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In logic programming, dynamic scheduling indicates the feature by means of which the choice of the
atom to be selected at each resolution step is done at runtime and does not follow a fixed selection
rule such as the left-to-right one of Prolog. Input consuming derivations were introduced to
model dynamic scheduling while abstracting from the technical details. In this article, we provide
a sufficient and necessary criterion for termination of input consuming derivations of simply moded
logic programs. The termination criterion we propose is based on a denotational semantics for
partial derivations which is defined in the spirit of model-theoretic semantics previously proposed
for left-to-right derivations.
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1. INTRODUCTION

Logic programming is based on giving a computational interpretation to a fragment
of first order logic. Kowalski [Kowalski 1979] advocates the separation of the logic
and control aspects of a logic program and has coined the famous formula

Algorithm = Logic + Control.
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2 . Annalisa Bossi et al.

The programmer should be responsible for the logic part. The control should be
taken care of by the logic programming system.

In reality, logic programming is far from this ideal. Without the programmer
being aware of the control and writing programs accordingly, most logic programs
would be hopelessly inefficient or even non-terminating.

One aspect of control in logic programs is the selection rule, stating which atom
in a query is selected in each derivation step. The standard selection rule in logic
programming languages is the fixed left-to-right rule of Prolog. While this rule
is appropriate for many applications, there are situations, e.g., in the context of
parallel executions or the test-and-generate paradigms, that require a more flexible
control mechanism, namely, dynamic scheduling, where the selectable atoms are
determined at runtime.

To demonstrate that on the one hand, the left-to-right selection rule is some-
times inappropriate, but that on the other hand, the selection mechanism must be
controlled in some way, consider the following programs APPEND and IN_ORDER:

%  append(Xs,Ys,Zs) < Zs is the result of concatenating the lists Xs and Ys
append([H|Xs],Ys,[H|Zs]) < append(Xs,Ys,Zs).
append([],Ys,Ys).

%  in_order(Tree,List) < List is an ordered list of the nodes of Tree
in_order (tree(Label,Left,Right),Xs) <
in_order (Left,Ls),
in_order (Right,Rs),
append(Ls, [Label |Rs],Xs) .
in_order(void, [1).

together with the query
Q) : read_tree(Tree), in_order(Tree,List), write_list(List).

where read_tree and write_list are defined elsewhere. If read_tree cannot read
the whole tree at once — say, it receives the input from a stream — it would be
nice to be able to run the “processes” in_order and write_list on the available
input. This can only be done properly if one uses a dynamic selection rule (Prolog’s
rule would call in_order only after read_tree has finished, while other fixed rules
would immediately diverge and/or have an unwanted behavior!. Such a mechanism
is provided in modern logic programming languages in the form of delay declarations
(also called when declarations [Naish 1986]). In the above program, in order to avoid
nontermination one can declare that predicates in_order, append and write_list
can be selected only if their first argument is not just a variable. Formally,

delay in order(T,.) until nonvar(T).
delay append(Ls,_,_) until nonvar(Ls).

1For instance, the fixed rule that selects always the second atom in a clause body, and that selects
the first one only when the body contains only one atom can lead to nontermination, as the query
in_order(Tree, List) can easily diverge. The same applies to the rule that always selects the
rightmost atom in a query, with the extra problem that write_list(List) would be called with a
non-instantiated argument: if write_list is non-backtrackable (as many IO predicates are) this
would imply that this selection rule yields to a wrong output.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 3

delay write_list(Ls,_) until nonvar(Ls).

These declarations prevent in_order, append and write_list from being selected
“too early”, i.e., when their arguments are not “sufficiently instantiated”. Note
that instead of having interleaving “processes”, one can also select several atoms
in parallel, as long as the delay declarations are respected. This approach to par-
allelism has been first proposed by Naish [Naish 1988] and — as observed by Apt
and Luitjes [Apt and Luitjes 1995] — “has an important advantage over the ones
proposed in the literature in that it allows us to parallelize programs written in
a large subset of Prolog by merely adding to them delay declarations, so without
modifying the original program”.

Compared to other mechanisms for user-defined control, e.g., using the cut opera-
tor in connection with built-in predicates that test for the instantiation of a variable
(var or ground), delay declarations are more compatible with the declarative char-
acter of logic programming. Nevertheless, many important declarative properties
that have been proven for logic programs do not apply to programs with delay
declarations. The problem is mainly related to the fact that delay declarations
might cause deadlock situations, in which no atom in the query respects its delay
declaration. For instance, for such programs the well-known equivalence between
model-theoretic and operational semantics does not hold. As an example, consider
the query append(X,Y,Z) with the execution mechanism described above: it does
not succeed (it deadlocks) and this is in contrast with the fact that (infinitely many)
instances of append(X,Y,Z) are contained in the least Herbrand model of APPEND.

In order to provide a characterization of dynamic scheduling that is reasonably
abstract and hence amenable to semantic analysis, Smaus [Smaus 1999a] introduced
input consuming derivations, a formalism very similar to the one of Moded GHC
[Ueda and Morita 1994]. The definition of input consuming program relies on the
concept of mode. A moded program is a program in which each atom’s arguments
are partitioned into input and output ones. Output arguments are those which can
be produced by the computation process, while input arguments should be only
consumed. Roughly speaking, in an input consuming program only atoms whose
input arguments are not instantiated through the unification step are allowed to be
selected.

In [Bossi et al. 2001] we have demonstrated that — in many cases — the adoption of
the “natural” delay declarations is equivalent to considering only input consuming
derivations. This is the case — for instance — for the programs mentioned above
(together with their natural mode append (1,1, 0)?, in_order (I, 0)): under normal
circumstances, the adoption of the just stated delay declarations enforces nothing
but a restriction to input consuming derivations. In both cases, whether we consider
selection rules defined in terms of a programming language construct such as delay
declarations, or whether we consider input consuming derivations, we speak of LP
with dynamic scheduling.

The contribution. The adoption of dynamic scheduling has as ultimate goal that
of ensuring the termination of the program under construction, by preventing pos-

2In this mode, the first two positions are considered input positions, while the rightmost one is
an output one.
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sible diverging derivations. Nevertheless, while for pure PROLOG programs (i.e.,
logic programs employing the fixed leftmost selection rule) there exist results char-
acterizing when a program is terminating [Apt and Pedreschi 1994], no such char-
acterization has been found yet for programs with dynamic scheduling. In addition,
there are relatively few contributions concerning the termination of programs with
dynamic scheduling.

In this paper we tackle the problem of establishing the termination of input
consuming logic programs. For this, we restrict our attention to the class of simply
moded programs, which are programs that are, in a well-defined sense, consistent
with respect to the intended producer/consumer behavior (modes). As also shown
by the benchmarks reported in [Bossi et al. 2001], most practical programs are
simply moded.

The main contribution of this paper is a full characterization of the class of simply
moded input terminating logic programs, i.e., simply moded programs whose input
consuming derivations starting from a simply moded query are finite.

In order to provide such a result, we had to define a new declarative seman-
tics that allows us to capture the inter-argument relationships of input-consuming
programs. Since dynamic scheduling also allows for parallelism, in this context it
is important to model the result of partial (i.e., incomplete) derivations. In fact,
partial computed answer substitutions may activate suspended processes by means
of interleaving therefore influencing the termination of the system. To capture
this appropriately, we defined a denotational semantics modeling computed answer
substitutions of incomplete derivations and enjoying a model-theoretical reading
as well as a natural bottom-up constructive definition. We demonstrate that this
semantics is correct and fully abstract with respect to the computed substitutions
of partial derivations.

A first attempt to tackle this problem has been presented in [Smaus 1999b] and
extended in [Bossi et al. 2002] where we defined the class of input terminating pro-
grams, i.e., programs whose input consuming derivations are finite, and characterize
the subclass of simply moded quasi recurrent programs. It is worth stretching that
this latter class includes only programs whose termination does not depend on the
so-called inter-argument relationships and therefore it does not include programs
such that quicksort, transpose, list_tree. Further comparisons are reported in
the concluding section.

Structure of the paper. The rest of this paper is organized as follows. The next
section introduces some preliminaries. Section 3 shows some useful properties of in-
put consuming derivations. Section 4 provides a result on denotational semantics for
partial input consuming derivations. Section 5 provides a sufficient and necessary
criterion for termination of programs using input consuming partial derivations.
In Section 6 we report additional examples. Section 7 discusses related work and
draws some conclusions.

2. PRELIMINARIES

The reader is assumed to be familiar with the terminology and the basic results of
logic programs and their semantics [Apt 1990; 1997; Lloyd 1987]. In this section
we introduce a few notions that will be used in the sequel.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 5

2.1 Terms and Substitutions

Let 7 be the set of terms built on a finite set of data constructors C and a de-
numerable set of wvariable symbols V. For any syntactic object o, we denote by
Var(o) the set of variables occurring in o. A syntactic object is linear if every
variable occurs in it at most once. A substitution € is a mapping from V to T.
Given a substitution o = {x1/t1,...,xn/tn}, we say that {z1,...,z,} is its domain
(denoted by Dom(c)), and Var({t,...,t,}) is its range (denoted by Ran(o)).
Note that Var(c) = Dom(c) U Ran(c). We denote by € the empty substitution:
Dom(e) = Ran(e) = 0. Given a substitution o and a syntactic object E, we de-
note by o|p the restriction of o to the variables in Var(E), i.e., ojg(z) = o(z)
if z € Var(E), otherwise op(z) = x. If t1,...,t, is a permutation of z,...,z,
then we say that o is a renaming. The composition of substitutions is denoted by
juxtaposition, i.e., o (z) = o(f(x)). The result of the application of a substitution
0 to a term ¢ is said an instance of t and it is denoted by t6. We say that ¢ is a
variant of t', written t ~ t', if t and ¢’ are instances of each other. A substitution
is a unifier of terms ¢ and ¢’ if t0 = t'6. We denote by mgu(t,t') any most general
unifier (mgu, in short) of t and ¢'. An mgu 6 of terms ¢ and ¢’ is called relevant iff
Var(8) C Var(t) U Var(t').

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form
p(t1,...,t,) where p € P is an n-ary predicate symbol and t1,...,t, € T. Given
an atom A, we denote by Rel(A) the predicate symbol of A. A query is a finite,
possibly empty, sequence of atoms Ai,...,A,;,. The empty query is denoted by
O. Following the convention adopted in [Apt 1997], we use boldface characters to
denote sequences of objects: so, for instance, t denotes a sequence of terms, while B
is a query (i.e., a possibly empty sequence of atoms). A clause is a formula H + B
where H is an atom (the head) and B is a query (the body). When B is empty,
H + B is simply written H and is called a unit clause. A program is a finite set
of clauses. We denote atoms by A, B, H,..., queries by @), A,B,C,R, ..., clauses
by ¢,d, ..., and programs by P.

Computations are constructed as sequences of “basic” steps. Consider a non-
empty query A, B, C and a clause c¢. Let H < B be a variant of ¢ variable disjoint
from A,B,C. Let B and H unify with mgu 6. The query (A,B,C)f is called
a resolvent of A, B,C and c with selected atom B and mgu 6. A derivation step
is denoted by A, B,C éac (A,B,C)f. The clause H < B is called its input
clause. The atom B is called the selected atom of A, B, C.

If P is clear from the context or c¢ is irrelevant then we drop the reference to
them. A derivation is obtained by iterating derivation steps. A maximal sequence

[ [ On 1
J: QO :é>P,cl Ql £P7C2 T Qn iP,anrl Qn+1 T

is called a derivation of P U {Qo} provided that for every step the standardization
apart condition holds, i.e., the input clause employed is variable disjoint from the
initial query Qo and from the substitutions and the input clauses used at earlier
steps.

Derivations can be finite or infinite. If 0 : Qg :géhpyCl oﬁ"p,cn Q. is a finite
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prefix of a derivation, also denoted by d : Qg AN @y, with 8 =6, -- -6, we say that
J is a partial derivation and 6 is a partial computed answer substitution of P U {Qo}.
If § is maximal and ends with the empty query then 6 is called computed answer
substitution (c.a.s., for short). In this case we say that the derivation is successful.
A finite derivation is called failed if it ends with a non-empty query @) and there
is no input clause whose head unifies with the selected atom of ). The length of a
(partial) derivation §, denoted by len(d), is the number of derivation steps in §.
The following definition of D-step is due to Smaus [Smaus 1999a].

Definition 2.1 (D-step).

— Let A,B,C =2 (A,B,C)f be a derivation step. We say that each atom
in B is a direct descendant of B, and for each atom F in (A, C), Ef is a direct
descendant of E. We say that E is a descendant of F' if the pair (E, F') is in the
reflexive, transitive closure of the relation is a direct descendant of.

. . . 6 01' 0; 0;
— Consider a derivation Qp == -+ == Q;- - == Q; = Qj11 -+ We say

0 .
that Q; R Qjs1---is a D-step if D is a subquery of (); and the selected atom
in @; is a descendant of an atom in D.

Intuitively, a D-step occurring in a derivation § is a derivation step that concerns
the derivation of the subquery D of some query in 9.

2.3 Moded Programs

Modes are a common tool for verification. A mode is a function that labels as input
or output the positions of each predicate in order to indicate how the arguments
of a predicate should be used. A program (resp. a query, an atom) is called moded
whenever it is provided with a mode.

Definition 2.2 (mode). A mode for a predicate symbol p of arity n, is a function
myp from {1,...,n} to {I, O}.

If my(i) = I (resp. O), we say that ¢ is an input (resp. output) position of p
(with respect to m,). In examples, we often indicate the mode by writing the atom
p(my(1),...,mp(n)), e.g., append(I, I, O).

We assume that each predicate symbol has a unique mode associated to it; multi-
ple modes may be obtained by simply renaming the predicates. We denote by In(Q)
(resp. Out(Q)) the sequence of terms filling in the input (resp. output) positions
of predicates in (). Moreover, when writing an atom as p(s,t), we are indicating
that s is the sequence of terms filling in its input positions and t is the sequence of
terms filling in its output positions.

In the literature, several correctness criteria concerning the modes have been
proposed, e.g., nicely and well-modedness [Apt 1997]. In the sequel of the paper we
will restrict ourselves to programs and queries which are simply moded [Apt and
Etalle 1993].

Definition 2.3 (simply moded). A clause H < By, ..., By is simply moded if

— Out(By,...,B,) is a linear vector of variables,
— Var(In(H)) N Var(Out(By,...,By)) =0,
— for all ¢ € [1..n], Var(Out(B;)) N Var(In(By,...,B;)) = 0.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 7

A query B is simply moded if the clause ¢ < B is simply moded, where ¢ is any
variable-free atom. A program is simply moded if all of its clauses are.

Thus a clause is simply moded if the output positions of body atoms are filled in
by distinct variables, and every variable occurring in an output position of a body
atom does not occur in an earlier input position. In particular, every unit clause is
simply moded.

EXAMPLE 2.4.

— The program APPEND of the introduction in the mode append(7, I, O) is simply
moded.

— The following program REVERSE with accumulator in the mode defined below
is simply moded.

mode reverse(l,0).
mode reverse_acc(l, 0,I)

reverse(Xs,Ys) < reverse.acc(Xs,Ys,[]).
reverse_acc([],Ys,Ys).
reverse_acc([X|Xs],Ys,Zs) < reverse_acc(Xs,Ys,[X|Zs]).

In Definition 2.3, if we drop the condition that output positions of body atoms
are filled in by variables then we obtain the definition of nicely moded programs
and queries. Therefore the class of simply moded programs is properly contained
in the class of nicely moded programs.

2.4 Input Consuming Derivations

The notion of input consuming derivation was introduced in [Smaus 1999a] as
formalism for describing dynamic scheduling in an abstract way and is defined as
follows.

Definition 2.5 (input consuming).

— A derivation step A, B,C N (A,B,C)0 is input consuming if In(B)§ =
In(B).
— A derivation is input consuming if all its derivation steps are input consuming.

ExAMPLE 2.6. Consider the program REVERSE with accumulator in the modes
defined above. The derivation 6 of REVERSEU {reverse([X1,X2],Zs)} depicted
below is input consuming.

0: reverse([X1,X2],Zs) = reverse.acc([X1,X2],Zs,[ ]) =
reverse_acc([X2],Zs, [X1]) = reverse_acc([ 1,Zs, [X2,X1]) = O.

Allowing only input consuming derivations is a form of dynamic scheduling, since
whether or not an atom can be selected depends on its degree of instantiation at
runtime. Given a non-empty query, if no atom is resolvable via an input consuming
derivation step and no failure arises, then we say that the query deadlocks.

In previous works many important properties of input consuming derivations
have been proven by considering various classes of programs and queries. In this
article, we focus on the simply moded ones, but we consider results that hold only
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for this class as well as results that hold for larger classes, e.g., the class of nicely
moded programs and queries.

The following lemma is a straightforward consequence of [Apt and Luitjes 1995,
Lemma 30].

LEMMA 2.7. In a input consuming derivation, every resolvent of a nicely (resp.
simply) moded query and a nicely (resp. simply) moded clause is nicely (resp. sim-
ply) moded.

The following result has been proven in [Bossi et al. 2002] for nicely moded
programs and queries. It states that the only variables of a nicely moded query
that can be “affected” through the computation of an input consuming derivation
with a nicely moded program are those occurring in some output positions.

LEMMA 2.8. Let the program P and the query @ be nicely moded. Let also

Q LN Q' be a (partial) input consuming derivation of P U {Q}. Then, for all
x € Var(Q) and z & Var(Out(Q)), 20 = z.

The next lemma shows that input consuming derivations are invariant under
renaming.

LEMMA 2.9. Let P be a program, Q be a query and 0 : Q) LN Q' be a (partial)
input consuming derivation of P U {Q}. Then, for any renaming p there exists a

(partial) input consuming derivation &' : Qp AN Q'p where ¥ = p~16p.
ProOF. First notice that
(1) if ¢ is a clause renamed apart with respect to a query ) then cp is renamed
apart with respect to Qp,
(2) if A and H are unifiable with mgu € then Ap and Hp are unifiable with mgu
-1
p~0p,
(3) if In(Af) = In(A) then In(App—10p) = In(Afp) = In(Ap).
Consider now the list of clauses ¢y, . . . , ¢, employed in ¢ and the corresponding list of
mgu’s, 61,...,0,, where@ =6y,---,6,. By (1) and (2) we can construct a derivation
' starting from Qp with input clauses ¢y p, ..., cnp and unifiers p=101p,...,p 0,p.
We obtain a derivation ¢’ : Qp N Q' p which is input consuming (by (3)) and whose
computed answer substitutionis 9 = (p~101p)(p " 02p) -+ (p 0p) = p 101 ---Opp =
-1
p~0p. O

We recall below the Left-Switching Lemma that has been proven in [Bossi et al.
2002].

LEMMA 2.10 (LEFT-SWITCHING). Let the program P and the query Qo be nicely
moded. Let 6 be a partial input consuming derivation of P U {Qo} of the form

4 On 41 On 42
d: Qo :1>c1 Q1 Qn = cng1 Qn+1 = o2 Qn+2

where
— Qn is a query of the form A A,B, B, C,

— Qnt1 15 a resolvent of Qy, and cpq1 wrt. B,
— Qnt2 15 a resolvent of Q41 and cpyo wrt. Al,1q.

ACM Transactions on Computational Logic, Vol. 7?7, No. 77, ?? 2077.



Termination of Simply Moded Logic Programs with Dynamic Scheduling . 9

Then, there exist Q. , 0,1, 0, .5 and a derivation 0' such that
9n+19n+2 = 0;+1 ’:’L+2

and

9/

[4 0;+1 n+2
o Qo :1>c1 Q1 Qn = cnt2 Q'In+1 = cng1 Qn+2

where §' is input consuming and

— 6 and ' coincide up to the resolvent Q,,

— Q41 15 a resolvent of Q, and cpq2 wrt. A,

— Qny2 is a resolvent of Q) and cny1 wrt. B,
— 0 and ' coincide after the resolvent Q2.

Lemma 2.10 suggests the following definition which introduces a way of ordering
the selected atoms in an input consuming derivation of a simply moded query.

Definition 2.11. A partial derivation § : Qy = Q1 --- = @, of a simply
moded query Qo proceeds left-to-right if whenever an atom B is selected in a re-
solvent (); : A, B,C then no A-step is performed in the rest of the derivation

Qit1 — Qn.

The next corollary is an immediate consequence of the Left-Switching Lemma.
Intuitively, it says that any resolvent in an input consuming derivation of a simply
moded query can be obtained by an input consuming derivation which proceeds
left-to-right.

COROLLARY 2.12. Let the program P and the query A, B be simply moded. Sup-
pose that § : A,B s Cisa (partial) input consuming derivation of P U {A,B}.
Then there exist C; and Co and a (partial) input consuming derivation §' that
proceeds left-to-right of the form

5 AB L BY 20,0

such that len(§) = len(d'), C = Cq,Ca, 0 =010, all the A-steps are performed in

the prefix A, B LN C1, B0, all the B-steps are performed in the suffiz C,, B, LEN
Cl, C2 and 0102 = Cl.

PRrROOF. By repeatedly applying the Left Switching Lemma, § is equivalent to a
derivation ¢’ in which all the A-steps are carried out before the B-steps. Ci,B6;
is the resolvent that we obtain after carrying out the A-steps. By the persistence
of simply-moded queries (Lemma 2.7), Cq,B6; is simply-moded. Therefore, by
Lemma 2.8, 65 has no influence on C; (i.e., C;0, = C;). O

3. SIMPLY LOCAL SUBSTITUTIONS

When input consuming derivations are applied to simply moded programs and
queries, important properties follow from the way clauses become instantiated dur-
ing the derivation process. We introduce simply local substitutions to reflect this
instantiation mechanism. A clause ¢:= H < By, ..., B, becomes instantiated by
its “caller” the atom that is resolved using c) and its “callees” (the clauses used to
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10 . Annalisa Bossi et al.

resolve the body atoms of ¢). Thus, a simply local substitution is defined as the
composition of several substitutions, og,0; ..., 0, one for each atom in the given
clause, such that oy binds the input variables of the head of the clause, and each o;
(¢ > 0) creates a binding between the output variables and the input terms of B;

(instantiated by the previous substitutions oy, ...,0;—1). The definition involves
variable sets vg,v1,...,v,. Intuitively, the variables in vy come from the “caller”
and the variables in vy, ..., v, come from the “callees”.

Definition 3.1 (simply local substitution). Let € be a substitution. We say that
0 is simply local wrt. the clause H « Bi,...,B, if there exist substitutions
00,01 ...,0, and disjoint sets of fresh (wrt. ¢) variables vg,v1,...,v, such that
0 = ogoy - - - 0, Where

— Dom(oo) C Var(In(H)) and Ran(oo) C vo,
— for i € [1..n],
Dom(o;) C Var(Out(B;)) and Ran(o;) C Var(In(B;)ogoy - -+ 0i—1) U v;.

The substitution 6 is simply local wrt. a query B if 8 is simply local wrt. the clause
q < B where ¢ is any variable-free atom.

Given a simply local substitution 6, we call the set of fresh variables of 6 the
union of the sets vy, vy, ..., v, introduced in the above definition.

Note that in the case of a simply local substitution wrt. a query, o¢ is the empty
substitution, since Dom(o¢) C Var(q) where ¢ is an (imaginary) variable-free atom.

ExamMpLE 3.2. Consider the program APPEND with the modes append(l,I, O)
and its recursive clause

c : append([H|Xs],Ys, [H|Zs]) « append(Xs,Ys,Zs).

The substitution § = {Xs/[], Ys/W,Zs/W} is simply local wrt. ¢. In fact, let o9 =

{Xs/[1,Ys/W} and oy = {Zs/W} be two substitutions and vy = {W} and v; = @) be

two disjoint sets of fresh (wrt. ¢) variables. According to Definition 3.1, we have 6 =

o001, Dom(oo) C Var(In(append([H|Xs], Ys, [H|Zs]))), Ran(oo) C vo, Dom(oy) C

Var(Out(append(Xs, Ys, Zs))) and Ran(oy) C Var(In(append(Xs,Ys,Zs))og) U vy.
Consider now the query

@ : append([a,X,cl,Ys, Zs), append(Zs, [b],Ls).

The substitution 6 = {Zs/[a,X,c|Ys]} is simply local wrt. Q. In fact § = o109
where 01 = {Zs/[a,X,c|Ys]} and o5 is the empty substitution, and v; and ve are
empty sets of variables.

The following property follows immediately from Definition 3.1.

ProrosiTION 3.3. Let the clause ¢ be simply moded and p be a renaming. If the
substitution 0 is simply local wrt. ¢ then the substitution p~'0p is simply local wrt.

cp.
The next lemma provides us with a means of composing substitutions which are

simply local with respect to pieces of queries provided that they satisfy the following
variable compatible property.

ACM Transactions on Computational Logic, Vol. 7?7, No. 77, ?? 2077.



Termination of Simply Moded Logic Programs with Dynamic Scheduling . 11

Definition 3.4. Let ¥; be a substitution simply local wrt. A and d2 be simply
local wrt. Biy. Then 9, and ¥, are variable compatible wrt. A and B if

— the set of fresh variables of ##; is disjoint from the set of fresh variables of ¥,
— Var(A,B) is disjoint from the set of fresh variables of ¥; and d,.

When two substitutions are variable compatible then we have a way of combining
them as described below.

LEMMA 3.5. Let the query A, B be simply moded. There exists a substitution 6
simply local wrt. A, B iff 6 = 919 where

— U1 =0)a = 0jour(a) 15 simply local wrt. A,
— U2 = 0B = 0|0uw(B) stmply local wrt. B,
— Y1 and Y5 are variable compatible wrt. A and B.

PrROOF. Let A =A;,...,A;and B=A;14,...,A,.

=) Let § = 0y - - - 0,, be according to Definition 3.1. By definition of simply local
substitution and properties of simply moded queries, for every k,j € [1..n] and k #
J, Dom(or) N Dom(o;) = 0, Out((Ags1,-..,An)or - 0k) = Out(Agtq,...,A)
and ((Al,...,Ak)al "'Uk)ak+1 e Op = (Al,...,Ak)O'l Ok Thus9|A =01°'"0;
is simply local wrt. A and o441 - - - 0y, is simply local wrt. (A;41,...,4,)01 - 04.

<) Let ¥y =01 ---0; and ¥y = 0441 - - - 04,. To prove that 919 = oy - - - 0y, is sim-
ply local wrt. A, B, it is sufficient to observe that by definition of simply local sub-
stitution and properties of simply moded queries, Out((Aiy1,...,An)o1 - 0;) =
Out(Aiy1,...,Ay) and hence for all j € [i +1..n], Dom(o;) C Var(Out(A;)). The
fact that 1; and 15 are variable compatible ensures that the composition ¥ satis-
fies the requirement on fresh variables in the definition of simply local substitution.
O

Analogously, one can prove the following result which allows us to combine simply
local substitutions applied to a clause rather than to a query.

LEMMA 3.6. Let the clause ¢ : H <— B be simply moded. There exists a substi-
tution 6 simply local wrt. c iff 0 = Yo where

— Yo =05 = O)1n(m) is simply local wrt. H <,
— U1 = 0B = 0|0uw(B) sitmply local wrt. By,
— Yo and Y1 are variable compatible wrt. H and B.

The following definition introduces a property of mgu’s which can be naturally
satisfied by input consuming derivations, as shown in the subsequent lemma. The
proof of the lemma is reported in the appendix.

Definition 3.7 (simply local mgu). Let the atoms A and H be variable disjoint,
A be simply moded and # be a mgu of A and H such that In(Af) = In(A4). We
say that 8 is a simply local mgu of A and H if § = ogo; where oy is simply local
wrt. the clause H + and oy is simply local wrt. the atom A.

LEMMA 3.8. Let the atoms A and H be variable disjoint and A be simply moded.
Suppose that there exists 9 = mgu(A, H) such that In(AY) = In(A). Then there
exist a simply local mgu 0 of A and H.
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Note that previous Lemma 3.8 together with Theorem 3.18 in [Apt 1997] (on
derivations with different mgu’s), ensures us that as long as we are interested in
properties which are invariant under renaming, we can safely assume that all the
mgu’s employed in an input consuming derivation of a simply moded program with
a simply moded query are simply local.

ExaMPLE 3.9. Consider the predicate p/2 in the mode p(I, O) and the atoms
A =p(£(%,Y),2) H = p(W,0).

Note that there exists an mgu ¥ of A and H such that In(Ad¥) = In(A). In fact,
there are actually two relevant mgus which enjoy this property:

= {W/£(X,Y),U/Z} ¥ = {W/£(X,Y),Z2/U}

but only the second one is simply local. Note also that when A and H are variable
disjoint and ¢ is a simply local mgu of A and H then the variables in Out(A) do
not occur anymore in Ad.

The next lemma shows a persistency property of simply local substitutions. It
provides one of the key intuitions for the development of the bottom-up semantics
of next section. Its proof is reported in the appendix.

LeEmMMA 3.10. Let @ : A, R be a simply moded query, Q' : (B,R)¥ and Q 2 Q'
be an input consuming derivation step obtained by using the simply moded clause
c: H < B and the simply local mgu 9. Let 6 be a substitution simply local wrt. Q'
such that the set of fresh variables of € is disjoint from Var(Q) and Var(c). Then
(90) ¢ is simply local wrt. Q.

4. A DENOTATIONAL SEMANTICS FOR PARTIAL DERIVATIONS

As we mentioned in the introduction, input consuming derivations can be used to
model parallelism, and in this context it is very important to model the results of
partial computations. Indeed, standard semantics for concurrent logic languages
such as CCP [Etalle et al. 2002; Saraswat and Rinard 1990] and GHC [Ueda and
Furukawa 1988] often capture such intermediate results, or in any case, the results
of non-successful computations [de Boer and Palamidessi 1991]. In fact, input con-
suming programs can have a reactive nature: the (partial) result of a computation
may trigger another computation by instantiating sufficiently the input positions
of another atom so that it becomes resolvable. Because of this, when one wants to
characterize for instance termination, the adoption of a semantics modeling inter-
mediate results becomes essential.

In this section we define a denotational semantics that models partial computed
answer substitutions of input consuming derivations of simply moded programs and
queries. We will later see how this semantics allows us to characterize termination
of input consuming derivations.

4.1 Immediate consequence operator

In predicate logic, an interpretation states which formulas are true and which ones
are not. For our purposes, it is convenient to formalize this by defining an interpre-
tation I as a set of atoms closed under variance. Based on this notion and simply
local substitutions, we now define a restricted notion of model.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 13

Definition 4.1 (simply local model). Let M be an interpretation. We say that
M is a simply local model of a clause ¢ : H « By, ..., B, if for every substitution
# simply local wrt. ¢,

if B,6,...,B,0 € M then Hf € M. (1)

M is a simply local model of a program P if it is a simply local model of each clause
of it.

Clearly a simply local model is not necessarily a model in the classical sense,
since the substitution € in (1) is required to be simply local. For example, given
the program {q(1)., p(X) < q(X).} with modes q(I), p(0), a model must contain
the atom p(1), whereas a simply local model does not necessarily contain p(1), since
{X/1} is not simply local wrt. p(X) < q(X). On the other hand, any term model
(see [Apt 1997]) is a simply local model, while there are Herbrand models which
are not simply local.

We now show that there exists a minimal simply local model and that it is
bottom-up computable. For this we need the following operator T;EL on interpre-
tations.

Definition 4.2 (TSE operator). Given a program P and an interpretation I, we
define
T§¢(I)={HO| Ic:H « By,...,B, variant of a clause in P,
0 is simply local wrt. ¢,
B9,...,B,0 €I}
and
TEH(I) = (TF +id)(I) = TU TF(I).

It is easy to show that both T and 75" are monotonic and continuous on the
lattice where interpretations are ordered by set inclusion. We consider powers of
an operator T which are defined in the standard way as follows: T 1 0(I) = I,
TH(@+1)(I)=T(T1i)),and Tt w(l) = Uy T 14(I).

We now show that if I consists of simply moded atoms then TﬁL Tw(l)is a
simply local model of P containing I. In the following we denote by SM p the set
of all simply moded atoms of the extended Herbrand universe of P. The proof of
the next proposition is reported in the appendix.

PROPOSITION 4.3. Let P be simply moded and I C SM p be an interpretation.
Then TSE 1 w(I) is the least simply local model of P containing I.

The following lemma relates partial input consuming derivations of simply moded
programs and queries with powers of the Tg[’ operator. It is the key result to relate
the operational semantics of partial input consuming derivations to the denotational
semantics introduced below. The proof is reported in the appendix.

LEMMA 4.4. Let the program P and the query A be simply moded and I C SM p
be an interpretation. The following statements are equivalent:

(i) there ezists an input consuming derivation 0 : A i>p C with CC1,
(ii) there exists a substitution 0 simply local wrt. A, such that A0 C T5¥ 1 w(I),

where AY and Af are variant.
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4.2 Modeling the results of partial derivations

The results of partial input consuming derivations of simply moded queries in simply
moded programs are captured by the following operational semantics.

Definition 4.5 (partial c.a.s. semantics). Let the program P be simply moded.

Osup (P) = {A0] A is simply moded and there exists A sp Cwith C C SMp}.

The next theorem shows that the denotational semantics provided by the least
simply local model of P containing SM p is correct and fully abstract with respect
to the operational semantics of partial computed answer substitutions Ogps,. (P).
The proof follows immediately by Lemma 4.4 above.

THEOREM 4.6. Let P be simply moded. Then Ogp, (P) = Tp 1+ w(SMp).

In the following we denote by PM 5L the least simply local model of P containing
SM p.

EXAMPLE 4.7. Consider again program APPEND. PM 5k is obtained by repeat-
edly applying the T'5" operator, starting from any simply moded atom, i.e., an atom
of the form append(s, t,z) where s and t are arbitrary terms but z is a variable not
occurring in s or in t. Hence,

PM ko = {append([ty,... tm],t, by, .. t|t])}
U {append(s,t,z) | xis a fresh variable }
U {append([ti,...,tm|s],t, [t1,...,tm|2z]) | z is a fresh variable}

where s,t,t1,...,t, are arbitrary terms, and m > 0

Consider now the query append([a, b, c|X1, Y, Z). The substitution § ={z/[a,b|z']}
is simply local wrt. that query and append([a, b, c|X],Y, [a,b|2']) € PM,35ep. Us-
ing Theorem 4.6, we can conclude that the query has a partial derivation with
computed answer 6. Following the same reasoning, we can also conclude that the
query has a partial derivation with computed answer §' = {Z/[a|Z']}.

5. TERMINATION

In this section, we show how the denotational semantics can be used to give a
characterization of termination of input consuming derivations, in a similar way as
this has been done previously for LD-derivations [Apt and Pedreschi 1994; Ruggieri
1997].

Input consuming derivations were originally conceived as an abstract and “rea-
sonably strong” assumption about the selection rule in order to prove termina-
tion [Smaus 1999b]. The first result in this area was a sufficient criterion applicable
to well- and nicely moded programs. This was improved upon by dropping the
requirement of well-modedness, which means that one also captures termination by
deadlock.

The previous approaches are applicable as long as each recursive clause in the
program is direct recursive, i.e., the structure upon which the recursion is carried out
is passed directly from the clause head to the recursive call in the body. Typically,
this means that the clause has the form p(...,s,...) « A p(...,t,...),C, where ¢
is a proper subterm of s.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 15

In this section we define the class of simply acceptable programs which includes
programs whose termination cannot be proven without taking into account inter-
argument relations. This means that for a clause p(...) < A,p(...),C, we need
to take into account how A and C might instantiate the body atom p(...) in
order to establish termination. In this case, simply local models and simply local
substitutions convey the needed information.

5.1 Simply Acceptable Programs

Note that programs without recursion terminate trivially. In order to deal with
mutually recursive procedures we need the following standard definitions [Apt 1997].

Definition 5.1. Let P be a program, p and g be relations. We say that p refers
to ¢ in P if there is a clause in P with p in the head and ¢ in the body; p depends
on ¢ in P, and we write p O ¢, if (p,q) is in the reflexive and transitive closure
of the relation refers to; p and ¢ are mutually recursive, written p ~ ¢, if p and ¢
depend on each other (i.e., p 3 g and ¢ 3 p). We also write p J ¢ when p J g and

q2dp.

To prove termination, it is common to use some measure of size for atoms in a
query, often called level mapping. To show termination of moded programs, it is
natural to use moded level mappings, where it is made explicit that the level of an
atom depends only on its input positions. This concept was originally defined for
ground atoms [Etalle et al. 1999]. Generalizing the definition to arbitrary atoms is
crucial for showing termination of input consuming derivations.

Definition 5.2 (moded level mapping). A function | | is a moded level mapping if
it maps atoms into N and for any two atoms A and B, if A and B have the same
predicate symbol and the same terms in their input positions, then |A| = |B].

In other words, the level of an atom has to be independent from the terms
occurring in its output positions. For our purposes it is not necessary to require
that the level mapping is invariant under renaming, yet this being the most common
case.

We now provide the central definitions of this section.

Definition 5.3 (input terminating). A program is called input terminating wrt. a
given class C' of queries if all its input consuming derivations starting in query in
C are finite.

In particular, we say that P is input terminating wrt. simply moded queries if for
each simply moded query @), all input consuming derivations of P U {Q)} terminate.

The basic notion for proving input termination is simply acceptability, which is
in analogy to acceptability [Apt and Pedreschi 1994].

Definition 5.4 (simply acceptable). Let P be a program and M a simply local
model of P containing SM p. A clause c is simply acceptable wrt. the moded level
mapping | | and M if for every variant H <— A, B, C of ¢ and every substitution
simply local wrt. c,

if AG € M and Rel(H) ~ Rel(B) then |H6| > |Bf)|.
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The program P is simply acceptable wrt. M if there exists a moded level mapping
| | such that each clause of P is simply acceptable wrt. | | and M. We also say
that P is simply acceptable if it is simply acceptable wrt. some M and moded level

mapping | |.

The difference between acceptability and simply acceptability is that acceptabil-
ity is based on the classical notion of model and consequently on ground instances
of a clause, whereas simply acceptability is based on simply local models contain-
ing SMp. These models allow us to model correctly the behaviour induced by the
dynamic scheduling and to capture the results of partial computations. Another
important difference with acceptability is that the level mapping decreasing is now
required for mutually recursive calls only.

It is important to realize why we need to model partial results. Consider the
following program

q(a) ¢q(a).
p(a) <« fail.

mode q([)
mode p(0)

Notice that the query q(X) terminates by deadlock, while q(a) loops. Now con-
sider the query p(X),q(X). This query can yield to a nonterminating computation
because the query p(X), before failing, reports the partial answer {X/a}. If —in
order to prove termination — we referred to a classical model (modeling only suc-
cessful derivations) then we would not be able to see that the above program could
diverge, because we would not consider {X/a} as a possible answer substitution.

In the next two sections, we prove that simply acceptability is a sufficient and
necessary criterion for input termination wrt. simply moded queries.

5.2 Sufficiency of Simply Acceptability

The following corollary of [Bossi et al. 2002, Lemma 22] allows us to restrict our
attention to queries containing only one atom.

COROLLARY 5.5. Let P be a simply moded program. P is input terminating wrt.
simply moded queries if and only if for each simply moded atomic query A all input
consuming derivations of P U {A} are finite.

i From now on, we say that a relation p is defined in the program P if p occurs
in a head of a clause of P, and that P extends the program R if no relation defined
in P occurs in R.

The following theorem shows that simply acceptability is a sufficient criterion for
input termination wrt. simply moded queries, and can be used in a modular way.

THEOREM 5.6. Let P and R be two simply moded programs such that P extends
R. Let M be a simply local model of PU R containing SM p. Suppose that

— R is input terminating wrt. simply moded queries,
— P is simply acceptable wrt. M (and a moded level mapping | |).

Then P U R 1is input terminating wrt. simply moded queries.
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Termination of Simply Moded Logic Programs with Dynamic Scheduling . 17

Proor. First, for each predicate symbol p, we define dep p(p) to be the number
of predicate symbols it depends on: depp(p) = #{q| ¢ is defined in P and p J g¢}.
Clearly, dep p(p) is always finite. Further, it is immediate to see that if p ~ ¢ then
dep p(p) = dep p(q) and that if p 1 ¢ then dep p(p) > depp(q).

We can now prove our theorem. By Corollary 5.5, it is sufficient to prove that
for any simply moded atomic query A, all input consuming derivations of P U {A}
are finite.

First notice that if A is defined in R then the result follows immediately from
the hypothesis that R is input terminating wrt. simply moded queries and that P
is an extension of R. So we can assume that A is defined in P.

For the purpose of deriving a contradiction, assume that ¢ is an infinite input
consuming derivation of (P U R) U {A} such that A is defined in P. Then

§: A= (By,..., B0 == -

where ¢ : H < By,..., B, is the input clause used in the first derivation step and
Y1 = mgu(A, H). Clearly, (By,...,By)? has an infinite input consuming deriva-
tion in P U R. By Corollary 2.12 and Lemma 3.8, for some i € [1..n] and for some
substitution 5,

(1) there exists an infinite input consuming derivation of (P U R) U {A} of the form

Aﬂﬁl (Bly-'-;Bn)ﬁl &} C?(Bi7"'7Bn)19119,2"';
(2) there exists an infinite input consuming derivation of P U {B;11v}}

both employing only simply local mgu’s.

Let 0 = (¥195)c. It is not difficult to see that ¢ is simply local wrt. ¢ (this is a
consequence of Proposition A.1, reported in the appendix). Consider the instance
HO < (By,...,B,)0 of c. By Theorem 4.6, (By,...,B;_1)0 € M.

We show that (2) cannot hold, by induction on {depp(Rel(A)), |A|) with respect
to the ordering = defined by: (m,n) = (m',n'} if either m > m' or m = m' and
n>n'

Base. Let depp(Rel(A)) =0 (|A] is arbitrary). In this case, A does not depend
on any predicate symbol of P, thus all the B; as well as all the atoms occurring in
its descendants in any input consuming derivation are defined in R. The hypothesis
that R is input terminating wrt. simply moded queries contradicts (2) above.

Induction step. We distinguish two cases:

(1) Rel(H) 3 Rel(By),
(2) Rel(H) ~ Rel(B;).

In case (a) we have depp(Rel(A)) = depp(Rel(HE)) > dep p(Rel(B;0)). Therefore,
(dep p(Rel(A)), |Al) = (dep p(Rel(H0)), |HB|) > (dep p(Rel(Bif)), | Bif]).

In case (b), from the hypothesis that P is simply acceptable wrt. | | and M, 6 is

simply local wrt. cand (By, ..., B;—1)0 € M, it follows that |[H6| > |B;#|. Consider

the partial input consuming derivation A N C,(Bi,...,B,)0. By Lemma 2.8 and
the fact that | | is a moded level mapping, we have that |A| = |A8| = |H6|. Hence,
(dep p(Rel(A), |A]) = (dep p(Rel(H0)), |HB]) = {dep p(Rel(Bi6)), |B9]).

In both cases, the contradiction follows by the inductive hypothesis. O
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% quicksort(Xs, Ys) < Ys is an ordered permutation of Xs.
quicksort(Xs,Ys) < quicksort_dl(Xs,Ys,[]).

cl: quicksort_dl([X|Xs],Ys,Zs) <«
partition(Xs,X,Littles,Bigs),
quicksort_dl(Bigs,Ys1,Zs),
quicksort_dl(Littles,Ys, [X|Y¥s1]).
quicksort_dl([],Xs,Xs).

c2: partition([X|Xs],Y,[X|Ls],Bs) <X =< Y, partition(Xs,Y,Ls,Bs).
c3: partition([X[Xs],Y,Ls,[X|Bs]) <X > Y, partition(Xs,Y,Ls,Bs).
partition([]1,Y,[1,[1).

Fig. 1. The QUICKSORT program

The above theorem suggests proving termination in a modular way, i.e., extending
a program that is already known to be input terminating wrt. simply moded queries
by a program that is simply acceptable. Of course, this theorem holds in particular
if the former program is empty.

THEOREM 5.7. Let P be a simply moded program. If P is simply acceptable then
it is input terminating wrt. simply moded queries.

PROOF. The proof follows from Theorem 5.6, by setting R = 0. O

ExaMpLE 5.8. Figure 1 shows quicksort using a form of difference lists [Ster-
ling and Shapiro 1986, program 15.3] (we permuted two body atoms for the sake
of clarity). This program is simply moded wrt. the mode

{quicksort(l, 0), quicksort_dl(I, O,I), partition(l, I, O, O), =<(I,1),
>(1,1)}.
We show that it is simply acceptable. We start by defining the level mapping.
Define function len as

len([h|t]) = 1+ len(t),
len(a) = 0 if a is not of the form [hlt].

We use the following moded level mapping (where positions with _ are irrelevant):

|quicksort dl(l,_, )| = len(l),
len(l).

|partition(l,_, _, )|

The level mapping of all other atoms can be set to 0. Concerning the simply local
model, the crucial aspect with respect to termination is that it has to express the
dependency between the list lengths of the arguments of partition. To this end,
the simplest solution is to choose it so that M restricted to partition contains
exactly the atoms of the form partition(ty,ts,ts,ts4) where

len(ty) > len(t3) and len(ty) > len(ty). (2)

The presence (or absence) of other atoms is irrelevant for showing simple-acceptability,
so the simplest way of building a simply local model is that of adding all other atoms
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not defining partition. Let

M = {partition(ti,t2,ts,ts) | len(t1) > len(ts) and len(t1) > len(ts)}
U {quicksort.dl(r,s,t) | for all r,s,t}
U {quicksort(r,s) | for all r,s}
U {=<(r,s),>(r,s) | for all r,s}.

Notice that M includes all simply moded atoms. It is easy to show that the pro-
gram is simply acceptable wrt. M and | | and hence input terminating wrt. simply
moded queries. In fact:

— Consider c1, the first clause defining quicksort_dl. For every substitution
0, simply local wrt. c1, we have to show that
- If partition(Xs,X,Littles,Bigs)d € M, then
|quicksort_dl([X|Xs],Ys,Zs)f| > |quicksort_dl(Bigs, Ys1,Zs)f|.

This follows immediately from the definition of level mapping | | and the fact that
since partition(Xs,X,Littles,Bigs)d € M, we have len(Bigs)f < len(Xs)d.

- If (partition(Xs,X,Littles,Bigs),quicksort d1(Bigs,Ys1,Zs))d € M, then
|quicksort_d1l([X|Xs],Ys, Zs)f| > |quicksort_dl(Littles, Ys, [X|Ys1])d|.

This is analogous to the previous point and follows by the definition of | | and the
fact that since partition(Xs,X,Littles,Bigs)d € M, len(Littles)fd < len(Xs)f.

— Next, we consider c2. We have to show that for each simply local substitution
6 such that (X =< Y)8 € M,
|partition([X|Xs],Y, [X|Ls],Bs)d| > |partition(Xs,Y,Ls,Bs)f|.

This follows directly from the definition of | | (the fact that (X =< Y)8 € M is not
used here).

— Finally, we consider the other clauses. Clause c3 is handled as c2, while all

other ones are not recursive (not even mutually), and therefore they are trivially
simply acceptable.
There is one aspect we have neglected so far, namely that the program contains
calls to (built-in) predicates =< and > without defining clauses. However, these
predicates are conceptually defined by fact clauses such as 1>0., which are trivially
simply acceptable.

By Theorem 5.7 we have that every query of the form quicksort(t,z), where x is
a variable disjoint from ¢, yields a finite input consuming derivation. In particular,
Theorem 5.7 shows that the query quicksort(Y,X) yields terminating input con-
suming derivations. These derivations terminate by deadlock, while by dropping
the requirement of input consuming resolution steps it is easy to build a non-
terminating derivation starting in that query. This shows that Theorem 5.7 allows
us to capture termination by deadlock, as further confirmed by the necessity results
we will provide in the next section.

It is worth remarking that with the tool of [Bossi et al. 2002] it is not possible
to prove that QUICKSORT is input terminating (wrt. simply moded queries). This is
because in that paper the concept of quasi-recurrent program, which has the same
role as that of simply acceptable program, does not take into account the presence
of inter-argument relationships, (which in the above example are present in the
form of equation (2)).
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The following contrived example shows the necessity of referring to simply local
substitutions.

ExamMpLE 5.9. Consider the program
c4: q(a) +qX).

together with the mode q(I). Every simply moded query terminates (either by
failure or by deadlock). Take the level mapping |q(t)| = 1 if ¢ is not a variable
and |q(z)| = 0 otherwise. We now show that c4 is simply acceptable wrt. | | and
any simply local model M. In fact, for every 6 simply local wrt. c4 we have that
q(X)0 = q(X): since Out(q(X)) = 0, we have that X ¢ Dom(). Moreover trivially
q(a)d = q(a). Therefore |q(a)f| > |q(X) 6|, which implies simply acceptability.

Notice that if we drop the requirement that 8 must be simply local then we would
have no guarantee that |q(a)f| > |q(X)6|: simply let § = {X/a}.

5.3 Necessity of Simply Acceptability

We now prove the converse of Theorem 5.7, namely that our criterion for proving
input termination wrt. simply moded queries is also necessary. For this we need
some new definitions as well as some new preliminary results in the spirit of those
in [Apt and Pedreschi 1994].

The first definition concerns a concept analogous to that of SLD-trees in the
context of input consuming derivations.

Definition 5.10 (IC-tree). Let P be a program and @) be a query. An IC-tree
for PU{Q} is a tree such that

— its root is @,
— every node Q' has exactly one descendant Q" for every atom A of ' and
every clause ¢ such that " is an input consuming resolvent of )’ wrt. A and c.

Informally, an IC-tree for P U {Q} groups all the input consuming derivations of
P U {Q} modulo the choices of the renaming of the program clauses used and the
choices of the mgu’s.

Notice that it can happen that a node contains no selectable atom, in which case
it has no children.

Branches of IC-trees are input consuming derivations. Therefore we can charac-
terize input termination in terms of IC-trees.

LeEMMA 5.11. A IC-tree for PU{Q} is finite iff all input consuming consuming
derivations of PU{Q} are finite.

PRrOOF. By definition, the IC-trees are finitely branching. The claim now follows
by the classical result of Konig. 0O

Analogously to the case of acceptability, we measure atoms by counting the
number of nodes in the corresponding IC-tree. For a program P and a query @,
we denote by nodes's(Q) the number of nodes in an IC-tree for P U {Q}. We need
one last property of IC-trees.

LEMMA 5.12. Let the program P and the query A, B be simply moded. Suppose
that P is input terminating wrt. simply moded queries and that Af € 'PMISDL, where
0 is a simply local substitution wrt. A. Then nodes's (A, B) > nodes's (B9).
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Proor. Counsider an IC-tree T for P U {A, B}. By the hypothesis that Af €
PM ISDL , it follows that there exists a substitution ¢ such that — by Lemma 4.4 —

A%y Cisa (partial) input consuming derivation and Af ~ Av. Hence there

exists an input consuming derivation A, B AN p C,BY and BO =~ Bv. Clearly,
by definition of IC-tree, nodesis(A, B) > nodes}s(BY) = nodesy (B6). Hence the
thesis. O

We are now in the position to prove that the class of simply acceptable programs
comprises all the programs input terminating wrt. simply moded queries.

THEOREM 5.13. Let P be a simply moded program. If P is input terminating
wrt. simply moded queries then P s simply acceptable.

In particular, it is simply acceptable wrt. PMEL and a moded level mapping which
is tnvariant under renaming.

PROOF. We show that there exists a moded level mapping | | for P such that P
is simply acceptable wrt. | | and PMSE. We recall that PMSL is the least simply
local model of P containing SM p.

Given an atom A, we denote with A* an atom obtained from A by replacing the
terms filling in its output positions with fresh distinct variables. Clearly, we have
that A* is simply moded. Then we define the following moded level mapping for
P:

|A| = nodes'S(A*).

Notice that the level |A| of an atom A is independent from the terms filling in its
output positions, i.e., | | is a moded level mapping. Moreover, since P is input
terminating wrt. simply moded queries and A* is simply moded, all the input con-
suming derivations of P U {A*} are finite. Therefore, by Lemma 5.11, nodes’S(A*)
is defined (and finite), and thus |A| is defined (and finite) for every atom A.

We now prove that P is simply acceptable wrt. | | and PM3L.

Let ¢c: H < A,B,C be a clause of P and Hf + Af, B, Ch be an instance of ¢
where 6 is a simply local substitution wrt. c. We show that

if A € PME" and Rel(H) ~ Rel(B) then |H6| > |Bf).

Consider a variant ¢ : H' < A',B',C’ of ¢ variable disjoint from (H®)*.
Let p be a renaming such that ¢ = ¢p. Clearly, (Hf)* and H' unify. Let
pw = mgu((HO)*,H') = mgu((HA)*, Hp) be a simply local mgu of (H6)* and
H'. Then it holds that Dom(u) C Var(Out((H6)*)) U Var(In(Hp)). Hence
(A",B',C")u= (A, B,C)pu, and

(HO)" = (A, B,C)pp

is an input consuming derivation step, i.e., (A, B, C)pu is a descendant of (H#)*
in an IC-tree for P U {(H®)*}.

MOTeOVeI‘, (A7 B: C)pl‘l‘ ~ (A7 B: C)(pl‘l‘)Un(H) = (A7 B: C)6|In(H) .

Let 0 = 0,10 0ut(a)f|0ut(B,c)- Hence, by Lemmas 3.5 and 3.6, 0|ous(a) is
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simply local wrt. A8 p,m). Therefore, we have that

|HO| = nodes'S((H8)*) (by definition of | |)
> nodesp((A B,C)0\1,(ery)  (by definition of IC-tree)
> nodesP((A B)0\ (1)) (by definition of IC-tree)
> nodesp((Beun )0 0ut(a)) (by Lemma 5.12)
= nodes ((B)*) (since @ is simply local wrt. c)
= |Bf| (by definition of | |).

O

5.4 A Characterization

Summarizing, we have characterized input termination by simply acceptability.

THEOREM 5.14. A simply moded program P is simply acceptable if and only
if it is input terminating wrt. simply moded queries. In particular, if P is input
terminating wrt. simply moded queries, then it is simply acceptable wrt. PM[.?L and
a moded level mapping which is invariant under renaming.

Proor. By Theorem 5.7 and Theorem 5.13. [

The following example shows how we can use Theorem 5.14 to reason about
termination of a program.

EXAMPLE 5.15. Consider the following program PERMUTE.
% permute(Xs,Ys) < Ys is a permutation of the list Xs

cl: permute([X|Xs],Ys) ¢ insert(Zs,X,Ys), permute(Xs,Zs).
permute([],[1).

% insert (Xs,X,Ys) < Ys is the result of inserting X into the list Xs

c2: insert([U|Xs],X,[Ul|Zs]) <« insert(Xs,X,Zs).
insert(Xs,X, [X|Xs]).

First, let us consider it together with the mode permute(Q,I),insert(0, O, I).
Notice that the program is simply-moded. It is immediate to check that the program
is not input terminating in this mode: by repeatedly selecting the rightmost atom,
the query permute(Xs,Ys) generates an infinite input consuming derivation. This
is basically due to the fact that c1 has a variable in its input position. Therefore,
the recursive call in the body can always be selected.

This suggests that one could obtain input termination by replacing c1 by:

cl’: permute([X|Xs],[YI¥s]) ¢ insert(Zs,X,[Y|Ys]), permute(Xs,Zs).

Call the resulting program PERMUTE2. This program is still nonterminating (the
query permute(Xs, [Y|Ys]) has an infinite input consuming derivation). However,
this is not so obvious, and in essence, it has first been observed by Naish [Naish
1993], in the context of programs with delay declarations. We can use The-
orem 5.13 to demonstrate that and to understand why PERMUTE2 does not in-
put terminate. We show that the program cannot be simply acceptable wrt.
PM PSEI;JIMUTEZ and a moded level mapping which is invariant under renaming. By
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applying TS5 once to the the simply moded atom insert(Xs',X’,Zs’) (Xs',X’,Zs'
are fresh variables), one sees that insert([U'|Xs'],X’,[U'|Zs']) € PMyk e The
substitution {Y/U’,Ys/Zs',Zs/[U'|Xs'],X/X'} is simply local wrt. c1’. Therefore,
for c1’ to be simply acceptable, by Theorem 5.13, there would have to be a moded
level mapping invariant under renaming such that |permute([X'|Xs], [U'|Zs'])] >
|[permute(Xs, [U'|Xs'])|. This is a contradiction since a moded level mapping de-
pends only on the input arguments (the second argument of permute).

Naish [Naish 1993] suggested to obtain a terminating program by replacing c2
with its most specific variant:

c2’: insert([UlXs],X,[UI[HIT]]) < insert(Xs,X,[HIT]).

Call the resulting program PERMUTE3. We show that PERMUTE3 is input termi-
nating.®> Note that PERMUTES is simply moded, and consider the following level
mapping:

|permute(_, )| = len(l),
len(l).
Concerning the simply local model, the crucial aspect with respect to termination

is that it has to express the dependency between the lengths of the third and first
arguments of insert. We define:

|insert(., )]

M = {permute(l,m) | for all [, m}
U {insert(m,a,l) | either insert(m,a,l) is simply moded
or len(l) > len(m) }

Notice that this model contains also non-ground atoms. We have to verify that M is
a simply-local model. The only non-trivial proof obligation concerns c2’. Now for
any, not even necessarily simply local, substitution 6, insert(Xs,X, [H|T1)0 € M
implies insert([U|Xs],X, [U|[H|T11)6 € M. Hence M is a simply-local model.

We show that PERMUTE3 is simply acceptable wrt. M and | |. Concerning c1’, we
must show that for every substitution 8, simply local wrt. c1’, insert(Zs, X, [Y|Ys])fd €
M implies |permute([X|Xs],[Y|Ys])d| > |permute(Xs,Zs)f|. By the definitions of
M and | |, this even holds for arbitrary §. For the remaining clauses, it is imme-
diate to check that they are simply-acceptable. It follows that PERMUTES is input
terminating wrt. simply moded queries.

To conclude, consider the program PERMUTE4: that is, PERMUTE together with the
modes permute(I, O), insert([, I, O). In this case, in order to make the program
simply moded we have to permute the two body atoms of the first permute clause
(but see the remark below) i.e., permute is redefined as

permute([X|Xs],Ys) ¢ permute(Xs,Zs), insert(Zs,X,Ys).
permute([1,[1).

Notice that the program is now input terminating wrt. simply moded queries.
This is in fact the natural mode of the PERMUTE program. To demonstrate the

3We noted in [Smaus et al. 1998] that Naish’s proposal for obtaining a terminating program
does not work: For example, the query permute(Xs,[1,2]) still loops. Indeed, following Naish’s
proposal we get an input terminating program. The problem is that his delay declarations do not
ensure input consuming derivations, as noted in [Smaus 1999a].
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termination one can apply Theorem 5.7 using any simply local model together
with the following moded level mapping;:

|[permute(l, )| = len(l),
len(l).

|insert(l, -, )|

In PERMUTE4 we reordered the body atoms of a program, but this was actually
an unnecessary operation.

Remark 5.16. Everything we state in this article that applies to the class of
simply-moded programs (resp. queries) applies to the class of permutation simply
moded programs (queries) as well, i.e., to those programs and queries that are
simply moded possibly after a permutation of body atoms. For the sake of notation
simplicity, we avoid to refer to this in a structural way.

6. OTHER EXAMPLES

In this section we provide additional explanatory examples.

ExaAMPLE 6.1. Consider the following program LISTTREE for converting a list
[ into a binary tree ¢ with labeled nodes, so that ¢ contains as labels exactly the
elements of [, in the same left-to-right order (in can also be used to convert ¢ into

D).
% list_tree(L,T) <« L isalist and T is a binary tree with labelled nodes
pA containing the same elements in a left-to-right order

list_tree([],void).
cl: list_tree([H|T],tree(TA,X,TB)) <«
extract ([H|T],LA,X,LB),
list_tree(LA,TA),
list_tree(LB,TB).

%  extract(Xs,Ys,X,Zs) < Xs is the result of concatenating Ys, [X] and Zs

c2: extract([XIL],[],X,L).
c3: extract([X|[HITI], [XIS],Y,R) < extract([HIT],S,Y,R).

mode list_tree([, O)
mode extract(l, 0,0, O)

This program is simply moded. We now show that it is simply acceptable; for this
we employ the following moded level mapping;:
[list_tree(l,.)| = len(l),
lextract(l, -, -, )| = len(l).
Concerning the simply local model, the crucial aspect with respect to termination

is that it has to express the dependency between the lengths of the arguments of
extract. We define

M = {list_tree(l,t) | for all [,¢}
U {extract(l,ly,z,ls) | either ly,ls,! are distinct variables,
or len(l) > len(l;) and len(l) > len(lz) }.
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We have to verify that M is indeed a simply-local model.

First, we have to show that M is a simply-local model of the clauses defining
list_tree. Thisis however trivial, since M contains all instances of 1ist_tree(X,Y).

Secondly, we have to show that M is a simply-local model of c2. We have to
show that for each 6 simply-local wrt. c2 extract([X|L], [1,X,L)0 € M. But this
holds by the model definition and the fact that for any substitution 6, we have that
len([X|L10) > len([10) and len([X|L10) > len(LO).

Thirdly, we have to show that M is a simply-local model of c3. Consider
any substitution # such that extract([H|T],S,Y,R)# € M. Since [H|TIO can-
not be a variable, by the definition of M, len([X|[H|T]116) > len([X|S]16) and
len([X|[H|T116) > len(RA); thus extract([X|[H|T]1, [X|S1,Y,R)# € M. Therefore
M is a simply-local model of c3.

Finally, we show that the program is simply acceptable wrt. M and | | and hence
input terminating wrt. simply moded queries. The only non-trivial case is clause
cl. For every simply local substitution 6, we must show that

(1) If extract([H|T],LA,X,LB)Y € M

then |list_tree([H|T], tree(TA,X,TB))A| > |list_tree(LA, TA)F)|.
(2) If extract([H|T],LA,X,LB)f, list _tree(LA, TA)Y € M

then |Llist_tree([H|T],tree(TA,X,TB))f| > |Llist_tree(LB, TB)F|.

Both implications follow immediately from the definition of | | and of M.

Observe that it is essential that we have the non-variable term [H|T] in c1,
rather than simply a variable. Also, in ¢3, we must have [H|T] rather than simply
a variable. Otherwise, the program would not be input terminating.

ExXAMPLE 6.2. Consider the following program TRANSPOSE for transposing a ma-
trix. A matrix is represented as a list of lists: [[a,b,c], [1,2,3]] is a matrix with
two rows and 3 columns. Note the degenerate cases: [[1, [1] is the matrix with O
columns and 2 rows, while [] is not a matrix (though it could be regarded as any
matrix with 0 rows but an unknown number of columns).

%  transpose(M,N) <N is the transposed matrix of matrix M.

transpose(M, [1) + no_colsmatrix(M) .
cl: transpose([R|Rs],[CICs]) - cut_col([R|Rs],C,M2),
transpose (M2,Cs) .

%  cut_col(M,C,N) < C is the first column of the matrix M
h and N is obtained by removing C from M

c2: cut_col([]1,[1,[1).
c3: cut_col([[E|Es] |Rs],[E|C2], [Es|Rs2]) < cut_col(Rs,C2,Rs2).

% no_colsmatrix(M) < matrix M has zero width (no columns)

no_colsmatrix([]).
c4: no_colsmatrix([[]IRs]) + no_cols matrix(Rs).

mode transpose ([, O)
mode cut_col(l, 0, 0)
mode no_colsmatrix(l).
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This program is simply moded. We now show that it is simply acceptable. The
moded level mapping uses len and the usual term size norm and is defined as follows:

|transpose(m, )| = size(m),
|cut_col(m,_,.)| = len(m),
|no_colsmatrix(m)| = len(m).

where size(f(t1,...,tn)) = 1+ size(t1) + - - - + size(t,) for n > 0, and size(t) = 0 if
t is a variable.

Concerning the simply local model, the crucial aspect with respect to termination
is that it has to express the dependency between the row widths of the arguments of
cut_col. More specifically, in clause c1, [R|Rs] is a matrix (a list of rows), and M2
is obtained from [R|Rs] by cutting off the first element in each row. This decrease
in row width is crucial for termination. We define

M = {transpose(m,n) | for all m,n }
U {cut_col(m,r,n) | either cut_col(m,r,n) is simply-moded
orm=n =]

or size(m) > size(n) }
U {no_colsmatrix(m) | for all m .

We now verify that M is a simply-local model. We have non-trivial proof obligations
for c2 and c3. Concerning c2, cut_col([], [1, [1) € M by construction. Concern-
ing c3, consider an arbitrary (not even necessarily simply-local) substitution 6 such
that cut_col(Rs,C2,Rs2)f € M. There are three cases.

— 1If cut_col(Rs, C2,Rs2)d is simply-moded, then
Rs26 is a variable, thus
size( [[E|Es]|Rs]f) > size([Es|Rs2]6) and therefore
cut_col([[E|Es]|Rs], [E|C2], [Es|Rs2])0 € M.

— If Rsf = Rs26 = [], then
cut_col([[E|Es]|Rs], [E|C2], [Es|Rs2])# = cut_col([[E|Es]], [E|C2], [Es])d,
and since size( [[E|Es]]6) > size([Es]f), it follows that
cut_col([[E|Es]], [E|C2], [Es])f € M.

— If size(Rsf) > size(Rs20), then
size( [[E|Es]|Rs]f) > size([Es|Rs2]6), thus
cut_col([[E|Es]|Rs], [E|C2], [Es|Rs2])6 € M.

Thus in all cases, cut_col([[E|Es]|Rs], [E|C2], [Es|Rs2]1)f € M. Therefore M is a
model of ¢3. We now show that the program is simply acceptable wrt. M and | | and
hence input terminating wrt. simply moded queries. Consider c1: for every substi-
tution @, simply local wrt. c1, we have to show that if cut_col([R|Rs],C,M2)6 € M,
then |transpose([R|Rs], [C|Cs])f| > |transpose(M2,Cs)A|. This holds by the defi-
nition of M. Next, consider c3. For every substitution €, it is easy to see that
|cut_col([[E|Es]|Rs], [E|C], [Es|Rs2])#| > |cut_col(Rs,C,Rs2)f|. Equivalently,
for clause c4, it is immediate to check that for any 6, no_colsmatrix([[]|Rs])d| >
|no_cols matrix(Rs)f|. All other clauses are trivially simply acceptable. Hence the
thesis.
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6.1 Delay Declarations

In practical systems, dynamic selection rules are implemented by means of con-
structs such as delay declarations and block declarations. Delay declarations, ad-
vocated by van Emden and de Lucena [van Emden and de Lucena 1982] were
introduced explicitly in logic programming by Naish [Naish 1983].

In a previous paper [Bossi et al. 2001] we have argued that in most cases de-
lay declarations are employed exactly to guarantee that the derivations are input
consuming. We have also provided a technical result establishing that under some
syntactically checkable conditions the use of delay declarations is equivalent to re-
stricting to input consuming derivations. This allows one to apply Theorems 4.6
and 5.14 to a large class of programs employing delay declarations, thereby pro-
viding such programs with a model-based semantics for partial derivations, and a
result characterizing their termination.

In this section we report some examples showing the analogies between the use of
delay declarations and the restriction to input consuming derivations. Just for this
subsection, we assume the reader to be familiar with the notion and the notation
of delay declarations.

ExaAMPLE 6.3. Consider again APPEND, in mode append(l, I, O) with the delay
declarations we mentioned in the introduction, namely

delay append(Ls,_,_) until nonvar(Ls).

append([H|Xs],Ys, [H|Zs]) < append(Xs,Ys,Zs).
append([],Ys,Ys).

In practice, this delay declaration can be seen as a compiler directive stating that
the selection rule is allowed to select an atom of the form append(¢;,t1,t3) iff t1
is a non-variable term. A derivation that respects this directive is called delay-
respecting.

This is the natural delay declaration of the program and achieves the purpose that
most natural queries are forced to terminate*. Now, it is easy to check that every
SLD derivation starting in a simply moded query is similar to an input consuming
derivation if and only if it is delay-respecting.

Thus, for APPEND we can say that input consuming derivations model in a cor-
rect and complete way the operational behavior determined by the above delay
declaration. Formally, when we consider simply moded queries, we have that:

- we can employ Theorem 5.14 to demonstrate termination,
- by Theorem 4.6, PM I‘EL characterizes its behavior in terms of the intermediate
computed answer substitutions.

ExaMPLE 6.4. Consider PERMUTE4, i.e., PERMUTE of Example 5.15, with the
modes permute(/, 0), insert(I,I, O). Consider the following delay declarations
for it:

4 An interesting example suggested by K. R. Apt of a contrived query that does not terminate in
combination of the above program is append([X|Xs], [1,Xs). Notice that this query is not simply
moded. This demonstrates also the need for restricting to a class of “well formed” programs and
queries such as that of simply moded ones.
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delay permute(Xs,_) until nonvar (Xs)
delay insert(Xs,_,.) until nonvar(Xs)

The meaning of these declarations is equivalent to that of the previous example.
It is not difficult to see that for the above program, for every derivation starting
in a simply-moded query, the derivation is input consuming if and only if it is
delay-respecting.

EXAMPLE 6.5. Consider again QUICKSORT. In the context of dynamic scheduling,
its standard delay declarations are:

delay quicksort(Xs,.) until nonvar(Xs).
delay quicksort dl(Xs,_,.) until nonvar(Xs).
delay partition(Xs,_,_,_) until nonvar(Xs).
delay =<(X,Y) until ground(X) and ground(Y).
delay >(X,Y) until ground(X) and ground(Y)

While the first three declarations are equivalent to those used above, the last two
state that an atom of the form a =< b (resp. a > b) can be selected iff both a and
b are ground terms.

Now, if we think of the built-ins > and =< as being defined by a program con-
taining infinitely many ground facts of the form >(n,m), with n and m being two
appropriate integers, the derivations respecting the above delay declarations are
exactly the input consuming ones.

7. CONCLUSION AND RELATED WORKS

In this article, we have studied the termination of input consuming programs. In
order to do this, we have provided a denotational semantics for input consuming
derivations that models the results of incomplete derivations. This semantics uses
a variant of the well-known T'p-operator.

In a previous paper [Bossi et al. 2000] we have introduced a different semantics
for input consuming programs. The two semantics, however, are quite orthogonal
to each other: while that of [Bossi et al. 2000] models exclusively the result of suc-
cessful derivations and requires the program to be well-moded and nicely-moded, the
semantics used here models the results of also incomplete derivations and requires
programs and queries to be simply moded.

As mentioned in Subsection 4.2, in the context of parallelism and concurrency
[Naish 1988], one can have derivations that never succeed, and yet compute substitu-
tions. Thus we have provided a denotational semantics for such programs/programming
languages, which goes beyond the usual success-based SLD-resolution mechanism
of logic programming.

Input consuming derivations bear a certain resemblance with derivations in the
language of Moded (Flat) GHC [Ueda and Morita 1994]. Actually, input-consuming
programs can be seen as a simplified version of moded GHC, and the results we
provide here can be thus applied to some moded GHC programs. We want to note
however that Moded (F)GHC is a full-fledged programming paradigm, while input-
consuming programs are meant for abstraction purposes. In fact, Moded (F)GHC
enjoys a more complex computational mechanisms: In (F)GHC, a clause has the
form H + G|B, where G is called a guard. An atom A can be resolved using
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H + G|B only when A is an instance of H and G# is entailed, where 6 is an
mgu of A and H. The atom A can become instantiated only later via explicit
unifications occurring in B. In Moded (F)GHC, there are (non-trivial) conditions
on clauses ensuring that when an argument position in A is input, then the clause
used to resolve A will never (not even via later resolution steps) cause any bindings
to that position.

Falaschi et al. [Falaschi et al. 1997] have defined a denotational semantics for CLP
programs with dynamic scheduling of a somewhat different kind: the semantics of
a query is given by a set of closure operators; each operator is a function modeling
a possible effect of resolving the query on a program state (i.e., constraint on the
program variables). Their semantics is the analogue of the bottom-up s-semantics
for usual logic programs, where atoms are mapped to their set of answers. In
this respect, it corresponds to the semantics defined in [Bossi et al. 2000]. The
approach presented here is more suited to termination proofs since we deal with
partial answers.

Concerning termination, we have provided a necessary and sufficient criterion
for termination, applicable to a wide class of programs, namely the class of simply
moded programs. In previous papers, [Bossi et al. 2002; Smaus 1999b] we have
already addressed the problem of the termination of input consuming programs.
The results we present here constitute a big improvement wrt. [Bossi et al. 2002;
Smaus 1999b] in that we can now capture (by means of the model) the inter-
argument relationships in the bodies of the clauses. This improvement allows us
to give a necessary and sufficient condition for termination. In fact, we can now
prove the termination of programs employing a non-trivial recursion scheme such
as QUICKSORT, PERMUTE3, TRANSPOSE; this was not possible using previous sufficient
conditions of [Bossi et al. 2002; Smaus 1999b] (though, with the tools of [Bossi et al.
2002; Smaus 1999b] we could prove the termination of PERMUTE4, which employs
direct recursion).

Finally, we have provided some examples showing analogies between the use of
delay declarations and input consuming derivations. A technical result demonstrat-
ing equivalence (under some syntactically-checkable assumption) is given in [Bossi
et al. 2001].

To conclude, we discuss some other works about termination of programs with
dynamic scheduling. First note that those works are usually about termination of
programs with delay declarations, whereas we consider the more abstract notion of
input consuming derivations. As has been argued before [Smaus 1999b], this allows
us to see more clearly which programs terminate under which assumptions about
the selection rule.

Apt and Luitjes [Apt and Luitjes 1995] give conditions for the termination of
append, but those are ad-hoc and do not address the general problem. Naish [Naish
1993] gives heuristics to ensure termination, but no formal results.

There are several works in this area making assumptions about the selection rule
that are stronger than assuming input consuming derivations [Liittringhaus-Kappel
1993; Marchiori and Teusink 1999; Martin and King 1997].

Marchiori and Teusink [Marchiori and Teusink 1999] assume a local selection rule,
that is a rule under which only most recently introduced atoms can be resolved in
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each step. Moreover, it is assumed that an atom is only selected once it is bounded
with respect to a level mapping, that is, any instance of the selected atom has a
level that is below a certain bound. This is in contrast to our approach where any
selected atom, even one that is non-ground in its input, has a well-defined level,
but this level is not stable under instantiation.

Martin and King [Martin and King 1997] achieve a similar effect by bounding
the depth of the computation introducing auxiliary predicates.

It is more difficult to assess Liittringhaus-Kappel [Liittringhaus-Kappel 1993]
since his contribution is mainly to generate delay declarations automatically rather
than prove termination. However in some cases, the delay declarations that are
generated require an argument of an atom to be a rigid list before that atom can
be selected, which is similar to the above approaches [Marchiori and Teusink 1999;
Martin and King 1997]. Such uses of delay declarations go well beyond ensuring
that derivations are input consuming.

Some authors have considered a selection rule stating that in each derivation
step, the leftmost selectable atom is selected [Apt and Luitjes 1995; Boye 1996;
Naish 1993]. Due to the problem of simultaneously reawaken atoms, this rule is
actually not exactly the one implemented in most Prolog versions, but this has
been corrected by proposing the left-based derivations [Smaus et al. 2001]. Here
it is enough to recall that such derivations “prefer” to select atoms that occur on
the left of a query, which is an assumption made in addition to input consuming
derivations. As already shown (Left Switching Lemma) for nicely or simply moded
programs and queries this assumption does not influence the set of computed answer
substitutions but may affect partial computed answer as well as termination.

A survey classifying logic programs according to the selection rules for which
they terminate can be found in [Pedreschi et al. 2002]. Among others, this survey
considers input termination and termination wrt. local selection rules as mentioned
above [Marchiori and Teusink 1999].

The specific problem of termination of input consuming derivations has been
treated also in [Bossi et al. 2002] where nicely moded programs have been studied.
By applying those results to simply moded programs we obtain a characterization of
a proper subset of input terminating and simply moded programs. This class does
not contain programs like quicksort whose termination proof needs information
on partial computed answer substitutions.

APPENDIX

Proor oF LEMMA 3.8. First notice that, since A is a simply-moded atom,
Var(In(A)) N Var(Out(A)) = 0; therefore, by properties of mgu’s (see [Apt 1997,
Corollary 2.25]), there exist substitutions op and o; such that

— 09 = mgu(In(A), In(H)),
— o1 = mgu(Out(A)og, Out(H)oy),
— ogpo1 = myu(A, H),

and all those mgu’s are relevant. Since, by hypothesis, ¢ = mgu(4,H) and

In(AY) = In(A), In(A) is an instance of In(H). In particular, In(H)og = In(A)
and thus
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— Dom(oo) C Var(In(H)),
— Ran(oo) C Var(In(A)).

Since Var(In(A)) is fresh wrt. H, this means that oo is simply local wrt. the
clause H <. Moreover, by relevance of og, simple modedness of A and the fact
that A and H are variable disjoint, it follows that Dom(co) N Var(Out(A)) = 0.
Hence, o1 = mgu(Out(A), Out(H)op). By simple modedness of A, the fact that
Out(A) is sequence of distinct variables and that o is relevant, we can assume that
Out(A)o; = Out(H)op and thus

— Dom(o1) C Var(Out(A)),
— Ran(o1)CVar(Out(H)og)CRan(og)U Var(Out(H))C Var (In(A))U Var (Out(H)).

Since Var(Out(H)) is fresh wrt. A, this means that o; is simply local wrt. the
query A. O

ProOOF oF LEMMA 3.10. Since both @ and ¢ are simply moded, by Lemma 2.7
also Q' is simply moded. Then by Lemma 3.5 there exist « and 3 such that

(a) 0= ap;

(b) a =0y is simply local wrt. BJ;

(¢) B is simply local wrt. Ria;

(d) a and @ are variable compatible wrt. B¢ and Rd.

The proof proceeds by proving that

(al) (00)q = (Va)aB;

(b1) (Ya)|a is simply local wrt. A;

(c1) B is simply local wrt. R(da)|4;

(d1) (Ya)|4 and B are variable compatible wrt. A and R.

The result will follow by applying again Lemma 3.5.
(al) follows from the fact that (Ja)48 = (Ja)of = (VaB) o = (90)|q
To prove (bl) we prove that

(b11) Dom(da) 4 C Var(Out(A))
(b12) Ran(Va)ja C Var(In(A)) UV where V N Var(A) = 0.

(b11) Dom(da);a € Dom (¥ 4) U Dom(a)a). Now, Dom (V| 4) C Var(Out(A)),
since 9 is a simply local mgu of A and H, and Dom(a4) C Var(Out(B )) Var(A),
since a is simply local wrt. BJ. Then, Dom(aj4) C Var(Out(B )) N Var(A), since
Dom(d¥) N Var(Out(B)) = 0. But, Var(Out(B)) N Var(A) =0, by st andardlzatlon

apart.

(b12) Since Ran(¥4) C Var(Out(H)), Ran((Ya)a) C Var(Out(H))U Var(In(A))U
Var(B)UV; C Var(In(A)) UVy U Var(c) where V] is the set of fresh variables of «
and V1 U Var(c) is disjoint from A by standardization apart and lemma’s hypothesis.

(c1) holds since 3 is simply local wrt. Ra and R(da)j4 = R(¥a)o = Ria.

Finally, (d1) follows from (d), the assumption on the fresh variables of  (which
implies that the sets of fresh variables of « and § are are disjoint from Var(Q) and
Var(c)) and the fact that 9 is a simply local mgu. O
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PROOF OF LEMMA 4.3. We first prove that T5% 1 w([) is a fixpoint of TS, In
fact
TEH(TRM tw(I)) = Tp* tw()U TE(TE" T w(l))

= UiZO ngL i)y Ui>0 TISDl(ngL 1i(1))
= Uiso(TE" 1i(I) U TE(TE" 1i(1)))

= Uy TE" TiI)

= T tw().

We now prove that T5% 1 w(I) is the least fixpoint of T3 containing I.

Let J be a fixpoint of T8 containing I, i.e., I C J = T5L(J). We prove that
T 1 w(I) C J. More precisely, we prove by induction on i, that for all i > 0,
Tp" 1i(I) C J.

Base. i = 0. In this case T3/ 1+0(I) =1C J.

Induction step. i > 0. In this case TpF 1i(1) = TgL(TEY 14— 1(I)). By the
inductive hypothesis, T5* 1 i — 1(I) C J. By monotonicity of T5F, TsX 1 i(I) =
TSH(TSE i - (1) C TEH(J) = J.

By definition of simply local models and of T5%, we have that J is a simply local
model of P containing I iff T5%(J) C J and I C J. This proves that T5* 1 w(I)
is the least simply local model of P containing I. O

Proor oF LEMMA 4.4. (i) = (ii). We first assume that ¢ proceeds left-to-right
and employs only simply local mgu’s and prove that: 9| is simply local wrt. A
and A9 C T3P t w(I). The general case follows from Corollary 2.12 and Theorem
3.18 in [Apt 1997] on derivations employing different mgu’s.

We proceed by induction on the length of §.

Base. len(d) = 0. In this case A = C C I and ¥ = € (the empty substitution).
The thesis follows from the fact that, by definition of T5L, I C T5E 1 w(I).

Induction step. len(d) > 0. Let A = L, A;R and A be the leftmost atom of A
such that there is some A-step in ¢ (and hence there are no L-steps in ). Assume
also that ¢ : H < B is the input clause used in the first derivation step of § and 11
is the simply local mgu of A and H used in this step. By Corollary 2.12,

§:A % (LB,R)Y, 2 L,C
such that C = L, C’, ¥ = ¢1v2 and LY, = L2 = L.
Hence
LCIgTE twl) (3)
and there exists the input consuming derivation: ¢’ : (B,R)t4 Y2, ' where

len(0") = len(d) — 1 and (B, R)¥; is simply moded.
By the inductive hypothesis, 925 r)9, is simply local wrt. (B, R)v; and

(B,R)0102 C T5" 1 w(l). (4)

Note also that since #;1 is computed in a derivation of (4, R), by standardiza-
tion apart and Lemma 3.10 we have that

(D192)B,R)9,)|(A,R) = (V1¥2)|(a,R) 1 simply local wrt. (A, R). (5)
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Since (¥192)|L = € and (¥192)|(a,r) is simply local wrt. (4,R) and the fact that
variable compatibility is guaranteed by standardization apart, by Lemma 3.5

(9192) (1, ,r) is simply local wrt. (L, A, R). (6)
To conclude the proof it remains to shown that
AY19; C Tp" 1 w(I). (7)

Then, the result will follow from (3), (4), (6) and (7).

In order to prove (7) note that 1J; is a simply local mgu of A and H, so (1) g is
simply local wrt. H <. Moreover, by Lemma 3.5, (¥2)|Bg, is simply local wrt. BdJ;.
Note also that, by standardization apart, ¥1 | and J2 gy, are variable compatible
wrt. H and B. Hence, by Lemma 3.6, (¥1)m(J2)|Bg, = (J192)|c is simply local
wrt. c.

By Definition 4.2 and property (4), this proves that

H(ﬁl)\H(ﬂ2)\B01 = HY19y = A9, C TEL tw()

(ii) = (i). Let A@ C Tl 1 w(l) with A : Ay,..., A,. Let k be the minimum
index such that A# € TS 1 k(I). The proof proceeds by induction on k.

Base. k = 0. In this case, A9 C T35 1 0(I) = I with 6 simply local wrt.
A. Since both A and A# consist of simply moded atoms, and 6 is a simply local
substitution wrt. A, it follows that € is just a renaming of the output variables of
A. The thesis follows by taking 9 to be the empty substitution and § to be the
derivation of length zero.

Induction step. k > 0. We proceed by induction on n, the number of atoms in
the query.

Base. n = 1. In this case A = A, 0 is simply local wrt. A and A8 € Ta% 1 k().
By definition of T5% and Proposition 3.3, there exist a variant ¢ : H + B of a
clause of P variable disjoint from A and a substitution ¢ such that

9 is simply local wrt. ¢ (8)
BY C TS 1 (k - 1)(1) o)
A9 = HY. (10)

By (8) and Lemma 3.6 there exist oy and o, such that ¥ = opo1, 09 = 9| is
simply local wrt. H < and o is simply local wrt. Boy.

Hence, by (9) and the inductive hypothesis on k, there exists an input consuming
derivation

5" Boy 22 C

where C C [ and Boyts ~ Bogo.

Note also that Hogo, &~ Hogts, since the only variables of Hoy which can be
affected by o7 or 9, are those occurring also in Boy.

Finally, note that by Proposition 3.3 we can assume Var(A4) N Var(c) = () and
then by (10) and the fact that 6 is simply local wrt. A (which implies that In(A4) =
In(A9)), B0y is a simply local mgu of A and H, and
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5:AichToﬂ>C

is an input consuming derivation where Aoyt = Hopgts ~ HY = A6.

Induction step. n > 1. In this case A = AR and A € Tp 1 k(I). By Lemma
3.5 there exist 6, and 65 such that § = 6,65, 6; = 6|A is simply local wrt. A and 65
is simply local wrt. R#;, and #; and 6, are variable compatible wrt. A and R. By
the inductive hypothesis on n,

51:Aﬂ>01

where C; C I and Av; and Af|4 = Af are variant.
Again by the inductive hypothesis on n, there exists an input consuming deriva-
tion

DS VENY )
where C, C I and R6,¢, ~ Rb16-. Since Rf; ~ R¥};, by Lemma 2.9 there exists

(52 . R’l91 ﬁ) C2

where Co, C I and Ry ~ RO;¥,. Without loss of generality, we can assume
that the input clauses used in d» are standardized apart wrt. d;.
Then there exist 9,

5 AR CLRY, 2 CLC,

such that Ad9Y> and Af are variant. O

The following result is a corollary of the above proof. It states that the relation
between computed answers of input consuming derivations employing simply local
mgu’s and simply local substitutions.

PROPOSITION A.l1. Let A be a simply moded query and P a simply moded pro-

gram. Let § : A % C; &) C2 be an input consuming derivation in P that
proceeds left-to-right and employs only simply local mgu’s. Let ¢ : H < B be the
input clause used in the first derivation step of 6 and ¥, be a simply local mgu
employed in this step. Then (V192)|a is simply local wrt. A and (9192)). is simply
local wrt. c.

Proor. It follows from (5) in the proof of Lemma 4.4 (the proof above). O
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