CoPS - Checker of Persistent Security™*

Carla Piazza, Enrico Pivato, and Sabina Rossi

Dipartimento di Informatica, Universita Ca’ Foscari di Venezia,
{piazza,epivato,srossi}@dsi.unive.it

Abstract. CoPS is an automatic checker of multilevel system security
properties. CoPS can be used to check three different bisimulation-based
non-interference properties for systems expressed as terms of the Se-
curity Process Algebra (SPA) language. The considered properties are
persistent, in the sense that they are preserved at each execution step.
Moreover, they imply the Bisimulation-based Non Deducibility on Com-
position (BNDC') property, whose decidability is still an open problem.

1 Introduction

The tool CoPS, available at http://www.dsi.unive.it/~mefisto/CoPS/, is
an automatic checker of multilevel system security properties. It implements the
polynomial algorithms described in [1] to check three security properties named

— SBNDC, i.e., Strong Bisimulation-based Non Deducibility on Composition,
— P_BNDC, i.e., Persistent BNDC,
— PP_BNDC, i.e., Progressing Persistent BNDC.

These are Non-Interference [8] properties for processes expressed as terms of
the Security Process Algebra (SPA) [5] which is a variation of Milner’s CCS [10]
with actions partitioned into security levels. They imply the Bisimulation-based
Non Deducibility on Composition (BNDC') property, whose decidability is still
an open problem. If a system E satisfies one of the three properties checked by
CoPS, then what a low level user sees of the system is not modified (in the sense
of the bisimulation semantics) by composing any high level (possibly malicious)
process with E | i.e., high level users cannot send confidential information down
to low level users. The properties are persistent in the sense that if a process
is SBNDC (resp., P.BNDC and PP_BNDC), then every reachable state is still
SBNDC' (resp., P.BNDC and PP_BNDC). As far as P_.BNDC is concerned,
in [7] persistency has been proved to be fundamental to deal with processes in
dynamic contexts, i.e., contexts that can be reconfigured at runtime. Moreover,
in [2] it is shown how P_BNDC can be used to prove properties (e.g., fairness) of
cryptographic protocols. The three properties are compositional with respect to

* Partially supported by the MIUR Project “Modelli formali per la sicurezza”, the EU
Contract IST-2001-32617 “MyThS”, and the FIRB project (RBAU018RCZ) “Inter-
pretazione astratta e model checking per la verifica di sistemi embedded”.

syntax errors

Carla Piazza, Enrico Pivato, and Sabina Rossi

Editor: Graph
- process Visualization
- property (gif, jpg. eps....)

!

Semantics Graph Verifier: f)sltglsttilzsesults:
Parser f==piGenerator - transformations - securit
(hash table) - strong bisimulation y
- graph

Fig. 1. CoPS Architecture

the parallel composition operator. CoPS exploits this compositionality to speed
up the computation and drastically reduce the space complexity.

CoPS consists of a graphical interface and a kernel module. The graphical

interface has been implemented in JAVA to get a large portability and allows to:

Insert the process(es) to be checked in the editor pane. The process(es) can be
either typed or loaded from a file. A tree is automatically drawn to facilitate
the navigation among processes. The syntax is highlighted to get a better
readability. Both fonts and colors can be changed by the user.

Select the security property to be checked and start the verification. It is also
possible to check whether two processes are strongly or weakly bisimilar.
Read the verification results. Some time/space statistics are shown together
with the security result. Moreover, syntax errors are reported.

View the graph representing the semantics of the process(es). This can be
also saved in a file whose type (e.g., jpg, gif, eps) can be chosen by the user.

The kernel module, whose architecture is shown in Figure 1, has been imple-
mented in standard C to obtain good performances and consists of:

2

A parser which checks for syntax errors and builds the syntax tree out of
the SPA process.

A semantics graph generator which elaborates the syntax tree to generate
an adjacency-list representation of the graph associated to the process.

A wverifier which transforms the graph in order to use a strong bisimulation
algorithm to perform the security check.

Persistent Security Properties

The Security Process Algebra (SPA) [5] is a variation of Milner’s CCS [10], where
the set of visible actions is partitioned into high level actions and low level ones
in order to specify multilevel systems. The syntax of SPA processes is as follows:

E:=0|a.E|E+E|EE|E\v|E[f]|Z

CoPS - Checker of Persistent Security 3

The semantics is the same as in CCS. In particular, as in CCS, we denote by
7 the silent (invisible) action.

As an example, a binary memory cell which initially contains the value 0
and is accessible by both high and low level users through the read and write
operations (e.g., 7,0 represents the high read of 0) can be formalized as follows:

MO=7r,0. MO+ wp0 . MO+ wpl . M1 +70 . MO+ w;0. MO+ wl. M1
M1=71. M1+wp0. MO+wpl. M1+71.M1+w0.MO+uwl. M1

MO and M1 are totally insecure processes: no access control is implemented and
a high level malicious entity may write confidential information into the memory
cell which can be then read by any low level user. Our security properties will
aim at detecting this kind of flaws, even in more subtle and interesting situations.
The three security properties SBNDC, P.BNDC and PP_BNDC' can be de-
fined in terms of unwinding conditions: if a state F' of a secure process performs
a high level action moving to a state G, then F' also performs a sequence of silent
actions moving to a state K which is equivalent to G for a low level user. We
denote by (-)* a sequence of zero or more silent actions, by (-)* a sequence of
at least one silent action and by (<) a sequence of zero actions. We also use ~
for weak bisimulation (see [10]) and =? for progressing bisimulation (see [11]).

Definition 1 ([1]). A process E is SBNDC (resp., P.BNDC and PP_BNDC)
if for all F reachable from E, if F N G, then F(5)°K (resp., F(5)*K and
F(3)YK) and G\ H~ K\ H (resp. G\H~ K\ H and G\ H~? K\ H).

The memory cell defined above does not satisfy any of the three security
properties. In fact, there is a direct information flow from high to low level. We
can redefine the cell by eliminating any low level read operation as follows:

MO =7r,0. MO+ w0 . MO+ wyl.M1+w0.MO+wl.M1
M1=r,1. M1+wy0.MO+wyl.M1+w0.MO+uwl.M1

Now the memory cell is both SBNDC and P_BNDC, but not PP_BNDC.

Both SBNDC' and P_.BNDC' are compositional with respect to the parallel
operator, but not with respect to the non-deterministic choice operator. On the
other hand, PP_BNDC is fully compositional.

In [1] efficient polynomial algorithms to verify the three security properties
are described. These algorithms are based on the reduction of the problems of
checking the security properties to the problem of checking a strong bisimulation
between two graphs. CoPS implements such algorithms. As far as the strong
bisimulation underlying algorithm is concerned, CoPS allows the user to choose
between the Paige and Tarjan’s algorithm [12] and the fast bisimulation algo-
rithm described in [4]. This choice does not affect the worst-case complexities.

3 Tool Overview and Experimental Results

A screen-shot of CoPS is shown in Figure 2: a process has been typed in the
edit pane on the right (the syntactic convetions are very similar to the ones

4 Carla Piazza, Enrico Pivato, and Sabina Rossi

Systern treeview

Wlain menn

Editor pane Toolbar

CoPS - Checher of Persistent Security - C:\Documents and Settings\Pivot\DesktopiTesilsitolexamplesiAccess Monitor.spa

access w_1h0
access_w_lhl
access w hil
access_w hll
access_w_hho
access w_hhl

wh. Moni tor
whl. Monitor
Monitor
Monitor
wh0.Monitor
whl.Moni tor

|

File Edit LookpFeel Tool Help
slzel|s]e/|n 8] pmec -] Dcompostona | /| @ (&) @] 5 (3] |
9 & System £ZIni Access Monitor
@ Access_Monitor (A Interfacel’
@ am .
@ Monitar b o
:OhJEEU“ {Monitox Object kO Object 1001 L
Object_1
® Dol Zilbi HMonitor
@ Object_hi .
b access r 11. (cl0. 'wal 10.Momitor + rll. ‘val 11.Monitor)
it access r lh. 'wal 1 err Monitor
i access_r_hl. (rl0. 'val _hO.Monitor + rll. 'wal hl.Monitor)
L = access r hh. (rh0. 'wal hO.Monitor + rhl. 'val hl.Monitor)
an access_w_110. 'wlD. Monitor
@ acth access w 111, wll.Monitor

P Access Maniar =
@ access_r_hh

@ access_r_hl
@ access_1_lh

i Objecr_10
£10. Object L0

wl0, Object 10

Syntax is correct!

Agent Object_L0...

Starting graph generator...
IFlapsed tine to generate graph (2 nodes, € edges): 0.00 seconds.

Starting graph transformation...
Flopoed tinme to transforw graph: 0.00 seconds.
iFxecuting FBA.. .

[Flapsed time to execute FEA: 0.00 seconds.

e

** The system werifies the P_BNDC property. *%

Check donel | Elapsed time: 00:00

Status bar Kernel messages area Code auto-completion Graph viewer

Fig. 2. A screen-shot CoPS : the process is P.BNDC

used on CCS processes in the Concurrency Workbench model checker [3]); the
sub-processes occurring in its definition are automatically listed on the left; the
verification results are shown in the bottom window. By selecting a process
on the left, the editor moves on its definition and it allows one to verify it.
The toolbar allows one to choose the property to be checked, stop the com-
putation, see the graph representing the semantics of the process. The graph
visualization requires the installation of GRAPHVIZ which can be downloaded at
http://www.research.att.com/sw/tools/graphviz/. The SETTINGS option
in the EDIT menu allows one to personalize the kernel execution by, e.g., set-
ting the path of GRAPHVIZ and the format of the generated graph, choosing the
bisimulation algorithm to be used (the Paige and Tarjan’s one [12] or the one
presented in [4]), avoiding the graph generation, setting the use/dimension of an
hash table which speeds up the graph generation.

It is possible to avoid the use of the graphical interface and use directly the
kernel via command line (checker --help shows the help).

CoPS has been successfully used on a number of medium-sized case stud-
ies. It has been compared with the tool CoSeC [6], which allows one to check a
bisimulation-based property equivalent to P_.BNDC. The experiments have been

CoPS - Checker of Persistent Security 5

carried out on a PC with a AMD Athlon XP 1800+ processor and 256M RAM.
For medium size processes with a number of states smaller than 2000 CoPS
takes one third of the time with respect to CoSeC. For processes with a greater
number of states (around 6.000) CoPS takes half of the time with respect to
CoSeC. We also checked a complex system: the Access_Monitor described in [5].
By exploiting the compositionality of P_.BNDC, CoPS takes 55 sec while CoSeC
didn’t produce any answer after 12 hours. Notice that the main differences be-
tween CoPS and CoSeC consist of: (1) the use of the Paige and Tarjan algorithm
for strong bisimulation [12] instead of the Kannellakis and Smolka’s one [9]; (2)
exploiting the P_.BNDC' characterization presented in [1] CoPS performs only
one strong bisimulation test, while CoSeC repeats the test over all the reachable
states.

References

1. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Prop-
erties. Computer Languages, Systems and Structures, 2003. To appear. Available
at http://www.dsi.unive.it/~srossi/cl03.ps.gz.

2. M. Bugliesi, A. Ceccato, and S. Rossi. Context-Sensitive Equivalences for Non-
Interference based Protocol Analysis. In Proc. of the International Symposium
on Fundamentals of Computing (FCT’03), volume 2751 of LNCS, pages 364-375.
Springer—Verlag, 2003.

3. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 15(1):36-72, 1993.

4. A. Dovier, C. Piazza, and A. Policriti. A Fast Bisimulation Algorithm. In Proc. of
Int. Conference on Computer Aided Verification (CAV’01), volume 2102 of LNCS,
pages 79-90. Springer-Verlag, 2001.

5. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process
Algebras. Journal of Computer Security, 3(1):5-33, 1994/1995.

6. R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties. IEEE Transactions on
Software Engineering, 23(9):550-571, 1997.

7. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In
Proc. of the 15th IEEE Computer Security Foundations Workshop (CSFW’02),
pages 307-319. IEEE Computer Society Press, 2002.

8. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc.
of the IEEE Symposium on Security and Privacy (SSP’82), pages 11-20. IEEE
Computer Society Press, 1982.

9. P. C. Kannellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. Information and Computation, 86(1):43-68, 1990.

10. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

11. U. Montanari and V. Sassone. CCS Dynamic Bisimulation is Progressing. In Proc.
of the 16th International Symposium on Mathematical Foundations of Computer
Science (MFCS’91), volume 520 of LNCS, pages 346-356. Springer-Verlag, 1991.

12. R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

6 Carla Piazza, Enrico Pivato, and Sabina Rossi

A Appendix

A.1 CoPS Site

CoPS is freely available at http://www.dsi.unive.it/~mefisto/CoPS/. In
particular, in the site you can find:

— a short description of CoPS and its features;

— a tutorial which illustrates how to use CoPS;

— installation and configuration instructions;

— the downloadable versions together with a directory of examples;
— some references to theoretical papers on which CoPS is based;

— a form to contact us for any problem/suggestion.

CoPS, which is partially supported by the MIUR Project “Mefisto: Modelli
formali per la sicurezza”, the EU Contract IST-2001-32617 “MyThS”, and the
FIRB project (RBAUO18RCZ) “Interpretazione astratta e model checking per
la verifica di sistemi embedded” has been mainly tested by other participants
of these projects on different case studies. Some of these case studies have been
included in a directory of examples.

A.2 System Requirements and Installation Instructions

In the web pages of CoPS we put four compiled versions (for WINDOWS, LINUX,
SuN, and MACOS) and a setup program for WINDOWS.

In order to use CoPS with its graphical interface it is necessary to install the
JAvA RUNTIME ENVIRONMENT (JRE) version 1.3.1 or above. We recommend
the use JRE version 1.4.2, because the previous versions contain a bug which
can cause a malfunctioning of CoPS. However, it is possible to use the kernel,
named checker, via command line (--help provides all the details).

To view a graphical representation of the semantics of the system under
analysis it is necessary to install GRAPHVIZ, which can be freely downloaded
at http://www.research.att.com/sw/tools/graphviz/. If you are not inter-
ested in this feature you can disable the graph generation.

The installation of CoPS only requires the download and decompression of a
file containing the compiled kernel and the graphical interface. WINDOWS users
can also choose to download a setup program providing a menu icon group in
the program menu and an uninstall program. Files with .spa extension are
automatically associated with CoPS.

The SETTINGS option in the EDIT menu allows to change the default settings,
such as the GRAPHVIZ path, the underlying bisimulation algorithm, the graph
generation/format, the use/dimension of an hash table, and others.

More detailed instructions and suggestions can be found in CoPS’ site.

CoPS - Checker of Persistent Security 7

A.3 An Illustrating Example

A guided tour concerning the functionalities of CoPS and the use of its graphical
interface can be found in the TUTORIAL section of our site. There we briefly recall
the syntax of the SPA processes accepted by CoPS and illustrate the meaning of
buttons, menus, and settings of the graphical interface through some snapshots.

Here we model a case study in order to give an intuition about the meaning
of our security properties and the potentialities of CoPS .

Let us consider the E-commerce Processing System described in “Information
Flow in Operating Systems: Eager Formal Methods” by J.D. Guttman, A.L.
Herzog, and J.D. Ramsdell, presented at the Workshop on Issues in the Theory
of Security 2003 (WITS’03). The system represents a process in which:

— an order is submitted electronically by a Client;

— an E_sale process ensures that the order is correct (e.g., the prices and
discounts are correct), and, if so, passes it to the process A_receiv (Account
Receivable);

— A_receiv interacts with a credit card clearing house and, if everything is ok,
passes the order to the Ship process;

— the Ship process sends the order to the Client.

In the paper presented at WITS’03 the authors use Linear Temporal Logic to
specify information flow policies for SELINUX, which can then be checked via
model-checking. The E-commerce example is used to illustrate the technique. In
particular, in this example it is important to ensure that, if the internal channels
of communication are secure, then the casual chain is always the same (e.g., it
is not possible that an unpaid order is shipped).

Let us model the E-commerce Processing System in the SPA language and
use CoPS to check that the casual chain remains the same even in presence of a
malicious attacker. To do this, all the interactions (including the ones with the
client) have to be modelled as high level actions. Since we are assuming that the
channels are secure these actions will be under the scope of a restriction, i.e., an
attacker cannot synchronize on these actions. Then, different low level signals
have to be sent out at different execution points. We have to check that also in
presence of an high level attacker the low level signals are sent out in the same
order, i.e., the casual chain is always the same. Hence, using the syntax® of CoPS
we get the following processes.

bi E_Commerce (Client|E_sale|A_receiv|Ship)\Hc

bi Client ’sock_price_ok_and_pay_ok.shipped_order.0

bi E_sale sock_price_ok_and_pay_ok.’oklowl.’new_order_pay_ok.E_sale
+ sock_price_ok_and_pay_no.’oklowl.’new_order_pay_no.E_sale
+ sock_price_no_and_pay_ok.’nolowl.E_sale

+ sock_price_no_and_pay_no.’nolowl.E_sale

1 In CoPS given an action a, ’a stands for the output action a.

8 Carla Piazza, Enrico Pivato, and Sabina Rossi

CoPS - Checker of Persistent Security - C:\Documents and Settings\Pivot\Desktop\Tesilsitolexamplesie-commercelcase_studyl_ok.spa

File Edit Look&Feel Tool Help

Djwle][a]e] (o] n]u] rmoc v| Dcomostona || @] & [@ 8 [1]

@ % Systemn 44bi E_Couwerce (Client|E_sale|A_receiv|Ship) He

@ E_Commerce

@ Client #dbi Client 'socker_price_ok_snd payment ok.shipped order.0

@ E_sale

@ A_receiv . N .

% bi E_sale socket price ok and payment ok. 'oklowl. 'new order payment ok.E sale
& ih‘p socket_price_ok_and payment no. ‘oklowl. new _order_payuent no.E_sale
e a;h socket_price_no_and payment_ok. ‘nolowl.E_sals

socket price no_and payment no. nolowl.E sale

2Abi & receiv new order payment ok. oklowZ. paid order A receiv
new_prder_payment_no. 'nolowZ. k_receiv

#pi ship paid order. 'oklows. shipped order.3hip

“i|basi He socket price_ok_and_payment ok socket price_ok_and_payment_no
socket_price_no_snd payment ok socket_price no_and payment_no
new order payment ok new order payment no

paid order

shipped order

cket_price_ok_and payment_ok socket_price_ok_and payment _no
socket price no_and payment ok socket price no_and payment no
new_order payment ok new order payment no

paid_order
shipped_order

Starcing graph transformation...
[Elapsed time to transform graph: 0.00 seconds.
Txecuting FBA...

[Elapsed time to execute FEA: 0.00 seconds.

"* The system verifies the P BNDC property. ™%

Check done!

Elapsed time: 00:00 |

Fig. 3. The process E_commerce is P.BND(C

bi A_receiv new_order_pay_ok.’oklow2.’paid_order.A_receiv
+ new_order_pay_no.’nolow2.A_receiv

bi Ship paid_order.’oklow3.’shipped_order.Ship

basi Hc sock_price_ok_and_pay_ok sock_price_ok_and_pay_no
sock_price_no_and_pay_ok sock_price_no_and_pay_no
new_order_pay_ok new_order_pay_no
paid_order shipped_order

acth sock_price_ok_and_pay_ok sock_price_ok_and_pay_no
sock_price_no_and_pay_ok sock_price_no_and_pay_no
new_order_pay_ok new_order_pay_no
paid_order shipped_order

The process E_commerce satisfies the three security properties, i.e., the ca-
sual chain order is always respected. In Figure 3 we show the positive answer
of CoPS relatively to the P_BNDC property. Some of its sub-components (e.g.,
the process E_sale) are not secure. This is due to the fact that the high level
channels are not locally restricted, i.e., an attacker interacting directly with a

CoPS - Checker of Persistent Security 9

CoPS - Checker of Persistent Security - C:\Documents and Settings\Pivot\Desktop\Tesilsitolexamplesie-commercelcase_studyl_ok.spa

File Edit Look&Feel Tool Help

Dlwe] [3]e] [o]a]u] - mmc ~| Dcomestiona || @ & (@5 |3
G & System 44bi E_Couwerce (Client|E_sale|A_receiv|Ship) He sl
@ E_Commerce
@ Client bi Client 'sockec price_ok_and payment ok. shipped order.0
@ E_sale
@ A_receiy " .
a bi E_sale socket price ok and payment ok. oklovwl. 'new _order payment ok.E sale
& ih‘p socket_price_ok_and payment no. ‘oklowl. new _order_payuent no.E_sale
- a:th socket_price_no_and_payment_ok. ‘nolowl.E_sale

socket price no_and payment no. nolowl.E sale

bi & receiv new order payment ok. oklovZ. paid order. A receiw
new_prder_payment_no. 'nolowZ. k_receiv

bi Ship paid order. 'oklow3. shipped order.Shinp

“+ CoPS - Graph Viewer

oy ‘_m, oo SR PN
Cliowr | 'nesw:_arder_payment no.E_sals

e AR

Starcing graph transformation...

[Elapsed time to transform graph: 0.00 seconds.
Txecuting FBA...

[Elapsed time to execute FEA: 0.00 seconds.

®* The system DOES NOT verify the P BNDC property. ®%

Check done! Elapsed time: 00:00 |

Fig. 4. The process E_sale is not P.BNDC

sub-component can change the casual chain. In Figure 4 we show the negative
answer of CoPS relatively to P_.BNDC for E_sale, together with its graph rep-
resentation.

This example is modelled in the file case_studyl_ok.spa in the subdirectory
e—commerce of the directory of examples downloadable from our site. In the same
directory, the files case_study2_ok_dead.spa and case_study2_ok nodead.spa
contain a variation of the E_commerce process in which the client can query the
system to know the status of its order. In this case it is necessary to add timeouts
to avoid that an attacker blocks the system.

