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Abstract. We develop a theory of noninterference for a typed version oftheπ-
calculus where types are used to assign secrecy levels to channels. We provide
two equivalent characterizations of noninterference based on a typed behavioural
equivalence relative to a security levelσ, which captures the idea of external ob-
servers of levelσ. The first characterization involves a universal quantification
over all the possibleactive attacks, i.e., malicious processes which interact with
the system possibly leaking secret information. The seconddefinition of non-
interference is expressed in terms of an unwinding condition, which deals with
so-calledpassive attackstrying to infer confidential information just by observ-
ing the behaviour of the system. This unwinding-based characterization natu-
rally leads to efficient methods for the verification and construction of (composi-
tional) secure systems. Furthermore, we characterize noninterference in terms of
bisimulation-like (partial) equivalence relations in thestyle of a stream of similar
studies for other process calculi (e.g., CCS and CryptoSPA)and languages (e.g.,
imperative and multi-threaded languages).

1 Introduction

A central issue of multilevel security systems is the protection of sensitive data and
resources from undesired access. Information flow securityproperties have been pro-
posed as a means to provide strong guarantees of confidentiality of secret information.
These properties impose constraints on information flow ensuring that no information
can flow from a higher to a lower security level. Since Denningand Denning’s work [6],
information flow analysis has been studied for various programming languages, includ-
ing imperative languages [6, 20, 23], functional languages[10, 18] and concurrent lan-
guages [4, 7, 14–17,19, 22, 25].

One of the most successful approaches to information flow security relies on the
notion ofNoninterference[9]. The basic idea is that a system is interference free if the
low level observation of the system is independent from the behaviour of its high com-
ponents. Recently, various type-based proof techniques for the π-calculus have been
proposed [11, 14–17]. In these works type systems are actually part of the definition of
noninterference, in that both the observation of the systemand the observed processes
are constrained by types. A soundness theorem is then provedstating that if a system is
well-typed, then no change in the behaviour of its high components can affect the low
level view of the system.

⋆ Supported by the EU-FET project IST-2001-32617 and the FIRBproject RBAU018RCZ.



In this paper we wish to define a general theory of noninterference for theπ-
calculus, where the use of types is much lighter. In particular, the only typing constraint
we impose is that values at a given security clearance cannotflow through channels with
a lower security level. Such a typing discipline ensures that information does not ex-
plicitly flow from high to low. Instead, implicit flows are notdealt with the type system,
and then we cannot use it as a proof technique for noninterference. On the contrary, we
characterize noninterference in terms of the actions that typed processes may perform.

Our approach intends to generalize previous ideas, mainly developed for CCS, to
the π-calculus, where new difficulties arise due to the presence of scope extrusion.
The contribution of this paper is twofold: (i) we develop a rich and elegant theory of
noninterference intrinsic of theπ-calculus, almost independent of types, and (ii) we
find a number of sound and complete characterizations of secure processes leading to
efficient verification techniques.

The noninterference property we are going to study is based on the notion of process
behaviour relative to a security levelσ, taken from a complete lattice〈Σ,�〉 of security
annotations. We define typed equivalences for theπ-calculus relative to an observation
levelσ, namelyσ-reduction barbed congruences (see [12]). Two processesP, Q areσ-
equivalent in the type environmentΓ , written Γ � P ∼=σ Q, if they exhibit the same
σ-level behaviour, i.e., they are indistinguishable for aσ-level observer.

A σ-level observer is formalized as aσ-context, i.e., a well typed context which can
interact with the observed process only through channels oflevel at mostσ. We require
∼=σ to be a congruence for allσ-level contexts.

We also develop a proof technique for∼=σ in terms of a quite natural bisimilarity
on σ-actions defined on typed labelled transition systems. A typed LTS is built around

typed actions of the formΓ ⊲P
α

−−→δ Γ ′ ⊲ P ′ indicating that in the type environment
Γ , the processP performs the actionα of level δ and evolves toP ′ in the possibly
modified environmentΓ ′. We prove that two processes areσ-barbed congruent if and
only if they are bisimilar on typed actions of levelσ.

Relying on this equational theory for theπ-calculus, we introduce the noninterfer-
ence propertyNI(∼=σ) for typed processes, which is inspired by theP BNDCproperty
defined in [8] for CCS. We say that a processP in a type environmentΓ satisfies the
propertyNI(∼=σ), writtenΓ ⊲ P ∈ NI(∼=σ), if for every configurationΓ ′ ⊲ P ′ reach-
able fromΓ ⊲P in the typed LTS, and for everyσ-high level sourceH (that is a process
which can perform only actions at level higher thanσ) it holds

Γ ′ ⊲ P ′ ∼=σ Γ ′ ⊲ P ′ | H.

This definition involves a universal quantification over allthe possibleactive attacks,
i.e., high level malicious processesH which interact with the system possibly leaking
secret information. Moreover, it ispersistentin the sense that if a configuration satisfies
NI(∼=σ) then also all the configurations reachable from it in the typed LTS satisfy
NI(∼=σ). As discussed in [8], persistence is technically useful since it allows us to
apply inductive reasoning when proving security results (e.g., compositionality), but
it is also intuitively motivated by the need for mobile processes to be secure at any
computation step.
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We provide a first characterization ofNI(∼=σ) in terms of anunwindingcondition
in the style of [2]. The unwinding condition aims at specifying local constraints on
process transitions which imply the global security property. More precisely, we require
that whenever a configurationC performs a typed action of level higher thanσ moving
to C′, then a configurationC′′ can also be reached through an internal computation
such thatC′ andC′′ are indistinguishable for aσ-level observer. In other words, the
unwinding condition ensures that theσ-high actions are always simulated by internal
computations, thus becoming invisible for the low level observers.

It is interesting to observe that the unwinding condition characterizes security with
respect to the so-calledpassive attacks, which try to infer information about the classi-
fied behaviour (σ-high actions) just by observing theσ-level behaviour of the system.
Thanks to this characterization, the noninterference propertyNI(∼=σ) becomes decid-
able for finite state processes, i.e., processes whose typedLTS is finite. Furthermore,
we show thatNI(∼=σ) is compositional with respect to most of the operators of the
π-calculus. In particular, ifP andQ satisfyNI(∼=σ) thenP | Q and!P also do.

We further develop two quantifier-free characterizations of noninterference based
on bisimulation-like (partial) equivalence relations. More precisely, we first introduce
a partial equivalence relation

.

≈σ (per model) over configurations and, inspired by the
definitions in [20] for imperative and multi-threaded languages, we prove that

.

≈σ is
reflexive only on the set of secure processes. Hence, we obtain that a typed processP
is secure if and only ifP is

.

≈σ-equivalent to itself. Then we investigate the impact of
name restriction on noninterference. Let(νσ)P be the processP where all itsσ-high
free names are restricted. We define the equivalence relation

..

≈σ and prove that a typed
processP is secure if and only ifP and(νσ)P are

..

≈σ-equivalent. Finally we show
that two well typed processesP andQ are equivalent onσ-actions if and only if(νσ)P
and(νσ)Q are equivalent on every action. This property allows us to precisely relate
the standard bisimulation equivalence≈ for the π-calculus with our bisimulation on
σ-actions and also to express our noninterference property in terms of the equivalence
relation≈.

The rest of the paper is organized as follows. In Section 2 we present the language,
its semantics and the type system. In Section 3 we study typedobservation equivalences
relative to a security level. In Section 4 we introduce the notion of σ-noninterference
and provide a number of characterizations based on typed actions. Section 5 concludes
the paper discussing some related work.

All the proofs of the results presented in this paper are available in [5].

2 The Language

In this section we introduce the language, its operational semantics and the type system
with which we will be concerned.

We presuppose a countably-infinite set of names and a countably-infinite set of vari-
ables ranged over byn, .., q and byx, .., z, respectively. We often usea, b, c to range
over both names and variables. We also assume a complete lattice 〈Σ,�〉 of security
annotations, ranged over byσ, δ, where⊤ and⊥ represent the top and the bottom el-
ements of the lattice. The syntax of processes and types is shown in Table 1. It is a
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Prefixes Processes

π ::= a〈b〉 output P ::= π.P prefix

| a(x : T ) input | if a = b then P else P matching

| P | P parallel

Types | (νn : T )P restriction

T ::= σ[ ] | !P replication

| σ[T ] | 0 inactive

Table 1.Syntax

synchronous1, monadic, calculus with the match/mismatch operator. As explained in
[12], the matching construct is essential for the coinductive characterization of the re-
duction barbed congruence shown in Section 3.

As usual, the input constructa(x : T ).P acts as a binder for the variablex in P ,
while the restriction(νn : T )P acts as a binder for the namen in P . We identify
processes up toα-conversion. We usefn(P ) andfv(P ) to denote the set of free names
and free variables, respectively, inP . We writeP{x := n} to denote the substitution
of all free occurrences ofx in P with n, and we often writea(x:T ), a〈b〉 omitting
trailing 0’s. In this paper we restrict toclosedprocesses, i.e., processes containing no
free occurrences of variables; in Section 5 we discuss how toextend our theory to open
terms.

Types are used to assign security levels to channels. More precisely, ifσ ∈ Σ, then
σ[ ] is the type of channels of levelσ which carry no values, whileσ[T ] is the type of
channels of levelσ which carry values of typeT . We consider the functionΛ associating
to types the corresponding level, that isΛ(σ[ ]) = σ = Λ(σ[T ]).

Semantics.The operational semantics of our language is given in terms of a labelled
transition system (LTS) defined over processes. The set of labels, or actions, is the
following:

Actions α ::= n〈m〉 send a name

| (νm:T )n〈m〉 send a fresh name

| n(m) receive a name

| τ internal action

We write fn(α) andbn(α) to denote the set of free and bound names occurring in the
actionα, wherebn(α) = {m} if α = (νm:T )n〈m〉, andbn(α) = ∅ otherwise. The
LTS is defined in Table 2 and it is entirely standard; we just omitted the symmetric
rules for (SUM), (PAR), (COMM) and (CLOSE) in which the role of the left and right
components are swapped.

1 We consider the synchronous calculus since it allows for more interferences. Nevertheless, our
results can be adapted to the asynchronous, polyadic calculus.
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(OUT)

n〈m〉.P
n〈m〉

−−−→ P

(IN)

n(x : T ).P
n(m)

−−−→ P{x := m}

(MATCH)

if n = n then P else Q
τ

−−→ P

(M ISMATCH)
n 6= m

if n = m then P else Q
τ

−−→ Q

(PAR)

P
α

−−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−−→ P ′ | Q

(COMM)

P
n〈m〉

−−−→ P ′ Q
n(m)

−−−→ Q′

P | Q
τ

−−→ P ′ | Q′

(CLOSE)

P
(νm:T ) n〈m〉

−−−−−−−−−→ P ′ Q
n(m)

−−−→ Q′ m /∈ fn(Q)

P | Q
τ

−−→ (νm:T )(P ′ | Q′)

(OPEN)

P
n〈m〉

−−−→ P ′ m 6= n

(νm:T )P
(νm:T ) n〈m〉

−−−−−−−−−→ P ′

(RES)

P
α

−−→ P ′ n /∈ fn(α) ∪ bn(α)

(νn:T )P
α

−−→ (νn:T )P ′

(REP-ACT)

P
α

−−→ P ′

!P
α

−−→ P ′ | !P

Table 2.Labelled Transition System

Type System.Our type system corresponds to the basic type system for theπ-
calculus (see [21]). The main judgements take the formΓ ⊢ P , whereΓ is a type
environment, that is a finite mapping from names and variables to types. Intuitively,
Γ ⊢ P means that the processP uses all channels as input/output devices in accor-
dance with their types, as given inΓ . The other, auxiliary, judgements areΓ ⊢ a : T
stating that the name/variablea has typeT in Γ , andΓ ⊢ ⋄ stating that the type en-
vironmentΓ is well formed. The typing rules are collected in Table 3, andthey are
based on the following rules of type formation, which prevent a channel of levelδ from
carrying values of level higher thanδ.

(EMPTY TYPE)

⊢ δ[ ]

(CHANNEL TYPE)

⊢ T Λ(T ) � δ

⊢ δ[T ]

Notice that the type formation rules guarantee the absence of any explicit flow of infor-
mation from a higher to a lower security level: for instance,the processpub〈passwd〉.0
where a secret password is forwarded along a public channel,is not well-typed.

5



(EMPTY)

∅ ⊢ ⋄

(ENV a)

Γ ⊢ ⋄ ⊢ T a /∈ Dom(Γ )

Γ, a : T ⊢ ⋄

(PROJECT)
Γ, a : T ⊢ ⋄

Γ, a : T ⊢ a : T

(OUTPUT)

Γ ⊢ a : δ[T ] Γ ⊢ b : T Γ ⊢ P

Γ ⊢ a〈b〉.P

(INPUT)

Γ ⊢ a : δ[T ] Γ, x : T ⊢ P

Γ ⊢ a(x : T ).P

(MATCH)

Γ ⊢ a : δ[T ] Γ ⊢ b : δ[T ] Γ ⊢ P Γ ⊢ Q

Γ ⊢ if a = b then P else Q

(PARA)
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

(RES)
Γ, n : T ⊢ P

Γ ⊢ (νn : T )P

(REPL)
Γ ⊢ P

Γ ⊢!P

(DEAD)
Γ ⊢ ⋄

Γ ⊢ 0

Table 3.Type System

3 Observation Equivalences relative to a Security Level

In this section we introduce the notion ofσ-level observation equivalence and we de-
velop an equational theory for theπ-calculus which is parametric on the security level
(i.e., the observational power) of the observers.

Our equivalences are reminiscent of the typed behavioural equivalences for theπ-
calculus [1, 12, 14, 21]: they are equivalences indexed by a type environmentΓ ensuring
that both the observed process and the observer associate the same security levels to the
same names. Our equivalences, however, are much simpler than those in the above
mentioned works since we do not consider subtyping nor linearity/affinity.

Our type-indexed relations are based on the notion of configuration. We say that
Γ ⊲P is aconfigurationif Γ is a type environment andP is a process such thatΓ ⊢ P 2.
A type-indexed relation over processes is a family of binaryrelations between processes
indexed by type environments. We writeΓ � P R Q to mean thatP andQ are related
byR atΓ andΓ ⊲ P andΓ ⊲ Q are configurations.

To define ourσ-level observation equivalences, we will ask for the largest type-
indexed relation over processes which satisfies the following properties.

2 The two notationsΓ ⊲P andΓ ⊢ P are essentially the same; however, we prefer to keep them
distinct to make it uniform with the literature.
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Reduction Closure.A type-indexed relationR over processes isreduction closed
if Γ � P RQ andP

τ
−→ P ′ imply that there existsQ′ such thatQ =⇒ Q′ and

Γ � P ′RQ′, where=⇒ denotes the reflexive and transitive closure of
τ

−−→ .
σ-Barb Preservation.Let σ ∈ Σ, P be a process andΓ a type environment such

thatΓ ⊢ P . We writeΓ � P ↓σ
n if P

n〈m〉
−→ with Λ(Γ (n)) � σ. We also writeΓ � P ⇓σ

n

if there exists someP ′ such thatP =⇒ P ′ andΓ � P ′ ↓σ
n. A type-indexed relationR

over processes isσ-barb preservingif Γ � P RQ andΓ � P ↓σ
n imply Γ � Q⇓σ

n.
σ-Contextuality.Let a typed context be a process with at most one typed hole[·Γ ].

If C[·Γ ] is a typed context andP is a process such thatΓ ⊢ P , then we writeC[P ] for
the process obtained by replacing the hole inC[·Γ ] by P . In order to type contexts, the
type system of Table 3 is extended with the following rule:

(CTX)

Γ, Γ ′ ⊢ [·Γ ]

Proposition 1. LetΓ ⊢ P andΓ, Γ ′ ⊢ C[·Γ ], thenΓ, Γ ′ ⊢ C[P ].

We are interested inσ-contexts that capture the idea ofσ-level observers. Intuitively,
aσ-context is an evaluation context which may interact with the process filling the hole
just through channels of level at mostσ.

Definition 1 (σ-context). Let σ ∈ Σ. A contextC[·Γ ] is a σ-context if there exists a
type environmentΓ ′ such thatΓ, Γ ′ ⊢ C[·Γ ] andC[·Γ ] is generated by the following
grammar

C[·Γ ] ::= [·Γ ] | (νn:T )C[·Γ ] | C[·Γ ] | P | P | C[·Γ ]

whereP is a process such that∀n ∈ fn(P ) we haveΛ(Γ, Γ ′(n)) � σ.

Example 1.Let Γ be the type environmenth : ⊤[⊥[ ]], ℓ : ⊥[ ] andσ ≺ ⊤. The context
(νh)(h〈ℓ〉 | [·Γ ]) is not aσ-context since the processh〈ℓ〉 in parallel with the hole has a
free occurrence of the high nameh. This context does not represent aσ-level observer
since it can interact with a process filling the hole through the high channelh. On the
other hand,(νh)(h〈ℓ〉) | [·Γ ] is aσ-context.

We say that a type-indexed relationR over processes isσ-contextualif Γ � P R Q
andΓ, Γ ′ ⊢ C[·Γ ] imply Γ, Γ ′

� C[P ] R C[Q] for all σ-contextsC[·Γ ].

Definition 2 (σ-Reduction Barbed Congruence∼=σ). Let σ ∈ Σ. Theσ-reduction
barbed congruence, denoted by∼=σ, is the largest type-indexed relation over processes
which is symmetric,σ-contextual, reduction closed andσ-barb preserving.

The following proposition is immediate.

Proposition 2. Let σ ∈ Σ, Γ be a type environment andP, Q be processes such that
Γ ⊢ P, Q. If Γ � P ∼=σ Q thenΓ � P ∼=σ′ Q for all σ′ � σ. In particular,Γ � P ∼=⊤

Q impliesΓ � P ∼=σ Q for all σ ∈ Σ.
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3.1 A bisimulation-based proof technique

In this section we develop a proof technique for the equivalences∼=σ defined above.
More precisely, following [1, 11, 12], we define a LTS oftyped actions(called typed
LTS) over configurations. As in [11], actions are parameterized over security levels and
take the form

Γ ⊲ P
α

−−→δ Γ ′ ⊲ P ′

indicating that the processP in the type environmentΓ can perform the actionα to
interact with someδ-level observer. In this case, we say thatα is aδ-levelaction.

The rules of the typed LTS are obtained from those in Table 2 bytaking into account
the type environmentΓ which records the security levels of the channels used by the
process. Differently from [11], our typed actions are builtaround just a single type
environmentΓ constraining the observed processP . This differs from [11] where, due
to the presence of subtyping, two distinct type environments are needed, one for the
observer and the other for the observed process.

The rules of the typed LTS are reported in Table 4; note that there is an additional
input action of the form(νm:T )n(m) occurring when the process receives a new name
m generated by the environment.
Relying on the typed LTS, we now introduce thebisimilarity onσ-actionswhich pro-
vides a coinductive characterization ofσ-reduction barbed congruence∼=σ.

With an abuse of notation, we write=⇒ for the reflexive and transitive closure of
τ

−−→δ. We also write
α

==⇒δ for =⇒
α

−−→δ =⇒, and
α̂

==⇒δ for =⇒ if α = τ
and

α
==⇒δ otherwise.

Definition 3 (Bisimilarity on σ-actions ≈σ ). Letσ ∈ Σ. Bisimilarity onσ-actions is
the largest symmetric relation≈σ over configurations, such that whenever(Γ ⊲P ) ≈σ

(Γ ⊲ Q), if Γ ⊲ P
α

−−→σ Γ ′ ⊲ P ′, then there existsQ′ such thatΓ ⊲ Q
α̂

==⇒σ Γ ′ ⊲ Q′

and(Γ ′ ⊲ Q′) ≈σ (Γ ′ ⊲ P ′).

In the following, for a given relationR over configurations, we writeΓ � P R Q
whenever(Γ ⊲ P ) R (Γ ⊲ Q).

Theorem 1. Let σ ∈ Σ, Γ be a type environment andP, Q be processes such that
Γ ⊢ P, Q. Γ � P ∼=σ Q if and only ifΓ � P ≈σ Q.

4 Noninterference

In this section we introduce a notion of noninterference forprocesses of the typedπ-
calculus which uses theσ-reduction barbed congruence∼=σ as observation equivalence.
This property, calledNI(∼=σ), is inspired by theP BNDC property defined in [8] for
CCS processes; it requires that no information flow should occur even in the presence
of activemalicious processes, e.g., Trojan Horse programs, that runat the classified
(higher thanσ) level.

We start by introducing the following notations:
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(OUT)

Γ ⊢ n : δ1[T ] δ1 � δ

Γ ⊲ n〈m〉.P
n〈m〉

−−→δ Γ ⊲ P

(IN)

Γ ⊢ n : δ1[T ] Γ ⊢ m : T δ1 � δ

Γ ⊲ n(x:T ).P
n(m)

−−→δ Γ ⊲ P{x := m}

(WEAK)

Γ, m : T ⊲ P
n(m)

−−→δ Γ ′ ⊲ P ′

Γ ⊲ P
(νm:T ) n(m)

−−−−−−−−→δ Γ ′ ⊲ P ′

(PAR)

Γ ⊲ P
α

−−→δ Γ ′ ⊲ P ′ bn(α) ∩ fn(Q) = ∅

Γ ⊲ P | Q
α

−−→δ Γ ′ ⊲ P ′ | Q

(RED)

P
τ

−−→ P ′

Γ ⊲ P
τ

−−→δ Γ ⊲ P ′

(OPEN)

Γ, m:T ⊲ P
n〈m〉

−−→δ Γ ′ ⊲ P ′ m 6= n

Γ ⊲ (νm:T )P
(νm:T ) n〈m〉

−−−−−−−−→δ Γ ′ ⊲ P ′

(RES)

Γ, n:T ⊲ P
α

−−→δ Γ ′, n:T ⊲ P ′ n /∈ fn(α) ∪ bn(α)

Γ ⊲ (νn:T )P
α

−−→δ Γ ′ ⊲ (νn:T )P ′

(REP-ACT)

Γ ⊲ P
α

−−→δ Γ ′ ⊲ P ′

Γ⊲!P
α

−−→δ Γ ′ ⊲ P ′ | !P

Table 4.Typed LTS forπ-calculus

– We say that a configurationΓ ′ ⊲P ′ is reachablefrom a configurationΓ ⊲P , written
Γ ⊲ P  Γ ′ ⊲ P ′, if there existn ≥ 0, α1, . . . , αn and σ1, . . . , σn such that
Γ ⊲ P

α1−→σ1

α2−→σ2
· · ·

αn−→σn
Γ ′ ⊲ P ′. (Notice that the concept of reachability is

independent from the levelsσi.)
– Given a type environmentΓ , we say that a processP is aσ-high level sourcein Γ ,

written P ∈ Hσ

Γ
, if Γ ⊢ P and eitherΓ ⊲ P 6

α
−→δ (i.e.,Γ ⊲ P does not perform

any action) or ifΓ ⊲ P
α

−→δ Γ ′ ⊲ P ′ thenσ ≺ δ andΓ ′ ⊲ P ′ is a σ-high level
source. In other words, aσ-high level source can only performδ-level actions with
σ ≺ δ. Notice that this definition does not prevent aσ-high level source from
communicatingσ-low values (alongσ-high channels).

– Given a security levelσ ∈ Σ, we writeΓ ⊲ P
α

−−→σ Γ ′ ⊲ P ′ (with a superscript
σ) if wheneverΓ ⊲ P

α
−→δ Γ ′ ⊲ P ′ thenσ ≺ δ. In this case we say thatΓ ⊲ P has

performed aσ-high level action. We define
α̂

==⇒σ accordingly.

A processP in a type environmentΓ satisfies the propertyNI(∼=σ) if for every config-
urationΓ ′⊲P ′ reachable fromΓ ⊲P and for everyσ-high level sourceH , aσ-level user
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cannot distinguish, in the sense of∼=σ, Γ ′ ⊲ P ′ from Γ ′ ⊲ P ′ | H . The formal definition
of NI(∼=σ) is as follows.

Definition 4 (σ-Noninterference).Let σ ∈ Σ, P be a process andΓ be a type envi-
ronment such thatΓ ⊢ P . The processP satisfies theσ-noninterference property inΓ ,
written Γ ⊲ P ∈ NI(∼=σ), if for all Γ ′ ⊲ P ′ such thatΓ ⊲ P  Γ ′ ⊲ P ′ and for all
H ∈ Hσ

Γ ′ it holdsΓ ′
� P ′ ∼=σ P ′ | H .

Example 2.In the following examples, we assume just two security levels: H andL

with L ≺ H; let alsoh be a high level channel andℓ, ℓ1, ℓ2 be low level channels. LetΓ
be the type environmenth : H[ ], ℓ : L[ ], ℓ1 : L[ ], ℓ2 : L[ ] andσ = L.

Let us first consider the following simple insecure process:P1 = h().ℓ() | h〈〉. To
show thatΓ ⊲ P1 6∈ NI(∼=σ) it is sufficient to consider the configurationΓ ⊲ P ′

1
with

P ′
1

= h().ℓ() that is reachable fromΓ ⊲ P1 after performing the output actionh〈〉. The
processP ′

1
is clearly insecure in the type environmentΓ since the low level, observable,

actionℓ() directly depends on the high level inputh(). Indeed, by choosingH = h〈〉
one can easily observe thatΓ � P ′

1
6∼=σ P ′

1
| H .

Let us consider a further classic example of insecure process, that isP2 = h(x :
T ).if x = n then ℓ1〈〉 else ℓ2〈〉 in the type environmentΓ ′ = h : H[T ], ℓi : L[ ], n : T
(here the security level ofn is irrelevant). To show thatΓ ′ ⊲ P2 /∈ NI(∼=σ) one can
chooseH = h〈n〉, whereH ∈ Hσ

Γ ′ independently on the level ofn, and observe that
Γ ′ ⊢ P2 6∼=σ P2 | H . Intuitively, whenn is a high level name, a low level observer may
infer fromP2 the value of the high level variablex, which is clearly unsound.

Finally, consider the processP3 = P2 | h〈n〉 | h〈m〉, where the variablex can be
nondeterministically substituted either withn or m. P3 is still an insecure process since
an external attack can destroy the nondeterminism causing an interference: for instance,
if H = h(y).h(z).h〈n〉, thenΓ ′

� P3 6∼=σ P3 | H .

Building on the ideas developed in [2] for a class of persistent noninterference prop-
erties for CCS processes, we provide a characterization ofNI(∼=σ) in terms of an un-
winding condition. Intuitively, the unwinding condition specifies local constraints on
the typed actions of the system which imply the global security property. More pre-
cisely, our unwinding condition ensures that noσ-high actionα leading to a config-
urationC is observable by aσ-low user, as there always exists a configurationC′,
σ-equivalent toC, that the system may reach without performingα.

Definition 5 (σ-Unwinding Condition). Let σ ∈ Σ, P be a process andΓ be a type
environment such thatΓ ⊢ P . The processP satisfies theσ-unwinding condition inΓ ,
writtenΓ ⊲ P ∈ W(∼=σ), if for all Γ ′ ⊲ P1 such thatΓ ⊲ P  Γ ′ ⊲ P1

– if Γ ′⊲P1

α

−−→σ Γ ′⊲P2 with α ∈ {n〈m〉, n(m)}, then∃P3 such thatΓ ′⊲P1 =⇒
Γ ′ ⊲ P3 andΓ ′

� P2
∼=σ P3;

– if Γ ′ ⊲ P1

α

−−→σ Γ ′, m:T ⊲ P2 with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then
∃P3 such thatΓ ′ ⊲ P1 =⇒ Γ ′ ⊲ P3 andΓ ′

� P3
∼=σ (νm:T )P2.

This unwinding-based schema characterizes a notion of security with respect to allpas-
sive attackswhich try to infer information about the classified behaviorjust by observ-
ing theσ-level behaviour of the system.
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Both propertiesNI(∼=σ) andW(∼=σ) are persistent, as stated in the following
proposition.

Proposition 3 (Persistence).Letσ ∈ Σ, P be a process andΓ be a type environment
such thatΓ ⊢ P . For all Γ ′ ⊲ P ′ such thatΓ ⊲ P  Γ ′ ⊲ P ′ it holds

– if Γ ⊲ P ∈ NI(∼=σ) thenΓ ′ ⊲ P ′ ∈ NI(∼=σ).
– if Γ ⊲ P ∈ W(∼=σ) thenΓ ′ ⊲ P ′ ∈ W(∼=σ).

The equivalence of propertiesNI(∼=σ) andW(∼=σ) is stated below.

Theorem 2. Letσ ∈ Σ, P be a process andΓ be a type environment such thatΓ ⊢ P .
Γ ⊲ P ∈ NI(∼=σ) if and only ifΓ ⊲ P ∈ W(∼=σ).

The unwinding-based characterization ofσ-noninterfering processes provides a better
understanding of the operational semantics of secure processes. Moreover, it allows one
to define efficient proof techniques forσ-noninterference just by inspecting the typed
LTS of processes. Notice that theσ-unwinding conditionW(∼=σ) is decidable over the
class of finite state processes, i.e., processes whose typedLTS is finite. Moreover, by
exploiting the following compositionality results, the unwinding conditionW(∼=σ) can
be used to define methods, e.g., proof systems, both to check the security of complex
systems and to incrementally build processes which are secure by construction.

Theorem 3 (Compositionality ofW(∼=σ)). Let σ ∈ Σ, P andQ be processes andΓ
be a type environment such thatΓ ⊢ P, Q. If Γ ⊲ P ∈ W(∼=σ) andΓ ⊲ Q ∈ W(∼=σ)
then

– Γ, Γ ′ ⊲ a〈b〉.P ∈ W(∼=σ) whereΓ, Γ ′ ⊢ a : δ[T ], Γ, Γ ′ ⊢ b : T andδ � σ;
– Γ, Γ ′ ⊲ a(x : T ).P ∈ W(∼=σ) whereΓ, Γ ′ ⊢ a : δ[T ] andδ � σ;
– Γ, Γ ′ ⊲ if a = b then P else Q ∈ W(∼=σ) whereΓ, Γ ′ ⊢ a : T andΓ, Γ ′ ⊢ b : T ;
– Γ ⊲ P | Q ∈ W(∼=σ);
– Γ ′ ⊲ (νn : T )P ∈ W(∼=σ) whereΓ = Γ ′, n : T ;
– Γ⊲!P ∈ W(∼=σ).

Example 3.Let P andQ be finite state processes andΓ be a type environment such
thatΓ ⊢ P, Q. AlthoughR =!P | Q might be an infinite state process, one can easily
check whetherΓ ⊲R ∈ NI(∼=σ) just by exploiting the decidability ofΓ ⊲P ∈ W(∼=σ)
andΓ ⊲ Q ∈ W(∼=σ) and the compositionality ofNI(∼=σ) with respect to the parallel
composition and replication operators.

4.1 Noninterference through a Partial Equivalence Relation

In [20, 19] the notion of noninterference for sequential andmultithreaded programs
is expressed in terms of a partial equivalence relation (per model) which captures the
view of aσ-level observer. Intuitively, a configurationC, representing a program and the
current state of the memory, is secure ifC ∼σ C where∼σ is a symmetric and transitive
relation modeling theσ-level observation of program executions. The relation∼σ is in
general not reflexive, but it becomes reflexive over the set ofsecure configurations.
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Below we show how this approach can be adapted to theπ-calculus to characterize
the class ofσ-noninterfering processes. We first introduce the following notion of partial
bisimilarity up toσ-high actions,

.

≈σ. Intuitively,
.

≈σ requires thatσ-high actions are
simulated by internal transitions, while on the remaining actions it behaves as≈σ .

Definition 6 (Partial Bisimilarity up to σ-high actions
.

≈σ). Let σ ∈ Σ. Partial
bisimilarity up to σ-high actions is the largest symmetric relation

.

≈σ over configu-
rations, such that wheneverΓ � P

.

≈σ Q

– if Γ ⊲ P
α

−−→σ Γ ′ ⊲ P ′, then there existsQ′ such thatΓ ⊲ Q
α̂

==⇒σ Γ ′ ⊲ Q′ with
Γ ′
� Q′ .

≈σ P ′.

– if Γ ⊲ P
α

−−→σ Γ ⊲ P ′ with α ∈ {n〈m〉, n(m)}, then there existsQ′ such that
Γ ⊲ Q =⇒ Γ ⊲ Q′ with Γ � Q′ .

≈σ P ′.

– if Γ ⊲ P
α

−−→σ Γ, m : T ⊲ P ′ with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then
there existsQ′ such thatΓ ⊲ Q =⇒ Γ ⊲ Q′ with Γ � Q′ .

≈σ (νm : T )P ′ and
Γ, m : T � P ′ .

≈σ P ′ .

The relation
.

≈σ is a partial equivalence relation, i.e., it is not reflexive.In fact, if we
consider the processP = h〈〉.ℓ〈〉.0 and the type environmentΓ = h : ⊤[ ], ℓ : ⊥[ ] we
getΓ � P 6

.

≈σ P whenσ = ⊥.
The next theorem states that relation

.

≈σ is reflexive on the set of well typed non-
interfering processes. The proof exploits a sort of persistence property of

.

≈σ, that is: if
Γ � P

.

≈σ P , then for allΓ ′ ⊲ P ′ such thatΓ ⊲ P  Γ ′ ⊲ P ′, it holdsΓ ′
� P ′ .

≈σ P ′.

Theorem 4. Letσ ∈ Σ, P be a process andΓ be a type environment such thatΓ ⊢ P .
Γ ⊲ P ∈ NI(∼=σ) if and only ifΓ � P

.

≈σ P .

4.2 Noninterference through Name Restriction

In [8] the P BNDC property for CCS processes is characterized in terms of a single
bisimulation-like equivalence check. We show that the sameidea can be applied to the
π-calculus. Let us first introduce the following definition.

Definition 7. Letσ ∈ Σ, P be a process andΓ be a type environment such thatΓ ⊢ P .
We denote by(νσ)P the process(νm1:T1) . . . (νmk:Tk)P wherem1, . . .mk are all
the free names occurring inP such thatΓ (mi) = Ti andΛ(Ti) ≻ σ.

Definition 6 of partial bisimilarity up toσ-high actions can be modified as follows in
order to obtain an equivalence relation.

Definition 8 (Bisimilarity up to σ-high actions
..

≈σ). Let σ ∈ Σ. Bisimilarity up to
σ-high actions is the largest symmetric relation

..

≈σ over configurations, such that when-
everΓ � P

..

≈σ Q

– if Γ ⊲ P
α

−−→σ Γ ′ ⊲ P ′, then there existsQ′ such thatΓ ⊲ Q
α̂

==⇒σ Γ ′ ⊲ Q′ with
Γ ′
� Q′ ..

≈σ P ′.
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– if Γ ⊲ P
α

−−→σ Γ ⊲ P ′ with α ∈ {n〈m〉, n(m)}, then there existsQ′ such that

either Γ ⊲ Q
α̂

==⇒σ Γ ⊲ Q′ with Γ � Q′ ..

≈σ P ′ or Γ ⊲ Q =⇒ Γ ⊲ Q′ with
Γ � Q′ ..

≈σ P ′.

– if Γ ⊲P
α

−−→σ Γ, m : T ⊲P ′ with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then there

existsQ′ such that eitherΓ ⊲ Q
α̂

==⇒σ Γ, m : T ⊲ Q′ with Γ, m : T � Q′ ..

≈σ P ′

or Γ ⊲Q =⇒ Γ ⊲Q′ with Γ � Q′ ..

≈σ (νm : T )P ′ andΓ, m : T � P ′ ..

≈σ (νσ)P ′.

We can now characterizeNI(∼=σ) in terms of a single equivalence check betweenP
and (νσ)P through

..

≈σ. The proof of the next theorem exploits the fact that ifΓ �
P

..

≈σ (νσ)P , then for allΓ ′ ⊲ P ′ such thatΓ ⊲ P  Γ ′ ⊲ P ′, it holdsΓ ′
� P ′ ..

≈σ

(νσ)P ′.

Theorem 5. Letσ ∈ Σ, P be a program andΓ be a type environment such thatΓ ⊢ P .
Γ ⊲ P ∈ NI(∼=σ) if and only ifΓ � P

..

≈σ (νσ)P .

Corollary 1. Letσ ∈ Σ, P be a process andΓ be a type environment such thatΓ ⊢ P
and∀n ∈ fn(P ), Λ(Γ (n)) � σ (i.e.,P has no freeσ-high level names). ThenΓ ⊲ P ∈
NI(∼=σ).

Example 4.Let us consider the processesP1 = h().ℓ() | h〈〉 andP3 = h(x:T ).if x =
n then ℓ1〈〉 else ℓ2〈〉 | h〈n〉 | h〈m〉 and the type environmentsΓ andΓ ′ of Example 2.
We have seen thatΓ ⊲P1 6∈ NI(∼=σ) andΓ ′ ⊲P3 6∈ NI(∼=σ). Now, by Corollary 1, we
can immediately state that bothΓ ⊲ (νh)P1 ∈ NI(∼=σ) andΓ ′ ⊲ (νh)P3 ∈ NI(∼=σ).

Notice that a process whose free names have a security level higher thanσ is, in
general, not secure. For instance, letΓ be the type environmenth : ⊤[⊥[ ]], ℓ : ⊥[ ]
and P be the processh(x:⊥[ ]).x〈〉. Assuming thatσ ≺ ⊤, we have that the only
free nameh occurring inP has a security level higher thanσ. It is easy to see that
Γ ⊲ P 6∈ NI(∼=σ): in fact, by choosingH = h〈ℓ〉, we haveΓ � P 6∼=σ P | H , that is
P is insecure.

We conclude this section observing that, as in [7] for CCS, the definition ofσ-
noninterference can be also expressed in terms of bisimilarity on ⊤-actions over well-
typed processes whoseσ-high level names are restricted. This comes as a corollary of
the following property.

Proposition 4. Let σ ∈ Σ, P andQ be two processes andΓ be a type environment
such thatΓ ⊢ P, Q. Γ � P ≈σ Q if and only ifΓ � (νσ)P ≈⊤ (νσ)Q.

Corollary 2. Letσ ∈ Σ, P be a process andΓ be a type environment such thatΓ ⊢ P .
Γ ⊲ P ∈ NI(∼=σ) if and only if for allΓ ′ ⊲ P ′ such thatΓ ⊲ P  Γ ′ ⊲ P ′ and for all
H ∈ Hσ

Γ ′ it holdsΓ ′
� (νσ)P ′ ≈⊤ (νσ)(P ′ | H).

5 Conclusion and Related Work

In this paper we develop a theory of noninterference for processes of the typedπ-
calculus. In the literature there are a number of works whichstudy type-based tech-
niques for noninterference. A few of them are discussed in the following.
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Hennessy and Riely [13, 11] consider a typed version of the asynchronousπ-calculus
where types associate read/write capabilities to channelsas well as security clearances.
They study noninterference properties based on may and mustequivalences. A similar
study is conducted by Pottier [17] relying on the synchronousπ-calculus and bisimula-
tion equivalence. Honda, Yoshida, Vasconcelos and Berger [14, 15, 24] consider ad-
vanced type systems for the linear/affineπ-calculus and express noninterference in
terms of typed bisimulation equivalences. Their type systems guarantee that every com-
munication on a linear channel must eventually succeed, andso its success alone does
not carry any information. For instance, the processh().ℓ〈〉, which waits an input on
the secret channelh and then performs the low-level outputℓ〈〉, is considered secure
as long ash is a linear channel. Similarly, Zdancewic and Myers [25] propose a type
system dealing with linear channels in a concurrent language with (a restricted form of)
join-patterns as synchronization primitives. Furthermore, their type system controls the
temporal ordering of communications on linear channels. Kobayashi [16] presents an
even more flexible type system which can deal with arbitrary usage of channels, so that
programs using various concurrency primitives (includinglocks) can be encoded into
theπ-calculus and analyzed.

The typing constraints imposed by the type systems discussed above allow one
to reason only on a limited class of processes and contexts. For instance the process
!x(y).P |!x(y).Q is rejected by the type system of, e.g., [15] and thus it is considered
insecure independently of the security level of its channels. As another example, when
h is a nonlinear channel, the process(νh)(h().ℓ() | h〈〉) is never typed in most of the
mentioned type systems. However, this process does not leakany secret information, as
shown in Example 4.

Our approach relies on a much simpler typing discipline which does not deal with
implicit information flow. Instead, we characterize secureprocesses in terms of the
actions they perform. The use of a lighter type system leads to stronger noninterfer-
ence properties, that check the security of processes against a bigger class of attackers.
Compared with the literature discussed so far, such properties could be considered too
restrictive. Nevertheless, they are more suitable in contexts with partial trust, where it
would be not realistic to assume that attackers are well typed in a strong way. Inter-
estingly, we can increase the flexibility of our approach by admitting mechanisms for
downgradingor declassifyinginformation as done in [3] for CCS. This would allow the
processh().ℓ〈〉 to be deemed secure by declassifying the high actionh().

Another difference with respect to previous works is that they deal with open terms,
while our theory applies to closed processes. However, the results presented in this
paper scale to open terms by: (1) introducing the open extension of ∼=σ as the type-
indexed relation∼=o

σ over terms such thatΓ � T ∼=o

σ U if and only if Γ ′
� Tρ ∼=σ Uρ

for all closing substitutionρ which respects3 Γ with Γ ′, and (2) saying that a term
T satisfies theσ-noninterference property inΓ if for all closing substitutionρ which
respectsΓ with Γ ′, it holdsΓ ′ ⊲ Tρ ∈ NI(∼=σ).

3 We say thatρ = {x1 := m1, . . . , xn := mn} is a substitution which respectsΓ with Γ ′ if
Γ = ∆, x1:T1, . . . , xn:Tn and there exists∆′ such thatΓ ′ = ∆, ∆′ andΓ ′ ⊢ mi : Ti for
i = 1, . . . , n.
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