
Theory and Pra
ti
e of Logi
 Programming, volume 2, n. 2, pag. 125-154, 2002 1Properties of Input-Consuming DerivationsANNALISA BOSSI, SABINA ROSSIDipartimento di Informati
a, Universit�a di Veneziavia Torino 155, 30172 Venezia, ItalySANDRO ETALLEDepartment of Computer S
ien
e, University of Maastri
htP.O. Box 616, 6200 MD Maastri
ht, The NetherlandsandCWI { Center for Mathemati
s and Computer S
ien
e,P.O. Box 94079, 1090 GB Amsterdam, The NetherlandsAbstra
tWe study the properties of input-
onsuming derivations of moded logi
 programs. Input-
onsuming derivations
an be used to model the behavior of logi
 programs using dynami
s
heduling and employing
onstru
ts su
h as delay de
larations.We
onsider the
lass of ni
ely-moded programs and queries. We show that for these pro-grams a weak version of the well-known swit
hing lemma holds also for input-
onsumingderivations. Furthermore, we show that, under suitable
onditions, there exists an alge-brai

hara
terization of termination of input-
onsuming derivations.1 Introdu
tionMost of the re
ent logi
 programming languages provide the possibility of employingdynami
 s
heduling, i.e., a runtime me
hanism determining whi
h atoms in a queryare sele
table and whi
h ones are not. In fa
t, dynami
 s
heduling has proven tobe useful in a number of appli
ations; among other things, it allows one to model
oroutining, as shown in (Naish, 1993; Hill and Lloyd, 1994), and parallel exe
utions,as shown in (Naish, 1988).Let us use the following simple examples to show how dynami
 s
heduling
anbe enfor
ed by using delay de
larations and how it
an prevent nontermination andunne
essary
omputations. Consider the program APPENDapp([℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄) app(Xs,Ys,Zs).together with the queryQ1 := app(Xs,[5,6℄,Ys), app([1,2℄,[3,4℄,Xs).In this query, if we sele
t and resolve the leftmost atom, we
ould easily have to fa
eone of the following two problems. First, the possibility of nontermination: Thisis the
ase if we repeatedly resolve the leftmost atom against the se
ond
lause.

2 A. Bossi, S. Etalle, and S. RossiThe se
ond problem is that of ineÆ
ien
y. If, for instan
e, in Q1 we resolve theleftmost atom against the �rst
lause, we obtain the query app([1,2℄,[3,4℄,[℄).This will eventually fail, yielding to (unne
essary) ba
ktra
king. Noti
e that if oneemploys the rightmost sele
tion rule, Q1 would terminate with su

ess and withoutba
ktra
king. Basi
ally, the problem when sele
ting app(Xs,[5,6℄,Ys), is that wedo not know whi
h
lause we should use for resolving it, and the only pra
ti
alway for getting to know this is by waiting until the outermost fun
tor of Xs isknown: If it is the empty list [℄ we know that we should use the �rst
lause, if itis the list-
onstru
tor symbol we know that we should use the se
ond
lause, if itis something else again, we know then that the query fails. Noti
e that the sameproblems arise for the queryQ2 := app([1,2℄,[3,4℄,Xs), app(Xs,[5,6℄,Ys).if the rightmost sele
tion rule is
onsidered.This shows the usefulness of a me
hanism for preventing the sele
tion of thoseatoms whi
h are not suÆ
iently instantiated. Su
h a me
hanism is in fa
t o�ered bymost modern languages: In GHC (Ueda, 1988) programs are augmented with guardsin order to
ontrol the sele
tion of atoms dynami
ally. Moded Flat GHC (Ueda andMorita, 1994) uses an extra
ondition on the input positions, whi
h is extremelysimilar to the
on
ept of input-
onsuming derivation step we refer to the sequel: Theresolution of an atom with a de�nition must not instantiate the input arguments ofthe resolved atom. On the other hand, G�odel (Hill and Lloyd, 1994) and ECLiPSe(Walla
e et al., 1997) use delay de
larations, and SICStus Prolog (1997) employsblo
k de
larations (whi
h are a spe
ial kind of delay de
larations). Both delay andblo
k de
larations
he
k the partial instantiation of some arguments of
alls. Forinstan
e, the standard delay de
laration for APPEND isd1 := delay app(Ls, ,) until nonvar(Ls).This de
laration forbids the sele
tion of an atom of the form app(s; t; u) unless sis a non-variable term, whi
h is pre
isely what we need in order to run the queriesQ1 or Q2 eÆ
iently.The adoption of dynami
 s
heduling has the disadvantage that various programproperties that have been proven for logi
 and pure Prolog programs do not applyany longer.The goal of our resear
h is the study of termination properties. This is motivatedby the fa
t that most of the literature on termination of logi
 programs (see DeS
hreye and De
orte (1994) for a survey on this subje
t) assumes the standardProlog sele
tion rule, i.e., the leftmost one. Notable ex
eptions are Bezem (1993)and Cavedon (1989) who provide results for all sele
tion rules. There are onlyfew authors who ta
kled the spe
i�
 problem of verifying the termination of logi
programs with dynami
 s
heduling. Namely, Apt and Luitjes (1995), Mar
hiori andTeusink (1999) and Smaus (1999b). We
ompare our results with the ones in (Aptand Luitjes, 1995; Mar
hiori and Teusink, 1999; Smaus, 1999b) in the
on
ludingse
tion.

Theory and Pra
ti
e of Logi
 Programming 3Another feature of logi
 programs whi
h does not hold in presen
e of dynami
s
heduling is the well-known swit
hing lemma, whi
h is, for instan
e, at the base ofthe result on the independen
e of the sele
tion rule. In this paper we show that {under
ertain
onditions { a weak form of the well-known swit
hing lemma holds.In order to re
uperate at least part of the de
larative reading of logi
 pro-gramming, we follow here the same approa
h to dynami
 s
heduling as (Smaus,1999b) and we substitute the use of delay de
larations by the restri
tion to input-
onsuming derivations. The de�nition of input-
onsuming derivation is done in twophases. First we give the program a mode, that is, we partition the positions of ea
hatom into input and output positions. Then, in presen
e of modes, input-
onsumingderivation steps are pre
isely those in whi
h the input arguments of the sele
tedatom will not be instantiated by the uni�
ation with the
lause's head. If in a queryno atom is resolvable via an input-
onsuming derivation step and a failure does notarise then we have a deadlo
k situation1.For example, the standard mode for the program APPEND reported above, whenused for
on
atenating two lists, is app(In,In,Out). Noti
e that in this
ase thedelay de
laration d1 serves pre
isely the purpose of guaranteeing that if an atomof the form app(s; t;X) (with X being a variable) is sele
table and uni�able witha
lause head, then the resulting derivation step is input-
onsuming.It is also worth remarking that, as a large body of literature shows, the vastmajority of \usual" programs are a
tually moded and are, in a well-de�ned sense
onsistent wrt. to their modes (e.g., well-moded, ni
ely-moded, simply-moded, et
.);see for example (Apt and Pellegrini, 1994; Apt andMar
hiori, 1994), or more simply,the tables of programs we report in Se
tion 7, or
onsider for instan
e the logi
programming language Mer
ury (Somogyi et al., 1996), whi
h requires that itsprograms are moded (and well-moded).Contributions of this paperIn this paper we study some properties of input-
onsuming derivations.In the �rst pla
e we show that, if we restri
t ourselves to programs and querieswhi
h are ni
ely-moded, then a weak form of the well-known swit
hing lemma holds.Furthermore, we study the termination properties of input-
onsuming deriva-tions. For this we de�ne the
lass of input terminating programs whi
h
hara
terizesprograms whose input-
onsuming derivations starting in a ni
ely-moded query are�nite. In order to prove that a program is input terminating, we use the
on
ept ofquasi re
urrent program (similar to, but noti
eably less restri
tive than the
on
eptof semi-re
urrent program introdu
ed in (Apt and Pedres
hi, 1994)). We show thatif P is ni
ely-moded and quasi re
urrent then all its input-
onsuming derivationsstarting from a ni
ely-moded query terminate.Furthermore, we demonstrate that under mild additional
onstraints (namely,1 As we dis
uss in Se
tion 3.2, this notion of deadlo
k di�ers, in some way, from the usual one,whi
h is given in the
ase of programs employing delay de
larations.

4 A. Bossi, S. Etalle, and S. Rossisimply-modedness and input-re
urren
y) the above
ondition is both suÆ
ient andne
essary for ensuring that all input-
onsuming derivations starting from a ni
ely-moded query terminate.This approa
h generalizes the method des
ribed in (Smaus, 1999b) in two ways:First be
ause we also provide
onditions whi
h are both ne
essary and suÆ
ient, andse
ondly be
ause we do not require programs and queries to be well-moded; we onlyassume that they are ni
ely-moded. This is a
tually
ru
ial: When programs andqueries are well-moded, derivations
annot deadlo
k. Thus, as opposed to (Smaus,1999b), our results
apture also termination by deadlo
k. For instan
e, we
aneasily prove that the query app(X;Y; Z) terminates. A more detailed
omparisonis presented in the
on
luding se
tion.We also show that the results presented in this paper
an be extended to programsand queries whi
h are permutation ni
ely- or simply-moded, (Smaus et al., 1998).To evaluate the pra
ti
ality of the results we present, we
onsider the programsfrom various well-known
olle
tions, and we
he
k whether they satisfy the
ondi-tions of our main theorem.The paper is organized as follows. Se
tion 2
ontains some preliminary notationsand de�nitions. In Se
tion 3 input-
onsuming derivations are introdu
ed and someproperties of them are proven. In Se
tion 4 we prove that, for ni
ely-moded input-
onsuming programs, a left swit
hing lemma holds. In Se
tion 5 a method forproving input termination of programs is presented, �rst in a non-modular way,then for modular programs. In Se
tion 6 we show that this method is ne
essary forthe
lass of simply-moded and input-re
ursive programs. Se
tion 7 dis
usses theappli
ability of our results through simple examples of programs and reports theresults obtained by applying our method to various ben
hmarks. Finally, Se
tion 8
on
ludes the paper. 2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi
 results oflogi
 programs (Apt, 1990; Apt, 1997; Lloyd, 1987).2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data
onstru
tors C and a denu-merable set of variable symbols V . A substitution � is a mapping from V to T su
hthat Dom(�) = fX j �(X) 6= Xg is �nite. For any synta
ti
 obje
t o, we denoteby Var(o) the set of variables o

urring in o. A synta
ti
 obje
t is linear if everyvariable o

urs in it at most on
e. We denote by � the empty substitution. The
omposition �� of the substitutions � and � is de�ned as the fun
tional
omposi-tion, i.e., ��(X) = �(�(X)). We
onsider the pre-ordering � (more general than)on substitutions su
h that � � � i� there exists
 su
h that �
 = �. The resultof the appli
ation of a substitution � to a term t is said an instan
e of t and it isdenoted by t�. We also
onsider the pre-ordering � (more general than) on termssu
h that t � t0 i� there exists � su
h that t� = t0. We denote by � the asso
iated

Theory and Pra
ti
e of Logi
 Programming 5equivalen
e relation (varian
e). A substitution � is a uni�er of terms t and t0 i�t� = t0�. We denote by mgu(t; t0) any most general uni�er (mgu, in short) of t andt0. An mgu � of terms t and t0 is
alled relevant i� Var(�) � Var(t) [Var(t0).2.2 Programs and DerivationsLet P be a �nite set of predi
ate symbols. An atom is an obje
t of the formp(t1; : : : ; tn) where p 2 P is an n-ary predi
ate symbol and t1; : : : ; tn 2 T . Givenan atom A, we denote by Rel(A) the predi
ate symbol of A. A query is a �nite,possibly empty, sequen
e of atoms A1; : : : ; Am. The empty query is denoted by 2.Following the
onvention adopted in (Apt, 1997), we use bold
hara
ters to denotequeries. A
lause is a formula H B where H is an atom (the head) and B is aquery (the body). When B is empty, H B is written H and is
alled a unit
lause. A program is a �nite set of
lauses. We denote atoms by A;B;H; : : : ; queriesby Q;A;B;C; : : : ;
lauses by
; d; : : : ; and programs by P .Computations are
onstru
ted as sequen
es of \basi
" steps. Consider a non-empty query A; B;C and a
lause
. Let H B be a variant of
 variable disjointfrom A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is
alled aresolvent of A; B;C and
 with sele
ted atom B and mgu �. A derivation step isdenoted by A; B;C �=)P;
 (A;B;C)�The
lause H B is
alled its input
lause. The atom B is
alled the sele
ted atomof A; B;C.If P is
lear from the
ontext or
 is irrelevant then we drop the referen
e tothem. A derivation is obtained by iterating derivation steps. A maximal sequen
eÆ := Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �is
alled a derivation of P [fQ0g provided that for every step the standardizationapart
ondition holds, i.e., the input
lause employed is variable disjoint from theinitial query Q0 and from the substitutions and the input
lauses used at earliersteps.Derivations
an be �nite or in�nite. If Æ := Q0 �1=)P;
1 � � � �n=)P;
n Qn is a �nitepre�x of a derivation, also denoted Æ := Q0 �7�! Qn with � = �1 � � � �n, we say that Æis a partial derivation and � is a partial
omputed answer substitution of P [fQ0g.If Æ is maximal and ends with the empty query then � is
alled
omputed answersubstitution (
.a.s., for short). The length of a (partial) derivation Æ, denoted bylen(Æ), is the number of derivation steps in Æ.The following de�nition of B-step is due to Smaus (1999a).De�nition 1 (B-step)Let A; B;C �=) (A;B;C)� be a derivation step. We say that ea
h atom in B� isa dire
t des
endant of B, and for ea
h atom E in (A;C), E� is a dire
t des
endantof E. We say that E is a des
endant of F if the pair (E;F) is in the re
exive,transitive
losure of the relation is a dire
t des
endant of. Consider a derivation

6 A. Bossi, S. Etalle, and S. RossiQ0 �1=) � � � �i=) Qi � � � �j=) Qj �j+1=) Qj+1 � � �. We say that Qj �j+1=) Qj+1 � � � is aB-step if B is a subquery of Qi and the sele
ted atom in Qj is a des
endant of anatom in B. 3 Modes and Input-Consuming DerivationsIn this se
tion we introdu
e the
on
ept of input-
onsuming derivation whi
h isstri
tly related to the notion of mode; we dis
uss the relations between input-
onsuming derivations and programs using delay de
larations; we re
all the notionof ni
ely-moded program and state some properties.3.1 Input-Consuming DerivationsLet us �rst re
all the notion of mode. A mode is a fun
tion that labels as input oroutput the positions of ea
h predi
ate in order to indi
ate how the arguments of apredi
ate should be used.De�nition 2 (Mode)Consider an n-ary predi
ate symbol p. A mode for p is a fun
tionmp from f1; : : : ; ngto fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p(wrt. mp). We assume that ea
h predi
ate symbol has a unique mode asso
iated toit; multiple modes may be obtained by simply renaming the predi
ates.If Q is a query, we denote by In(Q) (resp. Out(Q)) the sequen
e of terms �llingin the input (resp. output) positions of predi
ates in Q. Moreover, when writing anatom as p(s; t), we are indi
ating with s the sequen
e of terms �lling in the inputpositions of p and with t the sequen
e of terms �lling in the output positions of p.The notion of input-
onsuming derivation was introdu
ed in (Smaus, 1999b) andis de�ned as follows.De�nition 3 (Input-Consuming)� An atom p(s; t) is
alled input-
onsuming resolvable wrt. a
lause
 := p(u;v) Q and a substitution � i� � = mgu(p(s; t); p(u;v)) and s = s�.� A derivation step A; B;C �=)
 (A;B;C)�is
alled input-
onsuming i� the sele
ted atom B is input-
onsuming resolv-able wrt. the input
lause
 and the substitution �.� A derivation is
alled input-
onsuming i� all its derivation steps are input-
onsuming.The following lemma states that we are allowed to restri
t our attention to input-
onsuming derivations with relevant mgu's.Lemma 4Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � of p(s; t) and p(u;v)su
h that s� = s, then there exists a relevant mgu # of p(s; t) and p(u;v) su
h thats# = s.

Theory and Pra
ti
e of Logi
 Programming 7ProofSin
e p(s; t) and p(u;v) are uni�able, there exists a relevant mgu �rel of them (
fr.(Apt, 1997), Theorem 2.16). Now, �rel is a renaming of �. Thus s�rel is a variant of s.Then there exists a renaming � su
h that Dom(�) � Var(s; t;u;v) and s�rel� = s.Now, take # = �rel�.From now on, we assume that all mgu's used in the input-
onsuming derivationsteps are relevant.Example 5Consider the program REVERSE with a

umulator in the modes de�ned below.mode reverse(In, Out).mode reverse a

(In,Out,In)reverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).The derivation Æ of REVERSE[freverse([X1; X2℄; Zs)g depi
ted below is input-
onsuming.Æ := reverse([X1; X2℄; Zs)) reverse a

([X1; X2℄; Zs; [℄))reverse a

([X2℄; Zs; [X1℄)) reverse a

([℄; Zs; [X2; X1℄)) 2.3.2 Input-Consuming vs. Delay De
larationsDelay de
larations are by far the most popular me
hanism for implementing dy-nami
 s
heduling. However, being a non-logi
al me
hanism, they are diÆ
ult tomodel and there are few proposals
on
erning their semanti
s (Marriott, 1997) and(Falas
hi et al., 1997).An alternative approa
h to dynami
 s
heduling, whi
h is mu
h more de
larativein nature, has been proposed by Smaus (1999b). It
onsists in the use of input-
onsuming derivations.There is a main di�eren
e between the
on
ept of delay de
laration and the oneof input-
onsuming derivation: While in the �rst
ase only the atom sele
tability is
ontrolled, in the se
ond one both the atom and the
lause sele
tability are a�e
ted.In fa
t, in presen
e of delay de
larations, if an atom is sele
table then it
an beresolved with respe
t to any program
lause (provided it uni�es with its head); onthe
ontrary, in an input-
onsuming derivation, if an atom is sele
table then it isinput-
onsuming resolvable wrt. some, but not ne
essarily all, program
lauses, i.e,only a restri
ted
lass of
lauses
an be used for resolution.Also the
on
ept of deadlo
k has to be understood in two di�erent ways. Forprograms using delay de
larations a deadlo
k situation o

urs when no atom in aquery satis�es the delay de
larations (i.e., no atom is sele
table), while for input-
onsuming derivations a deadlo
k o

urs when no atom in a query is resolvable viaan input-
onsuming derivation step and the derivation does not fail, i.e., there is

8 A. Bossi, S. Etalle, and S. Rossisome atom in the query whi
h uni�es with a
lause head but the uni�
ation is notinput-
onsuming.In spite of these di�eren
es, in many situations there is a stri
t relation betweenprograms using delay de
larations and input-
onsuming derivations. This relationis studied by Smaus in his PhD thesis (1999a). More pre
isely, Smaus proves aresult that relates blo
k de
larations and input-
onsuming derivations. A blo
kde
laration is a spe
ial
ase of delay de
laration and it is used to de
lare that
ertainarguments of an atom must be non-variable when the atom is sele
ted for resolution.In Chapter 7 of (Smaus, 1999a), Smaus shows that blo
k de
larations
an be used toensure that derivations are input-
onsuming. In for
e of this result and of pra
ti
alexperien
e, we might
laim that in most \usual" moded programs using them,delay de
larations are employed pre
isely for ensuring the input-
onsumedness ofthe derivations.In fa
t, delay de
larations are generally employed to guarantee that the inter-preter will not use an \inappropriate"
lause for resolving an atom (the other,perhaps less prominent, use of delay de
larations is to ensure absen
e of runtimeerrors, but we do not address this issue in this paper). This is a
hieved by prevent-ing the sele
tion of an atom until a
ertain degree of instantiation is rea
hed. Thisdegree of instantiation ensures then that the atom is uni�able only with the headsof the \appropriate"
lauses. In presen
e of modes, we
an reasonably assume thatthis degree of instantiation is the one of the input positions, whi
h are the ones
arrying the information. Now, it is easy to see that a derivation step involvinga
lause
 is input-
onsuming i� no further instantiation of the input positions ofthe resolved atom
ould prevent it from being resolvable with
. Therefore
 mustbelong to the set of \appropriate"
lauses for resolving it. Thus, the
on
epts ofinput-
onsuming derivation and of delay de
larations are often employed for ensur-ing the same properties. 3.3 Ni
ely-Moded ProgramsIn the sequel of the paper we will restri
t ourselves to programs and queries whi
hare ni
ely-moded. In this se
tion we report the de�nition of this
on
ept togetherwith some basi
 important properties of ni
ely-moded programs.De�nition 6 (Ni
ely-Moded)� A query Q := p1(s1; t1); : : : ; pn(sn; tn) is ni
ely-moded if t1; : : : ; tn is a linearsequen
e of terms and for all i 2 f1; : : : ; ngVar(si) \ n[j=iVar(tj) = ;:� A
lause
 = p(s0; t0) Q is ni
ely-moded if Q is ni
ely-moded andVar(s0) \ n[j=1Var(tj) = ;:In parti
ular, every unit
lause is ni
ely-moded.

Theory and Pra
ti
e of Logi
 Programming 9� A program P is ni
ely-moded if all of its
lauses are ni
ely-moded.Note that a one-atom query p(s; t) is ni
ely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 7� The program APPEND in the modes app(In,In,Out) is ni
ely-moded.� The program REVERSE with a

umulator in the modes depi
ted in Example 5is ni
ely-moded.� The following program MERGE is ni
ely-moded.mode merge(In,In,Out).merge(Xs,[℄,Xs).merge([℄,Xs,Xs).merge([X|Xs℄,[Y|Ys℄,[Y|Zs℄) Y < X, merge([X|Xs℄,Ys,Zs).merge([X|Xs℄,[Y|Ys℄,[X|Zs℄) Y > X, merge(Xs,[Y|Ys℄,Zs).merge([X|Xs℄,[X|Ys℄,[X|Zs℄) merge(Xs,[X|Ys℄,Zs).The following result is due to Smaus (Smaus, 1999a), and states that the
lassof programs and queries we are
onsidering is persistent under resolution.Lemma 8Every resolvent of a ni
ely-moded query Q and a ni
ely-moded
lause
, where thederivation step is input-
onsuming and Var(Q) \ Var(
) = ;, is ni
ely-moded.The following Remark, also in (Smaus, 1999a), is an immediate
onsequen
e ofthe de�nition of input-
onsuming derivation step and the fa
t that the mgu's we
onsider are relevant.Remark 9Let the program P and the query Q := A; p(s; t);C be ni
ely-moded.If A; p(s; t);C �=) (A;B;C)� is an input-
onsuming derivation step with sele
tedatom p(s; t), then A� = A.4 The Left Swit
hing LemmaThe swit
hing lemma (see for instan
e (Apt, 1997), Lemma 3.32) is a well-knownresult whi
h allows one to prove the independen
e of the
omputed answer substi-tutions from the sele
tion rule.In the
ase of logi
 programs using dynami
 s
heduling, the swit
hing lemma doesnot hold any longer. For example, in program APPEND reported in the introdu
tion(together with the delay de
laration d1) we have that the rightmost atom of Q2 issele
table only after the leftmost one has been resolved; i.e., the swit
hing lemma
annot be applied.Nevertheless we
an show that, for input-
onsuming derivations of ni
ely-modedprograms, a weak version of the swit
hing lemma still holds. Intuitively, we showthat we
an swit
h the sele
tion of two atoms whenever this results in a left to rightsele
tion. For this reason, we
all it left swit
hing lemma.

10 A. Bossi, S. Etalle, and S. RossiFirst, we need one te
hni
al result, stating that the only variables of a query that
an be \a�e
ted" in an input-
onsuming derivation pro
ess are those o

urringin some output positions. Intuitively, this means that if the input arguments ofa
all are not \suÆ
iently instantiated" then it is delayed until it allows for aninput-
onsuming derivation step (if it is not the
ase then a deadlo
k situation willarise).Lemma 10Let the program P and the query Q be ni
ely-moded. Let Æ := Q �7�! Q0 bea partial input-
onsuming derivation of P [fQg. Then, for all x 2 Var(Q) andx 62 Var(Out(Q)), x� = x.ProofLet us �rst establish the following
laim.Claim 11Let z and w be two variable disjoint sequen
es of terms su
h that w is linear and� = mgu(z;w). If s1 and s2 are two variable disjoint terms o

urring in z then s1�and s2� are variable disjoint terms.ProofThe result follows from Lemmata 11.4 and 11.5 in (Apt and Pedres
hi, 1994).We pro
eed with the proof of the lemma by indu
tion on len(Æ).Base Case. Let len(Æ) = 0. In this
ase Q = Q0 and the result follows trivially.Indu
tion step. Let len(Æ) > 0. Suppose that Q := A; p(s; t);C andÆ := A; p(s; t);C �1=) (A;B;C)�1 �27�! Q0where p(s; t) is the sele
ted atom of Q,
 := p(u;v) B is the input
lause usedin the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and � = �1�2.Let x 2 Var(A; p(s; t);C) and x 62 Var(Out(A; p(s; t);C)). We �rst show thatx�1 = x (1)We distinguish two
ases.(a) x 2 Var(s). In this
ase, property (1) follows from the hypothesis that Æ isinput-
onsuming.(b) x 62 Var(s). Sin
e x 2 Var(A; p(s; t);C), by standardization apart, we havethat x 62 Var(p(u;v)). Moreover, sin
e x 62 Var(Out(A; p(s; t);C)), it also holdsthat x 62 Var(p(s; t)). Then, property (1) follows from relevan
e of �1.Now we show that x�2 = x (2)Again, we distinguish two
ases:(
) x 62 Var((A;B;C)�1). In this
ase, be
ause of the standardization apart
ondition, x will never o

ur in (A;B;C)�1 �27�! Q0. Hen
e, x 62 Dom(�2) andx�2 = x.(d) x 2 Var((A;B;C)�1). In this
ase, in order to prove (2) we show that x 62Var(Out((A;B;C)�1)). The result then follows by the indu
tive hypothesis.

Theory and Pra
ti
e of Logi
 Programming 11From the standardization apart, relevan
e of �1 and the fa
t that the �rst deriva-tion step is input-
onsuming, it follows that Dom(�1) \ Var(Q) � Var(t).From the hypothesis that Q is ni
ely-moded, Var(t) \ Var(Out(A;C)) = ;.Hen
e, Var(Out(A;C))�1 = Var(Out(A;C)). Sin
e x 62 Var(Out(A;C)), thisproves that x 62 Var(Out((A;C)�1)).It remains to be proven that x 62 Var(Out(B�1). We distinguish two
ases.(d1) x 62 Var(s). Sin
e x 62 Var(p(s; t)), the fa
t that x 62 Var(Out(B�1) followsimmediately by standardization apart
ondition and relevan
e of �1.(d2) x 2 Var(s). By known results (see (Apt, 1997), Corollary 2.25), there existstwo relevant mgu �1 and �2 su
h that� �1 = �1�2,� �1 = mgu(s;u),� �2 = mgu(t�1;v�1).From relevan
e of �1 and the fa
t that, by ni
ely-modedness of Q, Var(s)\Var (t) =;, we have that t�1 = t, and by the standardization apart
ondition Var(t) \Var(v�1) = ;. Now by ni
ely-modedness of
, Var(u)\Var (Out(B)) = ;. Sin
e �1is relevant and by the standardization apart
ondition it follows thatVar(u�1) \Var(Out(B�1)) = ; (3)The proof pro
eeds now by
ontradi
tion. Suppose that x 2 Var(Out(B�1�2)).Sin
e by hypothesis x 2 Var(s), and s = u�1�2, we have that Var(u�1�2) \Var(Out(B�1�2)) 6= ;. By (3), this means that there exist two distin
t variables z1and z2 in Var(�2) su
h that z1 2 Var(Out(B�1)), z2 2 Var(u�1) andVar(z1�2) \ Var(z2�2) 6= ; (4)Sin
e, by the standardization apart
ondition and relevan
e of the mgu's, Var(�2)� Var(v�1) [Var(t) and (Var(Out(B�1)) [Var(u�1))\Var (t) = ;, we have thatz1 and z2 are two disjoint subterms of v�1. Sin
e �2 = mgu(t;v�1), t is linear anddisjoint from v�1, (4)
ontradi
ts Claim 11.The following
orollary is an immediate
onsequen
e of the above lemma and thede�nition of ni
ely-moded program.Corollary 12Let the program P and the one-atom query A be ni
ely-moded. Let Æ := A �7�! Q0be a partial input-
onsuming derivation of P [fAg. Then, for all x 2 Var(In(A)),x� = x.Next is the main result of this se
tion, showing that for input-
onsuming ni
ely-moded programs one half of the well-known swit
hing lemma holds.Lemma 13 (Left-Swit
hing)Let the program P and the query Q0 be ni
ely-moded. Let Æ be a partial input-
onsuming derivation of P [fQ0g of the formÆ := Q0 �1=)
1 Q1 � � �Qn �n+1=)
n+1 Qn+1 �n+2=)
n+2 Qn+2where

12 A. Bossi, S. Etalle, and S. Rossi� Qn is a query of the form A; B;C; D;E,� Qn+1 is a resolvent of Qn and
n+1 wrt. D,� Qn+2 is a resolvent of Qn+1 and
n+2 wrt. B�n+1.Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 su
h that�n+1�n+2 = �0n+1�0n+2and Æ0 := Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where Æ0 is input-
onsuming and� Æ and Æ0
oin
ide up to the resolvent Qn,� Q0n+1 is a resolvent of Qn and
n+2 wrt. B,� Qn+2 is a resolvent of Q0n+1 and
n+1 wrt. D�0n+1,� Æ and Æ0
oin
ide after the resolvent Qn+2.ProofLet B := p(s; t), D := q(u;v),
n+1 := q(u0;v0) D and
n+2 := p(s0; t0) B.Hen
e, �n+1 = mgu(q(u;v); q(u0;v0)) andu�n+1 = u; sin
e Æ is input-
onsuming. (5)By (5) and the fa
t that Qn is ni
ely-moded and �n+1 is relevant, we have thatp(s; t)�n+1 = p(s; t). Then, �n+2 = mgu(p(s; t)�n+1; p(s0; t0)) = mgu(p(s; t); p(s0; t0))and s�n+2 = s; sin
e Æ is input-
onsuming. (6)Moreover,2�n+1�n+2 = mgufp(s; t) = p(s0; t0); q(u;v) = q(u0;v0)g = �n+2�0n+2 (7)where �0n+2 = mgu(q(u;v)�n+2; q(u0;v0)�n+2) = mgu(q(u;v)�n+2; q(u0;v0)):We
onstru
t the derivation Æ0 as follows.Æ0 := Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where �0n+1 = �n+2 (8)By (6), Qn �0n+1=)
n+2 Q0n+1 is an input-
onsuming derivation step. Observe now thatu�0n+1�0n+2 = u�n+2�0n+2; (by (8))= u�n+1�n+2; (by (7))= u�n+2; (by (5))= u�0n+1; (by (8)):This proves that Q0n+1 �0n+2=)
n+1 Q0n+2 is an input-
onsuming derivation step.2 We use the notation mgu(E) to denote the mgu of a set of equations E, see (Apt, 1997).

Theory and Pra
ti
e of Logi
 Programming 13This result shows that it is always possible to pro
eed left-to-right to resolve thesele
ted atoms. Noti
e that this is di�erent than saying that the leftmost atom ofa query is always resolvable: It
an very well be the
ase that the leftmost atom issuspended and the one next to it is resolvable. However, if the leftmost atom of aquery is not resolvable then we
an state that the derivation will not su

eed, i.e.,either it ends by deadlo
k, or by failure or it is in�nite.It is important to noti
e that if we drop the ni
ely-modedness
ondition the abovelemma would not hold any longer. For instan
e, it does not apply to the query Q1of the introdu
tion whi
h is not ni
ely-moded. In fa
t, the leftmost atom of Q1 isresolvable only after the rightmost one has been resolved at least on
e.The following immediate
orollary will be used in the sequel.Corollary 14Let the program P and the query Q := A;B be ni
ely-moded. Suppose thatÆ := A;B �7�! C1;C2that is a partial input-
onsuming derivation of P [fQg where C1 and C2 areobtained by partially resolving A and B, respe
tively. Then there exists a partialinput-
onsuming derivationÆ0 := A;B �17�! C1;B�1 �27�! C1;C2where all the A-steps are performed in the pre�x A;B �17�! C1;B�1 and � = �1�2.5 TerminationIn this se
tion we study the termination of input-
onsuming derivations. To thisend we re�ne the ideas of Bezem (1993) and Cavedon (1989) who studied thetermination of logi
 programs in a very strong sense, namely with respe
t to all se-le
tion rules, and of Smaus (1999b) who
hara
terized terminating input-
onsumingderivations of programs whi
h are both well and ni
ely-moded.5.1 Input Terminating ProgramsWe �rst introdu
e the key notion of this se
tion.De�nition 15 (Input Termination)A program is
alled input terminating i� all its input-
onsuming derivations startedin a ni
ely-moded query are �nite.The method we use in order to prove that a program is input terminating isbased on the following
on
ept of moded level mapping due to Etalle et al. (1999).De�nition 16 (Moded Level Mapping)Let P be a program and BEP be the extended Herbrand base3 for the languageasso
iated with P . A fun
tion j j is a moded level mapping for P i�:3 The extended Herbrand base of P is the set of equivalen
e
lasses of all (possibly non-ground)atoms, modulo renaming, whose predi
ate symbol appears in P . As usual, an atom is identi�edwith its equivalen
e
lass.

14 A. Bossi, S. Etalle, and S. Rossi� it is a fun
tion j j : BEP ! N from atoms to natural numbers;� for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.The
ondition jp(s; t)j = jp(s;u)j states that the level of an atom is independentfrom the terms in its output positions. There is a
tually a small yet importantdi�eren
e between this de�nition and the one in (Etalle et al., 1999): In (Etalle etal., 1999) the level mapping is de�ned on ground atoms only. Indeed, in (Etalle etal., 1999) only well-moded atoms are
onsidered, i.e., atoms with ground terms inthe input positions. Here, instead, we are
onsidering ni
ely-moded atoms whoseinput positions
an be �lled in by (possibly) non-ground terms.Example 17Let us denote by TSize(t) the term size of a term t, that is the number of fun
tionand
onstant symbols that o

ur in t.� A moded level mapping for the program APPEND reported in the introdu
tionis as follows:|app(xs,ys,zs)|=TSize(xs).� A moded level mapping for the program REVERSE with a

umulator of Exam-ple 5 is the following:|reverse(xs,ys)|= TSize(xs)|reverse a

(xs,ys,zs)|=TSize(xs).5.2 Quasi Re
urren
yIn order to give a suÆ
ient
ondition for termination, we are going to employa generalization of the
on
ept of re
urrent and of semi-re
urrent program. The�rst notion (whi
h in the
ase of normal programs, i.e., programs with negation,
oin
ides with the one of a
y
li
 program) was introdu
ed in (Bezem, 1993; Aptand Bezem, 1991) and independently in (Cavedon, 1991) in order to prove universaltermination for all sele
tion rules together with other properties of logi
 programs.Later, Apt and Pedres
hi (1994) provided the new de�nition of semi-re
urrent pro-gram, whi
h is equivalent to the one of re
urrent program, but it is easier to verifyin an automati
 fashion. In order to pro
eed, we need a preliminary de�nition.De�nition 18Let P be a program, p and q be relations. We say that p refers to q in P i� there isa
lause in P with p in the head and q in the body. We say that p depends on q andwrite p w q in P i� (p; q) is in the re
exive and transitive
losure of the relationrefers to.A

ording to the above de�nition, p ' q � p v q ^ p w q means that p and q aremutually re
ursive, and p = q � p w q^p 6' q means that p
alls q as a subprogram.Noti
e that = is a well-founded ordering.Finally, we
an provide the key
on
ept we are going to use in order to proveinput termination.

Theory and Pra
ti
e of Logi
 Programming 15De�nition 19 (Quasi Re
urren
y)Let P be a program and j j :BEP ! N be a moded level mapping.� A
lause of P is
alled quasi re
urrent with respe
t to j j if for every instan
eof it, H A; B;C if Rel(H) ' Rel(B) then jH j > jBj: (9)� A program P is
alled quasi re
urrent with respe
t to j j if all its
lausesare. P is
alled quasi re
urrent if it is quasi re
urrent wrt. some moded levelmapping j j : BEP ! N.The notion of quasi re
urrent program di�ers from the
on
epts of re
urrent andof semi-re
urrent program in two ways. First, we require that jH j > jBj only forthose body atoms whi
h mutually depend on Rel(H); in
ontrast, both the
on
eptof re
urrent and of semi-re
urrent program require that jH j > jBj (jH j � jBj in the
ase of semi-re
urren
y) also for the atoms for whi
h Rel(H) 6' Rel(B). Se
ondly,every instan
e of a program
lause is
onsidered, not only ground instan
es as inthe
ase of (semi-)re
urrent programs. This allows us to treat dire
tly any ni
ely-moded query without introdu
ing the
on
ept of boundedness (Apt and Pedres
hi,1994) or
over as in (Mar
hiori and Teusink, 1999).It is worthwhile noti
ing that this
on
ept almost
oin
ides with the one of ICD-a

eptable program introdu
ed and used in (Smaus, 1999b). We de
ided to usea di�erent name be
ause we believe that referring to the word a

eptable mightlead to
onfusion: The
on
ept of a

eptable program was introdu
ed by Apt andPedres
hi (1993; 1994) in order to prove termination of logi
 programs using the left-to-right sele
tion rule. The
ru
ial di�eren
e between re
urren
y and a

eptabilitylies in the fa
t that the latter relies on a model M ; this allows
ondition (9) to be
he
ked only for those body atoms whi
h are in a way \rea
hable" wrt. M . Hen
e,every re
urrent program is a

eptable but not vi
e-versa. As an aside, Mar
hioriand Teusink (1999) introdu
e the notion of delay re
urrent program although their
on
ept is based on the presen
e of a model M . Our de�nition does not rely on amodel, and so it is mu
h more related to the notion of re
urrent than the one ofa

eptable program.We
an now state our �rst basi
 result on termination, in the
ase of non-modularprograms.Theorem 20Let P be a ni
ely-moded program. If P is quasi re
urrent then P is input termi-nating.ProofIt will be obtained from the proof of Theorem 24 by setting R = ;.Example 21Consider the program MERGE de�ned in Example 7. Let j j be the moded levelmapping for MERGE de�ned by|merge(xs,ys,zs)| = TSize(xs) + TSize(ys).

16 A. Bossi, S. Etalle, and S. RossiIt is easy to prove that MERGE is quasi re
urrent wrt. the moded level mapping above.By Theorem 20, all input-
onsuming derivations of MERGE started with a querymerge(s; t; u), where u is linear and variable disjoint from s and t, are terminating.5.3 Modular TerminationThis se
tion
ontains a generalization of Theorem 20 to the modular
ase, as wellas the
omplete proofs for it. The following lemma is a
ru
ial one.Lemma 22Let the program P and the query Q := A1; : : : ; An be ni
ely-moded. Suppose thatthere exists an in�nite input-
onsuming derivation Æ of P [fQg. Then, there existan index i 2 f1; : : : ; ng and substitution � su
h that1. there exists an input-
onsuming derivation Æ0 of P [fQg of the formÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� 7�! � � �2. there exists an in�nite input-
onsuming derivation of P [fAi�g.ProofLet Æ := A1; : : : ; An 7�! � � � be an in�nite input-
onsuming derivation of P [fQg.Then Æ
ontains an in�nite number of Ak-steps for some k 2 f1; : : : ; ng. Let ibe the minimum of su
h k. Hen
e Æ
ontains a �nite number of Aj -steps for j 2f1; : : : ; i� 1g and there exists C and D su
h thatÆ := A1; : : : ; An #7�! C;D 7�! � � �where A1; : : : ; An #7�! C;D is a �nite pre�x of Æ whi
h
omprises all the Aj-stepsof Æ for j 2 f1; : : : ; i � 1g and C is the subquery of C;D
onsisting of the atomsresulting from some Aj-step (j 2 f1; : : : ; i � 1g). By Corollary 14, there exists anin�nite input-
onsuming derivation Æ0 su
h thatÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� �07�! C;D 7�! � � �where # = ��0. This proves (i).Now, let Æ00 := C; (Ai; : : : ; An)� �07�! C;D 7�! � � �. Note that in Æ00 the atoms ofC will never be sele
ted and, by Remark 9, will never be instantiated. Let Æ000 beobtained from Æ00 by omitting the pre�x C in ea
h query. Hen
e Æ000 is an in�niteinput-
onsuming derivation of P [f(Ai; : : : ; An)�g where an in�nite number ofAi�-steps are performed. Again, By Remark 9, for every �nite pre�x of Æ000 of theform Ai�; (Ai+1; : : : ; An)� �17�! D1;D2 �2=) D01;D02where D1 and D2 are obtained by partially resolving Ai� and (Ai+1; : : : ; An)�,respe
tively, and D1;D2 �2=) D01;D02 is an Aj-step for some j 2 fi+ 1; : : : ; ng, wehave that D01 = D1. Hen
e, from the hypothesis that there is an in�nite number ofAi�-steps in Æ00, it follows that there exists an in�nite input-
onsuming derivationof P [fAi�g. This proves (ii).

Theory and Pra
ti
e of Logi
 Programming 17The importan
e of the above lemma is shown by the following
orollary of it,whi
h will allow us to
on
entrate on queries
ontaining only one atom.Corollary 23Let P be a ni
ely-moded program. P is input terminating i� for ea
h ni
ely-modedone-atom query A all input-
onsuming derivations of P [fAg are �nite.We
an now state the main result of this se
tion. Here and in what follows we saythat a relation p is de�ned in the program P if p o

urs in a head of a
lause of P ,and that P extends the program R if no relation de�ned in P o

urs in R.Theorem 24Let P and R be two programs su
h that P extends R. Suppose that� R is input terminating,� P is ni
ely-moded and quasi re
urrent wrt. a moded level mapping j j :BEP ! N.Then P [R is input terminating.ProofFirst, for ea
h predi
ate symbol p, we de�ne depP (p) to be the number of predi
atesymbols it depends on. More formally, depP (p) is de�ned as the
ardinality of theset fqj q is de�ned in P and p w qg. Clearly, depP (p) is always �nite. Further, itis immediate to see that if p ' q then depP (p) = depP (q) and that if p = q thendepP (p) > depP (q).We
an now prove our theorem. By Corollary 23, it is suÆ
ient to prove that forany ni
ely-moded one-atom query A, all input-
onsuming derivations of P [fAgare �nite.First noti
e that if A is de�ned in R then the result follows immediately fromthe hypothesis that R is input terminating and that P is an extension of R. So we
an assume that A is de�ned in P .For the purpose of deriving a
ontradi
tion, assume that Æ is an in�nite input-
onsuming derivation of (P [R) [fAg su
h that A is de�ned in P . ThenÆ := A �1=) (B1; : : : ; Bn)�1 �2=) � � �where H B1; : : : ; Bn is the input
lause used in the �rst derivation step and�1 = mgu(A;H). Clearly, (B1; : : : ; Bn)�1 has an in�nite input-
onsuming derivationin P [R. By Lemma 22, for some i 2 f1; : : : ; ng and for some substitution �2,1. there exists an in�nite input-
onsuming derivation of (P [R) [fAg of theform A �1=) (B1; : : : ; Bn)�1 �27�! C; (Bi; : : : ; Bn)�1�2 � � � ;2. there exists an in�nite input-
onsuming derivation of P [fBi�1�2g:Noti
e also that Bi�1�2 is ni
ely-moded. Let now � = �1�2. Note that H� (B1; : : : ; Bn)� is an instan
e of a
lause of P .We show that (2)
annot hold. This is done by indu
tion on hdepP (Rel(A)); jAji

18 A. Bossi, S. Etalle, and S. Rossiwrt. the ordering � de�ned by: hm;ni � hm0; n0i i� either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 (jAj is arbitrary). In this
ase, A does not dependon any predi
ate symbol of P , thus all the Bi as well as all the atoms o

urring inits des
endents in any input-
onsuming derivation are de�ned in R. The hypothesisthat R is input terminating
ontradi
ts (2) above.Indu
tion step. We distinguish two
ases:1. Rel(H) = Rel(Bi),2. Rel(H) ' Rel(Bi).In
ase (a) we have that depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)).So, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji. In
ase (b), from the hypothesis that P is quasi re
urrent wrt. j j, it follows thatjH�j > jBi�j.Consider now the partial input-
onsuming derivation A �7�! C; (Bi; : : : ; Bn)�.By Corollary 12 and the fa
t that j j is a moded level mapping, it follows thatjAj = jA�j = jH�j. Therefore, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji �hdepP (Rel(Bi�)); jBi�ji. In both
ases, the
ontradi
tion follows by the indu
tivehypothesis.Example 25The program FLATTEN using di�eren
e-lists is ni
ely-moded with respe
t to themodes des
ribed below, provided that one repla
es \n" by \,", as we have donehere.mode flatten(In,Out).mode flatten dl(In,Out,In).mode
onstant(In).mode 6=(In,In).flatten(Xs,Ys) flatten dl(Xs,Ys,[℄).flatten dl([℄,Ys,Ys).flatten dl(X,[X|Xs℄,Xs)
onstant(X), X 6= [℄.flatten dl([X|Xs℄,Ys,Zs) flatten dl(Xs,Y1s,Zs),flatten dl(X,Ys,Y1s).Consider the moded level mapping for FLATTEN de�ned by|flatten(xs,ys)| = TSize(xs)|flatten dl(xs,ys,zs)| = TSize(xs).It is easy to see that the program FLATTEN is quasi re
urrent wrt. the modedlevel mapping above. Hen
e, all input-
onsuming derivations of program FLATTENstarted with a query flatten(s,t), where t is linear and variable disjoint from s,are terminating.

Theory and Pra
ti
e of Logi
 Programming 196 Termination: A Ne
essary ConditionTheorem 20 provides a suÆ
ient
ondition for termination. The
ondition is notne
essary, as demonstrated by the following simple example.mode p(In,Out).p(X,a) p(X,b).p(X,b).This program is
learly input terminating, however it is not quasi re
urrent. If it was,we would have that jp(X; a)j > jp(X; b)j, for some moded level mapping j j (otherwisethe �rst
lause would not be quasi re
urrent). On the other hand, sin
e p(X; a) andp(X; b) di�er only for the terms �lling in their output positions, by de�nition ofmoded level mapping, jp(X; a)j = jp(X; b)j. Hen
e, we have a
ontradi
tion.Nevertheless, as shown by other works, e.g., (Bezem, 1993; Apt and Pedres
hi,1993; Etalle et al., 1999), it is important to be able to give a
hara
terization oftermination, i.e., a
ondition whi
h is ne
essary and suÆ
ient to ensure termination.To this purpose is dedi
ated this se
tion.6.1 Simply-Moded ProgramsAs demonstrated by the example above, in order to provide a ne
essary
onditionfor termination we need to further restri
t the
lass of programs we
onsider. The�rst problem is that we should rule out those situations in whi
h termination isguaranteed by the instantiation of the output positions of some sele
ted atom, asit happens in the above example. For this we restri
t to simply-moded programswhi
h are ni
ely-moded programs with the additional
ondition that the outputarguments of
lause bodies are variables.De�nition 26 (Simply-Moded)� A query Q (resp., a
lause
 = H Q) is simply-moded if it is ni
ely-modedand Out(Q) is a linear sequen
e of variables.� A program P is simply-moded i� all of its
lauses are simply-moded.It is important to noti
e that most programs are simply-moded (see the mini-survey at the end of (Apt and Pedres
hi, 1993)) and that often non simply-modedprograms
an naturally be transformed into simply-moded ones.Example 27� The programs REVERSE of Example 5, MERGE of Example 7 and FLATTEN ofExample 25 are all simply-moded.� Consider the program LAST whi
h extends REVERSE:mode last(In,Out).last(Ls,E) reverse(Ls,[E| ℄).This program is not simply-moded sin
e the argument �lling in the outputposition in the body of the �rst
lause is not a variable. However, it
an betransformed into a simply-moded one as follows:

20 A. Bossi, S. Etalle, and S. Rossimode last(In,Out).mode sele
tfirst(In,Out).last(Ls,E) reverse(Ls,Rs), sele
tfirst(Rs,E).sele
tfirst([E| ℄,E).The following lemma, whi
h is an immediate
onsequen
e of Lemma 30 in (Apt andLuitjes, 1995), shows the persisten
e of the notion of simply-modedness.Lemma 28Every resolvent of a simply-moded query Q and a simply-moded
lause
, wherethe derivation step is input-
onsuming and Var(Q)\Var(
) = ;, is simply-moded.6.2 Input-Re
ursive ProgramsUnfortunately, the restri
tion to simply-moded programs alone is not suÆ
ient toextend Theorem 20 by a ne
essary
ondition. Consider for instan
e the followingprogram QUICKSORT:mode qs(In,Out).mode part(In,In,Out,Out).mode app(In,In,Out).qs([℄,[℄).
1 := qs([X|Xs℄,Ys) part(X,Xs,Littles,Bigs),qs(Littles,Ls),qs(Bigs,Bs),app(Ls,[X|Bs℄,Ys).part(X,[℄,[℄,[℄).part(X,[Y|Xs℄,[Y|Ls℄,Bs) X>Y, part(X,Xs,Ls,Bs).part(X,[Y|Xs℄,Ls,[Y|Bs℄) X<=Y, part(X,Xs,Ls,Bs).This program is simply-moded and input terminating4. However it is not quasi re-
urrent. Indeed, there exist no moded level mapping j j su
h that, for every variable-instan
e, jqs([XjXs℄; Ys)j > jqs(Littles; Ls)j and jqs([XjXs℄; Ys)j > jqs(Bigs; Bs)j.This is due to the fa
t that, in
lause
1 there is no dire
t link between the inputarguments of the re
ursive
alls and those of the
lause head. This motivates thefollowing de�nition of input-re
ursive programs.De�nition 29 (Input-Re
ursive)Let P be a program.� A
lause H A; B;C of P is
alled input-re
ursive ifif Rel(H) ' Rel(B) then Var(In(B)) � Var(In(H)):4 Provided that one models the built-in predi
ates > and <= as being de�ned by (an in�nite numberof) ground fa
ts of the form >(m,n) and <=(m,n). The problem here is that the de�nition ofinput-
onsuming derivation does not
onsider the presen
e of built-ins.

Theory and Pra
ti
e of Logi
 Programming 21� A program P is
alled input-re
ursive if all its
lauses are.Thus, we say that a
lause is input-re
ursive if the set of variables o

urring inthe arguments �lling in the input positions of ea
h re
ursive
all in the
lause bodyis a subset of the set of variables o

urring in the arguments �lling in the inputpositions of the
lause head. Input-re
ursive programs have strong similarities withprimitive re
ursive fun
tions.Example 30� The programs APPEND of the introdu
tion, REVERSE of Example 5 and MERGEof Example 7 are all input-re
ursive.� The program FLATTEN of Example 25 is not input-re
ursive. This is due tothe presen
e of the fresh variable Y1s in a body atom of the last
lause.� QUICKSORT, is not input-re
ursive. In parti
ular,
lause
1 is not input-re
ursive.6.3 Chara
terizing Input Terminating ProgramsWe
an now prove that by restri
ting ourselves to input-re
ursive and simply-modedprograms, the
ondition of Theorem 20 is also a ne
essary one.To prove this, we follow the approa
h of Apt and Pedres
hi when
hara
terizingterminating programs (Apt and Pedres
hi, 1994). First we introdu
e the notion ofIC-tree that
orresponds to the notion of S-tree in (Apt and Pedres
hi, 1994) andprovides us with a representation for all input-
onsuming derivations of a programP with a query Q, then we de�ne a level mapping whi
h asso
iates to every atomA the number of nodes of a given IC-tree and �nally we prove that P is quasire
urrent wrt. su
h a level mapping.De�nition 31 (IC-tree)An IC-tree for P [fQg is a tree whose nodes are labelled with queries su
h that� its bran
hes are input-
onsuming derivations of P [fQg,� every node Q has exa
tly one des
endant for every atom A of Q and ev-ery
lause
 from P su
h that A is input-
onsuming resolvable wrt.
. Thisdes
endant is a resolvent of Q and
 wrt. A.In this tree, a node's
hildren
onsist of all its resolvents, \modulo renaming", viaan input-
onsuming derivation step wrt. all the possible
hoi
es of a program
lauseand a sele
ted atom.Lemma 32 (IC-tree 1)An IC-tree for P [fQg is �nite i� all input-
onsuming derivations of P [fQg are�nite.ProofBy de�nition, the IC-trees are �nitely bran
hing. The
laim now follows by K�onig'sLemma.Noti
e that if an IC-tree for P [fQg is �nite then all the IC-trees for P [fQgare �nite.For a program P and a query Q, we denote by nodes i
P (Q) the number of nodesin an IC-tree for P [fQg. The following properties of IC-trees will be needed.

22 A. Bossi, S. Etalle, and S. RossiLemma 33 (IC-tree 2)Let P be a program, Q be a query and T be a �nite IC-tree for P [fQg. Then(i) for all non-root nodes Q0 in T , nodes i
P (Q0) < nodes i
P (Q),(ii) for all atoms A of Q, nodes i
P (A) � nodes i
P (Q).ProofImmediate by De�nition 31 of IC-tree.We
an now prove the desired result.Theorem 34Let P be a simply-moded and input-re
ursive program. If P is input terminatingthen P is quasi re
urrent.ProofWe show that there exists a moded level mapping j j for P su
h that P is quasire
urrent wrt. j j.Given an atom A, we denote with A� an atom obtained from A by repla
ing theterms �lling in its output positions with fresh distin
t variables. Clearly, we havethat A� is simply-moded. Then we de�ne the following moded level mapping for P :jAj = nodes i
P (A�):Noti
e that, the level jAj of an atom A is independent from the terms �lling inits output positions, i.e., j j is a moded level mapping. Moreover, sin
e P is in-put terminating and A� is simply-moded (in parti
ular, it is ni
ely-moded), allthe input-
onsuming derivations of P [fA�g are �nite. Therefore, by Lemma 32,nodes i
P (A�) is de�ned (and �nite), and thus jAj is de�ned (and �nite) for everyatom A.We now prove that P is quasi re
urrent wrt. j j.Let
 : H A; B;C be a
lause of P and H� A�;B�;C� be an instan
e of
(for some substitution �). We show that if Rel(H) ' Rel(B) then jH�j > jB�j.Let H = p(s; t). Hen
e, (H�)� = p(s�;x) where x is a sequen
e of fresh dis-tin
t variables. Consider a variant
0 : H 0 A0; B0;C0 of
 variable disjoint from(H�)�. Let � be a renaming su
h that
0 =
�. Clearly, (H�)� and H 0 unify. Let� = mgu((H�)�; H 0) = mgu((H�)�; H�) = mgu(p(s�;x); p(s; t)�). By properties ofsubstitutions (see (Apt, 1997)), sin
e x
onsists of fresh variables, there exists tworelevant mgu �1 and �2 su
h that� �1 = mgu(s�; s�),� �2 = mgu(x�1; t��1).Sin
e s� � s�, we
an assume that Dom(�1) � Var(s�). Be
ause of standardizationapart, sin
e x
onsists of fresh variables, x�1 = x and thus �2 = mgu(x; t��1). Sin
ex is a sequen
e of variables, we
an also assume that Dom(�2) � Var(x). There-fore Dom(�) � Var(Out((H�)�)) [Var(In(H�)). Moreover, sin
e (A0; B0;C0)� =(A; B;C)��, we have that (H�)� �=) (A; B;C)��

Theory and Pra
ti
e of Logi
 Programming 23is an input-
onsuming derivation step, i.e., (A; B;C)�� is a des
endant of (H�)�in an IC-tree for P [f(H�)�g.By de�nition of �, s� = s��; hen
e(��)jIn(H) = �js: (10)Let now B = p(u;v). By (10) and the hypothesis that
 is input-re
ursive, thatis Var(In(B)) � Var(In(H)) = Var(s), it follows thatu�� = u(��)jIn(H) = u�js = u�: (11)Moreover, sin
e
0 is simply-moded, In(H�)\Out(B�) = ;. Hen
e, by de�nition of� and standardization apart, Dom(�) \Out(B�) = ;, i.e.,v�� = v�: (12)Therefore, by (11) and (12), B�� = p(u;v)�� = p(u�;v�) = (B�)�, i.e.,B�� = (B�)�: (13)Hen
e,jH�j = nodes i
P ((H�)�) by de�nition of j j> nodes i
P ((A; B;C)��) by Lemma 33 (i)� nodes i
P (B��) by Lemma 33 (ii)= nodes i
P ((B�)�) by (13)= jB�j by de�nition of j j:7 Appli
abilityThis se
tion is intended to show through some examples the appli
ability of ourresults. Then, programs from various well-known
olle
tions are analyzed.7.1 ExamplesIt is worth noti
ing that, sin
e the de�nition of input-
onsuming derivation is in-dependent from the textual order of the atoms in the
lause bodies, the results wehave provided (Theorems 20, 24 and 34) hold also in the
ase that programs andqueries are permutation ni
ely- (or simply-) moded (Smaus et al., 1998), that isprograms and queries whi
h would be ni
ely- (or simply-) moded after a permuta-tion of the atoms in the bodies. Therefore, for instan
e, we
an apply Theorems 20and 24 to the program FLATTEN as it is presented in (Apt, 1997) (ex
ept for therepla
ement of \n" with \,"), i.e.,flatten(Xs,Ys) flatten dl(Xs,Ys,[℄).flatten dl([℄,Ys,Ys).flatten dl(X,[X|Xs℄,Xs)
onstant(X), X 6= [℄.flatten dl([X|Xs℄,Ys,Zs) flatten dl(X,Ys,Y1s),flatten dl(Xs,Y1s,Zs).

24 A. Bossi, S. Etalle, and S. Rossiwhere the atoms in the body of the last
lause are permuted with respe
t to theversion of Example 25.Let us
onsider again the program APPEND of the introdu
tion with its naturaldelay de
laration:mode app(In,In,Out)app([℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄) app(Xs,Ys,Zs).delay app(Xs, ,) until nonvar(Xs).Let Q be the set of one-atom queries of the form app(s,t,Z) where s and tare any terms and Z is a variable disjoint from s and t. Observe that Q is
losedunder resolution: Ea
h resolvent in a derivation starting in a query from Q is stilla query from Q. Moreover, be
ause of the presen
e of the delay de
laration, onlyatoms whose �rst argument is a non-variable term are allowed to be sele
ted. Thus,sele
table atoms have the form app(s,t,Z) where(1) s is a non-variable term,(2) t is any term and Z is a variable disjoint from s and t.Any derivation of APPEND starting in a query ofQ is similar to an input-
onsumingone. This follows from the fa
t that for any sele
table atom A and
lause's head H ,there exists a mgu � whi
h does not a�e
t the input arguments of A. In fa
t, let Abe a sele
table atom of Q. If A uni�es with the head of the �rst
lause then, by (1),s is the empty list [℄ and � = mgu(A;H) = fYs=t; Z=tg. Otherwise, If A uni�eswith the head of the se
ond
lause then, by (1), s is a term of the form [s1|s2℄and � = mgu(A;H) = fH=s1; Xs=s2; Ys=t; Z=[s1jZs℄g. By (2) it follows that, in both
ases, s� = s and t� = t, i.e., � does not a�e
t the input arguments of A.Moreover, it is easy to
he
k that APPEND is quasi re
urrent wrt. the moded levelmapping depi
ted in Example 17. Sin
e it is ni
ely-moded, by applying Theorem 20it follows that it is input terminating. By the arguments above, we
an
on
lude thatall the derivations of APPEND in presen
e of the delay de
laration d1 and starting ina (permutation) ni
ely-moded query are �nite. Hen
e, in parti
ular, we
an statethat all the derivations of APPEND starting in the query Q1 of the introdu
tion,whi
h is not ni
ely-moded but it is permutation ni
ely-moded, are �nite.7.2 Ben
hmarksIn order to assess the appli
ability of our results, we have looked into four
olle
tionsof logi
 programs, and we have
he
ked those programs against the three
lassesof programs: (permutation) ni
ely-moded, input terminating and quasi re
urrentprograms. The results are reported in Tables 1 to 4. These tables
learly show thatour results apply to the large majority of the programs
onsidered.In Table 1 the programs from Apt's
olle
tion are
onsidered, see (Apt, 1997).The programs from the DPPD's
olle
tion, maintained by Leus
hel and available

Theory and Pra
ti
e of Logi
 Programming 25at the URL: http://dsse.e
s.soton.a
.uk/�mal/systems/dppd.html, are referred toin Table 2. Table 3
onsiders various programs from Lindenstrauss's
olle
tion (seethe URL: http://www.
s.huji.a
.il/�naomil). Finally, in Table 4 one �nds the (al-most
omplete) list of programs by F. Bueno, M. Gar
ia de la Banda and M.Hermenegildo that
an be found at the URL: http://www.
lip.dia.�.upm.es.For ea
h program we spe
ify the name and the modes of the main pro
edure.Then we report whether or not the program is (permutation) ni
ely-moded (NM),input terminating (IT), and quasi re
urrent (QR). Noti
e that for programs whi
hare not input terminating, be
ause of Theorem 20, it does not make sense to
he
kwhether or not they are quasi re
urrent. For this reason, we leave blank the
ellsin the
olumn QR
orresponding to non-input terminating programs.Finally, Table 5 reports the list of programs from previous tables whi
h havebeen found to be input terminating but not quasi re
urrent. For these programs,the notion of quasi re
urren
y does not provide an exa
t
hara
terization of inputtermination. In parti
ular, Theorem 34 does not apply. In order to understandwhi
h of the hypothesis of the theorem does not hold, we report in Table 5 whetheror not these programs are simply-moded (SM) and input-re
ursive (IR).8 Con
lusion and Related WorksIn this paper we studied the properties of input-
onsuming derivations of ni
ely-moded programs.This study is motivated by the widespread use of programs using dynami
 s
hedu-ling
ontrolled by delay de
larations. In fa
t, as we have motivated in Se
tion 3.2,we believe that in most pra
ti
al programs employing delay de
larations these
on-stru
ts are used for guaranteeing that the derivation steps are input-
onsuming.In the �rst pla
e, we showed that for ni
ely-moded programs a weak versionof the well-known swit
hing lemma holds: If, given a query (A; B;C; D;E), D issele
ted before B in an input-
onsuming derivation, then the two resolution steps
an be inter
hanged while maintaining that the derivation is input-
onsuming.Se
ondly, we presented a method for proving termination of programs and querieswhi
h are (permutation) ni
ely-moded. We also showed a result
hara
terizing a
lass of input terminating programs.In the literature, the paper most related to the present one is
ertainly (Smaus,1999b). Our results stri
tly generalize those in (Smaus, 1999b) in the fa
t thatwe drop the
ondition that programs and queries have to be well-moded. Thisis parti
ularly important in the formulation of the queries. For instan
e, in theprogram FLATTEN of Example 25, our results show that every input-
onsumingderivation starting in a query of the form flatten(t; s) terminates provided thatt is linear and disjoint from s, while the results of (Smaus, 1999b) apply only if tis a ground term. Note that well-moded queries (in well-moded programs) neverterminate by deadlo
k, sin
e the leftmost atom of ea
h resolvent is ground in itsinput positions and hen
e sele
table. This does not hold for ni
ely-moded querieswhi
h might deadlo
k. Our method allows us thus to
ope also with this morediÆ
ult situation: For instan
e we
an prove that all derivations of APPEND starting

26 A. Bossi, S. Etalle, and S. Rossiin app(X; Y; Z) are terminating. In pra
ti
e the result of (Smaus, 1999b) identify a
lass of programs and queries whi
h is both terminating and deadlo
k free. Whiledeadlo
k is
learly an undesirable situation, there are various reasons why one mightwant to prove termination independently from the absen
e of deadlo
k: In the �rstpla
e, one might want to prove absen
e of deadlo
k using a di�erent tool than byemploying well-moded programs. Se
ondly, in some situations absen
e of deadlo
kmight be diÆ
ult or impossible to prove, like in a modular
ontext in whi
h the
ode of some module is not known, hen
e not analyzable:
onsider for instan
e thequery generator 1(X1s), generator 2(X2s), append(X1s,X2s,Zs)., where thegenerators are de�ned in di�erent modules; our results allow us to demonstrate thatif the generators terminate, then the above query terminates. On the other hand,one
annot determine whether it is deadlo
k free unless one has a more pre
isespe
i�
ation of the generators. Thirdly, it is well-known that one of the goals ofdynami
 s
heduling is pre
isely enfor
ing termination; in this respe
t a deadlo
k
an be regarded as the situation in whi
h \all else failed". Our system allows us to
he
k how e�e
tive dynami
 s
heduling is in enfor
ing termination.Con
luding our
omparison with (Smaus, 1999b), for the
lass of (permutation)simply-moded and input-re
ursive programs, we provide an exa
t
hara
terizationof input termination. A similar result is not present in (Smaus, 1999b).Apt and Luitjes (1995) have also ta
kled the problem of the termination of pro-grams in presen
e of dynami
 s
heduling. The te
hniques employed in it are basedon determina
y
he
ks and the presen
e of su

essful derivations, thus are
om-pletely di�erent from ours. It is nevertheless worth mentioning that (Apt and Luit-jes, 1995) reports a spe
ial ad-ho
 theorem, in order to prove that, if u is linear anddisjoint from s then the query app(s; t; u) terminates. This is reported in order toshow the diÆ
ulties one en
ounters in proving termination in presen
e of dynami
s
heduling. Now, under the further (mild) additional
ondition that u be disjointfrom t, the termination of app(s; t; u) is a dire
t
onsequen
e of our main result.Another related paper is the one by Mar
hiori and Teusink (1999). However,Mar
hiori and Teusink make a strong restri
tion on the sele
tion rule, whi
h hasto be lo
al ; this restri
tion a
tually forbids any form of
oroutining. Moreover,(Mar
hiori and Teusink, 1999) allows only safe delay de
larations; we do not reporthere the de�nition of safe delay de
laration, we just say that it is rather restri
tive:For instan
e, the delay de
laration we have used for APPEND is not safe (a safeone would be delay app(X, ,) until list(X)). A
tually, their requirements gobeyond ensuring that derivations are input-
onsuming.Appli
ability and e�e
tiveness of our results have been demonstrated by mat
h-ing our main de�nitions against the programs of four publi
 program lists. Theseben
hmarks showed that most of the
onsidered programs are ni
ely-moded (for asuitable mode) and quasi re
urrent (wrt. a suitable level mapping).

Theory and Pra
ti
e of Logi
 Programming 27Referen
esApt, K. R. (1990). Introdu
tion to Logi
 Programming. In J. van Leeuwen (editor), Hand-book of Theoreti
al Computer S
ien
e, Vol. B: Formal Models and Semanti
s, pp. 495{574. Elsevier and The MIT Press.Apt, K. R. (1997). From Logi
 Programming to Prolog. Prenti
e Hall.Apt, K. R. and Bezem, M. (1991). A
y
li
 programs. New Generation Computing, 9 (3&4):pp. 335{363.Apt, K. R. and Luitjes, I. (1995). Veri�
ation of logi
 programs with delay de
larations.In A. Borzyszkowski and S. Sokolowski (editors), Pro
. 4th International Conferen
eon Algebrai
 Methodology and Software Te
hnology, (AMAST'95), Le
ture Notes inComputer S
ien
e, 936, pp. 66{90. Springer-Verlag.Apt, K. R. and Mar
hiori, E. (1994). Reasoning about Prolog programs: from Modesthrough Types to Assertions. Formal Aspe
ts of Computing, 6 (6A): pp. 743{765.Apt, K. R. and Pedres
hi, D. (1993). Reasoning about termination of pure Prolog pro-grams. Information and Computation, 106 (1): pp. 109{157.Apt, K. R. and Pedres
hi, D. (1994). Modular termination proofs for logi
 and pure Prologprograms. In G. Levi (editor), Advan
es in Logi
 Programming Theory, pp. 183{229.Oxford University Press.Apt, K. R. and Pellegrini, A. (1994). On the o

ur-
he
k free Prolog programs. ACMToplas, 16 (3): pp. 687{726.Bezem, M. (1993). Strong termination of logi
 programs. Journal of Logi
 Programming,15 (1&2): pp. 79{97.Cavedon, L. (1989). Continuity,
onsisten
y and
ompleteness properties for logi
 pro-grams. In G. Levi and M. Martelli (editors), Pro
. 6th International Conferen
e onLogi
 Programming, pp. 571{584. MIT press.Cavedon, L. (1991). A
y
li
 programs and the
ompleteness of SLDNF-resolution. Theo-reti
al Computer S
ien
e, 86 (1): pp. 81{92.De S
hreye, D. and De
orte, S. (1994). Termination of logi
 programs: the never-endingstory. Journal of Logi
 Programming, 19-20: pp. 199{260.Etalle, S., Bossi, A. and Co

o, N. (1999). Termination of well-moded programs. Journalof Logi
 Programming, 38 (2): pp. 243{257.Falas
hi, M., Gabbrielli, M., Marriott, K. and Palamidessi, C. (1997). Constraint logi
programming with dynami
 s
heduling: a semanti
s based on
losure operators. Infor-mation and Computation, 137 (1): pp. 41{67.Hill, P. M. and Lloyd, J. W. (1994). The G�odel Programming Language. The MIT Press.Intelligent Systems Laboratory (1997). SICStus Prolog User's Manual. SwedishInstitute of Computer S
ien
e, P.O. Box 1263, S-164 29 Kista, Sweden.http://www.si
s.se/isl/si
stus/si
stus to
.html.Lloyd, J. W. (1987). Foundations of Logi
 Programming. Springer-Verlag.Mar
hiori, E. and Teusink, F. (1999). Termination of logi
 programs with delay de
lara-tions. Journal of Logi
 Programming, 39 (1-3): pp. 95{124.Marriott, K. (1997). Algebrai
 and logi
al semanti
s for CLP languages with dynami
s
heduling. Journal of Logi
 Programming, 32 (1): pp. 71{84.Naish, L. (1988). Parallelizing NU-Prolog. In K. A. Bowen and R. A. Kowalski (editors),Pro
. 5th International Conferen
e and Symposium on Logi
 Programming, pp. 1546{1564. MIT Press.Naish, L. (1993). Coroutining and the
onstru
tion of terminating logi
 programs. Aus-tralian Computer S
ien
e Communi
ations, 15 (1): pp. 181{190.

28 A. Bossi, S. Etalle, and S. RossiSmaus, J.-G. (1999a). Modes and Types in Logi
 Programming. PhD thesis, University ofKent at Canterbury. http://www.
s.uk
.a
.uk/people/staff/jgs5/thesis.ps.Smaus, J.-G. (1999b). Proving termination of input-
onsuming logi
 programs. In D. DeS
hreye (editor), Pro
. 16th International Conferen
e on Logi
 Programming, pp. 335{349. MIT Press.Smaus, J.-G., Hill, P. M. and King, A. M. (1998). Termination of logi
 programs with blo
kde
larations running in several modes. In C. Palamidessi (editor), Pro
. 10th Symposiumon Programming Language Implementations and Logi
 Programming, Le
ture Notes inComputer S
ien
e, 1490, pp. 73{88. Springer-Verlag.Somogyi, Z., Henderson, F. and Conway, T. (1996). The exe
ution algorithm of Mer
ury,an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Program-ming, 29 (1-3): pp. 17{64.Ueda, K. (1988). GHC - A language for a new age of parallel programming. In K. V. Noriand S. Kumar (editors), Pro
. 8th Conferen
e on Foundations of Software Te
hnologyand Theoreti
al Computer S
ien
e, Le
ture Notes in Computer S
ien
e, 338, pp. 364{376. Springer-Verlag.Ueda, K. and Morita, M. (1994). Moded Flat GHC and its message-oriented implementa-tion te
hnique. New Generation Computing, 13 (1): pp. 3{43.Walla
e M. G., Novello, S. and S
himpf, J. (1997) ECLiPSe : A platform for
onstraintlogi
 programming. ICL Systems Journal, 12 (1).

Theory and Pra
ti
e of Logi
 Programming 29Table 1. Programs from Apt's Colle
tionNM IT QR NM IT QRapp(In, ,) yes yes yes ordered(In) yes yes yesapp(, ,In) yes yes yes overlap(,In) yes yes yesapp(Out,In,Out) yes no overlap(In,Out) yes noappend3(In,In,In,Out) yes yes yes perm(,In) yes yes yes
olor map(In,Out) yes no perm(In,Out) yes no
olor map(Out,In) yes no qsort(In,) yes yes no
olor map(In,In) yes yes yes qsort(Out,In) yes nod
solve(In,) yes no reverse(In,) yes yes yeseven(In) yes yes yes reverse(Out,In) yes nofold(In,In,Out) yes yes yes sele
t(,In,) yes yes yeslist(In) yes yes yes sele
t(, ,In) yes yes yeslte(In,) yes yes yes sele
t(In,Out,Out) yes nolte(,In) yes yes yes subset(In,In) yes yes yesmap(In,) yes yes yes subset (In,Out) yes nomap(,In) yes yes yes subset (Out,In) yes nomember(,In) yes yes yes sum(,In,) yes yes yesmember(In,Out) yes no sum(, ,In) yes yes yesmergesort(In,) yes yes no sum(In,Out,Out) yes nomergesort(Out,In) yes no type(In,In,Out) no yes nomergesort variant(, ,In) yes yes yes type(In,Out,Out) no noTable 2. Programs from DPPD's Colle
tionNM IT QR NM IT QRapplast(In,In,Out) yes yes yes mat
h app(In,Out) yes noapplast(Out, ,) yes no max lenth(In,Out,Out) yes yes yesapplast(,Out,) yes no memo solve(In,Out) yes yes no
ontains(,In) yes yes yes power(In,In,In,Out) yes yes yes
ontains(In,Out) yes no prune(In,) yes yes yesdepth(In,In) yes yes yes prune(,In) yes yes yesdepth(In,Out) yes yes no relative (In,) yes nodepth(Out,In) yes no relative(,In) yes nodupli
ate(In,Out) yes yes yes rev a

(In,In,Out) yes yes yesdupli
ate(Out,In) yes yes yes rotate(In,) yes yes yes
ip
ip(In,Out) yes yes yes rotate(,In) yes yes yes
ip
ip(Out,In) yes yes yes solve(, ,) yes nogenerate(In,In,Out) yes no ssupply(In,In,Out) yes yes yesliftsolve(In,Out) yes no tra
e(In,In,Out) yes yes yesliftsolve(Out,In) yes no transpose(,In) yes yes yesliftsolve(In,In) yes yes yes transpose(In,Out) yes nomat
h app(,In) yes yes yes unify(In,In,Out) yes no

30 A. Bossi, S. Etalle, and S. RossiTable 3. Programs from Lindenstrauss's Colle
tionNM IT QR NM IT QRa
k(In,In,) yes yes no least(In,) yes yes yes
on
atenate(In, ,) yes yes yes least(,In) yes yes yes
on
atenate(, ,In) yes yes yes normal form(In,) yes no
on
atenate(,In,) yes no normal form(,In) yes nodes
endant(In,) yes no queens(,Out) yes yes nodes
endant(,In) yes no queens(,In) yes yes yesdeep(In,) yes yes yes poss(In) yes yes yesdeep(Out,) yes no poss(Out) yes no
redit(In,) yes yes yes rewrite(In,) yes yes yes
redit(,In) yes yes yes rewrite(,In) yes yes yesholds(,Out) yes no transform(, , ,Out) yes noholds(,In) yes yes yes transform(, , , In) yes yes yeshu�man(In,) yes yes no twoleast(In,) yes yes yeshu�man(,In) yes no twoleast(,In) yes yes yesTable 4. Programs from Hermenegildo's Colle
tionNM IT QRaiakl.pl init vars(In,In,Out,Out) yes yes yesann.pl analyze all(In,Out) yes yes yesbid.pl bid(In,Out,Out,Out) yes yes yesboyer.pl tautology(In) yes nobrowse.pl investigate(In,Out) yes yes yes�b.pl �b(In,Out) yes no�b add.pl �b(In,Out) yes yes yeshanoiapp.pl shanoi(In,In,In,In,Out) yes nohanoiapp su
.pl shanoi(In,In,In,In,Out) yes yes yesmmatrix.pl mmultiply(In,In,Out) yes yes yeso

ur.pl o

urall(In,In,Out) yes yes yespeephole.pl peephole opt(In,Out) yes yes yesprogeom.pl pds(In,Out) yes yes yesrdtok.pl read tokens(In,Out) yes noread.pl parse(In,Out) yes noserialize.pl serialize(In,Out) yes yes notak.pl tak(In,In,In,Out) yes noti
ta
toe.pl play(In) yes nowarplan.pl plans(In,In) yes no

Theory and Pra
ti
e of Logi
 Programming 31Table 5. Input terminatining but non-quasi re
urrent ProgramsSM IRmergesort(In,) yes noqsort(In,) yes notype(In,In,Out) no nodepth(In,Out) yes nomemo solve(In,Out) no noa
k(In,In,) yes nohu�man(In,) no noqueens(,Out) no noserialize(In,Out) no no

