A Theory of Noninterference for the w-calculus

Silvia Crafa and Sabina Rossi

Dipartimento di Informatica, Universita Ca’ Foscari dinézia
e-mail: {silvia,sross}@dsi.unive.it

Abstract. We develop a theory of noninterference for a typed versiomhefr-
calculus where types are used to assign secrecy levels tmelsa We provide
two equivalent characterizations of noninterference dasea typed behavioural
equivalence relative to a security levelwhich captures the idea of external ob-
servers of leveb. The first characterization involves a universal quantiibca
over all the possiblactive attacksi.e., malicious processes which interact with
the system possibly leaking secret information. The seawfthition of non-
interference is expressed in terms of an unwinding conditichich deals with
so-calledpassive attack#rying to infer confidential information just by observ-
ing the behaviour of the system. This unwinding-based atariaation natu-
rally leads to efficient methods for the verification and ¢orction of (composi-
tional) secure systems. Furthermore, we characterizentesfeérence in terms of
bisimulation-like (partial) equivalence relations in stgle of a stream of similar
studies for other process calculi (e.g., CCS and Crypto@iRéd)languages (e.g.,
imperative and multi-threaded languages).

1 Introduction

A central issue of multilevel security systems is the pritecof sensitive data and
resources from undesired access. Information flow secpraperties have been pro-
posed as a means to provide strong guarantees of confidtgrifaecret information.
These properties impose constraints on information flovaiéng that no information
can flow from a higher to a lower security level. Since Denrind Denning’s work [6],
information flow analysis has been studied for various paogning languages, includ-
ing imperative languages [6, 20, 23], functional langugd@s18] and concurrent lan-
guages [4,7,14-17,19,22,25].

One of the most successful approaches to information flowrggaelies on the
notion of Noninterferencg9]. The basic idea is that a system is interference freegif th
low level observation of the system is independent from #iealviour of its high com-
ponents. Recently, various type-based proof techniquethéor-calculus have been
proposed [11,14-17]. In these works type systems are achaat of the definition of
noninterference, in that both the observation of the systeththe observed processes
are constrained by types. A soundness theorem is then pststiitg that if a system is
well-typed, then no change in the behaviour of its high congmts can affect the low
level view of the system.

* Supported by the EU-FET project IST-2001-32617 and the RiRect RBAUO18RCZ.

In this paper we wish to define a general theory of noninterfee for ther-
calculus, where the use of types is much lighter. In pariGthe only typing constraint
we impose is that values at a given security clearance célomathrough channels with
a lower security level. Such a typing discipline ensures ithf@rmation does not ex-
plicitly flow from high to low. Instead, implicit flows are ndealt with the type system,
and then we cannot use it as a proof technique for nonintsréer. On the contrary, we
characterize noninterference in terms of the actions jipedt processes may perform.

Our approach intends to generalize previous ideas, maagldped for CCS, to
the w-calculus, where new difficulties arise due to the presericecope extrusion.
The contribution of this paper is twofoldi)(we develop a rich and elegant theory of
noninterference intrinsic of the-calculus, almost independent of types, aid we
find a number of sound and complete characterizations ofeguocesses leading to
efficient verification techniques.

The noninterference property we are going to study is bas¢ldeonotion of process
behaviour relative to a security lewe) taken from a complete lattige”, <) of security
annotations. We define typed equivalences foritfmlculus relative to an observation
level o, namelyo-reduction barbed congruences (see [12]). Two proceBs@sarec-
equivalent in the type environmeft written I" E P =, @, if they exhibit the same
o-level behaviour, i.e., they are indistinguishable fer-kevel observer.

A o-level observer is formalized assacontext, i.e., a well typed context which can
interact with the observed process only through channdévef at most. We require
2, to be a congruence for alt-level contexts.

We also develop a proof technique &, in terms of a quite natural bisimilarity
on o-actions defined on typed labelled transition systems. &dgT'S is built around

typed actions of the formi'> P —a>5 I'"> P’ indicating that in the type environment
I', the process performs the actiom of level § and evolves taP’ in the possibly
modified environment”. We prove that two processes aréarbed congruent if and
only if they are bisimilar on typed actions of level

Relying on this equational theory for thecalculus, we introduce the noninterfer-
ence propertyWZ (=2,) for typed processes, which is inspired by (x8NDC property
defined in [8] for CCS. We say that a proc&3sn a type environmeni’ satisfies the
propertyNZ(=,), written "> P € NZ(2,), if for every configuration’ > P’ reach-
able fromI'> P in the typed LTS, and for every-high level sourcdd (thatis a process
which can perform only actions at level higher thgnt holds

I'sP =, I">P | H.

This definition involves a universal quantification overthik possibleactive attacks
i.e., high level malicious processéswhich interact with the system possibly leaking
secretinformation. Moreover, it {gersistenin the sense that if a configuration satisfies
NZI(=,) then also all the configurations reachable from it in the typES satisfy
NZ(=,). As discussed in [8], persistence is technically usefutesiit allows us to
apply inductive reasoning when proving security resultg.(ecompositionality), but

it is also intuitively motivated by the need for mobile preses to be secure at any
computation step.

We provide a first characterization 6fZ(22,) in terms of arunwindingcondition
in the style of [2]. The unwinding condition aims at spedaifyilocal constraints on
process transitions which imply the global security proypénore precisely, we require
that whenever a configurati@r performs a typed action of level higher thamoving
to C’, then a configuratio” can also be reached through an internal computation
such thatC” andC” are indistinguishable for a-level observer. In other words, the
unwinding condition ensures that thehigh actions are always simulated by internal
computations, thus becoming invisible for the low levelevers.

It is interesting to observe that the unwinding conditioamtterizes security with
respect to the so-callgahssive attacksvhich try to infer information about the classi-
fied behaviour £-high actions) just by observing thelevel behaviour of the system.
Thanks to this characterization, the noninterferencegnypVZ (=2,) becomes decid-
able for finite state processes, i.e., processes whose tyffgdb finite. Furthermore,
we show thatNZ (=,) is compositional with respect to most of the operators of the
w-calculus. In particular, i andQ satisfyN'Z (=) thenP | Q and!P also do.

We further develop two quantifier-free characterizatiohaaninterference based
on bisimulation-like (partial) equivalence relations. Magrecisely, we first introduce
a partial equivalence relatiofa, (per model) over configurations and, inspired by the
definitions in [20] for imperative and multi-threaded laages, we prove that, is
reflexive only on the set of secure processes. Hence, wenahizi a typed procesd
is secure if and only i? is &, -equivalent to itself. Then we investigate the impact of
name restriction on noninterference. (et) P be the proces® where all itso-high
free names are restricted. We define the equivalence nekatiaand prove that a typed
processP is secure if and only ifP and (v?) P are~,-equivalent. Finally we show
that two well typed processésand(are equivalent oa-actions if and only i) P
and(v?)Q are equivalent on every action. This property allows us &zigely relate
the standard bisimulation equivalensefor the w-calculus with our bisimulation on
o-actions and also to express our noninterference propetgrins of the equivalence
relation=.

The rest of the paper is organized as follows. In Section 2 neegnt the language,
its semantics and the type system. In Section 3 we study typgsetrvation equivalences
relative to a security level. In Section 4 we introduce th&éaroof o-noninterference
and provide a number of characterizations based on typamhacSection 5 concludes
the paper discussing some related work.

All the proofs of the results presented in this paper ardaivia in [5].

2 The Language

In this section we introduce the language, its operaticgralantics and the type system
with which we will be concerned.

We presuppose a countably-infinite set of names and a cdy+itdimite set of vari-
ables ranged over by, .., ¢ and byz, .., z, respectively. We often usg b, ¢ to range
over both names and variables. We also assume a compléte (@t <) of security
annotations, ranged over oy 5, whereT and_L represent the top and the bottom el-
ements of the lattice. The syntax of processes and typeoismsin Table 1. It is a

Prefixes Processes

m = a(b) output P:=nP prefix
| a(z:T)input | ifa=bthen Pelse P matching
| P|P parallel
Types | (wn:T)P restriction
T ::= o] | P replication
| o[T] | O inactive

Table 1. Syntax

synchronous monadic, calculus with the match/mismatch operator. Asai®ed in
[12], the matching construct is essential for the coindgctharacterization of the re-
duction barbed congruence shown in Section 3.

As usual, the input construe{z : T).P acts as a binder for the variablein P,
while the restriction(vn : T)P acts as a binder for the namein P. We identify
processes up ta-conversion. We usén(P) andfv(P) to denote the set of free names
and free variables, respectively, ih We write P{z := n} to denote the substitution
of all free occurrences of in P with n, and we often writez(z:T"), a(b) omitting
trailing 0’s. In this paper we restrict tolosedprocesses, i.e., processes containing no
free occurrences of variables; in Section 5 we discuss haxtend our theory to open
terms.

Types are used to assign security levels to channels. Mesaty, ifc € X, then
a[] is the type of channels of level which carry no values, while[T] is the type of
channels of lever which carry values of typ@'. We consider the function associating
to types the corresponding level, thatigs[]) = o = A(o[T]).

SemanticsThe operational semantics of our language is given in tefrasabelled
transition system (LTS) defined over processes. The setbeldaor actions, is the
following:

Actions a n=Tm(m) send a name
| (vm:T)7m(m) send afresh name
| n(m) receive a name
| 7 internal action

We write fn(a)) andbn(«) to denote the set of free and bound names occurring in the
actiona, wherebn(a) = {m} if a = (vm:T)n(m), andbn(a) = @ otherwise. The
LTS is defined in Table 2 and it is entirely standard; we jusittmd the symmetric
rules for (M), (PAR), (Comm) and (G.0sE) in which the role of the left and right
components are swapped.

1 We consider the synchronous calculus since it allows forenmterferences. Nevertheless, our
results can be adapted to the asynchronous, polyadic aalcul

(OuT) (IN)

- wmy n(m)
n(m).P —— P n(z:T).P —— P{z:=m}
(MATCH) (MISMATCH)
n#m

ifn =nthen Pelse Q — P if n = mthen P else Q i Q

(PAR) (Comm)
P -2~ P bn(a)Nf(Q) =0 p I e M,
PlQ = P'|Q Pl s PO
(CLosE) (OPEN)
(vm:T) W (m) P Q ﬂ Q m¢mQ) p ﬂ P omtn
P1Q == (rmT)(P'| Q') wmryp
(RES) (REP-ACT)
P "~ P’ n¢ () Ubn(a) P p
(vn:T)P N (vn:T) P’ m

Table 2. Labelled Transition System

Type SystemOur type system corresponds to the basic type system forrthe
calculus (see [21]). The main judgements take the féimr P, wherel" is a type
environment, that is a finite mapping from names and vargatietypes. Intuitively,

I' F P means that the proce$s uses all channels as input/output devices in accor-
dance with their types, as given in. The other, auxiliary, judgements afet a : T
stating that the name/variabiehas typ€el” in I', andI’ - ¢ stating that the type en-
vironmentI" is well formed. The typing rules are collected in Table 3, #mely are
based on the following rules of type formation, which preneenhannel of leved from
carrying values of level higher than

(EMPTY TYPE) (CHANNEL TYPE)
T A(T) =6
il - (1]

Notice that the type formation rules guarantee the absefraycexplicit flow of infor-
mation from a higher to a lower security level: for instartbe, procesgub(passwd).0
where a secret password is forwarded along a public chasmedt well-typed.

(ENV a) (PROJECT)

(EMPTY)
I'te BT a¢ Dom(I) Ia:Tko
OFo Na:Tro Na:Thka:T
(OuTPUT) (INPUT)
I'ta:8[T) I'tb:T T'HP I'ta:8[T) Ix:THP
I'+a(b).P I'ta(zx:T).P
(MATCH) (PARA)
I'kta:6[T] I'Eb:[T] I'FP I'HQ Ir-pP I'eqQ
I'+ifa = bthen Pelse Q I'P|Q
(RES) (REPL) (DEAD)
I'n:TFP P I'ko
I'wn:T)P r'v'pP Ir'+o

Table 3. Type System

3 Observation Equivalences relative to a Security Level

In this section we introduce the notion eflevel observation equivalence and we de-
velop an equational theory for thecalculus which is parametric on the security level
(i.e., the observational power) of the observers.

Our equivalences are reminiscent of the typed behaviogralalences for ther-
calculus[1,12, 14, 21]: they are equivalences indexed pgaenvironment” ensuring
that both the observed process and the observer asso@aartte security levels to the
same names. Our equivalences, however, are much simplertibae in the above
mentioned works since we do not consider subtyping nor titydaffinity.

Our type-indexed relations are based on the notion of cordtgun. We say that
I'> P is aconfigurationf I" is a type environment anél is a process such that- P 2.
Atype-indexed relation over processes is a family of bimafgtions between processes
indexed by type environments. We writeE P R () to mean thaf’ and@ are related
byR atl"andl'> P and" > @ are configurations.

To define ours-level observation equivalences, we will ask for the latdgggse-
indexed relation over processes which satisfies the fofigyproperties.

2 The two notationd” > P andI” - P are essentially the same; however, we prefer to keep them
distinct to make it uniform with the literature.

Reduction ClosureA type-indexed relatiorik over processes ieduction closed
if ' £ PRQ andP - P’ imply that there exist)’ such thatQ — @’ and

I' E PR Q’, where=> denotes the reflexive and transitive closure of - .
o-Barb PreservationLet o € X, P be a process anfl a type environment such

n(m)

thatl" - P. We writeI" E P |7 if P == with A(I'(n)) < o. We also writel" £ P |/¢

if there exists som@’ such thatP — P’ andI" F P’ |7. A type-indexed relatiofR

over processes is-barb preservindf I'F PR Q andl' E P |7 imply I' F Q2.
o-ContextualityLet a typed context be a process with at most one typedhele

If C[-r]is atyped context anf is a process such that+ P, then we writeC[P] for

the process obtained by replacing the hol€{n-] by P. In order to type contexts, the

type system of Table 3 is extended with the following rule:

(Ctx)

IIr'e[r]
Proposition 1. LetI'+ PandI,I" + C[-r], thenl,I" + C[P].

We are interested im-contexts that capture the ideassfevel observers. Intuitively,
ac-context is an evaluation context which may interact witlpinocess filling the hole
just through channels of level at mast

Definition 1 (o-context).Leto € X. A contextC[-r] is a o-context if there exists a
type environment” such thatl”, I"” + C[-r] and C[-r] is generated by the following
grammar

Clrl == [r] | (wnD)Clr] | Clr]|IP | P|C[r]
whereP is a process such that € fn(P) we haved(I, I (n)) = o.

Example 1.Let I" be the type environment: T[L[]], ¢: L[] ando < T. The context
(vh)(h{£) | [-r]) is not as-context since the proceag) in parallel with the hole has a
free occurrence of the high nameThis context does not representdevel observer
since it can interact with a process filling the hole through high channet. On the
other hand(vh)(h{£)) | [-r] is ac-context.

We say that a type-indexed relati@over processes is-contextualf I' = P R @
andl, I" + C[-r]imply I, I E C[P] R C|Q] for all o-contextsC|- r].

Definition 2 (o-Reduction Barbed Congruence=,). Letoc € Y. Theo-reduction
barbed congruencdenoted by, is the largest type-indexed relation over processes
which is symmetricr-contextual, reduction closed amdbarb preserving.

The following proposition is immediate.

Proposition 2. Leto € X, I" be a type environment anél (Q be processes such that
I'-PQ.fI'EP=,Qthenl’ E P, Qforall ¢’ < o.Inparticular,I" £ P =
QimpliesI’'E P =, Qforallc € X.

3.1 A bisimulation-based proof technique

In this section we develop a proof technique for the equivads>, defined above.
More precisely, following [1, 11, 12], we define a LTS yped actiongcalled typed
LTS) over configurations. As in [11], actions are paramesstiover security levels and
take the form

rsP —25 ' P

indicating that the procesB in the type environment’ can perform the action to
interact with some-level observer. In this case, we say thdt ad-levelaction.

The rules of the typed LTS are obtained from those in Tabletaking into account
the type environment’ which records the security levels of the channels used by the
process. Differently from [11], our typed actions are baifbund just a single type
environment” constraining the observed proce3sThis differs from [11] where, due
to the presence of subtyping, two distinct type environmané needed, one for the
observer and the other for the observed process.

The rules of the typed LTS are reported in Table 4; note thexetis an additional
input action of the fornfrm:T") n(m) occurring when the process receives a new name
m generated by the environment.

Relying on the typed LTS, we now introduce thisimilarity on o-actionswhich pro-
vides a coinductive characterizationofeduction barbed congruengg, .
W|th an abuse of notation, we write= for the reflexive and transitive closure of

—>5 We also write ==; for — —>5 =, and :>5 for—=ifa=r1
and —=; otherwise.

Definition 3 (Bisimilarity on o-actions =,). Leto € X. Bisimilarity ono-actions is
the largest symmetrlc relatiore, over configurations, such that Whene(/éh>P) Ro

(I'>Q),ifI'sP —> I'"> P’, then there existQ’ such thatl'> Q ==, I''>Q’
and(I"> Q') ~ (F’|>P’).

In the following, for a given relatiorR over configurations, we writé’ £ P R Q
whenever(I'> P) R (I'> Q).

Theorem 1. Leto € X, I' be a type environment anBl, Q be processes such that
I'-PQ.I'EP=, Qifandonlyif’E P =, Q.

4 Noninterference

In this section we introduce a notion of noninterferenceiarcesses of the typett
calculus which uses the-reduction barbed congruenegg as observation equivalence.
This property, calledV'Z(=,), is inspired by the®_ BNDC property defined in [8] for
CCS processes; it requires that no information flow shoutiipeven in the presence
of active malicious processes, e.g., Trojan Horse programs, thaattine classified
(higher thanr) level.

We start by introducing the following notations:

(OuT) (IN)

I'tn:6[T] 616 I'tn:5T) I'tm:T 6 =296
I'vna(m).P —s I'> P I'vn(x:T).P —s I'> P{z:=m}
(WEAK)

I'm:ToP ——s I''> P’

(vm:T) n(m) , ,
I'sP —— s I"'> P

(PAR) (RED)
I'sP — ;s I'"'> P bo(e) Nf(Q) =0 PP
I'sP|Q ——s I"'sP' | Q Ir'sP —s I's P!
(OPEN)

n{m) , ,
Ir'mT>oP —s I'>P m#n

(rm:T) n(m) , ,
I's(vmT)P ——— s I["'p P

(RES) (REP-ACT)
I'nTeP ——s I' TP n¢(a)Ubn(q) I'sP ——; I's P
I's wn:T)P ——5 "> (vn:T)P’ IelP ——; I's P'| 1P

Table 4. Typed LTS forr-calculus

— We say that a configuratiafi > P’ is reachablerom a configuratiod "> P, written
I'>P ~ I"p> P, if there existn > 0, a1,...,a, andoy, ..., o0, such that
s pP 2L, 2 ... 2%, I P (Notice that the concept of reachability is
independent from the levets.)

— Given a type environmerit, we say that a proceg3is ac-high level sourcén I,
written P € ‘H%, if I' = P and eitherl" > P /55 (i.e., I > P does not perform
any action) or if "> P %5 I > P’ theno < 6 andI” > P’ is ao-high level
source. In other words,@&high level source can only perforfalevel actions with
o =< ¢. Notice that this definition does not preventehigh level source from

communicatingr-low values (alongr-high channels).

— Given a security lever € X, we writeI'> P ——? "' P’ (with a superscript
o) if wheneverl'> P -5 I > P’ theno < 4. In this case we say thdt> P has

performed ar-high level actionWe define :a>‘7 accordingly.

A processP in a type environment satisfies the propertyZ (=,) if for every config-
urationI’> P’ reachable froni"> P and for everyr-high level sourcéd, ao-level user

cannot distinguish, in the sense®f, I'' > P’ from I"' > P’ | H. The formal definition
of NZ(=,) is as follows.

Definition 4 (o-Noninterference).Leto € X, P be a process and’ be a type envi-
ronment such thaf’ - P. The proces$ satisfies ther-noninterference property ifi,
written I'> P € NZ(2,), if forall I” > P’ such thatl'> P ~ "> P’ and for all
H e Hf, itholdsI" = P' =, P' | H.

Example 2.In the following examples, we assume just two security levidland L
with L < H; let alsoh be a high level channel arfd?;, /> be low level channels. Ldt
be the type environment: H[], ¢: L[], ¢; : L[], ¢2: L[] ando = L.

Let us first consider the following simple insecure procégs= h().£() | k(). To
show thatl" > P, ¢ N'Z(=,) itis sufficient to consider the configuratidn> P with
P] = h().£() that is reachable fromi' > P; after performing the output action(). The
processP; is clearly insecure in the type environménsince the low level, observable,
action() directly depends on the high level inplut). Indeed, by choosingl = h()
one can easily observe that= P{ %, P{ | H.

Let us consider a further classic example of insecure pspthat isP> = h(z :
T).if v = nthen f1() else /() in the type environmenkt’ = h : H[T], ¢; : L[], n: T
(here the security level of is irrelevant). To show that” > P, ¢ N'Z(2,) one can
chooseHl = h{n), whereH € H¢, independently on the level of, and observe that
I+ P, %, P> | H. Intuitively, whenn is a high level name, a low level observer may
infer from P, the value of the high level variablg which is clearly unsound.

Finally, consider the proced® = P, | h(n) | h(m), where the variable can be
nondeterministically substituted either withor m. P is still an insecure process since
an external attack can destroy the nondeterminism causiimgexference: for instance,
if H = h(y).h(z).h(n), then” E Py %, Py | H.

Building on the ideas developed in [2] for a class of persigt@ninterference prop-
erties for CCS processes, we provide a characterization@f=,,) in terms of an un-
winding condition. Intuitively, the unwinding conditiopscifies local constraints on
the typed actions of the system which imply the global ségymioperty. More pre-
cisely, our unwinding condition ensures that sdigh actiona leading to a config-
uration C' is observable by @-low user, as there always exists a configuratiin
o-equivalent taC, that the system may reach without performing

Definition 5 (o-Unwinding Condition). Leto € X, P be a process and’ be a type
environment such thdt - P. The proces$ satisfies ther-unwinding condition inl”,
writtenI"> P € W(2,,), ifforall IV > Py suchthatl'> P ~ I > Py

—ifI">P, ——° I'»Pywitha € {7(m), n(m)}, then3P; such thatl s P, —>
F’DPgandF/':PQ =, Ps;

—ifI"> P —° I, m:T > Py with o € {(wm:T)7(m), (wm:T)n(m)}, then
3Ps suchthatl” > P, = I'">P;andl” E P; =, (vm:T)Ps.

This unwinding-based schema characterizes a notion ofisgaith respect to alpas-
sive attacksvhich try to infer information about the classified behayimt by observ-
ing theo-level behaviour of the system.

10

Both propertiesNZ(22,) and W(=2,) are persistent, as stated in the following
proposition.

Proposition 3 (Persistence)Leto € X, P be a process and’ be a type environment
suchthat" + P. Forall I > P’ such thatl"'> P ~» I > P’ it holds

—if'>P e NI(¥,)thenl'> P € NI(=,).
—ifI'v P e W(2,) thenI" > P’ € W(,).

The equivalence of propertieéZ (=,) andW(=%,) is stated below.

Theorem 2. Leto € X, P be a process and' be a type environment such that- P.
I'sP e NI(=,)ifandonlyifl'> P € W(2,).

The unwinding-based characterizationoehoninterfering processes provides a better
understanding of the operational semantics of secure gseseMoreover, it allows one
to define efficient proof techniques fernoninterference just by inspecting the typed
LTS of processes. Notice that theunwinding conditionV (=,) is decidable over the
class of finite state processes, i.e., processes whose i@ finite. Moreover, by
exploiting the following compositionality results, thewimding condition/V (=2,) can

be used to define methods, e.g., proof systems, both to chedeturity of complex
systems and to incrementally build processes which ares&guconstruction.

Theorem 3 (Compositionality ofW(22,)). Leto € X, P and @ be processes antl
be a type environment such that- P, Q. If I'> P € W(2,) andI'>Q € W(2,)
then

- I [">ad).P e W(,)wherel[, I+ a:8[T), [, "+ b:Tandd < o;

- II"va(x:T).PeW(,)wherel,I" Fa:d[T]andd < o;

— I >ifa = bthen Pelse Q € W(=%,)wherel, I"Fa:Tandl,I"Fb:T;
- I'pP|QeW(=s);

—I">(wn:T)P e W(=,)where' =I"n:T,;

— I'bIP e W(,).

Example 3.Let P and(@ be finite state processes ahdbe a type environment such
thatl” - P, Q. Although R =!P | Q might be an infinite state process, one can easily
check whethel"> R € NZ(2,) just by exploiting the decidability of > P € W(2,,)
andl" > Q € W(=,) and the compositionality oV Z(=2,) with respect to the parallel
composition and replication operators.

4.1 Noninterference through a Partial Equivalence Relatio

In [20,19] the notion of noninterference for sequential andltithreaded programs
is expressed in terms of a partial equivalence relatmar (hodel) which captures the
view of ac-level observer. Intuitively, a configurati@n representing a program and the
current state of the memory, is secur€ifv, C where~,, is a symmetric and transitive
relation modeling the-level observation of program executions. The relatignis in
general not reflexive, but it becomes reflexive over the seeofire configurations.

11

Below we show how this approach can be adapted tarthalculus to characterize
the class of-noninterfering processes. We firstintroduce the follayriotion of partial
bisimilarity up tos-high actions/,. Intuitively, ~, requires that-high actions are
simulated by internal transitions, while on the remainintians it behaves as,, .

Definition 6 (Partial Bisimilarity up to o-high actions ~,). Let 0 € X. Partial
bisimilarity up too-high actions is the largest symmetric relatien, over configu-
rations, such that whenevét P ~, Q

—ifI'>P —a>g I'"> P’, then there existQ’ such thatl"> Q :&>U I > Q' with
I'eQ %4, P.

—ifI'vb P —° I'n> P! with a € {=(m),n(m)}, then there exist§’ such that
I'sQ=TI>Q withl'EQ' ~, P

—ifI'e P —° I''m : T P witha € {(vm:T)7{m), (vm:T)n(m)}, then
there exists)’ suchthatl'> Q — I'> Q' withI' E Q' =, (vm : T)P’ and
I'm:TEP %, P.

The relation~,, is a partial equivalence relation, i.e., it is not reflexilrefact, if we
consider the proces® = h().£().0 and the type environmeiit = h : T[],¢: L[] we
getl’ = P %, Pwheno = L.

The next theorem states that relatisp is reflexive on the set of well typed non-
interfering processes. The proof exploits a sort of pesist property of,,, that is: if
I'=EP~, P,thenforalll”> P’ suchthat' > P ~ "> P/, itholdsI"” E P’ ~, P'.

Theorem 4. Leto € X, P be a process and’ be a type environment such that- P.
I'sPeNI(=,)ifandonlyifl’E P =, P.

4.2 Noninterference through Name Restriction

In [8] the P_.BNDC property for CCS processes is characterized in terms ofgesin
bisimulation-like equivalence check. We show that the satea can be applied to the
m-calculus. Let us first introduce the following definition.

Definition 7. Leto € X, P be a process andl' be a type environment such that- P.
We denote byv?)P the processvmy:T1) ... (vmy:Ty) P wheremy, ... my are all
the free names occurring iRt such thatl"(m;) = T; and A(T;) > o.

Definition 6 of partial bisimilarity up tar-high actions can be modified as follows in
order to obtain an equivalence relation.

Definition 8 (Bisimilarity up to o-high actions~,). Letoc € X. Bisimilarity up to

o-high actions is the largest symmetric relatisg over configurations, such that when-
ever' E P =, Q

—-ifI'sP —a>g I''> P’, then there exist§)’ such thatl" > Q =%, I's Q' with
I'EQ %, P

12

—ifrsP — 0 s P witha ¢ {m(m),n(m)}, then there exist§)’ such that

either I > Q Lo I'c@Q withl' F Q =, PPorI'b@Q = I'>Q with
IEQ &, P,
—ifI'vP —° I''m : ToP' witha € {(vm:T) 7(m), (vm:T) n(m)}, then there

exists()’ such that eithed” > Q —= Im : T Q' with [,m : T E Q' &y P’
OFI'>Q = I'sQ'With ' = Q' &, (vm : T)P' andl,m : T = P' %, (u°)P'.

We can now characteriz&€Z(22,) in terms of a single equivalence check betwden
and (v7) P through=,. The proof of the next theorem exploits the fact thaf’if
P ~, (v?)P, then for alll” > P’ such thatl"> P ~ I > P’ itholdsI” E P’ ~,
(v?)P'.

Theorem 5. Leto € ¥, P be a program and” be a type environment such that- P.
I'sP e NI(=,)ifandonlyifl" E P ~, (v7)P.

Corollary 1. Leto € X, P be a process andl' be a type environment such that- P
andvn € fn(P), A(I'(n)) < o (i.e., P has no freer-high level names). Thefir P €
NIZ(=,).

Example 4.Let us consider the processBs = h().£() | h() andP3 = h(z:T).if x =
nthen £1() else £5() | h{(n) | h{m) and the type environmentsand" of Example 2.
We have seen thdt> P, ¢ NZ(=,) andl”>P; ¢ NZ(=,). Now, by Corollary 1, we
can immediately state that both> (vh)P; € NZ(22,) andI” > (vh)Ps € NZ(2,).

Notice that a process whose free names have a security liglhedrithano is, in
general, not secure. For instance, lebe the type environmenit : T[L[]], ¢ : L[]
and P be the proces&(z:L[]).Z(). Assuming thatr < T, we have that the only
free nameh occurring in P has a security level higher than It is easy to see that
I's P ¢ NI(=,): in fact, by choosing? = h(¢), we havel' = P %, P | H, that is
Pisinsecure.

We conclude this section observing that, as in [7] for CC$®, dbfinition ofo-
noninterference can be also expressed in terms of bisitgitam T-actions over well-
typed processes whosehigh level names are restricted. This comes as a corolfary o
the following property.

Proposition 4. Leto € X', P and @ be two processes anl be a type environment
suchthat' - P,Q.I'E P ~, Qifandonlyifl" F (v7)P ~1 (v?)Q.

Corollary 2. Leto € X', P be a process andl' be a type environment such thiat- P.
I'> P e NI(=,)ifand only if for all I" > P’ such thatl'> P ~ I > P’ and for all
H € HY, itholdsI” E (v?)P' ~+ (v?)(P' | H).

5 Conclusion and Related Work
In this paper we develop a theory of noninterference for @sees of the typed-

calculus. In the literature there are a number of works wisithly type-based tech-
nigues for noninterference. A few of them are discussedérfaiowing.

13

Hennessy and Riely [13, 11] consider a typed version of theasonousr-calculus
where types associate read/write capabilities to chamsel®ell as security clearances.
They study noninterference properties based on may andequstalences. A similar
study is conducted by Pottier [17] relying on the synchranogalculus and bisimula-
tion equivalence. Honda, Yoshida, Vasconcelos and Bertgrlp, 24] consider ad-
vanced type systems for the linear/affinecalculus and express noninterference in
terms of typed bisimulation equivalences. Their type systguarantee that every com-
munication on a linear channel must eventually succeedsarit$ success alone does
not carry any information. For instance, the prockés/(), which waits an input on
the secret channél and then performs the low-level outptty, is considered secure
as long ash is a linear channel. Similarly, Zdancewic and Myers [25]gose a type
system dealing with linear channels in a concurrent languwéth (a restricted form of)
join-patterns as synchronization primitives. Furthereydineir type system controls the
temporal ordering of communications on linear channeldd&mshi [16] presents an
even more flexible type system which can deal with arbitragge of channels, so that
programs using various concurrency primitives (includimgks) can be encoded into
then-calculus and analyzed.

The typing constraints imposed by the type systems disduabeve allow one
to reason only on a limited class of processes and contextsnBtance the process
lz(y).P|'z(y).Q is rejected by the type system of, e.g., [15] and thus it isseTed
insecure independently of the security level of its chasiné$ another example, when
h is a nonlinear channel, the process:)(h().£() | h{)) is never typed in most of the
mentioned type systems. However, this process does noafeagecret information, as
shown in Example 4.

Our approach relies on a much simpler typing discipline Widoes not deal with
implicit information flow. Instead, we characterize secprecesses in terms of the
actions they perform. The use of a lighter type system leadsronger noninterfer-
ence properties, that check the security of processessgaligger class of attackers.
Compared with the literature discussed so far, such priggerbuld be considered too
restrictive. Nevertheless, they are more suitable in casteith partial trust, where it
would be not realistic to assume that attackers are welldype strong way. Inter-
estingly, we can increase the flexibility of our approach tynating mechanisms for
downgradingor declassifyindgnformation as done in [3] for CCS. This would allow the

process:().£() to be deemed secure by declassifying the high action

Another difference with respect to previous works is thaytteal with open terms,
while our theory applies to closed processes. However, ¢kalts presented in this
paper scale to open terms by: (1) introducing the open exterts =, as the type-
indexed relatior=? over terms suchthdt F T =2 Uifandonlyif I’ = Tp =, Up
for all closing substitutiorp which respects I" with I, and (2) saying that a term
T satisfies ther-noninterference property i if for all closing substitutionp which
respectd” with I, it holdsI" > Tp € NI(=,).

3 We say thap = {z; := m4,..., T, := my} is a substitution which respect&’ with I"’ if
I' = A, z1:T1,...,z,:T, and there existg\’ such thatl” = A, A" andI”’ - m; : T; for

t=1,...,n.

14

References

1. M. Boreale and D. Sangiorgi. Bisimulation in Name-Pag<lalculi without Matching. In
Proc. of 13th IEEE Symposium on Logic in Computer Sciendggl98) pages 165-175.
IEEE Computer Society Press, 1998.

2. A.Bossi, R. Focardi, C. Piazza, and S. Rossi. VerifyingiB&ent Security Propertie€om-
puter Languages, Systems and StructuB@¢3-4):231-258, 2004.

3. A.Bossi, C. Piazza, and S. Rossi. Modelling Downgradimignformation Flow Security. In
Proc. of the 17th IEEE Computer Security Foundations WaRSICSFW’'04) pages 187—
201. IEEE Computer Society Press, 2004.

4. S. Crafa, M. Bugliesi, and G. Castagna. Information Flae8ity for Boxed Ambients.
ENTCS66(3), 2002.

5. S. Crafa and S. Rossi. A Theory of Noninterference forsthgalculus. Technical Re-
port CS-2004-8, Dipartimento di Informatica, Univers@a’ Foscari di Venezia, Italy, 2004.
http://ww. dsi.unive.it/~silvialCS 2004-8. ps.gz.

6. D.E. Denning and P.J. Denning. Certification of programnsécure information flonCom-
munications of the ACM20:504-513, 1977.

7. R. Focardi and R. Gorrieri. Classification of Securitygenties (Part I: Information Flow).
In R. Focardi and R. Gorrieri, editorBroc. of Foundations of Security Analysis and Design
(FOSAD'01) volume 2171 o NCS pages 331-396. Springer-Verlag, 2001.

8. R. Focardi and S. Rossi. Information Flow Security in DpiaContexts. InProc. of the
IEEE Computer Security Foundations Workshop (CSFW'papes 307-319. IEEE Com-
puter Society Press, 2002.

9. J. A. Goguen and J. Meseguer. Security Policies and $gddiodels. InProc. of the IEEE

Symposium on Security and Privacy (SSP@2ges 11-20. IEEE Computer Society Press,

1982.

10. N. Heintze and J. G. Riecke. The SLam Calculus: Progragpmith Secrecy and Integrity.
In Proc. of ACM SIGPLAN-SIGACT Symposium on Principles of Rrogning Languages
(POPL'98), pages 365-377. ACM Press, 1998.

11. M. Hennessy. The security picalculus and non-intenfegeJournal of Logic and Algebraic
Programming 2004. To Appear.

12. M. Hennessy and J. Rathke. Typed Behavioural Equivatefar Processes in the Presence
of Subtyping.Mathematical Structures in Computer Scient4(5):651-684, 2004.

13. M. Hennessy and J. Riely. Information Flow vs. ResourceeAs in the Asynchronous
Pi-calculus. ACM Transactions on Programming Languages and Systems L(ASP
24(5):566-591, 2002.

14. K. Honda, V.T. Vasconcelos, and N. Yoshida. Secure inétion Flow as Typed Process
Behaviour. InProc. of European Symposium on Programming (ESOR\aflume 1782 of
LNCS pages 180-199. Springer-Verlag, 2000.

15. K. Honda and N. Yoshida. A Uniform Type Structure for Seclnformation Flow. In
Proc. of ACM SIGPLAN-SIGACT Symposium on Principles of Rrogning Languages
(POPL'02), pages 81-92. ACM Press, 2002.

16. N. Kobayashi. Type-Based Information Flow Analysistfae Pi-Calculus. Technical Report
TRO03-0007, Dept. of Computer Science, Tokyo Institute affifelogy, 2003.

17. F. Pottier. A simple view of type-secure information flowthe w-calculus. InProc. of the
15th IEEE Computer Security Foundations Work shmages 320-330, 2002.

18. F. Pottier and V. Simonet. Information Flow InferenceNt_. In Proc. of ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languag€s(F02), pages 319-330.
ACM Press, 2002.

15

19

20.

21.

22.

23.

24.

25.

. A. Sabelfeld and H. Mantel. Static Confidentiality Ewfement for Distributed Programs.
In Proc. of Int. Static Analysis Symposium (SAS'08)ume 2477 o NCS pages 376-394.
Springer-Verlag, 2002.

A. Sabelfeld and D. Sands. Probabilistic Noninterfeeefor Multi-threaded Programs. In
Proc. of the IEEE Computer Security Foundations WorkshdpRW’00) pages 200-215.
IEEE Computer Society Press, 2000.

D. Sangiorgi and D. WalkerThe pi calculus: A theory of mobile processegSambridge,
2001.

G. Smith and D. Volpano. Secure Information Flow in a Mikiteaded Imperative Lan-
guage. InProc. of ACM SIGPLAN-SIGACT Symposium on Principles of Rrogning Lan-
guages (POPL'98)pages 355-364. ACM Press, 1998.

D. Volpano, G. Smith, and C. Irvine. A Sound Type SystemSecure Flow Analysis.
Journal of Computer Security#(3):167-187, 1996.

N. Yoshida, K. Honda, and M. Berger. Linearity and Bisiation. InProc. of the Inter-
national Conference on Foundations of Software ScienceCamdputation Structures (FoS-
SaCsS’02)volume 2303 oL NCS pages 417-434. Springer-Verlag, 2002.

S. Zdancewic and A. C. Myers. Observational DetermirfismConcurrent Program Se-
curity. In Proceedings of the 16th IEEE Computer Security Foundativoek shop pages
29-45, 2003.

16

