
Termination of Simply Moded Logi
 Programs withDynami
 S
hedulingANNALISA BOSSIUniversit�a Ca' Fos
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ari di VeneziaandJAN-GEORG SMAUSUniversit�at FreiburgIn logi
 programming, dynami
 s
heduling indi
ates the feature by means of whi
h the 
hoi
e of theatom to be sele
ted at ea
h resolution step is done at runtime and does not follow a �xed sele
tionrule su
h as the left-to-right one of Prolog. Input 
onsuming derivations were introdu
ed tomodel dynami
 s
heduling while abstra
ting from the te
hni
al details. In this arti
le, we providea suÆ
ient and ne
essary 
riterion for termination of input 
onsuming derivations of simply modedlogi
 programs. The termination 
riterion we propose is based on a denotational semanti
s forpartial derivations whi
h is de�ned in the spirit of model-theoreti
 semanti
s previously proposedfor left-to-right derivations.Categories and Subje
t Des
riptors: F.3.1 [Logi
s and meanings of programs℄: Spe
ifyingand Verifying and Reasoning about Programs|Me
hani
al veri�
ation; I.2.3 [Arti�
ial Intelli-gen
e℄: Dedu
tion and Theorem Proving|Logi
 programming; I.2.2 [Arti�
ial Intelligen
e℄:Automati
 Programming|Program veri�
ationGeneral Terms: Languages, Veri�
ation, TerminationAdditional Key Words and Phrases: Logi
 programs, dynami
 s
heduling, simply moded, termi-nation1. INTRODUCTIONLogi
 programming is based on giving a 
omputational interpretation to a fragmentof �rst order logi
. Kowalski [Kowalski 1979℄ advo
ates the separation of the logi
and 
ontrol aspe
ts of a logi
 program and has 
oined the famous formulaAlgorithm = Logi
 + Control.Conta
t author's address: Sabina Rossi, Dipartimento di Informati
a, Universit�a Ca' Fos
ari diVenezia, via Torino 155, 30172 Venezia, Italy.This arti
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onferen
e paper [Bossi et al. 2001℄.Permission to make digital/hard 
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2 � Annalisa Bossi et al.The programmer should be responsible for the logi
 part. The 
ontrol should betaken 
are of by the logi
 programming system.In reality, logi
 programming is far from this ideal. Without the programmerbeing aware of the 
ontrol and writing programs a

ordingly, most logi
 programswould be hopelessly ineÆ
ient or even non-terminating.One aspe
t of 
ontrol in logi
 programs is the sele
tion rule, stating whi
h atomin a query is sele
ted in ea
h derivation step. The standard sele
tion rule in logi
programming languages is the �xed left-to-right rule of Prolog. While this ruleis appropriate for many appli
ations, there are situations, e.g., in the 
ontext ofparallel exe
utions or the test-and-generate paradigms, that require a more 
exible
ontrol me
hanism, namely, dynami
 s
heduling, where the sele
table atoms aredetermined at runtime.To demonstrate that on the one hand, the left-to-right sele
tion rule is some-times inappropriate, but that on the other hand, the sele
tion me
hanism must be
ontrolled in some way, 
onsider the following programs APPEND and IN ORDER:% append(Xs,Ys,Zs)  Zs is the result of 
on
atenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs),append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ : read tree(Tree), in order(Tree,List), write list(List):where read tree and write list are de�ned elsewhere. If read tree 
annot readthe whole tree at on
e { say, it re
eives the input from a stream { it would beni
e to be able to run the \pro
esses" in order and write list on the availableinput. This 
an only be done properly if one uses a dynami
 sele
tion rule (Prolog'srule would 
all in order only after read tree has �nished, while other �xed ruleswould immediately diverge and/or have an unwanted behavior1. Su
h a me
hanismis provided in modern logi
 programming languages in the form of delay de
larations(also 
alled when de
larations [Naish 1986℄). In the above program, in order to avoidnontermination one 
an de
lare that predi
ates in order, append and write list
an be sele
ted only if their �rst argument is not just a variable. Formally,delay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).1For instan
e, the �xed rule that sele
ts always the se
ond atom in a 
lause body, and that sele
tsthe �rst one only when the body 
ontains only one atom 
an lead to nontermination, as the queryin order(Tree, List) 
an easily diverge. The same applies to the rule that always sele
ts therightmost atom in a query, with the extra problem that write list(List) would be 
alled with anon-instantiated argument: if write list is non-ba
ktra
kable (as many IO predi
ates are) thiswould imply that this sele
tion rule yields to a wrong output.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi
 Programs with Dynami
 S
heduling � 3delay write list(Ls, ) until nonvar(Ls).These de
larations prevent in order, append and write list from being sele
ted\too early", i.e., when their arguments are not \suÆ
iently instantiated". Notethat instead of having interleaving \pro
esses", one 
an also sele
t several atomsin parallel, as long as the delay de
larations are respe
ted. This approa
h to par-allelism has been �rst proposed by Naish [Naish 1988℄ and { as observed by Aptand Luitjes [Apt and Luitjes 1995℄ { \has an important advantage over the onesproposed in the literature in that it allows us to parallelize programs written ina large subset of Prolog by merely adding to them delay de
larations, so withoutmodifying the original program".Compared to other me
hanisms for user-de�ned 
ontrol, e.g., using the 
ut opera-tor in 
onne
tion with built-in predi
ates that test for the instantiation of a variable(var or ground), delay de
larations are more 
ompatible with the de
larative 
har-a
ter of logi
 programming. Nevertheless, many important de
larative propertiesthat have been proven for logi
 programs do not apply to programs with delayde
larations. The problem is mainly related to the fa
t that delay de
larationsmight 
ause deadlo
k situations, in whi
h no atom in the query respe
ts its delayde
laration. For instan
e, for su
h programs the well-known equivalen
e betweenmodel-theoreti
 and operational semanti
s does not hold. As an example, 
onsiderthe query append(X,Y,Z) with the exe
ution me
hanism des
ribed above: it doesnot su

eed (it deadlo
ks) and this is in 
ontrast with the fa
t that (in�nitely many)instan
es of append(X,Y,Z) are 
ontained in the least Herbrand model of APPEND.In order to provide a 
hara
terization of dynami
 s
heduling that is reasonablyabstra
t and hen
e amenable to semanti
 analysis, Smaus [Smaus 1999a℄ introdu
edinput 
onsuming derivations, a formalism very similar to the one of Moded GHC[Ueda and Morita 1994℄. The de�nition of input 
onsuming program relies on the
on
ept of mode. A moded program is a program in whi
h ea
h atom's argumentsare partitioned into input and output ones. Output arguments are those whi
h 
anbe produ
ed by the 
omputation pro
ess, while input arguments should be only
onsumed. Roughly speaking, in an input 
onsuming program only atoms whoseinput arguments are not instantiated through the uni�
ation step are allowed to besele
ted.In [Bossi et al. 2001℄ we have demonstrated that { in many 
ases { the adoption ofthe \natural" delay de
larations is equivalent to 
onsidering only input 
onsumingderivations. This is the 
ase { for instan
e { for the programs mentioned above(together with their natural mode append(I,I,O)2, in order(I,O)): under normal
ir
umstan
es, the adoption of the just stated delay de
larations enfor
es nothingbut a restri
tion to input 
onsuming derivations. In both 
ases, whether we 
onsidersele
tion rules de�ned in terms of a programming language 
onstru
t su
h as delayde
larations, or whether we 
onsider input 
onsuming derivations, we speak of LPwith dynami
 s
heduling.The 
ontribution. The adoption of dynami
 s
heduling has as ultimate goal thatof ensuring the termination of the program under 
onstru
tion, by preventing pos-2In this mode, the �rst two positions are 
onsidered input positions, while the rightmost one isan output one. ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



4 � Annalisa Bossi et al.sible diverging derivations. Nevertheless, while for pure PROLOG programs (i.e.,logi
 programs employing the �xed leftmost sele
tion rule) there exist results 
har-a
terizing when a program is terminating [Apt and Pedres
hi 1994℄, no su
h 
har-a
terization has been found yet for programs with dynami
 s
heduling. In addition,there are relatively few 
ontributions 
on
erning the termination of programs withdynami
 s
heduling.In this paper we ta
kle the problem of establishing the termination of input
onsuming logi
 programs. For this, we restri
t our attention to the 
lass of simplymoded programs, whi
h are programs that are, in a well-de�ned sense, 
onsistentwith respe
t to the intended produ
er/
onsumer behavior (modes). As also shownby the ben
hmarks reported in [Bossi et al. 2001℄, most pra
ti
al programs aresimply moded.The main 
ontribution of this paper is a full 
hara
terization of the 
lass of simplymoded input terminating logi
 programs, i.e., simply moded programs whose input
onsuming derivations starting from a simply moded query are �nite.In order to provide su
h a result, we had to de�ne a new de
larative seman-ti
s that allows us to 
apture the inter-argument relationships of input-
onsumingprograms. Sin
e dynami
 s
heduling also allows for parallelism, in this 
ontext itis important to model the result of partial (i.e., in
omplete) derivations. In fa
t,partial 
omputed answer substitutions may a
tivate suspended pro
esses by meansof interleaving therefore in
uen
ing the termination of the system. To 
apturethis appropriately, we de�ned a denotational semanti
s modeling 
omputed answersubstitutions of in
omplete derivations and enjoying a model-theoreti
al readingas well as a natural bottom-up 
onstru
tive de�nition. We demonstrate that thissemanti
s is 
orre
t and fully abstra
t with respe
t to the 
omputed substitutionsof partial derivations.A �rst attempt to ta
kle this problem has been presented in [Smaus 1999b℄ andextended in [Bossi et al. 2002℄ where we de�ned the 
lass of input terminating pro-grams, i.e., programs whose input 
onsuming derivations are �nite, and 
hara
terizethe sub
lass of simply moded quasi re
urrent programs. It is worth stret
hing thatthis latter 
lass in
ludes only programs whose termination does not depend on theso-
alled inter-argument relationships and therefore it does not in
lude programssu
h that qui
ksort, transpose, list tree. Further 
omparisons are reported inthe 
on
luding se
tion.Stru
ture of the paper. The rest of this paper is organized as follows. The nextse
tion introdu
es some preliminaries. Se
tion 3 shows some useful properties of in-put 
onsuming derivations. Se
tion 4 provides a result on denotational semanti
s forpartial input 
onsuming derivations. Se
tion 5 provides a suÆ
ient and ne
essary
riterion for termination of programs using input 
onsuming partial derivations.In Se
tion 6 we report additional examples. Se
tion 7 dis
usses related work anddraws some 
on
lusions.2. PRELIMINARIESThe reader is assumed to be familiar with the terminology and the basi
 results oflogi
 programs and their semanti
s [Apt 1990; 1997; Lloyd 1987℄. In this se
tionwe introdu
e a few notions that will be used in the sequel.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi
 Programs with Dynami
 S
heduling � 52.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data 
onstru
tors C and a de-numerable set of variable symbols V . For any synta
ti
 obje
t o, we denote byVar(o) the set of variables o

urring in o. A synta
ti
 obje
t is linear if everyvariable o

urs in it at most on
e. A substitution � is a mapping from V to T .Given a substitution � = fx1=t1; : : : ; xn=tng, we say that fx1; : : : ; xng is its domain(denoted by Dom(�)), and Var(ft1; : : : ; tng) is its range (denoted by Ran(�)).Note that Var(�) = Dom(�) [ Ran(�). We denote by � the empty substitution:Dom(�) = Ran(�) = ;. Given a substitution � and a synta
ti
 obje
t E, we de-note by �jE the restri
tion of � to the variables in Var(E), i.e., �jE(x) = �(x)if x 2 Var(E), otherwise �jE(x) = x. If t1; : : : ; tn is a permutation of x1; : : : ; xnthen we say that � is a renaming. The 
omposition of substitutions is denoted byjuxtaposition, i.e., ��(x) = �(�(x)). The result of the appli
ation of a substitution� to a term t is said an instan
e of t and it is denoted by t�. We say that t is avariant of t0, written t � t0, if t and t0 are instan
es of ea
h other. A substitution �is a uni�er of terms t and t0 if t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0. An mgu � of terms t and t0 is 
alled relevant i�Var(�) � Var(t) [ Var(t0).2.2 Programs and DerivationsLet P be a �nite set of predi
ate symbols. An atom is an obje
t of the formp(t1; : : : ; tn) where p 2 P is an n-ary predi
ate symbol and t1; : : : ; tn 2 T . Givenan atom A, we denote by Rel(A) the predi
ate symbol of A. A query is a �nite,possibly empty, sequen
e of atoms A1; : : : ; Am. The empty query is denoted by2. Following the 
onvention adopted in [Apt 1997℄, we use boldfa
e 
hara
ters todenote sequen
es of obje
ts: so, for instan
e, t denotes a sequen
e of terms, while Bis a query (i.e., a possibly empty sequen
e of atoms). A 
lause is a formula H  Bwhere H is an atom (the head) and B is a query (the body). When B is empty,H  B is simply written H and is 
alled a unit 
lause. A program is a �nite setof 
lauses. We denote atoms by A;B;H; : : : ; queries by Q;A;B;C;R; : : : ; 
lausesby 
; d; : : : ; and programs by P .Computations are 
onstru
ted as sequen
es of \basi
" steps. Consider a non-empty query A; B;C and a 
lause 
. Let H  B be a variant of 
 variable disjointfrom A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is 
alleda resolvent of A; B;C and 
 with sele
ted atom B and mgu �. A derivation stepis denoted by A; B;C �=)P;
 (A;B;C)�. The 
lause H  B is 
alled its input
lause. The atom B is 
alled the sele
ted atom of A; B;C.If P is 
lear from the 
ontext or 
 is irrelevant then we drop the referen
e tothem. A derivation is obtained by iterating derivation steps. A maximal sequen
eÆ : Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �is 
alled a derivation of P [ fQ0g provided that for every step the standardizationapart 
ondition holds, i.e., the input 
lause employed is variable disjoint from theinitial query Q0 and from the substitutions and the input 
lauses used at earliersteps.Derivations 
an be �nite or in�nite. If Æ : Q0 �1=)P;
1 � � � �n=)P;
n Qn is a �niteACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



6 � Annalisa Bossi et al.pre�x of a derivation, also denoted by Æ : Q0 ��! Qn with � = �1 � � � �n, we say thatÆ is a partial derivation and � is a partial 
omputed answer substitution of P [ fQ0g.If Æ is maximal and ends with the empty query then � is 
alled 
omputed answersubstitution (
.a.s., for short). In this 
ase we say that the derivation is su

essful.A �nite derivation is 
alled failed if it ends with a non-empty query Q and thereis no input 
lause whose head uni�es with the sele
ted atom of Q. The length of a(partial) derivation Æ, denoted by len(Æ), is the number of derivation steps in Æ.The following de�nition of D-step is due to Smaus [Smaus 1999a℄.De�nition 2.1 (D-step).| Let A; B;C �=) (A;B;C)� be a derivation step. We say that ea
h atomin B� is a dire
t des
endant of B, and for ea
h atom E in (A;C), E� is a dire
tdes
endant of E. We say that E is a des
endant of F if the pair (E;F ) is in there
exive, transitive 
losure of the relation is a dire
t des
endant of.| Consider a derivation Q0 �1=) � � � �i=) Qi � � � �j=) Qj �j+1=) Qj+1 � � �. We saythat Qj �j+1=) Qj+1 � � � is a D-step if D is a subquery of Qi and the sele
ted atomin Qj is a des
endant of an atom in D.Intuitively, a D-step o

urring in a derivation Æ is a derivation step that 
on
ernsthe derivation of the subquery D of some query in Æ.2.3 Moded ProgramsModes are a 
ommon tool for veri�
ation. A mode is a fun
tion that labels as inputor output the positions of ea
h predi
ate in order to indi
ate how the argumentsof a predi
ate should be used. A program (resp. a query, an atom) is 
alled modedwhenever it is provided with a mode.De�nition 2.2 (mode). A mode for a predi
ate symbol p of arity n, is a fun
tionmp from f1; : : : ; ng to fI ;Og.If mp(i) = I (resp. O), we say that i is an input (resp. output) position of p(with respe
t to mp). In examples, we often indi
ate the mode by writing the atomp(mp(1); : : : ;mp(n)), e.g., append(I ; I ;O).We assume that ea
h predi
ate symbol has a unique mode asso
iated to it; multi-ple modes may be obtained by simply renaming the predi
ates. We denote by In(Q)(resp. Out(Q)) the sequen
e of terms �lling in the input (resp. output) positionsof predi
ates in Q. Moreover, when writing an atom as p(s; t), we are indi
atingthat s is the sequen
e of terms �lling in its input positions and t is the sequen
e ofterms �lling in its output positions.In the literature, several 
orre
tness 
riteria 
on
erning the modes have beenproposed, e.g., ni
ely and well-modedness [Apt 1997℄. In the sequel of the paper wewill restri
t ourselves to programs and queries whi
h are simply moded [Apt andEtalle 1993℄.De�nition 2.3 (simply moded). A 
lause H  B1; : : : ; Bn is simply moded if| Out(B1; : : : ; Bn) is a linear ve
tor of variables,| Var(In(H)) \Var(Out(B1; : : : ; Bn)) = ;,| for all i 2 [1::n℄, Var(Out(Bi)) \ Var(In(B1; : : : ; Bi)) = ;.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi
 Programs with Dynami
 S
heduling � 7A query B is simply moded if the 
lause q  B is simply moded, where q is anyvariable-free atom. A program is simply moded if all of its 
lauses are.Thus a 
lause is simply moded if the output positions of body atoms are �lled inby distin
t variables, and every variable o

urring in an output position of a bodyatom does not o

ur in an earlier input position. In parti
ular, every unit 
lause issimply moded.Example 2.4.| The program APPEND of the introdu
tion in the mode append(I ; I ;O) is simplymoded.| The following program REVERSE with a

umulator in the mode de�ned belowis simply moded.mode reverse(I,O).mode reverse a

(I,O,I)reverse(Xs,Ys)  reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs)  reverse a

(Xs,Ys,[X|Zs℄).In De�nition 2.3, if we drop the 
ondition that output positions of body atomsare �lled in by variables then we obtain the de�nition of ni
ely moded programsand queries. Therefore the 
lass of simply moded programs is properly 
ontainedin the 
lass of ni
ely moded programs.2.4 Input Consuming DerivationsThe notion of input 
onsuming derivation was introdu
ed in [Smaus 1999a℄ asformalism for des
ribing dynami
 s
heduling in an abstra
t way and is de�ned asfollows.De�nition 2.5 (input 
onsuming).| A derivation step A; B;C �=) (A;B;C)� is input 
onsuming if In(B)� =In(B).| A derivation is input 
onsuming if all its derivation steps are input 
onsuming.Example 2.6. Consider the program REVERSE with a

umulator in the modesde�ned above. The derivation Æ of REVERSE [ freverse([X1,X2℄,Zs)g depi
tedbelow is input 
onsuming.Æ: reverse([X1,X2℄,Zs) ) reverse a

([X1,X2℄,Zs,[ ℄) )reverse a

([X2℄,Zs,[X1℄) ) reverse a

([ ℄,Zs,[X2,X1℄) ) 2.Allowing only input 
onsuming derivations is a form of dynami
 s
heduling, sin
ewhether or not an atom 
an be sele
ted depends on its degree of instantiation atruntime. Given a non-empty query, if no atom is resolvable via an input 
onsumingderivation step and no failure arises, then we say that the query deadlo
ks.In previous works many important properties of input 
onsuming derivationshave been proven by 
onsidering various 
lasses of programs and queries. In thisarti
le, we fo
us on the simply moded ones, but we 
onsider results that hold onlyACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



8 � Annalisa Bossi et al.for this 
lass as well as results that hold for larger 
lasses, e.g., the 
lass of ni
elymoded programs and queries.The following lemma is a straightforward 
onsequen
e of [Apt and Luitjes 1995,Lemma 30℄.Lemma 2.7. In a input 
onsuming derivation, every resolvent of a ni
ely (resp.simply) moded query and a ni
ely (resp. simply) moded 
lause is ni
ely (resp. sim-ply) moded.The following result has been proven in [Bossi et al. 2002℄ for ni
ely modedprograms and queries. It states that the only variables of a ni
ely moded querythat 
an be \a�e
ted" through the 
omputation of an input 
onsuming derivationwith a ni
ely moded program are those o

urring in some output positions.Lemma 2.8. Let the program P and the query Q be ni
ely moded. Let alsoQ ��! Q0 be a (partial) input 
onsuming derivation of P [ fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.The next lemma shows that input 
onsuming derivations are invariant underrenaming.Lemma 2.9. Let P be a program, Q be a query and Æ : Q ��! Q0 be a (partial)input 
onsuming derivation of P [ fQg. Then, for any renaming � there exists a(partial) input 
onsuming derivation Æ0 : Q� #�! Q0� where # = ��1��.Proof. First noti
e that(1) if 
 is a 
lause renamed apart with respe
t to a query Q then 
� is renamedapart with respe
t to Q�,(2) if A and H are uni�able with mgu � then A� and H� are uni�able with mgu��1��,(3) if In(A�) = In(A) then In(A���1��) = In(A��) = In(A�).Consider now the list of 
lauses 
1; : : : ; 
n employed in Æ and the 
orresponding list ofmgu's, �1; : : : ; �n, where � = �1; � � � ; �n. By (1) and (2) we 
an 
onstru
t a derivationÆ0 starting from Q� with input 
lauses 
1�; : : : ; 
n� and uni�ers ��1�1�; : : : ; ��1�n�.We obtain a derivation Æ0 : Q� #�! Q0� whi
h is input 
onsuming (by (3)) and whose
omputed answer substitution is # = (��1�1�)(��1�2�) � � � (��1�n�) = ��1�1 � � � �n� =��1��.We re
all below the Left-Swit
hing Lemma that has been proven in [Bossi et al.2002℄.Lemma 2.10 (Left-Swit
hing). Let the program P and the query Q0 be ni
elymoded. Let Æ be a partial input 
onsuming derivation of P [ fQ0g of the formÆ : Q0 �1=)
1 Q1 � � �Qn �n+1=)
n+1 Qn+1 �n+2=)
n+2 Qn+2where| Qn is a query of the form A; A;B; B;C,| Qn+1 is a resolvent of Qn and 
n+1 wrt. B,| Qn+2 is a resolvent of Qn+1 and 
n+2 wrt. A�n+1.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi
 Programs with Dynami
 S
heduling � 9Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 su
h that�n+1�n+2 = �0n+1�0n+2and Æ0 : Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where Æ0 is input 
onsuming and| Æ and Æ0 
oin
ide up to the resolvent Qn,| Q0n+1 is a resolvent of Qn and 
n+2 wrt. A,| Qn+2 is a resolvent of Q0n+1 and 
n+1 wrt. B�0n+1,| Æ and Æ0 
oin
ide after the resolvent Qn+2.Lemma 2.10 suggests the following de�nition whi
h introdu
es a way of orderingthe sele
ted atoms in an input 
onsuming derivation of a simply moded query.De�nition 2.11. A partial derivation Æ : Q0 =) Q1 � � � =) Qn of a simplymoded query Q0 pro
eeds left-to-right if whenever an atom B is sele
ted in a re-solvent Qi : A; B;C then no A-step is performed in the rest of the derivationQi+1 �! Qn.The next 
orollary is an immediate 
onsequen
e of the Left-Swit
hing Lemma.Intuitively, it says that any resolvent in an input 
onsuming derivation of a simplymoded query 
an be obtained by an input 
onsuming derivation whi
h pro
eedsleft-to-right.Corollary 2.12. Let the program P and the query A;B be simply moded. Sup-pose that Æ : A;B ��! C is a (partial) input 
onsuming derivation of P [ fA;Bg.Then there exist C1 and C2 and a (partial) input 
onsuming derivation Æ0 thatpro
eeds left-to-right of the formÆ0 : A;B �1�! C1;B�1 �2�! C1;C2su
h that len(Æ) = len(Æ0), C = C1;C2, � = �1�2, all the A-steps are performed inthe pre�xA;B �1�! C1;B�1, all the B-steps are performed in the suÆx C1;B�1 �2�!C1;C2 and C1�2 = C1.Proof. By repeatedly applying the Left Swit
hing Lemma, Æ is equivalent to aderivation Æ0 in whi
h all the A-steps are 
arried out before the B-steps. C1;B�1is the resolvent that we obtain after 
arrying out the A-steps. By the persisten
eof simply-moded queries (Lemma 2.7), C1;B�1 is simply-moded. Therefore, byLemma 2.8, �2 has no in
uen
e on C1 (i.e., C1�2 = C1).3. SIMPLY LOCAL SUBSTITUTIONSWhen input 
onsuming derivations are applied to simply moded programs andqueries, important properties follow from the way 
lauses be
ome instantiated dur-ing the derivation pro
ess. We introdu
e simply lo
al substitutions to re
e
t thisinstantiation me
hanism. A 
lause 
:= H  B1; : : : ; Bn be
omes instantiated byits \
aller" the atom that is resolved using 
) and its \
allees" (the 
lauses used toACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



10 � Annalisa Bossi et al.resolve the body atoms of 
). Thus, a simply lo
al substitution is de�ned as the
omposition of several substitutions, �0; �1 : : : ; �n, one for ea
h atom in the given
lause, su
h that �0 binds the input variables of the head of the 
lause, and ea
h �i(i > 0) 
reates a binding between the output variables and the input terms of Bi(instantiated by the previous substitutions �0; : : : ; �i�1). The de�nition involvesvariable sets v0; v1; : : : ; vn. Intuitively, the variables in v0 
ome from the \
aller"and the variables in v1; : : : ; vn 
ome from the \
allees".De�nition 3.1 (simply lo
al substitution). Let � be a substitution. We say that� is simply lo
al wrt. the 
lause H  B1; : : : ; Bn if there exist substitutions�0; �1 : : : ; �n and disjoint sets of fresh (wrt. 
) variables v0; v1; : : : ; vn su
h that� = �0�1 � � ��n where| Dom(�0) � Var(In(H)) and Ran(�0) � v0,| for i 2 [1::n℄,Dom(�i) � Var(Out(Bi)) and Ran(�i) � Var(In(Bi)�0�1 � � ��i�1) [ vi.The substitution � is simply lo
al wrt. a query B if � is simply lo
al wrt. the 
lauseq  B where q is any variable-free atom.Given a simply lo
al substitution �, we 
all the set of fresh variables of � theunion of the sets v0; v1; : : : ; vn introdu
ed in the above de�nition.Note that in the 
ase of a simply lo
al substitution wrt. a query, �0 is the emptysubstitution, sin
e Dom(�0) � Var(q) where q is an (imaginary) variable-free atom.Example 3.2. Consider the program APPEND with the modes append(I,I,O)and its re
ursive 
lause
 : append([HjXs℄; Ys; [HjZs℄)  append(Xs; Ys; Zs):The substitution � = fXs=[℄; Ys=W; Zs=Wg is simply lo
al wrt. 
. In fa
t, let �0 =fXs=[℄; Ys=Wg and �1 = fZs=Wg be two substitutions and v0 = fWg and v1 = ; betwo disjoint sets of fresh (wrt. 
) variables. A

ording to De�nition 3.1, we have � =�0�1, Dom(�0) � Var(In(append([HjXs℄; Ys; [HjZs℄))), Ran(�0) � v0, Dom(�1) �Var(Out(append(Xs; Ys; Zs))) and Ran(�1) � Var(In(append(Xs; Ys; Zs))�0) [ v1.Consider now the queryQ : append([a; X; 
℄; Ys; Zs); append(Zs; [b℄; Ls):The substitution � = fZs=[a,X,
|Ys℄g is simply lo
al wrt. Q. In fa
t � = �1�2where �1 = fZs=[a,X,
|Ys℄g and �2 is the empty substitution, and v1 and v2 areempty sets of variables.The following property follows immediately from De�nition 3.1.Proposition 3.3. Let the 
lause 
 be simply moded and � be a renaming. If thesubstitution � is simply lo
al wrt. 
 then the substitution ��1�� is simply lo
al wrt.
�.The next lemma provides us with a means of 
omposing substitutions whi
h aresimply lo
al with respe
t to pie
es of queries provided that they satisfy the followingvariable 
ompatible property.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 11De�nition 3.4. Let #1 be a substitution simply lo
al wrt. A and #2 be simplylo
al wrt. B#1. Then #1 and #2 are variable 
ompatible wrt. A and B if| the set of fresh variables of #1 is disjoint from the set of fresh variables of #2,| Var(A;B) is disjoint from the set of fresh variables of #1 and #2.When two substitutions are variable 
ompatible then we have a way of 
ombiningthem as des
ribed below.Lemma 3.5. Let the query A;B be simply moded. There exists a substitution �simply lo
al wrt. A;B i� � = #1#2 where| #1 = �jA = �jOut(A) is simply lo
al wrt. A,| #2 = �jB = �jOut(B) simply lo
al wrt. B#1,| #1 and #2 are variable 
ompatible wrt. A and B.Proof. Let A = A1; : : : ; Ai and B = Ai+1; : : : ; An.)) Let � = �1 � � ��n be a

ording to De�nition 3.1. By de�nition of simply lo
alsubstitution and properties of simply moded queries, for every k; j 2 [1::n℄ and k 6=j, Dom(�k) \ Dom(�j) = ;, Out((Ak+1; : : : ; An)�1 � � ��k) = Out(Ak+1; : : : ; An)and ((A1; : : : ; Ak)�1 � � ��k)�k+1 � � ��n = (A1; : : : ; Ak)�1 � � ��k. Thus �jA = �1 � � ��iis simply lo
al wrt. A and �i+1 � � ��n is simply lo
al wrt. (Ai+1; : : : ; An)�1 � � ��i.() Let #1 = �1 � � ��i and #2 = �i+1 � � ��n. To prove that #1#2 = �1 � � ��n is sim-ply lo
al wrt. A;B, it is suÆ
ient to observe that by de�nition of simply lo
al sub-stitution and properties of simply moded queries, Out((Ai+1; : : : ; An)�1 � � ��i) =Out(Ai+1; : : : ; An) and hen
e for all j 2 [i+ 1::n℄, Dom(�j) � Var(Out(Aj)). Thefa
t that #1 and #2 are variable 
ompatible ensures that the 
omposition #1#2 satis-�es the requirement on fresh variables in the de�nition of simply lo
al substitution.Analogously, one 
an prove the following result whi
h allows us to 
ombine simplylo
al substitutions applied to a 
lause rather than to a query.Lemma 3.6. Let the 
lause 
 : H  B be simply moded. There exists a substi-tution � simply lo
al wrt. 
 i� � = #0#1 where| #0 = �jH = �jIn(H) is simply lo
al wrt. H  ,| #1 = �jB = �jOut(B) simply lo
al wrt. B#0,| #0 and #1 are variable 
ompatible wrt. H and B.The following de�nition introdu
es a property of mgu's whi
h 
an be naturallysatis�ed by input 
onsuming derivations, as shown in the subsequent lemma. Theproof of the lemma is reported in the appendix.De�nition 3.7 (simply lo
al mgu). Let the atoms A and H be variable disjoint,A be simply moded and � be a mgu of A and H su
h that In(A�) = In(A). Wesay that � is a simply lo
al mgu of A and H if � = �0�1 where �0 is simply lo
alwrt. the 
lause H  and �1 is simply lo
al wrt. the atom A.Lemma 3.8. Let the atoms A and H be variable disjoint and A be simply moded.Suppose that there exists # = mgu(A;H) su
h that In(A#) = In(A). Then thereexist a simply lo
al mgu � of A and H.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



12 � Annalisa Bossi et al.Note that previous Lemma 3.8 together with Theorem 3.18 in [Apt 1997℄ (onderivations with di�erent mgu's), ensures us that as long as we are interested inproperties whi
h are invariant under renaming, we 
an safely assume that all themgu's employed in an input 
onsuming derivation of a simply moded program witha simply moded query are simply lo
al.Example 3.9. Consider the predi
ate p=2 in the mode p(I ;O) and the atomsA = p(f(X; Y); Z) H = p(W; U):Note that there exists an mgu # of A and H su
h that In(A#) = In(A). In fa
t,there are a
tually two relevant mgus whi
h enjoy this property:#1 = fW=f(X; Y); U=Zg #2 = fW=f(X; Y); Z=Ugbut only the se
ond one is simply lo
al. Note also that when A and H are variabledisjoint and # is a simply lo
al mgu of A and H then the variables in Out(A) donot o

ur anymore in A#.The next lemma shows a persisten
y property of simply lo
al substitutions. Itprovides one of the key intuitions for the development of the bottom-up semanti
sof next se
tion. Its proof is reported in the appendix.Lemma 3.10. Let Q : A;R be a simply moded query, Q0 : (B;R)# and Q #=) Q0be an input 
onsuming derivation step obtained by using the simply moded 
lause
 : H  B and the simply lo
al mgu #. Let � be a substitution simply lo
al wrt. Q0su
h that the set of fresh variables of � is disjoint from Var(Q) and Var(
). Then(#�)jQ is simply lo
al wrt. Q.4. A DENOTATIONAL SEMANTICS FOR PARTIAL DERIVATIONSAs we mentioned in the introdu
tion, input 
onsuming derivations 
an be used tomodel parallelism, and in this 
ontext it is very important to model the results ofpartial 
omputations. Indeed, standard semanti
s for 
on
urrent logi
 languagessu
h as CCP [Etalle et al. 2002; Saraswat and Rinard 1990℄ and GHC [Ueda andFurukawa 1988℄ often 
apture su
h intermediate results, or in any 
ase, the resultsof non-su

essful 
omputations [de Boer and Palamidessi 1991℄. In fa
t, input 
on-suming programs 
an have a rea
tive nature: the (partial) result of a 
omputationmay trigger another 
omputation by instantiating suÆ
iently the input positionsof another atom so that it be
omes resolvable. Be
ause of this, when one wants to
hara
terize for instan
e termination, the adoption of a semanti
s modeling inter-mediate results be
omes essential.In this se
tion we de�ne a denotational semanti
s that models partial 
omputedanswer substitutions of input 
onsuming derivations of simply moded programs andqueries. We will later see how this semanti
s allows us to 
hara
terize terminationof input 
onsuming derivations.4.1 Immediate 
onsequen
e operatorIn predi
ate logi
, an interpretation states whi
h formulas are true and whi
h onesare not. For our purposes, it is 
onvenient to formalize this by de�ning an interpre-tation I as a set of atoms 
losed under varian
e. Based on this notion and simplylo
al substitutions, we now de�ne a restri
ted notion of model.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 13De�nition 4.1 (simply lo
al model). Let M be an interpretation. We say thatM is a simply lo
al model of a 
lause 
 : H  B1; : : : ; Bn if for every substitution� simply lo
al wrt. 
, if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply lo
al model of a program P if it is a simply lo
al model of ea
h 
lauseof it.Clearly a simply lo
al model is not ne
essarily a model in the 
lassi
al sense,sin
e the substitution � in (1) is required to be simply lo
al. For example, giventhe program fq(1):; p(X)  q(X):g with modes q(I ); p(O), a model must 
ontainthe atom p(1), whereas a simply lo
al model does not ne
essarily 
ontain p(1), sin
efX=1g is not simply lo
al wrt. p(X)  q(X): On the other hand, any term model(see [Apt 1997℄) is a simply lo
al model, while there are Herbrand models whi
hare not simply lo
al.We now show that there exists a minimal simply lo
al model and that it isbottom-up 
omputable. For this we need the following operator TSLP on interpre-tations.De�nition 4.2 (TSLP operator). Given a program P and an interpretation I , wede�ne T slP (I) = fH� j 9 
 : H  B1; : : : ; Bn variant of a 
lause in P;� is simply lo
al wrt. 
;B1�; : : : ; Bn� 2 Igand TSLP (I) = (T slP + id)(I) = I [ T slP (I):It is easy to show that both T slP and TSLP are monotoni
 and 
ontinuous on thelatti
e where interpretations are ordered by set in
lusion. We 
onsider powers ofan operator T whi
h are de�ned in the standard way as follows: T " 0(I) = I ,T " (i+ 1)(I) = T (T " i(I)), and T " !(I) = S1i=0 T " i(I).We now show that if I 
onsists of simply moded atoms then TSLP " !(I) is asimply lo
al model of P 
ontaining I . In the following we denote by SM P the setof all simply moded atoms of the extended Herbrand universe of P . The proof ofthe next proposition is reported in the appendix.Proposition 4.3. Let P be simply moded and I � SM P be an interpretation.Then TSLP " !(I) is the least simply lo
al model of P 
ontaining I.The following lemma relates partial input 
onsuming derivations of simply modedprograms and queries with powers of the TSLP operator. It is the key result to relatethe operational semanti
s of partial input 
onsuming derivations to the denotationalsemanti
s introdu
ed below. The proof is reported in the appendix.Lemma 4.4. Let the program P and the query A be simply moded and I � SM Pbe an interpretation. The following statements are equivalent:(i) there exists an input 
onsuming derivation Æ : A #�!P C with C � I,(ii) there exists a substitution � simply lo
al wrt. A, su
h that A� � TSLP " !(I),where A# and A� are variant.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



14 � Annalisa Bossi et al.4.2 Modeling the results of partial derivationsThe results of partial input 
onsuming derivations of simply moded queries in simplymoded programs are 
aptured by the following operational semanti
s.De�nition 4.5 (partial 
.a.s. semanti
s). Let the program P be simply moded.OSMP (P ) = fA�jA is simply moded and there exists A ��!P C with C � SM P g:The next theorem shows that the denotational semanti
s provided by the leastsimply lo
al model of P 
ontaining SM P is 
orre
t and fully abstra
t with respe
tto the operational semanti
s of partial 
omputed answer substitutions OSMP (P ).The proof follows immediately by Lemma 4.4 above.Theorem 4.6. Let P be simply moded. Then OSMP (P ) = TSLP " !(SM P ).In the following we denote by PM SLP the least simply lo
al model of P 
ontainingSM P .Example 4.7. Consider again program APPEND. PM SLAPPEND is obtained by repeat-edly applying the TSLP operator, starting from any simply moded atom, i.e., an atomof the form append(s; t; x) where s and t are arbitrary terms but x is a variable noto

urring in s or in t. Hen
e,PM SLAPPEND = fappend([t1; : : : ; tm℄; t; [t1; : : : ; tmjt℄)g[ fappend(s; t; x) j x is a fresh variable g[ fappend([t1; : : : ; tmjs℄; t; [t1; : : : ; tmjx℄) j x is a fresh variablegwhere s; t; t1; : : : ; tm are arbitrary terms, and m � 0Consider now the query append([a; b; 
jX℄; Y; Z). The substitution �=fZ=[a; bjZ0℄gis simply lo
al wrt. that query and append([a; b; 
jX℄; Y; [a; bjZ0℄) 2 PM SLAPPEND. Us-ing Theorem 4.6, we 
an 
on
lude that the query has a partial derivation with
omputed answer �. Following the same reasoning, we 
an also 
on
lude that thequery has a partial derivation with 
omputed answer �0 = fZ=[ajZ0℄g.5. TERMINATIONIn this se
tion, we show how the denotational semanti
s 
an be used to give a
hara
terization of termination of input 
onsuming derivations, in a similar way asthis has been done previously for LD-derivations [Apt and Pedres
hi 1994; Ruggieri1997℄.Input 
onsuming derivations were originally 
on
eived as an abstra
t and \rea-sonably strong" assumption about the sele
tion rule in order to prove termina-tion [Smaus 1999b℄. The �rst result in this area was a suÆ
ient 
riterion appli
ableto well- and ni
ely moded programs. This was improved upon by dropping therequirement of well-modedness, whi
h means that one also 
aptures termination bydeadlo
k.The previous approa
hes are appli
able as long as ea
h re
ursive 
lause in theprogram is dire
t re
ursive, i.e., the stru
ture upon whi
h the re
ursion is 
arried outis passed dire
tly from the 
lause head to the re
ursive 
all in the body. Typi
ally,this means that the 
lause has the form p(: : : ; s; : : :)  A; p(: : : ; t; : : :);C, where tis a proper subterm of s.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 15In this se
tion we de�ne the 
lass of simply a

eptable programs whi
h in
ludesprograms whose termination 
annot be proven without taking into a

ount inter-argument relations. This means that for a 
lause p(: : :)  A; p(: : :);C, we needto take into a

ount how A and C might instantiate the body atom p(: : :) inorder to establish termination. In this 
ase, simply lo
al models and simply lo
alsubstitutions 
onvey the needed information.5.1 Simply A

eptable ProgramsNote that programs without re
ursion terminate trivially. In order to deal withmutually re
ursive pro
edures we need the following standard de�nitions [Apt 1997℄.De�nition 5.1. Let P be a program, p and q be relations. We say that p refersto q in P if there is a 
lause in P with p in the head and q in the body; p dependson q in P , and we write p w q, if (p; q) is in the re
exive and transitive 
losureof the relation refers to; p and q are mutually re
ursive, written p ' q, if p and qdepend on ea
h other (i.e., p w q and q w p). We also write p = q when p w q andq 6w p.To prove termination, it is 
ommon to use some measure of size for atoms in aquery, often 
alled level mapping. To show termination of moded programs, it isnatural to use moded level mappings, where it is made expli
it that the level of anatom depends only on its input positions. This 
on
ept was originally de�ned forground atoms [Etalle et al. 1999℄. Generalizing the de�nition to arbitrary atoms is
ru
ial for showing termination of input 
onsuming derivations.De�nition 5.2 (moded level mapping). A fun
tion j j is a moded level mapping ifit maps atoms into N and for any two atoms A and B, if A and B have the samepredi
ate symbol and the same terms in their input positions, then jAj = jBj.In other words, the level of an atom has to be independent from the termso

urring in its output positions. For our purposes it is not ne
essary to requirethat the level mapping is invariant under renaming, yet this being the most 
ommon
ase.We now provide the 
entral de�nitions of this se
tion.De�nition 5.3 (input terminating). A program is 
alled input terminating wrt. agiven 
lass C of queries if all its input 
onsuming derivations starting in query inC are �nite.In parti
ular, we say that P is input terminating wrt. simply moded queries if forea
h simply moded query Q, all input 
onsuming derivations of P [ fQg terminate.The basi
 notion for proving input termination is simply a

eptability, whi
h isin analogy to a

eptability [Apt and Pedres
hi 1994℄.De�nition 5.4 (simply a

eptable). Let P be a program and M a simply lo
almodel of P 
ontaining SM P . A 
lause 
 is simply a

eptable wrt. the moded levelmapping j j and M if for every variant H  A; B;C of 
 and every substitution �simply lo
al wrt. 
,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



16 � Annalisa Bossi et al.The program P is simply a

eptable wrt. M if there exists a moded level mappingj j su
h that ea
h 
lause of P is simply a

eptable wrt. j j and M . We also saythat P is simply a

eptable if it is simply a

eptable wrt. some M and moded levelmapping j j.The di�eren
e between a

eptability and simply a

eptability is that a

eptabil-ity is based on the 
lassi
al notion of model and 
onsequently on ground instan
esof a 
lause, whereas simply a

eptability is based on simply lo
al models 
ontain-ing SMP . These models allow us to model 
orre
tly the behaviour indu
ed by thedynami
 s
heduling and to 
apture the results of partial 
omputations. Anotherimportant di�eren
e with a

eptability is that the level mapping de
reasing is nowrequired for mutually re
ursive 
alls only.It is important to realize why we need to model partial results. Consider thefollowing programq(a)  q(a).p(a)  fail.mode q(I)mode p(O)Noti
e that the query q(X) terminates by deadlo
k, while q(a) loops. Now 
on-sider the query p(X),q(X). This query 
an yield to a nonterminating 
omputationbe
ause the query p(X), before failing, reports the partial answer fX/ag. If { inorder to prove termination { we referred to a 
lassi
al model (modeling only su
-
essful derivations) then we would not be able to see that the above program 
oulddiverge, be
ause we would not 
onsider fX/ag as a possible answer substitution.In the next two se
tions, we prove that simply a

eptability is a suÆ
ient andne
essary 
riterion for input termination wrt. simply moded queries.5.2 SuÆ
ien
y of Simply A

eptabilityThe following 
orollary of [Bossi et al. 2002, Lemma 22℄ allows us to restri
t ourattention to queries 
ontaining only one atom.Corollary 5.5. Let P be a simply moded program. P is input terminating wrt.simply moded queries if and only if for ea
h simply moded atomi
 query A all input
onsuming derivations of P [ fAg are �nite.>From now on, we say that a relation p is de�ned in the program P if p o

ursin a head of a 
lause of P , and that P extends the program R if no relation de�nedin P o

urs in R.The following theorem shows that simply a

eptability is a suÆ
ient 
riterion forinput termination wrt. simply moded queries, and 
an be used in a modular way.Theorem 5.6. Let P and R be two simply moded programs su
h that P extendsR. Let M be a simply lo
al model of P [ R 
ontaining SM P . Suppose that| R is input terminating wrt. simply moded queries,| P is simply a

eptable wrt. M (and a moded level mapping j j).Then P [R is input terminating wrt. simply moded queries.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 17Proof. First, for ea
h predi
ate symbol p, we de�ne depP (p) to be the numberof predi
ate symbols it depends on: depP (p) = #fqj q is de�ned in P and p w qg.Clearly, depP (p) is always �nite. Further, it is immediate to see that if p ' q thendepP (p) = depP (q) and that if p = q then depP (p) > depP (q).We 
an now prove our theorem. By Corollary 5.5, it is suÆ
ient to prove thatfor any simply moded atomi
 query A, all input 
onsuming derivations of P [ fAgare �nite.First noti
e that if A is de�ned in R then the result follows immediately fromthe hypothesis that R is input terminating wrt. simply moded queries and that Pis an extension of R. So we 
an assume that A is de�ned in P .For the purpose of deriving a 
ontradi
tion, assume that Æ is an in�nite input
onsuming derivation of (P [ R) [ fAg su
h that A is de�ned in P . ThenÆ : A #1=) (B1; : : : ; Bn)#1 #2=) � � �where 
 : H  B1; : : : ; Bn is the input 
lause used in the �rst derivation step and#1 = mgu(A;H). Clearly, (B1; : : : ; Bn)#1 has an in�nite input 
onsuming deriva-tion in P [R. By Corollary 2.12 and Lemma 3.8, for some i 2 [1::n℄ and for somesubstitution #02,(1) there exists an in�nite input 
onsuming derivation of (P [ R) [ fAg of the formA #1=) (B1; : : : ; Bn)#1 #02�! C; (Bi; : : : ; Bn)#1#02 � � � ;(2) there exists an in�nite input 
onsuming derivation of P [ fBi#1#02gboth employing only simply lo
al mgu's.Let � = (#1#02)j
. It is not diÆ
ult to see that � is simply lo
al wrt. 
 (this is a
onsequen
e of Proposition A.1, reported in the appendix). Consider the instan
eH�  (B1; : : : ; Bn)� of 
. By Theorem 4.6, (B1; : : : ; Bi�1)� 2M .We show that (2) 
annot hold, by indu
tion on hdepP (Rel(A)); jAji with respe
tto the ordering � de�ned by: hm;ni � hm0; n0i if either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 (jAj is arbitrary). In this 
ase, A does not dependon any predi
ate symbol of P , thus all the Bi as well as all the atoms o

urring inits des
endants in any input 
onsuming derivation are de�ned in R. The hypothesisthat R is input terminating wrt. simply moded queries 
ontradi
ts (2) above.Indu
tion step. We distinguish two 
ases:(1) Rel(H) = Rel(Bi),(2) Rel(H) ' Rel(Bi).In 
ase (a) we have depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)): Therefore,hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji:In 
ase (b), from the hypothesis that P is simply a

eptable wrt. j j and M , � issimply lo
al wrt. 
 and (B1; : : : ; Bi�1)� 2M , it follows that jH�j > jBi�j. Considerthe partial input 
onsuming derivation A ��! C; (Bi; : : : ; Bn)�. By Lemma 2.8 andthe fa
t that j j is a moded level mapping, we have that jAj = jA�j = jH�j. Hen
e,hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In both 
ases, the 
ontradi
tion follows by the indu
tive hypothesis.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



18 � Annalisa Bossi et al.% qui
ksort(Xs, Ys)  Ys is an ordered permutation of Xs.qui
ksort(Xs,Ys)  qui
ksort dl(Xs,Ys,[℄).
1: qui
ksort dl([X|Xs℄,Ys,Zs)  partition(Xs,X,Littles,Bigs),qui
ksort dl(Bigs,Ys1,Zs),qui
ksort dl(Littles,Ys,[X|Ys1℄).qui
ksort dl([℄,Xs,Xs).
2: partition([X|Xs℄,Y,[X|Ls℄,Bs)  X =< Y, partition(Xs,Y,Ls,Bs).
3: partition([X|Xs℄,Y,Ls,[X|Bs℄)  X > Y, partition(Xs,Y,Ls,Bs).partition([℄,Y,[℄,[℄). Fig. 1. The QUICKSORT programThe above theorem suggests proving termination in a modular way, i.e., extendinga program that is already known to be input terminating wrt. simply moded queriesby a program that is simply a

eptable. Of 
ourse, this theorem holds in parti
ularif the former program is empty.Theorem 5.7. Let P be a simply moded program. If P is simply a

eptable thenit is input terminating wrt. simply moded queries.Proof. The proof follows from Theorem 5.6, by setting R = ;.Example 5.8. Figure 1 shows qui
ksort using a form of di�eren
e lists [Ster-ling and Shapiro 1986, program 15.3℄ (we permuted two body atoms for the sakeof 
larity). This program is simply moded wrt. the modefqui
ksort(I ;O); qui
ksort dl(I ;O ; I ); partition(I ; I ;O ;O); =<(I ; I );>(I ; I )g.We show that it is simply a

eptable. We start by de�ning the level mapping.De�ne fun
tion len aslen([hjt℄) = 1 + len(t);len(a) = 0 if a is not of the form [hjt℄:We use the following moded level mapping (where positions with are irrelevant):jqui
ksort dl(l; ; )j = len(l);jpartition(l; ; ; )j = len(l):The level mapping of all other atoms 
an be set to 0. Con
erning the simply lo
almodel, the 
ru
ial aspe
t with respe
t to termination is that it has to express thedependen
y between the list lengths of the arguments of partition. To this end,the simplest solution is to 
hoose it so that M restri
ted to partition 
ontainsexa
tly the atoms of the form partition(t1; t2; t3; t4) wherelen(t1) � len(t3) and len(t1) � len(t4): (2)The presen
e (or absen
e) of other atoms is irrelevant for showing simple-a

eptability,so the simplest way of building a simply lo
al model is that of adding all other atomsACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 19not de�ning partition. LetM = fpartition(t1; t2; t3; t4) j len(t1) � len(t3) and len(t1) � len(t4)g[ fqui
ksort dl(r; s; t) j for all r; s; tg[ fqui
ksort(r; s) j for all r; sg[ f=<(r; s); >(r; s) j for all r; sg:Noti
e that M in
ludes all simply moded atoms. It is easy to show that the pro-gram is simply a

eptable wrt. M and j j and hen
e input terminating wrt. simplymoded queries. In fa
t:| Consider 
1, the �rst 
lause de�ning qui
ksort dl. For every substitution�, simply lo
al wrt. 
1, we have to show that- If partition(Xs; X; Littles; Bigs)� 2M , thenjqui
ksort dl([XjXs℄; Ys; Zs)�j > jqui
ksort dl(Bigs; Ys1; Zs)�j.This follows immediately from the de�nition of level mapping j j and the fa
t thatsin
e partition(Xs; X; Littles; Bigs)� 2M , we have len(Bigs)� � len(Xs)�.- If (partition(Xs; X; Littles; Bigs); qui
ksort dl(Bigs; Ys1; Zs))� 2 M , thenjqui
ksort dl([XjXs℄; Ys; Zs)�j> jqui
ksort dl(Littles; Ys; [XjYs1℄)�j.This is analogous to the previous point and follows by the de�nition of j j and thefa
t that sin
e partition(Xs; X; Littles; Bigs)� 2M , len(Littles)� � len(Xs)�.| Next, we 
onsider 
2. We have to show that for ea
h simply lo
al substitution� su
h that (X =< Y)� 2M ,jpartition([X|Xs℄,Y,[X|Ls℄,Bs)�j > jpartition(Xs,Y,Ls,Bs)�j.This follows dire
tly from the de�nition of j j (the fa
t that (X =< Y)� 2 M is notused here).| Finally, we 
onsider the other 
lauses. Clause 
3 is handled as 
2, while allother ones are not re
ursive (not even mutually), and therefore they are triviallysimply a

eptable.There is one aspe
t we have negle
ted so far, namely that the program 
ontains
alls to (built-in) predi
ates =< and > without de�ning 
lauses. However, thesepredi
ates are 
on
eptually de�ned by fa
t 
lauses su
h as 1>0:, whi
h are triviallysimply a

eptable.By Theorem 5.7 we have that every query of the form qui
ksort(t ; x ), where x isa variable disjoint from t, yields a �nite input 
onsuming derivation. In parti
ular,Theorem 5.7 shows that the query qui
ksort(Y,X) yields terminating input 
on-suming derivations. These derivations terminate by deadlo
k, while by droppingthe requirement of input 
onsuming resolution steps it is easy to build a non-terminating derivation starting in that query. This shows that Theorem 5.7 allowsus to 
apture termination by deadlo
k, as further 
on�rmed by the ne
essity resultswe will provide in the next se
tion.It is worth remarking that with the tool of [Bossi et al. 2002℄ it is not possibleto prove that QUICKSORT is input terminating (wrt. simply moded queries). This isbe
ause in that paper the 
on
ept of quasi-re
urrent program, whi
h has the samerole as that of simply a

eptable program, does not take into a

ount the presen
eof inter-argument relationships, (whi
h in the above example are present in theform of equation (2)). ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



20 � Annalisa Bossi et al.The following 
ontrived example shows the ne
essity of referring to simply lo
alsubstitutions.Example 5.9. Consider the program
4: q(a)  q(X).together with the mode q(I). Every simply moded query terminates (either byfailure or by deadlo
k). Take the level mapping jq(t)j = 1 if t is not a variableand jq(x)j = 0 otherwise. We now show that 
4 is simply a

eptable wrt. j j andany simply lo
al model M . In fa
t, for every � simply lo
al wrt. 
4 we have thatq(X)� = q(X): sin
e Out(q(X)) = ;, we have that X 62 Dom(�). Moreover triviallyq(a)� = q(a). Therefore jq(a)�j > jq(X)�j, whi
h implies simply a

eptability.Noti
e that if we drop the requirement that � must be simply lo
al then we wouldhave no guarantee that jq(a)�j > jq(X)�j: simply let � = fX=ag.5.3 Ne
essity of Simply A

eptabilityWe now prove the 
onverse of Theorem 5.7, namely that our 
riterion for provinginput termination wrt. simply moded queries is also ne
essary. For this we needsome new de�nitions as well as some new preliminary results in the spirit of thosein [Apt and Pedres
hi 1994℄.The �rst de�nition 
on
erns a 
on
ept analogous to that of SLD-trees in the
ontext of input 
onsuming derivations.De�nition 5.10 (IC-tree). Let P be a program and Q be a query. An IC-treefor P [ fQg is a tree su
h that| its root is Q,| every node Q0 has exa
tly one des
endant Q00 for every atom A of Q0 andevery 
lause 
 su
h that Q00 is an input 
onsuming resolvent of Q0 wrt. A and 
.Informally, an IC-tree for P [ fQg groups all the input 
onsuming derivations ofP [ fQg modulo the 
hoi
es of the renaming of the program 
lauses used and the
hoi
es of the mgu's.Noti
e that it 
an happen that a node 
ontains no sele
table atom, in whi
h 
aseit has no 
hildren.Bran
hes of IC-trees are input 
onsuming derivations. Therefore we 
an 
hara
-terize input termination in terms of IC-trees.Lemma 5.11. A IC-tree for P [ fQg is �nite i� all input 
onsuming 
onsumingderivations of P [ fQg are �nite.Proof. By de�nition, the IC-trees are �nitely bran
hing. The 
laim now followsby the 
lassi
al result of K�onig.Analogously to the 
ase of a

eptability, we measure atoms by 
ounting thenumber of nodes in the 
orresponding IC-tree. For a program P and a query Q,we denote by nodes i
P (Q) the number of nodes in an IC-tree for P [ fQg. We needone last property of IC-trees.Lemma 5.12. Let the program P and the query A; B be simply moded. Supposethat P is input terminating wrt. simply moded queries and that A� 2 PM SLP , where� is a simply lo
al substitution wrt. A. Then nodes i
P (A; B) � nodes i
P (B�).ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 21Proof. Consider an IC-tree T for P [ fA; Bg. By the hypothesis that A� 2PM SLP , it follows that there exists a substitution # su
h that { by Lemma 4.4 {A #�!P C is a (partial) input 
onsuming derivation and A� � A#. Hen
e thereexists an input 
onsuming derivation A; B #�!P C; B# and B� � B#. Clearly,by de�nition of IC-tree, nodes i
P (A; B) � nodes i
P (B#) = nodes i
P (B�). Hen
e thethesis.We are now in the position to prove that the 
lass of simply a

eptable programs
omprises all the programs input terminating wrt. simply moded queries.Theorem 5.13. Let P be a simply moded program. If P is input terminatingwrt. simply moded queries then P is simply a

eptable.In parti
ular, it is simply a

eptable wrt. PM SLP and a moded level mapping whi
his invariant under renaming.Proof. We show that there exists a moded level mapping j j for P su
h that Pis simply a

eptable wrt. j j and PM SLP . We re
all that PM SLP is the least simplylo
al model of P 
ontaining SM P .Given an atom A, we denote with A� an atom obtained from A by repla
ing theterms �lling in its output positions with fresh distin
t variables. Clearly, we havethat A� is simply moded. Then we de�ne the following moded level mapping forP : jAj = nodes i
P (A�):Noti
e that the level jAj of an atom A is independent from the terms �lling in itsoutput positions, i.e., j j is a moded level mapping. Moreover, sin
e P is inputterminating wrt. simply moded queries and A� is simply moded, all the input 
on-suming derivations of P [ fA�g are �nite. Therefore, by Lemma 5.11, nodes i
P (A�)is de�ned (and �nite), and thus jAj is de�ned (and �nite) for every atom A.We now prove that P is simply a

eptable wrt. j j and PM SLP .Let 
 : H  A; B;C be a 
lause of P and H�  A�;B�;C� be an instan
e of 
where � is a simply lo
al substitution wrt. 
. We show thatif A� 2 PM SLP and Rel(H) ' Rel(B) then jH�j > jB�j:Consider a variant 
0 : H 0  A0; B0;C0 of 
 variable disjoint from (H�)�.Let � be a renaming su
h that 
0 = 
�. Clearly, (H�)� and H 0 unify. Let� = mgu((H�)�; H 0) = mgu((H�)�; H�) be a simply lo
al mgu of (H�)� andH 0. Then it holds that Dom(�) � Var(Out((H�)�)) [ Var(In(H�)). Hen
e(A0; B0;C0)� = (A; B;C)��, and(H�)� �=) (A; B;C)��is an input 
onsuming derivation step, i.e., (A; B;C)�� is a des
endant of (H�)�in an IC-tree for P [ f(H�)�g.Moreover, (A; B;C)�� � (A; B;C)(��)jIn(H) = (A; B;C)�jIn(H).Let � = �jIn(H)�jOut(A)�jOut(B;C). Hen
e, by Lemmas 3.5 and 3.6, �jOut(A) isACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



22 � Annalisa Bossi et al.simply lo
al wrt. A�jIn(H). Therefore, we have thatjH�j = nodes i
P ((H�)�) (by de�nition of j j)> nodes i
P ((A; B;C)�jIn(H)) (by de�nition of IC-tree)� nodes i
P ((A; B)�jIn(H)) (by de�nition of IC-tree)� nodes i
P ((B�jIn(H)�jOut(A)) (by Lemma 5.12)= nodes i
P ((B�)�) (sin
e � is simply lo
al wrt. 
)= jB�j (by de�nition of j j):5.4 A Chara
terizationSummarizing, we have 
hara
terized input termination by simply a

eptability.Theorem 5.14. A simply moded program P is simply a

eptable if and onlyif it is input terminating wrt. simply moded queries. In parti
ular, if P is inputterminating wrt. simply moded queries, then it is simply a

eptable wrt. PM SLP anda moded level mapping whi
h is invariant under renaming.Proof. By Theorem 5.7 and Theorem 5.13.The following example shows how we 
an use Theorem 5.14 to reason abouttermination of a program.Example 5.15. Consider the following program PERMUTE.% permute(Xs,Ys)  Ys is a permutation of the list Xs
1: permute([X|Xs℄,Ys)  insert(Zs,X,Ys), permute(Xs,Zs).permute([℄,[℄).% insert(Xs,X,Ys)  Ys is the result of inserting X into the list Xs
2: insert([U|Xs℄,X,[U|Zs℄)  insert(Xs,X,Zs).insert(Xs,X,[X|Xs℄).First, let us 
onsider it together with the mode permute(O ; I ); insert(O ;O ; I ).Noti
e that the program is simply-moded. It is immediate to 
he
k that the programis not input terminating in this mode: by repeatedly sele
ting the rightmost atom,the query permute(Xs,Ys) generates an in�nite input 
onsuming derivation. Thisis basi
ally due to the fa
t that 
1 has a variable in its input position. Therefore,the re
ursive 
all in the body 
an always be sele
ted.This suggests that one 
ould obtain input termination by repla
ing 
1 by:
1': permute([X|Xs℄,[Y|Ys℄)  insert(Zs,X,[Y|Ys℄), permute(Xs,Zs).Call the resulting program PERMUTE2. This program is still nonterminating (thequery permute(Xs,[Y|Ys℄) has an in�nite input 
onsuming derivation). However,this is not so obvious, and in essen
e, it has �rst been observed by Naish [Naish1993℄, in the 
ontext of programs with delay de
larations. We 
an use The-orem 5.13 to demonstrate that and to understand why PERMUTE2 does not in-put terminate. We show that the program 
annot be simply a

eptable wrt.PM SLPERMUTE2 and a moded level mapping whi
h is invariant under renaming. ByACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 23applying TSLP on
e to the the simply moded atom insert(Xs0; X0; Zs0) (Xs0; X0; Zs0are fresh variables), one sees that insert([U0jXs0℄; X0; [U0jZs0℄) 2 PM SLPERMUTE2. Thesubstitution fY=U0; Ys=Zs0; Zs=[U0jXs0℄; X=X0g is simply lo
al wrt. 
1'. Therefore,for 
1' to be simply a

eptable, by Theorem 5.13, there would have to be a modedlevel mapping invariant under renaming su
h that jpermute([X0jXs℄; [U0jZs0℄)j >jpermute(Xs; [U0jXs0℄)j. This is a 
ontradi
tion sin
e a moded level mapping de-pends only on the input arguments (the se
ond argument of permute).Naish [Naish 1993℄ suggested to obtain a terminating program by repla
ing 
2with its most spe
i�
 variant:
2': insert([U|Xs℄,X,[U|[H|T℄℄)  insert(Xs,X,[H|T℄).Call the resulting program PERMUTE3. We show that PERMUTE3 is input termi-nating.3 Note that PERMUTE3 is simply moded, and 
onsider the following levelmapping: jpermute( ; l)j = len(l);jinsert( ; ; l)j = len(l):Con
erning the simply lo
al model, the 
ru
ial aspe
t with respe
t to terminationis that it has to express the dependen
y between the lengths of the third and �rstarguments of insert. We de�ne:M = fpermute(l;m) j for all l;mg[ finsert(m; a; l) j either insert(m; a; l) is simply modedor len(l) > len(m) gNoti
e that this model 
ontains also non-ground atoms. We have to verify thatM isa simply-lo
al model. The only non-trivial proof obligation 
on
erns 
2'. Now forany, not even ne
essarily simply lo
al, substitution �, insert(Xs; X; [HjT℄)� 2 Mimplies insert([UjXs℄; X; [Uj[HjT℄℄)� 2M . Hen
e M is a simply-lo
al model.We show that PERMUTE3 is simply a

eptable wrt.M and j j. Con
erning 
1', wemust show that for every substitution �, simply lo
al wrt. 
1', insert(Zs; X; [YjYs℄)� 2M implies jpermute([XjXs℄; [YjYs℄)�j > jpermute(Xs; Zs)�j. By the de�nitions ofM and j j, this even holds for arbitrary �. For the remaining 
lauses, it is imme-diate to 
he
k that they are simply-a

eptable. It follows that PERMUTE3 is inputterminating wrt. simply moded queries.To 
on
lude, 
onsider the program PERMUTE4: that is, PERMUTE together with themodes permute(I ;O); insert(I ; I ;O). In this 
ase, in order to make the programsimply moded we have to permute the two body atoms of the �rst permute 
lause(but see the remark below) i.e., permute is rede�ned aspermute([X|Xs℄,Ys)  permute(Xs,Zs), insert(Zs,X,Ys).permute([℄,[℄).Noti
e that the program is now input terminating wrt. simply moded queries.This is in fa
t the natural mode of the PERMUTE program. To demonstrate the3We noted in [Smaus et al. 1998℄ that Naish's proposal for obtaining a terminating programdoes not work: For example, the query permute(Xs,[1,2℄) still loops. Indeed, following Naish'sproposal we get an input terminating program. The problem is that his delay de
larations do notensure input 
onsuming derivations, as noted in [Smaus 1999a℄.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



24 � Annalisa Bossi et al.termination one 
an apply Theorem 5.7 using any simply lo
al model togetherwith the following moded level mapping:jpermute(l; )j = len(l);jinsert(l; ; )j = len(l):In PERMUTE4 we reordered the body atoms of a program, but this was a
tuallyan unne
essary operation.Remark 5.16. Everything we state in this arti
le that applies to the 
lass ofsimply-moded programs (resp. queries) applies to the 
lass of permutation simplymoded programs (queries) as well, i.e., to those programs and queries that aresimply moded possibly after a permutation of body atoms. For the sake of notationsimpli
ity, we avoid to refer to this in a stru
tural way.6. OTHER EXAMPLESIn this se
tion we provide additional explanatory examples.Example 6.1. Consider the following program LISTTREE for 
onverting a listl into a binary tree t with labeled nodes, so that t 
ontains as labels exa
tly theelements of l, in the same left-to-right order (in 
an also be used to 
onvert t intol).% list tree(L,T)  L is a list and T is a binary tree with labelled nodes% 
ontaining the same elements in a left-to-right orderlist tree([℄,void).
1: list tree([H|T℄,tree(TA,X,TB))  extra
t([H|T℄,LA,X,LB),list tree(LA,TA),list tree(LB,TB).% extra
t(Xs,Ys,X,Zs)  Xs is the result of 
on
atenating Ys, [X℄ and Zs
2: extra
t([X|L℄,[℄,X,L).
3: extra
t([X|[H|T℄℄,[X|S℄,Y,R) extra
t([H|T℄,S,Y,R).mode list tree(I,O)mode extra
t(I,O,O,O)This program is simply moded. We now show that it is simply a

eptable; for thiswe employ the following moded level mapping:jlist tree(l; )j = len(l);jextra
t(l; ; ; )j = len(l):Con
erning the simply lo
al model, the 
ru
ial aspe
t with respe
t to terminationis that it has to express the dependen
y between the lengths of the arguments ofextra
t. We de�neM = flist tree(l; t) j for all l; tg[ fextra
t(l; l1; x; l2) j either l1; l2; l are distin
t variables;or len(l) > len(l1) and len(l) > len(l2) g:ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 25We have to verify that M is indeed a simply-lo
al model.First, we have to show that M is a simply-lo
al model of the 
lauses de�ninglist tree. This is however trivial, sin
eM 
ontains all instan
es of list tree(X,Y).Se
ondly, we have to show that M is a simply-lo
al model of 
2. We have toshow that for ea
h � simply-lo
al wrt. 
2 extra
t([XjL℄; [℄; X; L)� 2 M . But thisholds by the model de�nition and the fa
t that for any substitution �, we have thatlen([XjL℄�) > len([℄�) and len([XjL℄�) > len(L�).Thirdly, we have to show that M is a simply-lo
al model of 
3. Considerany substitution � su
h that extra
t([HjT℄; S; Y; R)� 2 M . Sin
e [H|T℄� 
an-not be a variable, by the de�nition of M , len([Xj[HjT℄℄�) > len([XjS℄�) andlen([Xj[HjT℄℄�) > len(R�); thus extra
t([Xj[HjT℄℄; [XjS℄; Y; R)� 2 M . ThereforeM is a simply-lo
al model of 
3.Finally, we show that the program is simply a

eptable wrt. M and j j and hen
einput terminating wrt. simply moded queries. The only non-trivial 
ase is 
lause
1. For every simply lo
al substitution �, we must show that(1) If extra
t([HjT℄; LA; X; LB)� 2Mthen jlist tree([HjT℄; tree(TA; X; TB))�j > jlist tree(LA; TA)�j.(2) If extra
t([HjT℄; LA; X; LB)�; list tree(LA; TA)� 2Mthen jlist tree([HjT℄; tree(TA; X; TB))�j > jlist tree(LB; TB)�j.Both impli
ations follow immediately from the de�nition of j j and of M .Observe that it is essential that we have the non-variable term [HjT℄ in 
1,rather than simply a variable. Also, in 
3, we must have [HjT℄ rather than simplya variable. Otherwise, the program would not be input terminating.Example 6.2. Consider the following program TRANSPOSE for transposing a ma-trix. A matrix is represented as a list of lists: [[a,b,
℄,[1,2,3℄℄ is a matrix withtwo rows and 3 
olumns. Note the degenerate 
ases: [[℄,[℄℄ is the matrix with 0
olumns and 2 rows, while [℄ is not a matrix (though it 
ould be regarded as anymatrix with 0 rows but an unknown number of 
olumns).% transpose(M,N)  N is the transposed matrix of matrix M.transpose(M,[℄) no 
ols matrix(M).
1: transpose([R|Rs℄,[C|Cs℄) 
ut 
ol([R|Rs℄,C,M2),transpose(M2,Cs).% 
ut 
ol(M,C,N)  C is the �rst 
olumn of the matrix M% and N is obtained by removing C from M
2: 
ut 
ol([℄,[℄,[℄).
3: 
ut 
ol([[E|Es℄|Rs℄,[E|C2℄,[Es|Rs2℄) 
ut 
ol(Rs,C2,Rs2).% no 
ols matrix(M)  matrix M has zero width (no 
olumns)no 
ols matrix([℄).
4: no 
ols matrix([[℄|Rs℄) no 
ols matrix(Rs).mode transpose(I,O)mode 
ut 
ol(I,O,O)mode no 
ols matrix(I).ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



26 � Annalisa Bossi et al.This program is simply moded. We now show that it is simply a

eptable. Themoded level mapping uses len and the usual term size norm and is de�ned as follows:jtranspose(m; )j = size(m);j
ut 
ol(m; ; )j = len(m);jno 
ols matrix(m)j = len(m):where size(f(t1; : : : ; tn)) = 1 + size(t1) + � � �+ size(tn) for n � 0, and size(t) = 0 ift is a variable.Con
erning the simply lo
al model, the 
ru
ial aspe
t with respe
t to terminationis that it has to express the dependen
y between the row widths of the arguments of
ut 
ol. More spe
i�
ally, in 
lause 
1, [RjRs℄ is a matrix (a list of rows), and M2is obtained from [RjRs℄ by 
utting o� the �rst element in ea
h row. This de
reasein row width is 
ru
ial for termination. We de�neM = ftranspose(m;n) j for all m;n g[ f
ut 
ol(m; r; n) j either 
ut 
ol(m; r; n) is simply-modedor m = n = [℄or size(m) > size(n) g[ fno 
ols matrix(m) j for all m g:We now verify thatM is a simply-lo
al model. We have non-trivial proof obligationsfor 
2 and 
3. Con
erning 
2, 
ut 
ol([℄; [℄; [℄) 2M by 
onstru
tion. Con
ern-ing 
3, 
onsider an arbitrary (not even ne
essarily simply-lo
al) substitution � su
hthat 
ut 
ol(Rs; C2; Rs2)� 2M . There are three 
ases.| If 
ut 
ol(Rs; C2; Rs2)� is simply-moded, thenRs2� is a variable, thussize([[EjEs℄jRs℄�) > size([EsjRs2℄�) and therefore
ut 
ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M .| If Rs� � Rs2� � [℄, then
ut 
ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� � 
ut 
ol([[EjEs℄℄; [EjC2℄; [Es℄)�,and sin
e size([[EjEs℄℄�) > size([Es℄�), it follows that
ut 
ol([[EjEs℄℄; [EjC2℄; [Es℄)� 2M .| If size(Rs�) > size(Rs2�), thensize([[EjEs℄jRs℄�) > size([EsjRs2℄�), thus
ut 
ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M .Thus in all 
ases, 
ut 
ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M . Therefore M is amodel of 
3. We now show that the program is simply a

eptable wrt.M and j j andhen
e input terminating wrt. simply moded queries. Consider 
1: for every substi-tution �, simply lo
al wrt. 
1, we have to show that if 
ut 
ol([RjRs℄; C; M2)� 2M ,then jtranspose([RjRs℄; [CjCs℄)�j > jtranspose(M2; Cs)�j. This holds by the de�-nition of M . Next, 
onsider 
3. For every substitution �, it is easy to see thatj
ut 
ol([[EjEs℄jRs℄; [EjC℄; [EsjRs2℄)�j > j
ut 
ol(Rs; C; Rs2)�j. Equivalently,for 
lause 
4, it is immediate to 
he
k that for any �, jno 
ols matrix([[℄jRs℄)�j >jno 
ols matrix(Rs)�j. All other 
lauses are trivially simply a

eptable. Hen
e thethesis.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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 Programs with Dynami
 S
heduling � 276.1 Delay De
larationsIn pra
ti
al systems, dynami
 sele
tion rules are implemented by means of 
on-stru
ts su
h as delay de
larations and blo
k de
larations. Delay de
larations, ad-vo
ated by van Emden and de Lu
ena [van Emden and de Lu
ena 1982℄ wereintrodu
ed expli
itly in logi
 programming by Naish [Naish 1983℄.In a previous paper [Bossi et al. 2001℄ we have argued that in most 
ases de-lay de
larations are employed exa
tly to guarantee that the derivations are input
onsuming. We have also provided a te
hni
al result establishing that under somesynta
ti
ally 
he
kable 
onditions the use of delay de
larations is equivalent to re-stri
ting to input 
onsuming derivations. This allows one to apply Theorems 4.6and 5.14 to a large 
lass of programs employing delay de
larations, thereby pro-viding su
h programs with a model-based semanti
s for partial derivations, and aresult 
hara
terizing their termination.In this se
tion we report some examples showing the analogies between the use ofdelay de
larations and the restri
tion to input 
onsuming derivations. Just for thissubse
tion, we assume the reader to be familiar with the notion and the notationof delay de
larations.Example 6.3. Consider again APPEND, in mode append(I,I,O) with the delayde
larations we mentioned in the introdu
tion, namelydelay append(Ls, , ) until nonvar(Ls).append([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).In pra
ti
e, this delay de
laration 
an be seen as a 
ompiler dire
tive stating thatthe sele
tion rule is allowed to sele
t an atom of the form append(t1,t1,t3) i� t1is a non-variable term. A derivation that respe
ts this dire
tive is 
alled delay-respe
ting.This is the natural delay de
laration of the program and a
hieves the purpose thatmost natural queries are for
ed to terminate4. Now, it is easy to 
he
k that everySLD derivation starting in a simply moded query is similar to an input 
onsumingderivation if and only if it is delay-respe
ting.Thus, for APPEND we 
an say that input 
onsuming derivations model in a 
or-re
t and 
omplete way the operational behavior determined by the above delayde
laration. Formally, when we 
onsider simply moded queries, we have that:- we 
an employ Theorem 5.14 to demonstrate termination,- by Theorem 4.6, PM SLP 
hara
terizes its behavior in terms of the intermediate
omputed answer substitutions.Example 6.4. Consider PERMUTE4, i.e., PERMUTE of Example 5.15, with themodes permute(I ;O); insert(I ; I ;O). Consider the following delay de
larationsfor it:4An interesting example suggested by K. R. Apt of a 
ontrived query that does not terminate in
ombination of the above program is append([X|Xs℄,[℄,Xs). Noti
e that this query is not simplymoded. This demonstrates also the need for restri
ting to a 
lass of \well formed" programs andqueries su
h as that of simply moded ones.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



28 � Annalisa Bossi et al.delay permute(Xs, ) until nonvar(Xs)delay insert(Xs, , ) until nonvar(Xs)The meaning of these de
larations is equivalent to that of the previous example.It is not diÆ
ult to see that for the above program, for every derivation startingin a simply-moded query, the derivation is input 
onsuming if and only if it isdelay-respe
ting.Example 6.5. Consider again QUICKSORT. In the 
ontext of dynami
 s
heduling,its standard delay de
larations are:delay qui
ksort(Xs, ) until nonvar(Xs).delay qui
ksort dl(Xs, , ) until nonvar(Xs).delay partition(Xs, , , ) until nonvar(Xs).delay =<(X,Y) until ground(X) and ground(Y).delay >(X,Y) until ground(X) and ground(Y)While the �rst three de
larations are equivalent to those used above, the last twostate that an atom of the form a =< b (resp. a > b) 
an be sele
ted i� both a andb are ground terms.Now, if we think of the built-ins > and =< as being de�ned by a program 
on-taining in�nitely many ground fa
ts of the form >(n,m), with n and m being twoappropriate integers, the derivations respe
ting the above delay de
larations areexa
tly the input 
onsuming ones.7. CONCLUSION AND RELATED WORKSIn this arti
le, we have studied the termination of input 
onsuming programs. Inorder to do this, we have provided a denotational semanti
s for input 
onsumingderivations that models the results of in
omplete derivations. This semanti
s usesa variant of the well-known TP -operator.In a previous paper [Bossi et al. 2000℄ we have introdu
ed a di�erent semanti
sfor input 
onsuming programs. The two semanti
s, however, are quite orthogonalto ea
h other: while that of [Bossi et al. 2000℄ models ex
lusively the result of su
-
essful derivations and requires the program to be well-moded and ni
ely-moded, thesemanti
s used here models the results of also in
omplete derivations and requiresprograms and queries to be simply moded.As mentioned in Subse
tion 4.2, in the 
ontext of parallelism and 
on
urren
y[Naish 1988℄, one 
an have derivations that never su

eed, and yet 
ompute substitu-tions. Thus we have provided a denotational semanti
s for su
h programs/programminglanguages, whi
h goes beyond the usual su

ess-based SLD-resolution me
hanismof logi
 programming.Input 
onsuming derivations bear a 
ertain resemblan
e with derivations in thelanguage ofModed (Flat) GHC [Ueda and Morita 1994℄. A
tually, input-
onsumingprograms 
an be seen as a simpli�ed version of moded GHC, and the results weprovide here 
an be thus applied to some moded GHC programs. We want to notehowever that Moded (F)GHC is a full-
edged programming paradigm, while input-
onsuming programs are meant for abstra
tion purposes. In fa
t, Moded (F)GHCenjoys a more 
omplex 
omputational me
hanisms: In (F)GHC, a 
lause has theform H  G jB, where G is 
alled a guard. An atom A 
an be resolved usingACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi
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 S
heduling � 29H  G jB only when A is an instan
e of H and G� is entailed, where � is anmgu of A and H . The atom A 
an be
ome instantiated only later via expli
ituni�
ations o

urring in B. In Moded (F)GHC, there are (non-trivial) 
onditionson 
lauses ensuring that when an argument position in A is input, then the 
lauseused to resolve A will never (not even via later resolution steps) 
ause any bindingsto that position.Falas
hi et al. [Falas
hi et al. 1997℄ have de�ned a denotational semanti
s for CLPprograms with dynami
 s
heduling of a somewhat di�erent kind: the semanti
s ofa query is given by a set of 
losure operators; ea
h operator is a fun
tion modelinga possible e�e
t of resolving the query on a program state (i.e., 
onstraint on theprogram variables). Their semanti
s is the analogue of the bottom-up s-semanti
sfor usual logi
 programs, where atoms are mapped to their set of answers. Inthis respe
t, it 
orresponds to the semanti
s de�ned in [Bossi et al. 2000℄. Theapproa
h presented here is more suited to termination proofs sin
e we deal withpartial answers.Con
erning termination, we have provided a ne
essary and suÆ
ient 
riterionfor termination, appli
able to a wide 
lass of programs, namely the 
lass of simplymoded programs. In previous papers, [Bossi et al. 2002; Smaus 1999b℄ we havealready addressed the problem of the termination of input 
onsuming programs.The results we present here 
onstitute a big improvement wrt. [Bossi et al. 2002;Smaus 1999b℄ in that we 
an now 
apture (by means of the model) the inter-argument relationships in the bodies of the 
lauses. This improvement allows usto give a ne
essary and suÆ
ient 
ondition for termination. In fa
t, we 
an nowprove the termination of programs employing a non-trivial re
ursion s
heme su
has QUICKSORT, PERMUTE3, TRANSPOSE; this was not possible using previous suÆ
ient
onditions of [Bossi et al. 2002; Smaus 1999b℄ (though, with the tools of [Bossi et al.2002; Smaus 1999b℄ we 
ould prove the termination of PERMUTE4, whi
h employsdire
t re
ursion).Finally, we have provided some examples showing analogies between the use ofdelay de
larations and input 
onsuming derivations. A te
hni
al result demonstrat-ing equivalen
e (under some synta
ti
ally-
he
kable assumption) is given in [Bossiet al. 2001℄.To 
on
lude, we dis
uss some other works about termination of programs withdynami
 s
heduling. First note that those works are usually about termination ofprograms with delay de
larations, whereas we 
onsider the more abstra
t notion ofinput 
onsuming derivations. As has been argued before [Smaus 1999b℄, this allowsus to see more 
learly whi
h programs terminate under whi
h assumptions aboutthe sele
tion rule.Apt and Luitjes [Apt and Luitjes 1995℄ give 
onditions for the termination ofappend, but those are ad-ho
 and do not address the general problem. Naish [Naish1993℄ gives heuristi
s to ensure termination, but no formal results.There are several works in this area making assumptions about the sele
tion rulethat are stronger than assuming input 
onsuming derivations [L�uttringhaus-Kappel1993; Mar
hiori and Teusink 1999; Martin and King 1997℄.Mar
hiori and Teusink [Mar
hiori and Teusink 1999℄ assume a lo
al sele
tion rule,that is a rule under whi
h only most re
ently introdu
ed atoms 
an be resolved inACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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h step. Moreover, it is assumed that an atom is only sele
ted on
e it is boundedwith respe
t to a level mapping, that is, any instan
e of the sele
ted atom has alevel that is below a 
ertain bound. This is in 
ontrast to our approa
h where anysele
ted atom, even one that is non-ground in its input, has a well-de�ned level,but this level is not stable under instantiation.Martin and King [Martin and King 1997℄ a
hieve a similar e�e
t by boundingthe depth of the 
omputation introdu
ing auxiliary predi
ates.It is more diÆ
ult to assess L�uttringhaus-Kappel [L�uttringhaus-Kappel 1993℄sin
e his 
ontribution is mainly to generate delay de
larations automati
ally ratherthan prove termination. However in some 
ases, the delay de
larations that aregenerated require an argument of an atom to be a rigid list before that atom 
anbe sele
ted, whi
h is similar to the above approa
hes [Mar
hiori and Teusink 1999;Martin and King 1997℄. Su
h uses of delay de
larations go well beyond ensuringthat derivations are input 
onsuming.Some authors have 
onsidered a sele
tion rule stating that in ea
h derivationstep, the leftmost sele
table atom is sele
ted [Apt and Luitjes 1995; Boye 1996;Naish 1993℄. Due to the problem of simultaneously reawaken atoms, this rule isa
tually not exa
tly the one implemented in most Prolog versions, but this hasbeen 
orre
ted by proposing the left-based derivations [Smaus et al. 2001℄. Hereit is enough to re
all that su
h derivations \prefer" to sele
t atoms that o

ur onthe left of a query, whi
h is an assumption made in addition to input 
onsumingderivations. As already shown (Left Swit
hing Lemma) for ni
ely or simply modedprograms and queries this assumption does not in
uen
e the set of 
omputed answersubstitutions but may a�e
t partial 
omputed answer as well as termination.A survey 
lassifying logi
 programs a

ording to the sele
tion rules for whi
hthey terminate 
an be found in [Pedres
hi et al. 2002℄. Among others, this survey
onsiders input termination and termination wrt. lo
al sele
tion rules as mentionedabove [Mar
hiori and Teusink 1999℄.The spe
i�
 problem of termination of input 
onsuming derivations has beentreated also in [Bossi et al. 2002℄ where ni
ely moded programs have been studied.By applying those results to simply moded programs we obtain a 
hara
terization ofa proper subset of input terminating and simply moded programs. This 
lass doesnot 
ontain programs like qui
ksort whose termination proof needs informationon partial 
omputed answer substitutions.APPENDIXProof of Lemma 3.8. First noti
e that, sin
e A is a simply-moded atom,Var(In(A)) \ Var(Out(A)) = ;; therefore, by properties of mgu's (see [Apt 1997,Corollary 2.25℄), there exist substitutions �0 and �1 su
h that| �0 = mgu(In(A); In(H)),| �1 = mgu(Out(A)�0;Out(H)�0),| �0�1 = mgu(A;H),and all those mgu's are relevant. Sin
e, by hypothesis, # = mgu(A;H) andIn(A#) = In(A), In(A) is an instan
e of In(H). In parti
ular, In(H)�0 = In(A)and thusACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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heduling � 31| Dom(�0) � Var(In(H)),| Ran(�0) � Var(In(A)).Sin
e Var(In(A)) is fresh wrt. H , this means that �0 is simply lo
al wrt. the
lause H  . Moreover, by relevan
e of �0, simple modedness of A and the fa
tthat A and H are variable disjoint, it follows that Dom(�0) \ Var(Out(A)) = ;.Hen
e, �1 = mgu(Out(A);Out(H)�0). By simple modedness of A, the fa
t thatOut(A) is sequen
e of distin
t variables and that �1 is relevant, we 
an assume thatOut(A)�1 = Out(H)�0 and thus| Dom(�1) � Var(Out(A)),| Ran(�1)�Var (Out(H)�0)�Ran(�0)[Var(Out(H))�Var (In(A))[Var (Out(H)).Sin
e Var(Out(H)) is fresh wrt. A, this means that �1 is simply lo
al wrt. thequery A.Proof of Lemma 3.10. Sin
e both Q and 
 are simply moded, by Lemma 2.7also Q0 is simply moded. Then by Lemma 3.5 there exist � and � su
h that(a) � = ��;(b) � = �jB# is simply lo
al wrt. B#;(
) � is simply lo
al wrt. R#�;(d) � and � are variable 
ompatible wrt. B# and R#.The proof pro
eeds by proving that(a1) (#�)jQ = (#�)jA�;(b1) (#�)jA is simply lo
al wrt. A;(
1) � is simply lo
al wrt. R(#�)jA;(d1) (#�)jA and � are variable 
ompatible wrt. A and R.The result will follow by applying again Lemma 3.5.(a1) follows from the fa
t that (#�)jA� = (#�)jQ� = (#��)jQ = (#�)jQ.To prove (b1) we prove that(b11) Dom(#�)jA � Var(Out(A))(b12) Ran(#�)jA � Var(In(A)) [ V where V \ Var(A) = ;.(b11) Dom(#�)jA � Dom(#jA) [ Dom(�jA). Now, Dom(#jA) � Var(Out(A)),sin
e # is a simply lo
al mgu of A andH , and Dom(�jA) � Var(Out(B#))\Var (A),sin
e � is simply lo
al wrt. B#. Then, Dom(�jA) � Var(Out(B)) \ Var(A), sin
eDom(#) \Var(Out(B)) = ;. But, Var(Out(B)) \Var(A) = ;, by standardizationapart.(b12) Sin
eRan(#jA) � Var(Out(H)), Ran((#�)jA) � Var(Out(H))[Var (In(A))[Var(B)[ V1 � Var(In(A))[ V1 [Var(
) where V1 is the set of fresh variables of �and V1[Var(
) is disjoint from A by standardization apart and lemma's hypothesis.(
1) holds sin
e � is simply lo
al wrt. R#� and R(#�)jA = R(#�)jQ = R#�.Finally, (d1) follows from (d), the assumption on the fresh variables of � (whi
himplies that the sets of fresh variables of � and � are are disjoint from Var(Q) andVar(
)) and the fa
t that # is a simply lo
al mgu.ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



32 � Annalisa Bossi et al.Proof of Lemma 4.3. We �rst prove that TSLP " !(I) is a �xpoint of TSLP . Infa
tTSLP (TSLP " !(I)) = TSLP " !(I) [ T slP (TSLP " !(I))= Si�0 TSLP " i(I) [Si�0 T slP (TSLP " i(I))= Si�0(TSLP " i(I) [ T slP (TSLP " i(I)))= Si�0 TSLP " i(I)= TSLP " !(I):We now prove that TSLP " !(I) is the least �xpoint of TSLP 
ontaining I .Let J be a �xpoint of TSLP 
ontaining I , i.e., I � J = TSLP (J). We prove thatTSLP " !(I) � J . More pre
isely, we prove by indu
tion on i, that for all i � 0,TSLP " i(I) � J .Base. i = 0. In this 
ase TSLP " 0(I) = I � J .Indu
tion step. i > 0. In this 
ase TSLP " i(I) = TSLP (TSLP " i� 1(I)). By theindu
tive hypothesis, TSLP " i� 1(I) � J . By monotoni
ity of TSLP , TSLP " i(I) =TSLP (TSLP " i� 1(I)) � TSLP (J) = J .By de�nition of simply lo
al models and of TSLP , we have that J is a simply lo
almodel of P 
ontaining I i� TSLP (J) � J and I � J . This proves that TSLP " !(I)is the least simply lo
al model of P 
ontaining I .Proof of Lemma 4.4. (i) ) (ii): We �rst assume that Æ pro
eeds left-to-rightand employs only simply lo
al mgu's and prove that: #jA is simply lo
al wrt. Aand A# � TSLP " !(I). The general 
ase follows from Corollary 2.12 and Theorem3.18 in [Apt 1997℄ on derivations employing di�erent mgu's.We pro
eed by indu
tion on the length of Æ.Base. len(Æ) = 0. In this 
ase A = C � I and # = � (the empty substitution).The thesis follows from the fa
t that, by de�nition of TSLP , I � TSLP " !(I).Indu
tion step. len(Æ) > 0. Let A = L; A;R and A be the leftmost atom of Asu
h that there is some A-step in Æ (and hen
e there are no L-steps in Æ). Assumealso that 
 : H  B is the input 
lause used in the �rst derivation step of Æ and #1is the simply lo
al mgu of A and H used in this step. By Corollary 2.12,Æ : A #1=) (L;B;R)#1 #2�! L;C0su
h that C = L;C0, # = #1#2 and L#1 = L#1#2 = L.Hen
e L � I � TSLP " !(I) (3)and there exists the input 
onsuming derivation: Æ0 : (B;R)#1 #2�! C0 wherelen(Æ0) = len(Æ)� 1 and (B;R)#1 is simply moded.By the indu
tive hypothesis, #2j(B;R)#1 is simply lo
al wrt. (B;R)#1 and(B;R)#1#2 � TSLP " !(I): (4)Note also that sin
e #1#2 is 
omputed in a derivation of (A;R), by standardiza-tion apart and Lemma 3.10 we have that(#1#2j(B;R)#1)j(A;R) = (#1#2)j(A;R) is simply lo
al wrt. (A;R): (5)ACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.
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e (#1#2)jL = " and (#1#2)j(A;R) is simply lo
al wrt. (A;R) and the fa
t thatvariable 
ompatibility is guaranteed by standardization apart, by Lemma 3.5(#1#2)j(L;A;R) is simply lo
al wrt. (L; A;R): (6)To 
on
lude the proof it remains to shown thatA#1#2 � TSLP " !(I): (7)Then, the result will follow from (3), (4), (6) and (7).In order to prove (7) note that #1 is a simply lo
al mgu of A and H , so (#1)jH issimply lo
al wrt. H  . Moreover, by Lemma 3.5, (#2)jB#1 is simply lo
al wrt. B#1.Note also that, by standardization apart, #1jH and #2jB#1 are variable 
ompatiblewrt. H and B. Hen
e, by Lemma 3.6, (#1)jH(#2)jB#1 = (#1#2)j
 is simply lo
alwrt. 
.By De�nition 4.2 and property (4), this proves thatH(#1)jH(#2)jB#1 = H#1#2 = A#1#2 � TSLP " !(I)(ii) ) (i): Let A� � TSLP " !(I) with A : A1; : : : ; An. Let k be the minimumindex su
h that A� 2 TSLP " k(I). The proof pro
eeds by indu
tion on k.Base. k = 0. In this 
ase, A� � TSLP " 0(I) = I with � simply lo
al wrt.A. Sin
e both A and A� 
onsist of simply moded atoms, and � is a simply lo
alsubstitution wrt. A, it follows that � is just a renaming of the output variables ofA. The thesis follows by taking # to be the empty substitution and Æ to be thederivation of length zero.Indu
tion step. k > 0. We pro
eed by indu
tion on n, the number of atoms inthe query.Base. n = 1. In this 
ase A = A, � is simply lo
al wrt. A and A� 2 TSLP " k(I).By de�nition of TSLP and Proposition 3.3, there exist a variant 
 : H  B of a
lause of P variable disjoint from A and a substitution # su
h that# is simply lo
al wrt. 
 (8)B# � TSLP " (k � 1)(I) (9)A� = H#: (10)By (8) and Lemma 3.6 there exist �0 and �1 su
h that # = �0�1, �0 = #jH issimply lo
al wrt. H  and �1 is simply lo
al wrt. B�0.Hen
e, by (9) and the indu
tive hypothesis on k, there exists an input 
onsumingderivation Æ0 : B�0 #2�! Cwhere C � I and B�0#2 � B�0�1.Note also that H�0�1 � H�0#2, sin
e the only variables of H�0 whi
h 
an bea�e
ted by �1 or #2 are those o

urring also in B�0.Finally, note that by Proposition 3.3 we 
an assume Var(A) \ Var(
) = ; andthen by (10) and the fa
t that � is simply lo
al wrt. A (whi
h implies that In(A) =In(A�)), ��0 is a simply lo
al mgu of A and H , andACM Transa
tions on Computational Logi
, Vol. ??, No. ??, ?? 20??.



34 � Annalisa Bossi et al. Æ : A ��0=) B�0 #2�! Cis an input 
onsuming derivation where A��0#2 = H�0#2 � H# = A�.Indu
tion step. n > 1. In this 
ase A = A;R and A� 2 TSLP " k(I). By Lemma3.5 there exist �1 and �2 su
h that � = �1�2, �1 = �jA is simply lo
al wrt. A and �2is simply lo
al wrt. R�1, and �1 and �2 are variable 
ompatible wrt. A and R. Bythe indu
tive hypothesis on n, Æ1 : A #1�! C1where C1 � I and A#1 and A�jA = A� are variant.Again by the indu
tive hypothesis on n, there exists an input 
onsuming deriva-tion Æ02 : R�1 #02�! C02where C02 � I and R�1#02 � R�1�2. Sin
e R�1 � R#1, by Lemma 2.9 there existsÆ2 : R#1 #2�! C2where C2 � I and R#1#2 � R�1#02. Without loss of generality, we 
an assumethat the input 
lauses used in Æ2 are standardized apart wrt. Æ1.Then there exist Æ, Æ : A;R #1�! C1;R#1 #2�! C1C2su
h that A#1#2 and A� are variant.The following result is a 
orollary of the above proof. It states that the relationbetween 
omputed answers of input 
onsuming derivations employing simply lo
almgu's and simply lo
al substitutions.Proposition A.1. Let A be a simply moded query and P a simply moded pro-gram. Let Æ : A #1=) C1 #2�! C2 be an input 
onsuming derivation in P thatpro
eeds left-to-right and employs only simply lo
al mgu's. Let 
 : H  B be theinput 
lause used in the �rst derivation step of Æ and #1 be a simply lo
al mguemployed in this step. Then (#1#2)jA is simply lo
al wrt. A and (#1#2)j
 is simplylo
al wrt. 
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