == E' if E(5)* B (5) (D) 2 (5)*E' where (5)* denotes a
(possibly empty) sequence of 7 labelled transitions. If + € Act*, then t € £* is

the sequence gained by deleting all occurrences of 7 from ¢. Hence, E SN o
stands for B == E' if a € £, and for E(5)*E' if a = 7.

Definition 2 (Weak Bisimulation). A binary relation R C € x & over agents
is a weak bisimulation if (E,F) € R implies, for all a € Act,

o if E% E', then there exists F' such that F == F' and (E",F') €R;

o if F 5% F', then there exists E' such that E =% E' and (E',F') € R.

Two agents E, F € £ are weakly bisimilar, denoted by E ~ F', if there exists a
weak bisimulation R containing the pair (E, F).

In [20] it is proved that ~ is the largest strong bisimulation, ~ is the largest
weak bisimulation and they are equivalence relations.

3 Security Properties

We recall the Persistent_ BNDC (P-BNDC, for short) security property and its
characterization in terms of weak bisimulation up to high level actions [11,12].
We first give the definition of Bisimulation-based Non Deducibility on Com-
positions (BNDC, for short) [8,10]. The BNDC security property aims at guar-
anteeing that no information flow from the high to the low level is possible,
even in the presence of malicious processes. The main motivation is to protect
a system also from internal attacks, which could be performed by the so called
Trojan Horse programs. Property BNDC is based on the idea of checking the
system against all high level potential interactions, representing every possible
high level malicious program. In particular, a system E is BNDC if for every
high level process IT a low level user cannot distinguish E from (E|IT) \ Actq,
i.e., if IT cannot interfere [13] with the low level execution of the system E.

Definition 3 (BNDC). Let E € £.

E € BNDC iff VIl € £y, E\ Acty =~ (E|II) \ Acty.

In [11,12] it is shown that the BNDC property is not strong enough to analy-
se systems in dynamic execution environments. For example, if code mobility
is allowed, a program could migrate to a different host in the middle of its
computation. In this setting we have to guarantee that every reachable state of
the process is secure. Another interesting example is the execution of an applet
on a Java Card, where an attacker could try to bring the card in an unstable
(insecure) state by powering off the card in the middle of applet computation.

To deal with these situations, in [11,12] it has been introduced the security
property named P_BNDC.

Definition 4 (Persistent_ BNDC). Let E € £.

E € P_.BNDC iff ¥ E' reachable from E and ¥V II € &y,
E'\ Actyg ~ (E'|IT) \ Actg., i.e., E' € BNDC.

Ezample 1. Consider the process Ey = I.h.j.0 +1.(7.5.0 + 7.0) where [,j € Acty,
and h € Acty. E; can be proved to be BNDC'. Indeed, the causality between
h and j in the first branch of the process is “hidden” by the second branch
1.(1.7.0 + 7.0), which may simulate all the possible interactions with a high
level process. Suppose now that E; is moved in the middle of a computation.
This might happen when it find itself in the state h.j.0 (after the first [is
executed). Now it is clear that this process is not secure, as a direct causality
between h and j is present. In particular h.j.0 is not BNDC and this gives
evidence that E; is not P_.BNDC. The process may be “repaired” as follows:
Ey =1.(h.j.0+7.j.04+7.0)+[.(7.7.04+7.0). It may be proved that E, is P.BNDC.
Note that, from this example it follows that P.BNDC C BNDC.

In [12] it has been proven that property P_.BNDC is equivalent to the security
property SBSNNI [9,10] which is automatically checkable over finite state pro-
cesses. However, this property still requires a universal quantification over all the
possible reachable states from the initial process. In [11,12] it has been shown
that this can be avoided, by including the idea of “being secure in every state”
inside the bisimulation equivalence notion. This is done by defining an equiva-
lence notion which just focus on observable actions not belonging to Acty. More
in detail, it is defined an observation equivalence, named weak bisimulation up to
Acty, where actions from Acty are allowed to be ignored, i.e., they are allowed
to be matched by zero or more 7 actions. To do this, it is used a transition
relation which does not take care of both internal and high level actions.

We use the following notations. For an action a € Act, we write (=){01}

to denote a sequence of zero or one a actions. The expression E :a>\ Acty E'
is a shorthand for E =% E' if a ¢ Acty, and for B(—)*(—2){01 () B if
a € Acty. Notice that the relation :ﬁ>\ Acty 1S a generalization of the relation
=% used in the definition of weak bisimulation [20]. In fact, if Actg = 0, then
for all a € Act, E ==\ a4, E' coincides with E =% E.

Definition 5 (Weak Bisimulation up to Actp). A binary relation R C ExE
over agents is a weak bisimulation up to Acty if (E,F) € R implies, for all
a € Act,

o if E% E', then there exists F' such that F :d>\ACtH F' and (E',F") € R;

o if F % F', then there exists E' such that E :a:>\ACtH E' and (E',F') € R.

Two agents E,F € & are weakly bisimilar up to Acty, written E 8\ gcep, F', if
(E,F) € R for some weak bisimulation R up to Acty.

The relation ~\ acs;, is the largest weak bisimulation up to Acty and it is an
equivalence relation. In [12] it is proven that P_.BNDC can be characterized in
terms of &\ act,, as follows. We will exploit this result for verifying P_.BNDC.

Theorem 1. Let E € £. Then, E € P_.BNDC iff E ~\act, E\ Acty.

4 Checking P BNDC

In this section we present two methods to determine whether £ ~\ gct,, £\ Actn,
in the case that F is a finite-state process. In particular, we tackle the problem of
proving E' ~\ g¢¢,; F, when E and F' are finite-state processes. The first method
we propose consists in defining from a given process E a modal p-calculus formula
¢™\4eu (E) such that F satisfies ¢™\4<u (E) if and only if E ~\ 4, F. The
second method consists in deriving from the LTS’s of £ and F' two transformed
LTS’s that are strongly bisimilar if and only if £ ~\ gct,, F-

4.1 Characteristic Formulae

The modal p-calculus [16] is a small, yet expressive process logic. We consider
modal p-calculus formulae constructed according to the following grammar:

6 = true | false | gy A g | 61V 6o | (@)6 | [0l | X | X6 | vX.6

where X ranges over an infinite set of variables and a over a set of actions Act.
The fizpoint operators uX and vX bind the respective variable X and we adopt
the usual notion of closed formula. For a finite set M of formulae, we write A M
and \/ M for the conjunction and disjunction of the formulae in M.

Modal p-calculus formulae are interpreted over processes, which are modelled
by LTS’s. Let E be a process and LTS(E) = (Sg, Actg, —). The subset of states
that satisfy a formula ¢, denoted by Mg(4)(p), is intuitively defined in Fig. 2.
We use the notion of environment that is a partial mapping p : Var 4 22 which
interprets at least the free variables of ¢ by subsets of Sg. For a set x C Sg and
a variable X, we write p[X — z] for the environment that maps X to x and that
is defined on a variable Y # X iff p is defined on Y and maps Y then to p(Y').

Intuitively, true and false hold for all resp. no states and A and V are
interpreted by conjunction and disjunction, (a)¢ holds for a state E' € Sg if
there is a state E" reachable from E’ with an action a which satisfies ¢, and [a]¢

MEg(true)
Mg (false)(p
Mg (p1 A ¢2)(p

b:1

= Mg(p1)(p) N Me(42)(p)

I
m

(p)
ot
ME(¢1 v 92)(p) = M ($1)(p) U M (92)(p)
Mgp((a)p)(p) = {E' | 3E" : E' > E" N E' € Mp(¢)(p)}
([16)(p) = {E' |VE": E' 5 E" = E" € Mr($)(p)}
Mg (X)(p) = p(X)
Mg (pX.9)(p) = Nz C Sk | Mp()(p[X — z]) C z}
Mp(wX.¢)(p) = Ufz C Se | ME()(p[X — «]) 2 «}

Fig. 2. Semantics of modal mu-calculus

holds for E' if all states E" reachable from E’ with an action a satisfy ¢. The
interpretation of a variable X is as prescribed by the environment. The formula
1X.¢, called least fizpoint formula, is interpreted by the smallest subset = of Sg
that recurs when ¢ is interpreted with the substitution of z for X. Similarly,
vX.¢p, called greatest fixpoint formula, is interpreted by the largest such set. Exi-
stence of such sets follow from the well-known Knaster-Tarski fixpoint theorem.
As the meaning of a closed formula ¢ does not depend on the environment, we
sometimes write Mg (¢) for Mg(#)(p) where p is an arbitrary environment.
The set of processes satisfying a closed formula ¢ is Proc(¢) = {F | F €
Mp(¢)}. We also refer to (closed) equation systems of modal u-calculus formulae,

Eqn:Xlz(bl;"';Xn:(lsn

where X7, ..., X, are mutually distinct variables and ¢, ..., ¢, are modal u-
calculus formulae having at most X, ..., X, as free variables.

An environment p : {Xi,...,X,} — 25 is a solution of an equation sys-
tem Egqn, if p(X;) = Mg(¢;)(p). The fact that solutions always exist, is again
a consequence of the Knaster-Tarski fixpoint theorem. In fact the set of envi-
ronments that are candidates for solutions, Envg = {p | p : {X1,..., X0} —
252} together with the lifting C of the inclusion order on 2°%, defined by
p C piff p(X;) C p'(X;) for i € [1..n] forms a complete lattice. Now, we can
define the equation functional Funcg : Envg — Envg by FuncEqn(p)(Xi) =
MEg(¢;)(p) for i € [1..n], the fixpoints of which are just the solutions of Egn.
Funcgq” is monotonic as Mg(¢;) is monotonic. In particular, there is the largest
solution I/Funcgqn of Eqn (with respect to C), which we denote by Mg(Eqn).
This definition interprets equation systems on the states of a given process E.
We lift this to processes by agreeing that a process satisfies an equation system
Eqn, if its initial state is in the largest solution of the first equation. Thus the set
of processes satisfying the system Eqn is Proc(Eqn) = {F | F' € Mp(Eqn)(X1)}.

The relation =\ 4.4, C € x & can be characterized as the greatest fixpoint

vFuncy, ,,, of the monotonic functional Funcy, ., on the complete lattice of
relations R C & x & ordered by set inclusion, where (E,F) € Funcw, ,,, (R) if

and only if points (1) and (2) of Definition 5 hold. Thus a relation R is a weak

bisimulation up to Acty if and only if R C Funcs, ,, (R), ie., R is a post-
fizpoint of Funcy, ,,, - By the Knaster-Tarski fixpoint theorem VFuncN\Ad is
the union of all post-fixpoints of Funcx, ,,, 1.e., it is the largest weak bisimula-
tion up to Acty. If we restrict to the complete lattice of relations R C Sg x Sp
(N\’A t) whose greatest fixpoint is exactly
vFuncy, ., N (Sg x Sr), and this is enough to determine if £ ~\ acs,, F.

Let E be a finite-state process, E1, ..., E, its |Sg| = n states, and Ey, = E
its initial state. We construct a characteristic equation system [21]

we obtain a monotonic functional Func

~\AL R\ Ae

Equ\Ang . QS fH; "7XE — YE, ’H
consisting of one equation for each state Ey, ..., E, € Sg. We define the formu-
lae ngE\A”H such that the largest solution MF(Eqn) of Eqn, on an

R\ Actgy R\ Act gy
arbitrary process F' associates the variables Xpgr just Wlth the states F’ of F
which are weakly bisimilar up to Acty to E'. Theorem 2 is in the spirit of [21]
and shows the exact form of such formulae. We use these notations:

dot {(mHe ifa=rT1
{a\ actyd = § (a)o ifadg Actg and a # 7
{(ayp V {(TH¢ if a € Acty and a # T
where ()¢ < X ¢V ()X and (a)¢ & (7)) (a)(r)¢. Notice that (A acty

() and (@) correspond to ==\ 41, , 2 and %, respectively, since

Mp((@\acts9)(p) ={E' | IB" : E' <\ 41, B" AE" € Mi()(p)},
Mg ({r)¢)(p) ={E' | IE" : E' = E" AE" € Mg($)(p)},
Mg({ahe)(p) = {E' | IE" : E' = E" AE" € Mg($)(p)}-

Theorem 2. Mp(Eqn,)(Xg) ={F' € Sp | E' ®\ actyy F'} when

R\ Act gy

o ANAL(@N et Xpr | B' 5 B} | a € Acthn
Nal V{Xer | B' =\ acty E"} | a € Act}.

Example 2. Consider the process E; of Example 1. For every state E’ reachable
from E', let ¢p denote ¢, """ . Then

YE, = {0\ Acty Xn.j.o N I\ acty Xr.j.04.0A
N(XhjoV XrjotroV XjoVXo)A[T]XE, A[RXE,

[
Vr.jotr.0 = (T Actr Xj.0 A LTI\ Act XoA
[T(Xrjo+ro0V XrjoVXjoV X0V Xg)A
[M(Xrjo04r0V XrjoV XjoV X0V Xp)
Vrjo = T\ actn Xjo A [T](Xrj.0 V Xj0) AR](Xrj0 V Xjio0)
Yrjo = (M actr Xjo A[T]Xnjo AR (Xn.jo V Xj0)
Vj0 = (I actn Xo A [R]Xj0 A [T] X0 A [j]Xo
tro = «T>>\ActHX0 A [T](Xr.0V Xo) A [R)(X7.0 V Xo)

Corollary 1. Proc(Eqn,

R\ Aty

) =A{F | E~\act, F'}.

This result holds for all processes F' as Fqn does not depend on F'.

~\Act
Characteristic formulae, i.e., single formul\ae féharacterizing processes can be
constructed by applying simple semantics-preserving transformation rules on
equation systems as described in [21]. These rules are similar to the ones used
by A. Mader in [19] as a mean of solving Boolean equation systems (with alter-
nation) by Gauss elimination. Hence, since for any equation system Egn there

is a formula ¢ such that Proc(Eqn) = Proc(¢), we obtain that:

Theorem 3. For all finite-state processes E there is a modal p-calculus formu-
lae ¢™\4etu (E) such that Proc(¢™\4u (E)) = {F | E &\ act, F'}-

Using this method we can for instance exploit the model checker NCSU
Concurrency Workbench ([4]) to check whether E =\ 4., F'. Unfortunately,
in the p-calculus formula we obtain for a process E there are both g and v
operators (see [21]). In the worst case the number of y and v alternations in
™\ (E) is 2|Sg| + 1 (when LST(E) has a unique strongly connected compo-
nent) and in that case the complexity of model checking ¢™\4¢tx (E) on LTS(F)
is O(|Sp|®19E1+1)/2) (see [18,3]).

4.2 Strong Bisimulation

We show now how to reduce the problem of testing whether two processes are
weakly bisimilar up to Act g to a strong bisimulation problem. The next property
follows from the definition of :a>\ Actp -

Proposition 1. A binary relation R C £ X & over agents is a weak bisimulation
up to Acty if and only if (E,F) € R implies, for all a € Act

e ifE é\ACtH E', there is F' € £ such that F :a:>\ACtH F'and (E',F') € R;
o if F :d>\ACtH F', there is E' € £ such that E :ﬁ>\ACtH E' and (E',F') € R.
Proof. (=). We prove that if R C £ x £ is a weak bisimulation up to Acty, and
(E,F) € R, then, for all a € Act we have

o if B =%\ 4., E', thereis F' € & such that F ==\ 5, F' and (E',F') € R;
o if F =2\ 4., F', thereis E' € € such that E == 4., E' and (E',F') € R.
We distinguish three cases.

Case 1. a = 7. In this case E :(2:>\ACtH E' coincides with E(5)*E'. The

proof follows by induction on the number of 7 actions in E()*E'. The base
case arises when zero 7 actions are performed and it is trivial. For the induction
step, let E 5 E"(5)*E'. Since, (E, F) € R, by Definition 5 there exists F" € £

such that F :T:>\ACtH F" ie., F(5)*F" and (E",F") € R. By the induction
hypothesis, there exists F' € £ such that F" :_i>\ActH F' ie., F"(53)*F" and
(E', F') € R. This proves the thesis since F(5)*F"(5)*F', i.e., F ==\ pct,, F'.

Case 2. a € £ and a € Acty. In this case we have that E %\Acm E'
coincides with E(5)*E"” % E"(5)*E'. By Case 1 above, there exists F"' € £
such that F(5)*F" and (E",F") € R. By Definition 5 there exists F"’ € &

such that F"' $\Acm F" ie., F"(S)F" % F"(5)*F" and (E",F") € R.

Again, by Case 1 above, there exists F' € & such that F"'(5)*F' and (E', F') €

R. This proves the thesis since F(5)*F" % F"(5)*F' ie., F :d>\ACtH F'.
Case 3. a € Acty. In this case E :d>\ACtH E' coincides either with E(5)*E’

or with B(5)*E" % E"(5)*E'. The proof follows by Case 1 and Case 2 above.
(«). It is easy to prove that if R C & x £ is a binary relation over agents
such that for all (E,F) € R, a € Act it holds

o if B é\ActH E' there is F' € £ such that F :a:>\ACtH F'and (E',F') € R;
o if F :(2:>\ACtH F' there is E' € £ such that E :(2:>\ACtH E' and (E',F') € R;
then R is a weak bisimulation up to Acty. In particular, this follows from the

fact that, by the definition of :Q\ACtH, E % E' implies E :a:>\ACtH E' for each
E,E' € £ and a € Act. n

A direct consequence of this theorem is that two systems E and F' are weakly
bisimilar up to Acty if and only if they are strongly bisimilar when in place of
the transition relation — we consider the set of labelled transitions :a>\ Actp -

We can exploit this fact to determine whether E ~\ 4., F' by: (i) translating
the two labelled transition systems LTS(E) and LTS(F), into LTSH(E) and
LTSH(F); (ii) computing the largest strong bisimulation ~ between LTS (E)
and LTSH(F). More formally we define:

Definition 6 (Closure up to Acty). Let E € £ with LT S(E) = (Sg, Act,—).
The closure up to Acty of E is the labelled transition system LTSH(E) =

(SE, Act,—), where < s defined as :a>\ACtH, i.e.:

E'(5)*E" ifa=rt
E'S B =S B(S)F S F'(5) B ifad Acty
EI(;)*FI ﬂ) FII(;)*EH or EI(;)*EH z'fa c ACtH

Let us denote with E¥ a process whose operational semantics is given by
the transformed transition system LTS (E), i.e., LTS(E®) = LTS (E). The
next result is an immediate consequence of Proposition 1.

Corollary 2. Let E,F € £. Then, E =\ g0, F' iff EH ~ pH,

Now, our first problem is to compute LTS (E) from LTS(E), using Defini-
tion 6. This can be immediately obtained with the following algorithm:

Algorithm 1 Let E € £ with LT S(E) = (Sg, Act,—). The closure up to Acty
of E, LTSH(E) = (Sg, Act,—), is computed as follows:

1. calculate < as ()%, i.e., as the reflexive and transitive closure of —;
2. calculate <5 as the composition DHobo <l>;
3. if a € Acty then add E < F, every time E 4 F

Correctness of algorithm above is trivially obtained by observing that (by
Definition 6): < is equivalent to (5)*; <» with a € £\ Acty is equivalent to
(5)* 0 & o(5H)*, ie., to > o 5 o <»; <3 with a € Acty is equivalent to the
union of (5)*o % o(5)* (calculated in step 2 above) and (=)* (calculated in
step 3 above). As far as time and space complexities are concerned, we notice that
they depend on the algorithms used for computing the reflexive and transitive
closure and the composition of relations. We start by fixing some notations. Let
n = |Sg| be the number of states in LTS(E), for each a € Act, let m, be the
number of % transitions in LTS(E), and m = > acAct Ma- Similarly, let 1, be

the number of < transitions in LTSH(E), and m = Y acAct Ma-
The next theorem shows that £ =\ 4.4, F' can be checked in polynomial time
with respect to the number of states of the system.

Theorem 4. Algorithm 1 can be executed in time O(nm, + n") and space
O(n?), where w denotes the exponent in the running time of the matriz mul-
tiplication algorithm used.? If m < n, then it is possible to work in time O(nm)
and space O(n).

Proof. First of all we have to determine the transitive closure of =. The algo-
rithm proposed in [14] computes the transitive closure of a graph represented
with adjacency-lists in time O(m, + ne), where e is the number of edges in
the transitive closure of the graph of the strongly connected components. Since
my,e < 1., an upper bound to the cost of the computation of (5)* is O(nsi,).

Let us consider the computation of the composition (—)*o <% o(-3)*. Given
two transition relations —; and —5 on a set of n nodes, the problem of determi-
ning the composition —; o —5 is known to be equivalent to the n x n Boolean
matrix multiplication problem (see [6]). In particular, if A; is the adjacency-
matrix defined by —;, for i = 1,2, then the adjacency-matrix of —; o — is
the matrix A; - A». Hence, in our case, we have to: (i) determine the adjacency-
matrixes A,, and A, associated to (—)* and - respectively; (ii) compute the
product (A« Ag) - Ars; (4i4) rebuild the adjacency-list representation (in the
computation of the strong bisimulation it is important to use the adjacency-list
representation). Starting from the adjacency-list representations of (—)* and 5
in time O(n?) we obtain their adjacency-matrix representations A,. and A,.
The matrix product (A,. - A,) - A,. can be determined in time O(n?37%) using
twice the algorithm in [5]. Then, again in time O(n?), we rebuild the adjacency-
list representation. So, the global cost of the computation of (<)*o % o(5)* is
O(n?37%). We have to perform this step once for each a € £, assuming that |£] is

% In the algorithm in [5], which is at the moment the fastest in literature, we have
that w = 2.376.

a constant wrt. n. Notice that we could work using only 2 matrix multiplications,
instead of 2|£| matrix multiplications, but in this case we would have to use
matrixes in which each element is an array of length £ of bits, hence also in this
way it is not possible to drop the assumption that |£] is a constant wrt. n.

Hence, we have described a procedure which maps E into LT'S* (E) in time
O(nm, +n") and space O(n?), where w is the exponent in the running time of
the matrix multiplication algorithm used (w = 2.376 using [5]).

In the procedure just described we use the adjacency-matrix representation
to compute - o(5)*. If we know that 7 < n, then using the adjacency-list
representation and a naive algorithm (two iterations of the naive algorithm for
the transitive closure [6]) we can perform this step in time O(nm). Thus, when
m < n, we determine LTS (E) in time O(nm) and space O(n +m) = O(n). =

The theorem above is applicable to the general case E &\ act,, F'. However,
since in our case F' = E\ Acty, we can interleave the computation of LTS (E)
and LTSH(E \ Acty), lowering the constant involved in the time complexity.
To do so, we need the notion of Acty-Completion defined as follows:

Definition 7 (Actg-Completion). Let E € £ with LTS(E) = (Sg, Act,—).
The Acty-Completion of E, LT S¢(E) = (Sg, Act,—), is defined as follows:
we have E <% E' every time E % E'. Moreover, every time E 5 E' we have
ES E for all a € Acty.

Intuitively, the Actpy-completion extends a given LTS by adding an edge <i>,
with a € Acty, each time that there is an edge - in the original LTS.

Let us denote with E? a process whose operational semantics is given by the
closure up to () of LT'S(E). Note that this amounts to saying that LT S(E?) =

(Sg, Act,==). In fact, recall that if Acty = 0, then E :a:>\ACtH E' coincides
with E =% E' for all a € Act. The following holds:

Proposition 2. Let E € £ be a process.

(i) LTSY(E) = LTSc(E®)
(i1) LTS™(E\ Actg) = LTSc(E® \ Actg)

Proof. The first equation follows immediately from the definitions and states
that the Actgy-Completion of EY is the closure up to high level actions of E.
We prove the second equation. By definition, LT'SH (E \ Acty) is the LTS

obtained by substituting % with == in LTS(E \ Acty), as E\ Acty cannot
execute high level actions. Thus, if E' is a state in LTSH (E\ Acty), then E' is
also a state in LT'S(E\ Actg), i.e., there is a path from E to E’ which does not
involve actions of Actz. This implies that E' is a state of LT'S(E? \ Actgr), and
hence it belongs also to LT S¢(E® \ Acty). Similarly we can prove that if E' is
a state in LT Sc(E® \ Acty), then E' is a state in LTSH(E \ Acty).

Now, we prove that E' <% E" in LTSH(E\ Acty) if and only if E' < E" in
LTSc¢(E®\ Actg). We distinguish three cases.

Case 1. a = 7. Since operation \ Act g has no effects on 7 transitions in both
cases the 7 transitions are exactly those in the transitive closure ()* of E.

Case 2. a € £ and a ¢ Acty. Again, since operation \ Acty has no effects
on the a transitions in both cases the a transitions are exactly the transitions in
(5)*o 3 o(5)* computed on E.

Case 3. a € Acty. The a transitions which are in LTSH(E \ Acty) are
exactly the transitions in (=)* computed on E and also the a transitions which
are in LTS¢(E® \ Acty) are exactly the transitions in (=)* computed on E. =

Hence we can determine LTS (E) and LTSH(E \ Acty) as follows:

Algorithm 2 Let E € £. We calculate LTS (E) and LTS (E\ Acty) through
the following steps:

. compute E?;

. compute and give as output LT'S¢(E?);

. compute E? \ Actg;

. compute and give as output LT'Sc(E? \ Acty).

= N =

The correctness of the algorithm is given by Proposition 2 which proves that
LTS¢(E®) = LTSY(E) (step 2 above) and LT S¢(E®\ Acty) = LTS"(E\ Actg)
(step 4 above). The time and space complexity of the algorithm are the ones in
Theorem 4, since steps 2, 3, and 4 can be performed using three visits.

Once we have the LTS’s LT SH(E) and LTS®(E \ Acty) there are many
algorithms which can be used to decide whether E¥ ~ (E \ Actg)? (e.g., [22,
15,17,2,7]). Some of these algorithms are integrated in model checkers [1, 4, 23].
The worst case time complexity of the algorithms in [22,7] to decide E¥ ~ (E'\
Actg)® is O(1nlogn), assuming that the LTS’s are represented using adjacency-
lists. Using these complexity results together with Theorem 4 we obtain that:

Corollary 3. It is possible to decide E ~\ gy E\ Acty in time O(nin, +n* +
mlogn) and space O(n?), where w denotes the exponent in the running time of
the matriz multiplication algorithm used. If m < n, then it is possible to work in
time O(ni) and space O(n).

Notice that using this approach in many practical cases there are a large
number of states which occur both in LT'S¥(E) and in LT S¥(E\ Acty). We can
avoid to replicate these states, share them among the two LTS’s, and test whether
the two roots are bisimilar. In particular, this can be done in the following way:
after the computation of E?, using a backward visit, mark all the nodes of
E® which do not reach a transition whose label is in Acty; while computing
LTSc(E®\ Acty) with a breath-first visit consider that if E’ is a marked node,
then E’ is also a node in LT S¢(E?), hence share E' with LTS¢(E?) and do
not call the breath-first visit on E’. In this way we lower again the constants
involved in the effective time and space complexities: if we mark n' nodes, then
in steps 3. and 4. of Algorithm 2 we have to visit only n — n/ nodes, and the
total space required to store the nodes is 2n — n' instead of 2n.

NN
ARVANIAN

Fig. 3. The labelled transition systems of E; and E, \ Acty.

Fig. 4. The labelled transition systems LTS (E:) and LTS (E1 \ Actr).

Ezample 3. Consider again process Ey = [.h.5.0 + [.(7.5.0 4+ 7.0) of Example 1.
In Fig. 3 we show LTS(E;) and LTS(E; \ Actm). By performing the closure
up to Acty (Algorithm 1) we obtain the transformed labelled transition systems
LTSH(E,) and LTS (E, \ Actyr) reported in Fig. 4. In particular, the first step
just adds the 7-loops in every state; the second one, adds two transitions labelled
with [corresponding to [.7 and one transition labelled with j corresponding to
7.7; finally, step 3 adds a h-labelled transition every time there is a 7 transition.
The two transformed transition systems are not strongly bisimilar: the leftmost
node after [in LTSH(Ey) is not bisimilar to any node in LTSH(E, \ Acty),
since in LTSH(E; \ Acty) all the nodes are either “sink-nodes” (which only
executes 7 and h loops) or they have at least one outgoing edge with label j or
I. Indeed, that node in LT'S¥(E;) may execute only h and 7 actions and could
thus be simulated only by sink-nodes in LTS (E; \ Acty). However, differently
from sink-nodes, after one h, it is also able to execute a j. This proves that

Fig. 5. The labelled transition systems LT S™ (E1) and LTS (E:\ Act) with sharing.

EH o« (E, \ Actg)®, thus, by Corollary 2, E; ¢ P_.BNDC. In Fig. 5 we show
again LT S* (E,) and LTS®(E; \ Acty), now sharing the common states, i.e., we
avoid to repeat the states (and the sub-LTS’s) which do not reach an action h.

5 Conclusions

We consider the security property P_.BND(C and we present two methods to
prove it. While the first method exploit model checkers for the p-calculus, the
second one is based on the use of bisimulation algorithms. We show that this
second approach can perform the P_BND(C-check in polynomial time with re-
spect to the number of states of the system and improves on the polynomial
time complexity of the Compositional Security Checker CoSeC presented in [9].

References

1. A. Bouali. XEVE, an ESTEREL verification environment. In A. J. Hu and M. Y.
Vardi, editors, Proc. of Int. Conference on Computer Aided Verification (CAV’98),
volume 1427 of LNCS, pages 500-504. Springer, 1998.

2. A. Bouali and R. de Simone. Symbolic bisimulation minimization. In G. von
Bochmann and D. K. Probst, editors, Proc. of Int. Conference on Computer Aided
Verification (CAV’92), volume 663 of LNCS, pages 96-108. Springer, 1992.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press,
1999.

4. R. Cleaveland and S. Sims. The NCSU concurrency workbench. In R. Alur and
T. Henzinger, editors, Proc. of Int. Conference on Computer Aided Verification
(CAV’96), volume 1102 of LNCS, pages 394-397. Springer, 1996.

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sion. In Proc. of the 19th Symposium on Theory of Computing, pages 1-6, 1987.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. of Int. Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS, pages 79-90. Springer, 2001.

R. Focardi and R. Gorrieri. A Classification of Security Properties for Process
Algebras. Journal of Computer Security, 3(1):5-33, 1994/1995.

R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for
the Verification if Information Flow Security Properties. IEEE Transactions on
Software Engineering, 23(9):550-571, 1997.

R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, volume 2171 of LNCS. Springer, 2001.

R. Focardi and S. Rossi. A Security Property for Processes in Dynamic Contexts.
In Proc. of Workshop on Issues in the Theory of Security (WITS ’02).To appear.
R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. Tech-
nical Report CS-2001-16, Dipartimento di Informatica, Universita Ca’ Foscari di
Venezia, Italy, 2001.

J. A. Goguen and J. Meseguer. Security Policy and Security Models. In Proc.
of the 1982 Symposium on Security and Privacy, pages 11-20. IEEE Computer
Society Press, 1982.

A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. In
Proc. of Mathematical Foundations of Computer Science (MFCS’79), volume 74
of LNCS, pages 301-307. Springer, 1979.

P. C. Kannellakis and S. A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43-68, 1990.

D. Kozen. Results on the Propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc. of
24th ACM Symposium on Theory of Computing (STOC’92), pages 264-274. ACM
Press, 1992.

D. Long, A. Browne, E. Clarke, S. Jha, and W. Marrero. An improved Algorithm
for the Evaluation of Fixpoint expressions. In D. L. Dill, editor, Proc. of Int.
Conference on Computer Aided Verification (CAV’9/), volume 818 of LNCS, pages
338-350. Springer, 1994.

A. Mader. Modal p-calculus, Model Checking, and Gauss elimination. In
E. Brinksma, R. Cleaveland, K.G. T. Margaria Larsen, and B. Steffen, editors,
Proc. of Int. Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’95), volume 1019 of LNCS, pages 72-88. Springer, 1995.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

M. Miiller-Olm. Derivation of Characteristic Formulae. FElectronic Notes in Theo-
retical Computer Science, 18, 1998.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

A. W. Roscoe. The Theory and Practice of Concurrency. Series in Computer
Science. Prentice Hall, 1998.

B. Steffen and A. Ingolfsdottir. Characteristic Formulae for Processes with Diver-
gence. Information and Computation, 110(1):149-163, 1994.

