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Abstract

We present a logic-based verification framework for multilevel security and trans-
actional correctness of service oriented architectures. The framework is targeted
at the analysis of data confidentiality, enforced by non-interference, and of service
responsiveness, captured by a notion of compliance that implies deadlock and live-
lock freedom. We isolate a class of modal µ-calculus formulae, interpreted over
service configurations, that characterise configurations satisfying the properties of
interest. We then investigate an adaptation technique based on the use of coercion
filters to block any action that might potentially break security or transactional cor-
rectness. Based on the above, we devise a model checking algorithm for adaptive
service compositions which automatically synthesises the maximal (most expres-
sive / permissive) filter enforcing the desired security and correctness properties.
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1. Introduction

Service Oriented Architectures (SOAs) and Service Oriented Computing (SOC)
have emerged as leading paradigms to design interoperable, open-ended applica-
tions on the Internet. They rely on a series of XML-based standards to publish
service interfaces as contracts (WSDL [1]), to structure the interaction among ser-
vices so as to deliver the desired behaviour (WS-CDL [2] and BPEL [3]), and to
secure point-to-point data exchanges (WS-Security) and more complex interaction
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sessions (WS-Trust [4] and WS-SecureConversation [5]). Effective as they are as
engineering tools, such standards are instead inadequate for analysis and verifica-
tion, as they lack the formal semantics required for certifying the security and the
correctness properties they are intended to enforce.

In response to this weakness, a substantial body of research has targeted new
models of communication-centred computing, to serve as the formal counterpart
of current XML-based standards (see Section 7 for related work). In the present
paper we make a step further along the same direction, by developing a uniform
model-checking verification framework for multilevel security and transactional
correctness. We target information flow security as a fundamental property in mul-
tilevel security, and focus on a core notion of compliance to formalise transactional
correctness. These both represent critical properties in SOAs, given the growing
deployment of SOAs as the backbone of IT infrastructures for business and citizen-
centric services, where information at mixed security levels (e.g., classified vs pub-
lic) is processes and exchanged across domains with different security policies and
varying privacy constraints.

Drawing on earlier work on process algebraic characterisation of SOAs, [6, 7,
8, 9, 10, 11], we formalise service compositions within a process calculus whose
terms represent service interfaces, i.e., behavioural contracts providing abstract
descriptions of service behaviour. Multilevel security specifications are expressed
within this calculus by means security annotations, dynamically associated with
individual service components. We then formalise information flow security in
terms of a notion of non-interference [12] which we adapt to service compositions
to capture the information-flow properties of interest [13, 14, 15, 16]. Our notion
of compliance, in turn, draws on the work of [10, 11] and corresponds to a strong
condition that ensures the absence of deadlocks and livelocks: compliant compo-
sitions are those whose computations never get stuck or trapped into infinite loops
without chances to exit.

Given such characterisation of the properties of interest, we develop a verifica-
tion method based on model-checking [17]. For that purpose, we isolate a set of
modal µ-calculus [18] formulae, interpreted over service configurations, to charac-
terise compositions which satisfy our security and correctness criteria. As a further
step, we investigate an adaptation algorithm that draws on the filters introduced in
[7] to coerce the behaviour of a service composition as needed to enforce the secu-
rity and correctness of interest, by blocking any action that might potentially break
them: specifically, we show that our adaptation algorithm is able to automatically
synthesize the maximal (most permissive) filter enforcing those properties.

We demonstrate our framework at work on the analysis of a federated login sys-
tem based on OpenId [19]. This is an open standard for authentication, which al-
lows users to create accounts with their preferred OpenID providers (e.g., Google,
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Type envs Γ ::= ∅ | Γ, u : ς | Γ, (u, a, v) : ς u, v ∈ P ∪ V, a ∈ A, ς ∈ Σ

Actions ϕ ::= ā(q)@u | a(x)@u a ∈ A, u ∈ P ∪ V, x ∈ V
Contracts σ ::= 1 | x | ϕ.σ | σ + σ | σbΛ⊕ Λcσ | rec(x)σ

Compositions C ::= p[σ] | C ‖ C

Table 1: Syntax

Facebook, Wordpress, . . . etc.) and then use those accounts to sign-in and access
any service from any of the federated websites. As we show, the analysis is effec-
tive in detecting potential weaknesses of the system, and in supporting a principled
developing practice.

Plan of the paper. Section 2 introduces the calculus of services. Section 3 for-
malises the notions of non-interference and compliance. Section 4 provides the
corresponding µ-calculus characterisations. Section 5 presents the adaptation al-
gorithm. Section 6 reports on the case study. Section 7 reviews related work and
Section 8 concludes the the paper.

New content. This paper revises the work in [20] and extends it to include a new,
more expressive version of the calculus, proofs of the main results, an updated
analysis of related work, as well an analysis of the effectiveness of our verification
techniques on a realistic case study.

2. A Calculus of services

We represent service contracts as terms of a value passing CCS-like [21] pro-
cess calculus that includes recursion and operators for external and internal choice.
In the algebra, parallel composition arises in contract compositions that we define
after [11, 22, 23] as the parallel (and concurrent) composition of a set of entities,
hereafter called principals, executing contracts. We presuppose denumerable sets
of action names A, ranged over by a, b, c, principal identities P , ranged over by
p, q, r, and variables V , ranged over by x, y. Actions represent the basic unit of
observable behaviour of the underlying services, while the principal names specify
the peers providing the services.

Multilevel security policies are specified by means of type annotations deter-
mining the security levels of principal identities. Formally, we assume a complete
lattice 〈Σ,�〉 of security annotations, ranged over by ς, %, where> and⊥ represent
the top and the bottom elements of the lattice. We denote by t and u the join and
meet operators over Σ, respectively. Accordingly, type environments include two
classes of bindings: principal bindings u : ς , and link bindings (u, a, v) : ς , with
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u, v and a as in Table 1. Links are ranged over by `, and are bidirectional, hence
(u, a, v), is the same as (v, a, u). Closed type environments, assign security levels
to ground links and principals, containing no variables. We note with Λ type en-
vironments that only contain link bindings. The join and meet operators are lifted
from security levels to type environments as expected. We tacitly assume that type
environments are consistent, a condition that requires that all link bindings draw
on principal names and variables bound in the environment: formally, whenever
(u, a, v) : ς ∈ Γ then u, v ∈ dom(Γ).

2.1. Syntax
The syntax of the calculus is reported in Table 1. 1 denotes a contract that has

reached a successful state (trailing 1’s are often omitted). ā(q)@u.σ sends message
q (a principal name) on a to principal u and then behaves as σ: syntactically, umay
be a variable, but it must be a name when the prefix is ready to fire. Dually, the
input prefix a(x)@u.σ waits for an input on a from an arbitrary or specific principal
and then continues as σ. When u is a variable, it is bound upon input and has scope
σ (just as x); when it is a principal name, it is to be matched by the principal name
received on input. We remark that principal names are the only values admitted
in our contract specifications: in fact, communicating principal names is useful to
capture the dynamic structure of complex service compositions, and at the same
time is all that is needed, as other data exchanged among the actual services may
safely be disregarded and abstracted away in the services’ specifications. rec(x)σ
makes it possible to express iteration in the contract language. As usual, we assume
a standard contractivity condition for recursion, requiring that recursive variables
be guarded by a prefix. σ + σ′ denotes an external choice, guided by the context,
while σbΛ⊕ Λ′cσ′ is an internal choice, made irrespective of the structure of the
interacting components. Λ and Λ′ are link environments (which must be closed
when the internal choice is ready to fire): depending on the branch chosen, the
current type environment is updated with Λ or Λ′. We let Λ(σ) note the set of
all link bindings occurring in the type environments (associated with the internal
choices) of σ.

Contracts define the behaviour of the principals executing them: p[σ] denotes
principal p ∈ P executing contract σ. We say that a contract σ is p-compatible if (i)
for all ā(r)@q and a(r)@q occurring in σ, q 6= p, and (ii) for all (u, a, v) ∈ Λ(σ),
u 6= v and either u or v is p. A configuration p1 [σ1] ‖ · · · ‖ pn [σn] of principals
must be well-formed [22] to make a legal service composition: (i) the principal
identities pi’s must all be pairwise different, and (ii) each contract σi, executed
by principal pi, is pi-compatible. If C = p1 [σ1] ‖ · · · ‖ pn [σn] is legal, we say
that C is a {p1, . . . , pn}-composition (dually, that {p1, . . . , pn} are the underlying
principals for C). Throughout, we assume that contracts are closed (they have
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no free variables) and that compositions are well-formed. We say that Γ B C is
a configuration if Γ is a type environment and C is a well-formed {p1, . . . , pn}-
service composition such that {p1, . . . , pn} ⊆ dom(Γ).

2.2. Labelled Transition Semantics

We define the dynamics of the calculus in terms of a labelled transition system
(and a success predicate), with rules reported in Table 2. In the table, and in the
whole paper, λ ranges over visible contract typed actions ā(r)@p, a(r)@p and silent
actions τ ; δ ranges over service composition actions a(r)p→q, ā(r)p→q and τ .

The first block of rules defines the successful states for contracts and composi-
tions: these are the compositions which expose the successful term 1 at top level,
or immediately under an external choice (up-to recursive unfoldings). Notice that
a composition is successful only when all its components are successful.

The second block of rules defines the transitions for contracts. They are mostly
self-explanatory, though a few remarks are in order for the internal choice transi-
tions. Internal choices act not only as non-deterministic branching operator, but
also provide services with the ability to dynamically update the security level of
their interactions with other services by appropriately choosing the specific type
environment associated with each branch. Though syntactically localized within
choices, dynamic security-policy updates do not necessarily require a real choice.
Indeed, the following derived form Λ|σ def

= σbΛ⊕ Λcσ makes it possible to perform
a dynamic update at any step along a contract execution. We assume the binding
environments Λ1 and Λ2 of an internal choice to be closed when choice is ready to
fire.

Each contract transition yields a corresponding transition for the principal host-
ing the contract. τ transitions for configurations arise from the execution of a local
internal choice. In that case, the principal performing the choice may modify the
security level of its interactions with other components by assigning different secu-
rity levels to the principals with which it is going to interact. In the rule we assume
that a principal p cannot upgrade the level of its interactions with other compo-
nents above its own level. This is the meaning of the condition associated with
the rule for the τ transitions for compositions. This is the only constraint on the
principal security levels we assume, to rule out explicit flow of information from
high (trusted) to low (untrusted) principals. In section 3 we will will characterise
implicit flows, in terms of non-interference.

Example 2.1. Table 3 shows an example of a service contract composition. It con-
sists of a client C, two financial consulting services F1 and F2 and a stock quote
service provider S. Let Σ = {L,H} with L � H and Γ be the type environment
C : H, F1 : L, F2 : L, S : L. The composition Γ B M is well-formed and
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Contract and composition satisfaction: σX

1X
σiX

σ1 + σ2 X

σ{x := rec(x)σ}X

rec(x)σX

σX

p[σ]X

C1 X C2 X

C1 ‖ C2 X

Contract transitions: Γ B σ
λ−→ Γ′ B σ′

Γ B a(x)@p.σ
a(q)@p
−−−−−→ Γ B σ{x := q} Γ B a(x)@y.σ

a(q)@p
−−−−−→ Γ B σ{x, y := q, p}

Γ B ā(q)@p.σ
ā(q)@p
−−−−−→ Γ B σ Γ B σ1bΛ1

⊕ Λ2
cσ2

τ−→ Γ t Λi B σi (i = 1, 2)

Γ B σi
λ−→ Γ′ B σ

(i = 1, 2)
Γ B σ1 + σ2

λ−→ Γ′ B σ

Γ B σ{x := rec(x)σ} λ−→ Γ′ B σ′

Γ B rec(x)σ
λ−→ Γ′ B σ′

Composition Transitions: Γ B C
δ−→ Γ′ B C ′

Γ B σ
a(r)@p−→ Γ B σ′

p ∈ dom(Γ), p 6= q

Γ B q [σ]
a(r)p→q−→ Γ B q [σ′]

Γ B σ
ā(r)@p−→ Γ B σ′

p 6= q

Γ B q [σ]
ā(r)q→p−→ Γ B q [σ′]

Γ B C1
a(r)p→q−→ Γ B C ′

1 Γ B C2
ā(r)p→q−→ Γ B C ′

2

Γ B C1 ‖ C2
τ−→ Γ B C ′

1 ‖ C ′
2

Γ B σ
τ−→ Γ′ B σ′

Γ′(`) � Γ(p), ∀` ∈ dom(Γ′)
Γ B p[σ]

τ−→ Γ′ B p[σ′]

Γ B C1
δ−→ Γ′ B C ′

1

Γ B C1 ‖ C2
δ−→ Γ′ B C ′

1 ‖ C2

Table 2: Labelled transitions for contracts and compositions
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M = C [σC ] ‖ F1 [σF ] ‖ F2 [σF ] ‖ S [σS ]

σC = inq@F1.inq@F2.plan@F1.plan@F2.

( ( agree@F1.close@F2.1b(C,F1):H ⊕ (C,F2):Hcagree@F2.close@F1.1 )

b∅⊕ ∅cclose@F1.close@F2.1 )

σF = inq@x.lookup@S.quote@x.plan@C.( agree@x.1 + close@x.1 )

σS = lookup@x.quote@x.1

M ′ = C [σ′
C ] ‖ F1 [σF ] ‖ F2 [σF ] ‖ S [σS ]

Table 3: Example: a financial consulting platform

consists of four services: C [σC ], F1 [σF ] and F2 [σF ] and S [σS ]. The elementary
actions represent business activities that result in messages being sent or received.
For example, the action inq@F1 undertaken by the customer corresponds to the
request being sent to the first financial consulting service. Throughout, we use the
simplified syntax a@p and ā@p whenever the values exchanged by two synchroniz-
ing actions may be disregarded, as it happens in the current (we see value passing
fully at work in Section 6, on the case study). Also, we use a shorthand for link
bindings writing (p, q) : ς to note the set of link bindings (p, a, q) : ς for all a ∈ A.
In the example, the client inquires with the financial services to get investment ad-
vices. The financial services consult the stock quote service provider in order to
look up information on the financial quotes. Then, the financial services send their
investment recommendations to the client which may decide either to adhere to the
investment plan proposed by one of the financial services and close the connection
with the other one or not to adhere to any of the two and hence close both the
connections.

The following, simple proposition proves a sanity condition for the transition
system, namely that τ transitions map configurations into configurations: as a con-
sequence, τ transitions may safely be chained.

Proposition 2.1. Let Γ be a type environment and C be a service composition
such that Γ B C is a configuration. If Γ B C

τ−→ Γ′ B C ′, then Γ′ B C ′ is a
configuration.

Proof. The only subtlety is that an output action within principal p, may have a
variable, say x as a target. In any closed contract, x must be bound at an enclos-
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Γ B σ
τ−→ Γ′ B σ′

Γ B p[σ]
τ
↪−→ Γ′ B p[σ′]

Γ B C1
α
↪−→ Γ′ B C ′1

Γ B C1 ‖ C2
α
↪−→ Γ′ B C ′1 ‖ C2

Γ B C1
a(r)p→q−→ Γ B C ′1 Γ B C2

ā(r)p→q−→ Γ B C ′2

Γ B C1 ‖ C2
p〈a〉q
↪−→ Γ B C ′1 ‖ C ′2

Table 4: Labelled synchronisation transitions: Γ B C
α
↪−→ Γ′ B C′

ing input prefix. Now, given that Γ B C is well-formed, that input may never
synchronise with an output from p itself: hence x will never get bound to p.

A computation for a configuration Γ B C, may now be defined as a sequence
Γ B C = Γ0 B C0

τ−→ Γ1 B C1
τ−→ . . . of internal actions. We write =⇒ to

denote the reflexive and transitive closure of τ−→, and δ
=⇒ for =⇒ δ−→=⇒. The

notation is extended to sequences of actions: with w = δ1 . . . δn, we write w
=⇒

to note δ1=⇒ · · · δn=⇒. When the configuration typing environments may safely be
disregarded, we write C =⇒ C ′ to note a transition of Γ B C =⇒ Γ′ B C ′ for
some appropriate Γ and Γ′.

Based on the labelled transition relation given in Table 2, we introduce a fur-
ther transition relation that will be instrumental to define the behavioural invari-
ants which constitute the targets of our verification framework. The new relation
applies to compositions only, and allows us (i) to distinguish a local τ move de-
termined by a contract internal choice from a τ move resulting from a distributed
synchronisation, and (ii) to make the components involved in every synchronisa-
tion explicit. The new relation is defined in Table 4. Notice that the τ label now
indicates an internal action, local to a single service component, while synchroni-
sations between different components composition are represented through a label
of the form p〈a〉q making it explicit that principals p and q synchronise on action
a (exchanging some, unspecified, data).

We let α range over the labels p〈a〉q and τ and write
τ

↪−→→ for a possible empty

sequence of
τ
↪−→. Also, we define

p〈a〉q
↪−→→ def

=
τ

↪−→→
p〈a〉q
↪−→ τ

↪−→→, and note by
γ

↪−→→ the
sequence of transitions

α1
↪−→→ α2

↪−→→ . . .
αn
↪−→→ for γ = α1, . . . , αn.. As for =⇒,

we omit the typing environment when irrelevant and write C
γ

↪−→→ C ′ to denote a
derivation Γ B C

γ
↪−→→ Γ′ B C ′ for given Γ and Γ′.

The following lemma relates the two semantics for service compositions.
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Lemma 2.1. Let Γ B C be a configuration.

• Γ B C
τ
↪−→ Γ′ B C ′ if and only if C = C1 ‖ p[σ] ‖C2, C ′ = C1 ‖ p[σ′] ‖

C2 and σ τ−→ σ′;

• Γ B C
p〈a〉q
↪−→ Γ B C ′ if and only if C = C1 ‖ p[σ] ‖ C2 ‖ q [ρ] ‖ C3,

C ′ = C1 ‖ p[σ′] ‖ C2 ‖ q [ρ′] ‖ C3, σ
ā(r)@q−→ σ′ and ρ

a(r)@p−→ ρ′ for some r.

Proof. For each item, by induction on the derivation in the hypothesis.

2.3. Behavioural Observations and Observational Equivalence
Given the security-dependent definition of the semantics, the notions of be-

havioural observation and observational equivalence that arise for the calculus
are naturally parametric in the security level at which the observations are made
(equivalently, in the security level of the behaviour under observation). To make
the definition formal, we first associate a security level with each synchronisation
transition. Let Γ(α) denote the security level of (the label associated with) a ↪−→
transition with respect to the environment Γ, defined as follows:

Γ(τ) = ⊥, Γ(p〈a〉q) = Γ(p, a, q)

Our notion of equivalence is then formalised as a relation over configurations that
equate service compositions exhibiting the same ς-level component interactions.
The formal definition yields variant of the notion of weak bisimulation [21], an ob-
servation equivalence which allows one to observe the non-deterministic structure
of the LTSs and focuses only on the observable actions. In the following, we write
Γ1 =ς Γ2 whenever Γ1 and Γ2 have the same set of (principal and link) bindings
at security levels � ς .

Definition 2.1 (Weak ς-bisimulation). Let ς ∈ Σ. A weak ς-bisimulation is the
largest symmetric relation ≈ς over configurations such that whenever Γ1 B C1 ≈ς
Γ2 B C2 with Γ1 =ς Γ2

(1) if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with Γ1(α) � ς , then there exist Γ′2 and C ′2 such

that Γ2 B C2
α

↪−→→ Γ′2 B C ′2 with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and Γ′1 =ς Γ′2;

(2) if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with Γ(α) 6� ς , then there exist Γ′2 and C ′2 such

that

– either Γ2 B C2
α

↪−→→ Γ′2 B C ′2

– or Γ2 B C2
τ

↪−→→ Γ′2 B C ′2

with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and Γ′1 =ς Γ′2.

We write Γ |= C1 ≈ς C2 when Γ B C1 ≈ς Γ B C2. 2
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3. Multilevel security and correctness of service compositions

As anticipated, our analysis and verification methods are targeted at two funda-
mental properties in web service architectures, namely: information flow security
as a fundamental property to protect against unintended leaks of sensitive data and
information, and compliance as a formal certification of transactional correctness.

3.1. Non-interference for information-flow security

The characterisation of information-flow security in terms of non-interference
in multi-level security systems has been studied extensively in the literature since
the seminal work by Goguen and Meseguer [12]. Non-interference may effectively
be employed for our present purposes to ensure that public interactions between
services are independent of any secret communications or, more generally, that
the low-level behaviour observed of a service composition is independent of the
behaviour of (and the sensitive data available at) its high-level components. A
non-interferent service composition will therefore guarantee that the sensitive data
(e.g., authentication credentials, secret cookies, or even search queries) that a client
transmits to a server remain confidential and are not leaked, directly, or indirectly,
to any unintended component or eavesdropper.

Our notion of non-interference is inspired by [15] and is expressed in terms
of a restriction operator ·|ς which allows one to represent a service composition
prevented from performing internal synchronisations at a level higher than ς . The
semantics of C|ς is described by the following rule:

Γ B C
α
↪−→ Γ′ B C ′

Γ(α) � ς
Γ B C|ς

α
↪−→ Γ′ B C ′|ς

Definition 3.1 (Non-interference). Let ς ∈ Σ, Γ be a type environment and C be
a service composition such that Γ B C be a configuration. We say that the service
composition C satisfies the non-interference property with respect to the level ς in
the type environment Γ, denoted C ∈ NIΓ,ς , if

Γ |= C ≈ς C|ς .
2

Example 3.1. Consider again the service composition in Table 3. One readily sees
that M 6∈ NIΓ,L, as there is a direct causality between the high-level synchro-
nization C〈agree〉Fi and the low-level synchronization C〈close〉Fj with i 6= j,
performed after the clients makes the choice. As a consequence, if the client de-
cides to accept the proposal of F1 (F2) then an external observer knows that the
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M ′ = C [σ′C ] ‖ F1 [σF ] ‖ F2 [σF ] ‖ S [σS ]

σ′C = inq@F1.inq@F2.plan@F1.plan@F2.

( ( agree@F1.close.@F2.1b(C,F1):H ⊕ (C,F2):Hcagree@F2.close@F1.1 )

b∅⊕ ∅c( close@F1.close@F2.1b(C,F2):H ⊕ (C,F1):Hcclose@F2.close@F1.1 ) )

Table 5: Example: non-interference for the financial consulting platform (F1 [σF ],F2 [σF ] and S [σS ]
as in Table 3).

customer has agreed to proceed with investment recommendation of F1 (F2) by
just observing that the action C〈close〉F2 (C〈close〉F1) has been performed.
Indeed, if the customer chose not to adhere to any of the two proposed plans, the
external observer would notice two close messages. One obvious fix is to swap
the the order between the two actions. A more interesting and practically robust
solution, is to inject noise into the client contract, so as to fool a low-clearance
observer as shown in σ′C in Table 5.

3.2. Compliance for transactional correctness

Compliance is a core property that characterises the correct behaviour of con-
current distributed systems. It is used widely in the context of SOAs as a formal
device to identify service compositions that provide guarantees of service respon-
siveness, as they are free of synchronisation errors. For our present endeavour, we
refer to the notion of compliance for contract service compositions studied in [24].
Intuitively, a composition of services is compliant if it is deadlock and livelock
free, i.e., it does not get stuck nor does it get trapped into infinite loops with no exit
states. This notion is independent of the security levels of the principals involved
in the component synchronisations.

Definition 3.2 (Compliance). Let C be a contract service composition. We say
that C is compliant, noted C ↓, if for every C ′ such that C =⇒ C ′ there exists C ′′

such that C ′ =⇒ C ′′ and C ′′X. 2

In other words, the notion of compliance ensures that at each intermediate step
of the computation in a service composition, each component has a way to reach a
successful state (either autonomously, or via synchronisations). This is enough to
prevent both deadlocks and livelocks.

The notion of compliance can be equivalently expressed in terms of the labelled
synchronisation transitions ↪−→.
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Proposition 3.1. Let C be a contract service composition. It holds that C is com-

pliant, C ↓, if and only if every C ′ such that C
γ′

↪−→→ C ′ for some γ′ ∈ Act∗ there

exist C ′′ and γ′′ ∈ Act∗ such that C ′
γ′′

↪−→→ C ′′ and C ′′X.

Proof. By induction on the derivations and Lemma 2.1.

4. Modal µ-calculus characterisation

In this section we set the foundations for our model-checking verification frame-
work, by showing that the properties of non-interference and compliance we just
introduced can be characterized exactly by means of characteristic formulae ex-
pressed in µ-calculus. Based on such characterization, the properties of interest in
a given composition may be verified by model checking the composition’s char-
acteristic formula with, e.g. the NCSU Concurrency Workbench model checker
[25].

4.1. Background
The modal µ-calculus [18] is a propositional temporal logic that allows one to

express liveness, safety, fairness and cyclic properties of processes. The formulae
of the logic, given in positive normal form, are defined by the following produc-
tions:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | X | µX.φ | νX.φ

Here X ranges over an infinite set of variables and, for our present purposes, we
takeα to range over the labels p〈a〉q and τ . The least and greatest fixpoint operators
(respectively µX and νX) are binders for the recursion variable X . We adopt the
usual notions of free and bound variables in a formula and of closed formula. Also,
for a finite setM of formulae, we write

∧
M and

∨
M for the conjunction and

the disjunction of the formulae inM, where
∧
∅ = true and

∨
∅ = false.

We interpret the µ-calculus formulae over configurations whose semantics is
expressed in terms of labelled transition systems as defined in Table 4. Given a
configuration Γ B C, we denote by SΓBC the set of all states reachable from
Γ B C via

α
↪−→. We denote by MΓBC(φ)(ρ) the subset of SΓBC that satisfy a

formula φ, where ρ provides the interpretation environment, i.e., a partial mapping
from Var to 2SΓBC that interprets at least the free variables of φ by subsets of
SΓBC . As usual, ρ[X 7→ x] is the environment that maps the variable X to the set
x ⊆ SΓBC and Y 6= X to ρ(Y ) if ρ is defined on Y .

The formal definition of MΓBC(φ)(ρ) is given in Table 6. Intuitively, true
and false hold for all, resp. no, states and ∧ and ∨ are interpreted by conjunction

12



MΓBC(true)(ρ) = SΓBC

MΓBC(false)(ρ) = ∅
MΓBC(φ1 ∧ φ2)(ρ) = MΓBC(φ1)(ρ) ∩MΓBC(φ2)(ρ)
MΓBC(φ1 ∨ φ2)(ρ) = MΓBC(φ1)(ρ) ∪MΓBC(φ2)(ρ)

MΓBC(〈α〉φ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
α
↪−→ Γ′′ B C ′′

∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC([α]φ)(ρ) = {Γ′ B C ′ | ∀ Γ′′ B C ′′ : Γ′ B C ′

α
↪−→ Γ′′ B C ′′

⇒ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC(X)(ρ) = ρ(X)
MΓBC(µX.φ)(ρ) =

⋂
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊆ x}

MΓBC(νX.φ)(ρ) =
⋃
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊇ x}

Table 6: Semantics of modal mu-calculus

and disjunction. The formula 〈α〉φ holds for a configuration Γ′ B C ′ ∈ SΓBC

if there exists Γ′′ B C ′′ reachable from Γ′ B C ′ with action α and satisfying
φ, and [α]φ holds for Γ′ B C ′ if all configurations Γ′′ B C ′′ reachable from
Γ′ B C ′ with action α satisfy φ. The interpretation of a variable X is as prescribed
by the environment. The interpretation of the formula µX.φ (resp. νX.φ) is the
smallest (resp. largest) subset x of SΓBC that recurs when φ is interpreted with the
substitution of x for X . The existence of such sets follows from the well-known
Knaster-Tarski fixpoint theorem. Since the interpretation of a closed formula does
not depend on the environment, we sometimes write MΓBC(φ) for MΓBC(φ)(ρ)
where ρ is an arbitrary environment.

The set of configurations satisfying a closed formula φ is defined as

Conf (φ) = {Γ B C | Γ B C ∈MΓBC(φ)}.

As usual, in order to derive a formula characterizing a process property we also
refer to (closed) equation systems of the form

EqnΓBC : X1 = φ1 . . . Xn = φn

where X1, . . . , Xn are mutually distinct variables and φ1, . . . , φn are formulae
having at most X1, . . . , Xn as free variables. We say that an environment ρ :
{X1, . . . , Xn} → 2SΓBC is a solution of the equation system EqnΓBC , if ρ(Xi) =
MΓBC(φi)(ρ). The fact that a solution always exist, is again a consequence of the
Knaster-Tarski fixpoint theorem.
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The solutions of EqnΓBC are the fixpoints of the equation functional FuncEqn
ΓBC :

EnvΓBC → EnvΓBC defined by FuncEqn
ΓBC(ρ)(Xi) = MΓBC(φi)(ρ) for i ∈ [1..n].

Since FuncEqn
ΓBC is monotonic, the largest solution (with respect to v) νFuncEqn

ΓBC
of EnvΓBC exists and we denote it by MΓBC(EqnΓBC). This definition interprets
equation systems on the configurations reachable by a given initial configuration
Γ B C. We lift this to configurations by agreeing that a configuration satisfies an
equation system Eqn , if its initial state is in the largest solution of the first equation.
Thus the set of configurations satisfying the equation system Eqn is

Conf (Eqn) = {Γ B C | Γ B C ∈MΓBC(Eqn)(X1)}.

4.2. Characterizing weak ς-bisimulation and non-interference
The relation ≈ς can be characterized as the greatest fixpoint νFunc≈ς of the

monotonic functional Func≈ς on the complete lattice of relations R over config-
urations ordered by set inclusion such that (Γ1 B C1,Γ2 B C2) ∈ Func≈ς (R)
if and only if points (1) and (2) of Definition 2.1 hold. The largest weak ς-
bisimulation is the greatest fixpoint νFunc≈ς of Func≈ς (see, e.g., [26]).

Following [27], we show how a formula characterizing a finite-state configu-
ration Γ B C up to ≈ς can be derived from the fixpoint characterization of ≈ς
described above.

Let Γ B C be a configuration with SΓBC = {Γ1 B C1, . . . ,Γn B Cn}, and
Γ1 B C1 = Γ B C its initial state. To derive a formula characterizing Γ B C up
to ≈ς we construct a characteristic equation system consisting of one equation for
each service configuration Γ1 B C1, . . . ,Γn B Cn ∈ SΓBC as follows:

Eqn≈ς : XΓ1BC1 = φ≈ςΓ1BC1
...

XΓnBCn = φ≈ςΓnBCn

Here the formulae φ≈ςΓiBCi
are defined so that the largest solution MΓBC(Eqn≈ς )

of Eqn≈ς associates the variables XΓiBCi just with the states Γ′i B C ′i of SΓBC

which are weakly ς-bisimilar to Γi B Ci, i.e., such thatMΓBC(Eqn≈ς )(XΓiBCi) =
{Γ′i B C ′i ∈ SΓBC | Γi B Ci≈ςΓ′i B C ′i}. Theorem 4.1 shows the exact form of
such formulae. First we define:

〈〈α〉〉Γ,ςφ def
=

{
〈〈α〉〉φ if Γ(α) � ς
〈〈α〉〉φ ∨ 〈〈τ〉〉φ if Γ(α) 6� ς

where 〈〈τ〉〉φ def
= µX.φ ∨ 〈τ〉X and 〈〈α〉〉φ def

= 〈〈τ〉〉〈α〉〈〈τ〉〉φ. Let
α

↪−→→ Γ,ς note
either

α
↪−→→ or

τ
↪−→→ . Then 〈〈α〉〉Γ,ς , 〈〈τ〉〉 and 〈〈α〉〉 correspond to

α
↪−→→ Γ,ς ,

τ
↪−→→

and
α

↪−→→ , since
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• MΓBC(〈〈α〉〉Γ,ςφ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
α

↪−→→ Γ,ςΓ
′′ B C ′′

∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}

• MΓBC(〈〈τ〉〉φ)(ρ) = {Γ′ B C ′ | ∃ Γ′′ B C ′′ : Γ′ B C ′
τ

↪−→→ Γ′′ B C ′′

∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}

• MΓBC(〈〈α〉〉φ)(ρ) = {Γ′ B C ′ | ∃Γ′′ B C ′′ : Γ′ B C ′
α

↪−→→ Γ′′ B C ′′

∧ Γ′′ B C ′′ ∈MΓBC(φ)(ρ)}

Theorem 4.1. Let φ≈ςΓiBCi
be the formula∧

{
∧
{〈〈α〉〉Γ,ςXΓ′iBC

′
i
| Γi B Ci

α
↪−→ Γ′i B C ′i}}

∧
∧
{[α]

∨
{XΓ′iBC

′
i
| Γi B Ci

α
↪−→→ Γ,ς Γ′i B C ′i}}.

Then MΓBC(Eqn≈ς )(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | Γi B Ci ≈ς Γ′i B C ′i}.

Proof. Observe that EnvΓBC , the set of candidates for solutions of Eqn≈ς , is
order-isomorphic to 2SΓBC×SΓBC , the set of relations that are candidates to be weak
ς-bisimulations between SΓBC × SΓBC .

Let us consider the mapping ζ : EnvΓBC → 2SΓBC×SΓBC defined by:

ζ(ρ) = {(Γi B Ci,Γ
′
i B C ′i) ∈ SΓBC × SΓBC | Γ′i B C ′i ∈ ρ(XΓiBCi)}

ζ is an order isomorphism between EnvΓBC and 2SΓBC×SΓBC . The inverse of ζ is
the mapping η : 2SΓBC×SΓBC → EnvΓBC defined by

η(R)(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | (Γi B Ci,Γ
′
i B C ′i) ∈ R}.

The proof follows by showing that Func≈ς and Func
Eqn≈ς
ΓBC are equal up to the

isomorphism induced by (ζ, η), i.e., such that

Func
Eqn≈ς
ΓBC = η ◦ Func≈ς ◦ ζ.

Their largest fixpoints are also related by the isomorphism, which yields
MΓBC(Eqn≈ς )(XΓiBCi) = {Γ′i B C ′i ∈ SΓBC | Γi B Ci ≈ς Γ′i B C ′i}.

For any equation system Eqn there is a characteristic formula φ such that
Conf (Eqn) = Conf (φ). In particular, characteristic formulae characterizing con-
figurations can be simply derived from Eqn≈ς by applying semantics-preserving
transformation rules in the style of [28].

15



Theorem 4.2. For any finite-state configuration Γ B C there is a modal µ-calculus
formula φ≈ς (Γ B C) such that

Conf (φ≈ς (Γ B C)) = {Γ′ B C ′ ∈ SΓBC | Γ′ B C ′ ≈ς Γ B C|ς}.

Proof. Consider the characteristic equation system Eqn≈ς consisting of one equa-
tion for each service configuration Γ1 B C1, . . . ,Γn B Cn ∈ SΓBC|ς where
Γ1 B C1 = Γ B C|ς . Following [27], the formula φ≈ς (Γ B C) is obtained
from Eqn≈ς by applying three simple semantics-preserving transformation rules:
the first rule removes the recursive dependencies from the right hand side and the
left hand side of any equation; the second rule substitutes variables on the left hand
side of an equation by the corresponding formula on the right hand side in the other
equations; the third rule removes unnecessary equations. The formula φ≈ς (Γ B C)
satisfies the property that

Conf (φ≈ς (Γ B C)) = Conf (Eqn≈ς )

= {Γ′ B C ′ | Γ′ B C ′ ∈MΓBC|ς (Eqn≈ς )(XΓBC|ς )}
= {Γ′ B C ′ ∈ SΓBC | Γ′ B C ′ ≈ς Γ B C|ς}.

4.3. Characterizing Compliance

The construction of the characteristic formula for compliance is more direct,
and may be given as follows:

φc def
= µX.

( ∧
α∈Act

([α]X) ∧ φ

)

where

φ def
= µX.

(
(X) ∨

∨
α∈Act

(〈α〉X)

)
∧ ¬µX.

( ∨
α∈Act

(〈α〉X)

)

The sub-formula ¬µX.
(∨

α∈Act(〈α〉X)
)

will ensure that any configuration satis-
fying φc doesn’t get trapped into infinite loops without chances to reach a success-
ful state. The next theorem characterizes the set of service configurations satisfying
φc. A complete proof is given in [29].

Theorem 4.3. Consider the modal µ-calculus formula φc defined above. It holds
that Conf (φc) = {Γ B C | C ↓ and Γ is a type environment}.
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Transitions for filters

δ.f
δ7−→ f

f{X := rec(X) f} δ7−→ f ′

rec(X) f
δ7−→ f ′

f
δ7−→ fδ g

δ7−→ gδ

f ⊗ g δ7−→ fδ ⊗ gδ

f
δ7−→ fδ g

δ7−→ gδ

f × g δ7−→ fδ × gδ

f
δ7−→ fδ g 6 δ7−→

f × g δ7−→ fδ

f 6 δ7−→ g
δ7−→ gδ

f × g δ7−→ gδ

Transitions for filtered peers

Γ B p[σ]
δ(r)−→ Γ B p[σ′] f

δ7−→ f ′

Γ B f(p[σ])
δ(r)−→ Γ B f ′(p[σ′])

Γ B p[σ]
τ−→ Γ′ B p[σ′]

Γ B f(p[σ]))
τ−→ Γ′ B f(p[σ′])

Γ B p[σ]X

Γ B f(p[σ])X

Table 7: Dynamics of Filtered contract service compositions

Proof. The fact that Conf (φc) ⊇ {Γ B C | C ↓ and Γ is a type environment}
easily follows by contradiction. The other direction follows from the fact that, by
definition of φc, for each configuration Γ B C ∈ Conf (φc) it holds that Γ B C ∈
Conf (φ′) where φ′ is the sub-formula µX.

(
(X) ∨

∨
α∈Act(〈α〉X)

)
.

Corollary 4.1. A composition C is compliant if and only if Γ B C ∈ Conf (φc)
for some type environment Γ. 2

As a consequence of Theorems 4.2 and 4.3 we have:

Corollary 4.2. Let ς ∈ Σ, Γ B C be a configuration and

Φς
ΓBC

def
= φ≈ς (Γ B C) ∧ φc.

It holds that Γ B C ∈ Conf (Φς
ΓBC) if and only if both C ∈ NIΓ,ς and C ↓. 2

5. An adaptation algorithm

The model checking technique is based on the idea that the state transition
graph of a finite-state system defines a Kripke structure, and efficient algorithms
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can be given for checking if the state graph defines a model of a given specifica-
tion expressed in an appropriate temporal logic. In the explicit state approach the
Kripke structure is represented extensionally, using conventional data structures
such as adjacency matrices and linked lists so that each state and transition is enu-
merated explicitly. Moreover, in the global calculation approach, given a structure
M and formula φ, the model checking algorithms calculate φM = {s : M, s |= φ}
that is the set of all states in M satisfying φ. We show how such algorithms can
be exploited to develop an adaptive model checking technique for service com-
positions which adapts, when it is possible, the composition under investigation
in such a way that it satisfies both non-interference and compliance. We use the
filters, introduced in [7] and revised in [24], as prescriptions of behaviour.

Filters. A filter is the specification of the legal flow of actions for an individual
contract. The syntax is as follows, while the semantics is defined in Table 7.

f ∈ F ::= 0 | δ.f | f × f | f ⊗ f | X | rec(X) f

δ ::= ap→q | āp→q

With a slight abuse of notation, we overload the symbol δ employed to range over
contract labels, to note filter actions. Note however, that the former include the
values exchanged by the contract actions, while the latter disregard such values.
When there is a risk of confusion, we write δ(r) for the contract label associated
with the corresponding filter action δ (e.g. a(r)p→q vs ap→q).

Definition 5.1 (Filter pre-order). The filter pre-order f ≤ g is the largest relation
such that if f δ7−→ fδ then g δ7−→ gδ and fδ ≤ gδ. 2

We note (F ,v) the partial order induced by ≤: by abuse of notation, we iden-
tify a filter f with its equivalence class [f ]∼, where ∼ is the symmetric closure
of ≤. The union and intersection of filters represent the glb and lub operators for
(F ,v). Furthermore, if we assume a finite alphabet A of actions, the set of filters
FA insisting on A forms a complete lattice with 0 as bottom and the identity filter
IA

def
= rec(X)

∏
δ∈A δ.X as top element.

The application Γ B f(p[σ]) blocks any action from Γ B p[σ] that is not
explicitly enabled by f . Filters may be composed to help shape a service compo-
sition. Given a set π of principals, a composite π-filter F is a finite map from the
principals in π to filters: {p → f [p] | p ∈ π}. A π-filter may be applied to a
π-composition:

Γ B F (p1 [σ1] ‖ · · · ‖ pn [σn]) ::=Γ B F [p1](p1 [σ1]) ‖ · · · ‖ Γ B F [pn](pn [σn])
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When we write Γ B F (C) we tacitly assume that the underlying set of princi-
pals for both F and C is π. The operators of union and intersection, as well as the
ordering on filters extends directly to composite filters, as expected. Namely, for
F and G π-filters and for • ∈ {×,⊗}:

F ≤π G iff F [p] ≤ G[p] for all p ∈ π
(F •π G)[p] def

= F [p] •G[p] for all p ∈ π

We generalise the syntax of service compositions by allowing the term Γ B
F (C) to account for the application of filters on the components of C. The dynam-
ics of filtered service compositions derives directly by combining the transitions in
Tables 2 and 7.

Relevance. Below we present an algorithm that given a configuration Γ B C infers
a composite filter F that fixes Γ B C, whenever such F exists. The algorithm is
so structured as to guarantee two important properties on the inferred filter. On the
one hand, the filter is as permissive as possible, in that it is the greatest (with respect
to the pre-order≤) among the filters that fix Γ B C. On the other side, the inferred
filter is relevant, i.e., minimal in size: for any computation state reached by the
service configuration via a series of τ transitions (local moves or synchronisations),
the filter only enables actions that may be attempted at that state (either directly, or
via a local choice), by one of the components of the service configuration.

Definition 5.2 (Relevance). Let π be a set of principals and C be a non-empty set
of π-configurations. A filter f is p-relevant in C, written f ∝p C, if whenever

f
δ7−→ f̂ one has δ ∈ {a →p, āp→ } and there exists Γ B C ∈ C such that Γ B

C
α

↪−→→ with α ∈ { 〈a〉p, p〈a〉 } and f̂ ∝p {Γ′ B C ′ | Γ B C
α

↪−→→ Γ′ B C ′}.
A composite π-filter F is relevant for C, written F ∝ C, if F (p) ∝p C for all p ∈ π.
A composite π-filter is relevant for a π-configuration Γ B C if F ∝ {Γ B C}. 2

The Algorithm. We describe an algorithm that synthesises the v-greatest relevant
filter that fixes Γ B C, if it exists, when Γ B C does not satisfy Φς

ΓBC .
As discussed above, a global model checking algorithm applied to a config-

uration Γ B C and the modal formula Φς
ΓBC calculates the set of states in the

reduction graph (tracing the states reached by means of synchronisations or inter-
nal moves) of Γ B C satisfying Φς

ΓBC . This is the input of our algorithm. The
reduction graph can be represented as a directed graph G = (V,E) with labelled
edges and vertices. The vertices in V represent the reachable states of Γ B C. With
each v ∈ V we associate two fields: state[v] gives the computation state (i.e., the
derivative Γ′ B C ′ of the initial state Γ B C) associated with v; result [v] is a
tag SUCC or FAIL depending on whether the corresponding configuration satisfies
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Algorithm 1: Procedure PushLabels(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

done := false;
while ¬ done do

done := true;
foreach u ∈ V do

succ := false; fail := false;
if Adj[u, τ ] 6= ∅ then

if ∃v ∈ Adj[u, τ ] : result [v] = FAIL then
fail := true;

else if ∃v∈Adj[u, τ ] : result [v] = SUCC then
succ := true;

else if ∃(α,v) ∈ Adj[u] ∧ result [v] = SUCC ∧ ¬Conflict(α,u)
then

succ := true;

if succ ∧ result [u] 6= SUCC then
result [u] := SUCC; done := false;

else if fail ∧ result [u] 6= FAIL then
result [u] := FAIL; done := false

Φς
ΓBC or not as calculated by the model checker. An edge in E is a triple (u,v)α

representing the transition state[u]
α
↪−→ state[v]. Reduction graphs may be stored

in a adjacency list representation, so that the set of outgoing edges for each u ∈ V
can be retrieved as Adj[u]: thus (u,v)α ∈ E iff (α,v) ∈ Adj[u]. We also write
Adj[u, α] for the set {v ∈ V | (u,v)α ∈ E}. Vertices with no outgoing edges are
called leaves. We denote by root[G] the vertex representing the initial state Γ B C.

The first step consists in re-labelling the graph G calculated by the model-
checker in such a way that the result label at each vertex u is set to FAIL if there
exists at least one silent transition from u to a FAIL vertex; it is set to SUCC if
either there are no silent transitions from u to a FAIL vertex and there exists a
silent transition from u to a SUCC vertex or there exists one non-silent and non-
conflicting transition from u to a SUCC vertex. The procedure iteratively examines
all the vertices in the graph until it reaches a fixed point. This computation is
accomplished by the PushLabels procedure and uses the following auxiliary
definitions. Let locs(α) be {p, q} in case α = p〈a〉q, and ∅ in case α = τ . Then,
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let G = (V,E) be a reduction graph, and α = p〈a〉q.

• A path $ = (u,u1)α1 , . . . , (un−1,v)αn from u to v in G is α-free if
locs(α) ∩ locs(αi) = ∅ for all i’s.

• A vertex v is a α-free descendant of u in G (dually, u is a α-free ancestor
of v) if there is a α-free path fromu tov.

• A vertex u yields a conflict on α if u has two distinct α-free descendants v1

and v2 such that (v1,w1)α and (v2,w2)α ∈ E and result [w1] 6= result [w2].

• A vertex v has a conflict on α in G, noted ConflictG(α,v) if v has a α-free
ancestor yielding a conflict on α.

Intuitively, our algorithm will prune G by banning all the ‘bad’ synchronisations,
and by preserving all the ‘good’ synchronisations that lead to nodes satisfying both
non-interference and compliance. Due to the presence of internal choices, the same
synchronisation can look good at one point, but actually be bad. The definition of
conflict formally captures this notion of ambiguous synchronisations.

Proposition 5.1. After the call to PushLabels(G), the following conditions
hold for every node u in G:

1. result [u] = FAIL iff either there exists no (u,v)α ∈ E such that result [v] =
SUCC and ¬ConflictG(α,u) or there exists (u,v)τ ∈ E such that result [v]
= FAIL;

2. result [u] = SUCC iff there exists no (u,v)τ ∈ E such that result [v] = FAIL

and there exists either (u,v)τ ∈ E such that result [v] = SUCC or (u,v)α ∈
E with α 6= τ , ¬ConflictG(α,u) and result [v] = SUCC.

Proof. The proof easily follows by construction.

We say that a path$ inG is successful if result [u] = SUCC for every node u in
$, otherwise $ is unsuccessful. A node u is root-successful if it is reachable from
root[G] via a successful path, otherwise it is root-unsuccessful. The next step of
the algorithm computes the sub-graph of G that only includes the root-successful
vertices. This computation is accomplished by the SuccessGraph function.

Proposition 5.2. Let G′ = (E′, V ′) be generated by SuccessGraph(G). Then
u ∈ V ′ if and only if u is root-successful in G. 2

The final step of the algorithm synthesises the filter out of the success graph, in
case this is not empty. Let G′ = SuccessGraph(G), π be the underlying set of
principals, and FAlg [Φς

ΓBC ] = ExtractFilterπ(root [G], ∅, G′). A complete
proof of the next theorem is given in [30].
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Algorithm 2: Function SuccessGraph(G)

Input: A reduction graph G = (V,E)
Output: G′ = (V ′, E′) the success sub-graph of G

V ′ := (result [root[G]] = SUCC) ? {root[G]} : ∅; E′ := ∅;
done := false;
while ¬ done do

done := true;
foreach (u,v)α ∈ E \ E′ do

if u ∈ V ′ ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
V ′ := V ′ ∪ {v}; E′ := E′ ∪ {(u,v)α};
done := false

return G′ = (V ′, E′);

Theorem 5.1 (Soundness and maximality). Let Γ B C be a π-composition. Then
Γ B FAlg [Φς

ΓBC ](C) is such that

• FAlg [Φς
ΓBC ](C) ∈ NIΓ,ς

• FAlg [Φς
ΓBC ](C)↓.

Also, if a filter F fixes Γ B C and is relevant for Γ B C, then F ≤ FAlg [Φς
ΓBC ].

Proof. The fact that FAlg [Φς
ΓBC ](C) ∈ NIΓ,ς follows from the assumption that

the input of our algorithm is the reduction graph obtained by applying a global
model checking algorithm to Γ B C and the modal formula Φς

ΓBC , i.e., consisting
of all the states reachable from Γ B C and satisfying Φς

ΓBC . The rest of the proof
follows by construction and by Propositions 5.1 and 5.2.

6. A case study: authentication services

We demonstrate our framework at work on a real-world case study of a web-
service architecture implementing a federated authentication system. First we in-
troduce the system description and discuss how our calculus copes with it. Then,
we show that our verification framework may effectively be employed to prevent
and protect against subtle architectural design flaws.
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Algorithm 3: Function ExtractFilterπ(u, U,G)

Input: G = (V,E) a success graph. u ∈ V,U ⊆ V
Output: F , an π-composite filter

F [p] := 0 for all p ∈ π;
if state[u]X then

return F ;

if u ∈ U then
rec[u] := true; return (Xu, . . . , Xu);

foreach (α,v) ∈ Adj[u] do
Fv := ExtractFilterπ(v, U ∪ {u}, G);
foreach p ∈ π do

if α = p〈a〉 then
F [p] := F [p]× āp→ .Fv[p];

else if α = 〈a〉p then
F [p] := F [p]× a →p.Fv[p];

else
F [p] := F [p]× Fv[p];

if rec[u] = true then
foreach p ∈ π : Xu ∈ fv(F [p]) do

F [p] := rec(Xu)F [p];

return F ;

6.1. System definition
Authentication services are web services that allow web applications to par-

tially or totally avoid managing users’ accounts. They simplify user access to web
services, by making it possible for users to hold just one account to access several
independent services, and ease the design of web applications by factoring the stor-
age and management of user accounts out into a specialised component. A popular
implementation of such mechanisms is provided by the OpenID standard [19]. A
user wishing to obtain an OpenID just needs to register with one of the providers
that support the standard (Google, Yahoo! and Wordpress are probably the most
common). Web applications and services that rely on OpenID for authentication
redirect their users to one of the OpenID providers upon login: upon receiving the
user credentials, the authentication server recognises the user and reports back the
results of the successful authentication both to the user and to the web application.
This process is illustrated in Figure 1 and consists of nine steps:
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1. The Web Application WA offers the user a set of login options;
2. The user selects to log-in with a third party account, choosing among OpenID-

compatible providers;
3. WA sends a discovery request to the selected provider in order to obtain a

login web service endpoint;
4. The provider answers with an eXtensible Resource Descriptor Sequence

(XRDS) document containing the address(es) of the login web service end-
point;

5. WA contacts the login endpoint to send a request for authentication service;
6. The user is redirected to the chosen provider where the authentication step

can be done;
7. The user provides login information and, upon success, receives a confirma-

tion and is again redirected to the web application;
8. The Authentication Server AS sends to WA a token which confirms the user’s

identity;
9. Finally, WA is able to exchange confidential information to the user.

Discovery

  Auth.
Service

     Web
Application User

1.Request user sign-in

2.Opt to use OpenID

3.Discovery

4.XRDS document

5.Request login auth 6.Redirect

7.Log in and approves8.Return user identity

9.Allow protected interactions

Figure 1: OpenID login authentication for web applications.

Note that, with respect to the previous examples, in this case confidentiality is a
requirement of the web application rather than of the user.
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σDS = disc req@x.discAS@x.1

σAS = req(x)@WA.redirect@x.get account@x.

(ok@x.token@WA.1b∅⊕ ∅cfail@x.no token@WA.1)

Table 8: Contracts executed by the Authentication Service AS and the Discovery Service DS

6.2. Formal model
We define a formal model of the federated authentication system based on

OpenID, in which we disregard error management and other low-level implementa-
tion details. We presuppose a security lattice with four security levels: H,L, h1, h2

h1 h2

H

L

Figure 2: Lattice 〈Σ,�〉 used in the Example of Section 6.

(cf. Figure 2), assigned according to the WA confidentiality requirements. Before
authenticating, users are anonymous, and associated with the lowest security level
L; once authenticated, their security level is upgraded to h1 and h2, depending on
autonomous decision on the web application side. The web application itself is at
the highest security level: H .

We first give the definition of the contracts executed by the discovery and
authentication services, i.e., σDS and σAS, respectively (cf. Table 8). The dis-
covery service σDS simply returns a WA endpoint (discAS) in response to the
disc req request. The AS contract, in turn, receives a request to authenticate
a user, req(x), redirects user x to the login service and waits for the account infor-
mation (account). Based on the credentials received, AS accepts or rejects x, and
notifies x and WA accordingly.

Table 9 formalises the definition of contract σWA performed by principal WA,
as described in Figure 1. The first line in the definition of σWA corresponds to steps
1 and 2 of the authentication procedure: the client principal C decides between
an internal authentication procedure or one based on OpenID. In the first case,
WA accepts the credentials for the account directly, (account) and based on the
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σWA = conf req@x.choices@x.(internal@x.σaut + open id@x.σoid)

σaut = account@x.(no auth@x.σLb∅⊕ ∅cauth@x.(σh1
b(WA,x):h1

⊕ (WA,x):h2
cσh2

))

σoid = disc req@DS.discAS@DS.req(x)@AS.
(no token@AS.σL + token@AS.(σh1

b(WA,x):h1
⊕ (WA,x):h2

cσh2
))

σh1
= oph1

@x.replyh1
@x.1 + oph2

@x.denyh2
@x.1 + opL@x.replyL@x.1

σh2 = oph1
@x.denyh1

@x.1 + oph2
@x.replyh2

@x.1 + opL@x.replyL@x.1

σL = oph1
@x.denyh1

@x.1 + oph2
@x.denyh2

@x.1 + opL@x.replyL@x.1

Table 9: Contract executed by the Web Application WA.

σC = conf req@WA.choices@WA.(internal@WA.σiab∅⊕ ∅copen id@x.σoid)

σia = account@WA.(auth@WA.σAct + no auth@x.opL@x.replyL@x.1)

σoid = redirect@z.get account@z.(ok@z.σact + fail@z.opL@x.replyL@x.1)

σact = opL@WA.replyL@WA.1b∅⊕ ∅c(oph2
@WA.(replyh2

@WA.1+denyh2
@WA.1)

b∅⊕ ∅coph1
@WA.(replyh1

@WA.1+denyh1
@WA.1)))

Table 10: Contract executed by the User principal C.

credential received, it decides whether to reject the request or to accept. If accepted,
the user is granted access at level h1 or h2, and provided a service according to a
corresponding contract, σh1 or σh2 respectively. If rejected, instead, the user is only
guaranteed a basic service σL corresponding to its low security level. Observe that
upon a successful authentication, the user security level is upgraded by the internal
choice operator.

Table 10 completes the description of the system with the definition of the
client contract σC . Initially, σC synchronises with WA and chooses one of the
two available authentication methods. In both cases, it sends the account informa-
tion (account and get account) and then proceeds with a service request (σAct).
Note that, if the authentication method is OpenID then a redirect input allows the
principal to identify the authentication service endpoint. Finally, the user performs
an internal choice among the three possible requests opi, with i = L, h1, h2.
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Compliance and Security Analysis. An analysis of the complete system

SYS def
= WA[σWA] ‖ C[σC] ‖ DS[σDS] ‖ AS[σAS]

shows that SYS makes a compliant composition. In particular, we observe that
the WA component that explicitly denies access is crucial for compliance. In fact,
omitting the deny responses from the definition of WA (in that case WA would
simply disregard requests from unauthorised users), makes SYS non-compliant. In
fact, failing to respond to those requests, would cause a deadlock for users trying
to access a service for which they have not been granted access. This corresponds
to what the well-known software engineering practice stating that all user requests
should be handled explicitly (even when handling a request is implemented simply
as rejecting it).

Letting Γ = {WA : H, C : L, DS : L, AS : L}, we can show that SYS ∈
NIΓ,L since once the security level of the customer is upgraded to h1 or h2, all the
synchronisations between WA and C have the same level of security.

6.3. Compliance and non-interference analysis in an insecure WA

Web services are vulnerable to attacks that can defeat the security measures
designed by the developer. We continue with our analysis by considering the pos-
sibility that a malicious use sends to WA an ill-formed request that causes a failure
in the activated service. In practice, this may correspond to an ill-formed XML
document or to a SQL injection attack. A principled implementation would re-
quire that, as a consequence of a failure, WA leaks the lowest amount of informa-
tion about its activity so that the attacker cannot infer any information about the
confidential activities that are being processed (see, e.g., [31]). We show how our
framework is able to formally detect whether a WA is designed according to this
security principle.

The revised version of the model is reported in Table 11. We omit the authen-
tication and discovery services (σAS and σDS) as identical to those of Table 8.

In the revised model, we assume that the WA may receive the malicious request
at two epochs: just before the user chooses the required service (before synchro-
nisations on opi) and just before it receives the answer for that request. In both
cases, the WA procedure aborts. Contract σX executed by the attacker principal X

tries to send to WA the malicious request by synchronising on ill msg, and if this
happens then it catches one of the possible error messages returned. Observe that,
before an operation request opi, i = L, h1, h2, WA returns an error message msg0,
whereas after that it returns an error message msgi that depends on the service
being processed.
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SYS X
def
= AS[σAS] ‖ C[σC] ‖ X[σX] ‖ DS[σDS] ‖ WA[σWA]

σWA = conf req@x.choices@x.(internal@x.σaut + open id@x.σoid)

σaut = account@x.(no auth@x.σLb∅⊕ ∅cauth@x.(σh1b(WA,x):h1
⊕ (WA,x):h2

cσh2))

σoid = disc req@DS.discAS@DS.req(x)@AS.
no token@AS.σL + token@AS.(σh1b(WA,x):h1

⊕ (WA,x):h2cσh2)

σh1 = oph1
@x.(replyh1

@x.1 + σ†h1
) + oph2

@x.denyh2
@x.1

+ opL@x.(replyL@x.1 + σ†L) + σ†0

σh2 = oph1
@x.denyh1

@x.1 + oph2
@x.replyh2

@x.1 + σ†h2
)

+ opL@x.(replyL@x.1 + σ†L) + σ†0

σL = opL@x.replyL@x.1 + σ†0

σ†i = ill msg@y.msgi@y.close@x.1

σC = conf req@WA.choices@WA.(internal@WA.σiab∅⊕ ∅copen id@x.σoid)

σia = account@WA.(auth@WA.σact + no auth@x.opL@x.replyL@x.1)

σoid = redirect@z.get account@z.ok@z.σact + fail@z.opL@x.replyL@x.1)

σact = (opL@WA.(replyL@WA.1 + close@WA.1)b∅⊕ ∅c(oph2@WA.

(replyh2
@WA.1 + denyh2

@WA.1 + close@WA.1)b∅⊕ ∅coph1
@WA.

(replyh1
.@WA.1 + denyh1@WA.1 + close@WA.1))) + close@WA.1

σX = ill msg@WA.(msg0@WA.1 + msgh1@WA.1+ msgh2
@WA.1 + msgL@WA.1) + 1

Table 11: Insecure contracts for WA and C.
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Analysis. We show that modified system SYS X, as reported in Table 11 is compli-
ant but does not satisfy non-interference at security level L. Compliance follows
directly from the observation that upon an ill msg input the contract stops its ac-
tivity just after sending an error message to the principal that caused it, and closing
the connection with the customer. Symmetrically, the user contract always con-
siders the possibility of a service abort by synchronising on close. To prove that
SYS X /∈ NIΓ,L it suffices to show that when X synchronises on msg1 this is surely
preceded in SYS X by a synchronisation on oph1

of level h1” hence the attacker can
infer the profile of the user being logged and that it required an operation oph1

(the
same holds for oph2

). This vulnerability is well-known to practitioners, and is usu-
ally caused by un-handled exceptions. Conversely, as we argued, exceptions should
be always handled, and any principal causing them should be notified with an error
message independent of the server status [31]. Indeed, if we assume msgi = msg,
it is possible to automatically prove that SYS X ∈ NIΓ,L.

It is instructive to notice that the fix is not always as direct as in the case we
just examined. Consider for instance a further version of SYS X with msgi = msg

for i = 0, L, h1, h2 and in which we assume that ill-formed messages may only be
received after any synchronisation on opi. At first, the new assumption would seem
to corresponds to a stronger security protection over SYS X. On the other hand, it
turns out that the new system does not satisfy non-interference at L, because an
observer can infer that a high security level synchronisation occurred by observing
how the error is handled. In fact, if a close synchronisation occurs at L, then we
know that neither of the steps oph1

and oph2
occurred, for these correspond to a

synchronisation at level h1 or h2. This is enough to break non-interference.

7. Related work

The problem of modelling web service orchestrations and choreographies with
formal languages has received considerable attention in the literature, and a sub-
stantial body of work has been directed towards the development of algorithmic
analysis of SOAs and their properties (see [32] for an updated taxonomy). Ver-
ification of web service orchestrations has indeed become a central aspect of the
software architecture design (see, e.g., [33, 34]).

In [35, 36, 37] the authors propose a methodology that translates a choreog-
raphy described with the Business Process Execution Language for Web Services
(BPEL) into Petri nets. Then static analysis on Petri nets joint with events log
mining are applied to verify that the system behavior respects the specifications.
Petri nets are used in [38] to give a method for web service discovery, modelling
and composition. A different formalism is proposed in [39] where the authors
build their analysis of web service choreographies on symbolic transition systems
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(STS). The main advantage of using STSs is that while computations and message
exchanges are modelled, the symbolic executions contain the state space explosion.
In [40] automata are used to infer a model of the behavior of a web service given
its WSDL description.

Fu et al. [41, 42] address the problem of verifying the correctness of web ser-
vice interactions by means of a detailed model which is then translated into a lan-
guage that can be analysed by the SPIN model checker. Similarly, in [43] the
authors propose an encoding of collaboration diagrams into the LOTOS process
algebra. As a consequence, automate verifications and service peer generations are
allowed.

More closely related to our present approach is the work of Brogi et al. in [44]
where CCS is used to formalize Web Service Choreography Interface (WSCI).
In [45, 46] a graph based analysis is proposed to check if the cooperation of a set
of software components is deadlock or failure free. In [47] the authors use the lan-
guage Communicating Sequential Processes (CSP) to give a formal semantics of
components’ interactions. Then they develop a theory to analyse if a system admits
deadlock or livelock. The approach we take to test the compliance of a choreogra-
phies is inspired by [22]. With respect to all these works, we introduce the use of
filters as prescriptions of behaviors and the language we propose is enriched with
a type system that allows us to reason about the security properties of a web ser-
vice choreography. Therefore, the strength of out approach is providing a unique
framework to carry out liveness and security analysis.

As to security, [48] introduces the a value-passing process calculus to model
and reason about the security of web service transactions. Though related for the
context in which security is approached (web services), the technical development
is very different: their logic is specifically targeted at predicating on the values ex-
changed and their relationships, and consequently, the properties of integrity and
confidentiality are characterized in terms of direct relationships (and explicit flows)
among program variables. Similarly, coordination properties of service composi-
tions are expressed in terms of constraints over shared references, and the verifica-
tion problem reduces to the dynamic solution of the associated constraint problem.

In [49] the authors introduce a set of process algebraic operators to mimic
the behavior of security automata, acting program controllers to enforce security
policies expressed as formulas in the modal µ-calculus, and devise an automatic
algorithm to synthesize controllers implementing the security policy of interest.
Technically, the approach shares several ideas with our framework, though it has
largely complementary targets. Instead of characterizing specific security opera-
tors, we provide a characteristic formula for non-interference, and enforce a rather
general information-flow security policy. Furthermore, though our filters may be
understood as (truncation) controllers, we employ them as a tool to enforce security
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and compliance in a uniform setting.
A further paper strongly related to ours is by Nakajima [50] who introduces

a lattice-based security labelling into BPEL in order to detect potential insecure
information leakage. The paper discusses how both the safety and security as-
pects can be analyzed in a single framework using the model-checking verification
techniques. The main difference with our approach is that the notion of security
considered in [50] is built upon a simple lattice-based model for security labels.
Instead, our approach admits more flexible security policies which can be dynami-
cally specified by the service participants. Similarly, [50] considers safety proper-
ties such as deadlock freedom and specific progress properties, while model instead
deals also with the property of livelock freedom.

Our use of filters as prescription of compliant and secure behaviours is inspired
by [7, 24]; with respect to these work we include in the filter definition the non-
interference property that is developed on a dynamic typing system. In [51] the
authors introduce an algorithm based on model checking that derive the less strict
conditions under which a property is satisfied by labelled transition system. In [52]
model checking is exploited for ensuring the safety of some component, i.e., that
its internal invariant are never violated by other components’ method calls. The
authors introduce an algorithm to compute an interface (represented by a marked
graph) that allows only the correct interactions among the system’s components.

8. Conclusion

We have developed a formal model for the analysis of multilevel security and
transactional correctness in service contract compositions. The model is based on
a calculus to represent service contracts and their compositions, and on a charac-
terization of the properties of interest in terms of modal formulae of the µ-calculus.
We also devise an algorithm for adaptable service compositions based on the au-
tomatic synthesis of a filtering mechanism to prune the execution graph of such
compositions so as to enforce the desired security and correctness invariants. we
prove the the filtering mechanism synthesized is the best (most permissive) possi-
ble one. Collectively, our results represent the first attempt to provide a uniform,
and effective, model-checking framework for two central properties of security
and functional correctness in web service compositions and more generally in dis-
tributed systems.
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