
Reexe
ution-based Analysis of Logi
 Programswith Delay De
larationsAgostino Cortesi1, Baudouin Le Charlier2, and Sabina Rossi11 Dipartimento di Informati
a, Universit�a Ca' Fos
ari di Venezia,via Torino 155, 30172 Venezia, Italyf
ortesi,srossig�dsi.unive.it2 Institut d'Informatique, University of Namur21 rue Grandgagnage, B-5000 Namur, Belgiumble�info.fundp.a
.beAbstra
t. A general semanti
s-based framework for the analysis of logi
programs with delay de
larations is presented. The framework in
or-porates well known re�nement te
hniques based on reexe
ution. The
on
rete and abstra
t semanti
s express both deadlo
k information andquali�ed answers.1 Introdu
tionIn order to get more eÆ
ien
y, users of
urrent logi
 programming environments,like Si
tus-Prolog [13℄, Prolog-III, CHIP, SEPIA, et
., are not for
ed to usethe
lassi
al Prolog left-to-right s
heduling rule. Dynami
 s
heduling
an beapplied instead where atom
alls are delayed until their arguments are suÆ
ientlyinstantiated, and pro
edures are augmented with delay de
larations.The analysis of logi
 programs with dynami
 s
heduling was �rst investigatedby Marriott et al. in [18, 11℄. A more general (denotational) semanti
s of this
lassof programs, extended to the general
ase of CLP, has been presented by Falas
hiet al. in [12℄, while veri�
ation and termination issues have been investigated byApt and Luitjes in [2℄ and by Mar
hiori and Teusink in [17℄, respe
tively.In this paper we dis
uss an alternative, stri
tly operational, approa
h tothe de�nition of
on
rete and abstra
t semanti
s for logi
 programs with delayde
larations.The main intuitions behind our proposal
an be summarized as follows:- to de�ne in a uniform way
on
rete,
olle
ting, and abstra
t semanti
s, inthe spirit of [14℄: this allows us to easily derive
orre
tness proofs of thewhole analyses;- to de�ne the analysis as an extension of the framework depi
ted in [14℄:this allows us to reuse existing
ode for program analysis, with minimaladditional e�ort;- to expli
itly derive deadlo
k information (possible deadlo
k and deadlo
kfreeness) produ
ing, as a result of the analysis, an approximation of
on
retequali�ed answers;

- to apply the reexe
ution te
hnique developed in [15℄: if during the exe
utionof an atom a a deadlo
k o

urs, then a is allowed to be reexe
uted at asubsequent step.The main di�eren
e between our approa
h and the ones already presentedin the literature is that we are mainly fo
ussed on analysis issues, in parti
ularon deadlo
k and no-deadlo
k analysis. This motivates the
hoi
e of a stri
tlyoperational approa
h, where deadlo
k information is expli
itly maintained.In this paper we present an extension of the spe
i�
ation of the GAIA ab-stra
t interpreter [14℄ to deal with dynami
 s
heduling. We design both a
on-
rete and an abstra
t semanti
s, as well as a a generi
 algorithm that
omputesa �xpoint of the abstra
t semanti
s. This is done following the
lassi
al abstra
tinterpretation methodology.The main idea is partitioning literals of a goal g into three sets: literalswhi
h are delayed, literals whi
h are not delayed and have not been exe
utedyet, and literals whi
h are allowed to be reexe
uted as they are not delayed buthave already been exe
uted before and fallen into deadlo
k. This partitioningdramati
ally simpli�es both
on
rete and abstra
t semanti
s with respe
t to theapproa
h depi
ted in [8℄, where a preliminary version of this work was presented.Our approa
h uses the reexe
ution te
hnique whi
h exploits the well knownproperty of logi
 programming that a goal may be reexe
uted arbitrarily oftenwithout a�e
ting the semanti
s of the program. This property has been pointedout sin
e 1987 by Bruynooghe [3, 4℄ and subsequently used in abstra
t interpreta-tion to improve the pre
ision of the analysis [15℄. In this framework, reexe
utionallows to improve the a

ura
y of deadlo
k analysis, and its appli
ation may betuned a

ording to
omputational
onstraints.The rest of the paper is organized as follows. In the next se
tion we re
all somebasi
 notions about logi
 programs with delay de
larations. Se
tion 3 depi
tsthe
on
rete operational semanti
s whi
h serves as a basis for the new abstra
tsemanti
s introdu
ed in Se
tion 4. Corre
tness of our generi
 �xpoint algorithmis dis
ussed. Se
tion 5
on
ludes the paper.2 Logi
 Programs with Delay De
larationsLogi
 programs with delay de
larations
onsist of two parts: a logi
 program anda set of delay de
larations, one for ea
h of its predi
ate symbols.A delay de
laration asso
iated for an n-ary predi
ate symbol p has the formDELAY p(x1; : : : ; xn) UNTIL Cond(x1; : : : ; xn)where Cond (x1; : : : ; xn) is a formula in some assertion language. We are not
on-
erned here with the syntax of this language sin
e it is irrelevant for our purposes.The meaning of su
h a delay de
laration is that an atom p(t1; : : : ; tn)
an be se-le
ted in a query only if the
ondition Cond(t1; : : : ; tn) is satis�ed. In this
asewe say that the atom p(t1; : : : ; tn) satis�es its delay de
laration.2

A derivation of a program augmented with delay de
larations su

eeds if itends with the empty goal; while it deadlo
ks if it ends with a non-empty goalno atom of whi
h satis�es its delay de
laration. Both su

essful and deadlo
kedderivations
ompute quali�ed answers, i.e., pairs of the form h�; di where d isthe last goal (that is a possibly empty sequen
e of delayed atoms) and � isthe substitution obtained by
on
atenating the
omputed mgu's from the initialgoal. Noti
e that, if h�; di is a quali�ed answer for a su

essful derivation thend is the empty goal and � restri
ted to the variables of the initial goal is the
orresponding
omputed answer substitution. We denote by qansP (g) the set ofquali�ed answers for a goal g and a program P .We restri
t our attention to delay de
larations whi
h are
losed under instan-tiation, i.e., if an atom satis�es its delay de
laration then also all its instan
es do.Noti
e that this is the
hoi
e of most of the logi
 programming systems dealingwith delay de
larations su
h as IC-Prolog, NU-Prolog, Prolog-II, Si
stus-Prolog,Prolog-III, CHIP, Prolog M, SEPIA, et
.The following example illustrates the use of delay de
larations in logi
 pro-gramming.Example 1. Consider the program PERMUTE dis
ussed by Naish in [19℄.% perm(Xs,Ys) Ys is a permutation of the list Xsperm(Xs,Ys) Xs = [℄, Ys = [℄.perm(Xs,Ys) Xs = [X|X1s℄, delete(X,Ys,Zs), perm(X1s,Zs).% delete(X,Ys,Zs) Zs is the list obtained by removing X from the list Ysdelete(X,Ys,Zs) Ys = [X|Zs℄.delete(X,Ys,Zs) Ys = [X1|Y1s℄, Zs = [X1|Z1s℄, delete(X,Y1s,Z1s).Clearly, the relation de
laratively given by perm is symmetri
. Unfortunately,the behavior of the program with Prolog (using the leftmost sele
tion rule) isnot. In fa
t, given the queryQ1 := perm(Xs; [a; b℄):Prolog will
orre
tly ba
ktra
k through the answers Xs = [a; b℄ and Xs = [b; a℄.However, for the query Q2 := perm([a; b℄; Xs):Prolog will �rst return the answer Xs = [a; b℄ and on subsequent ba
ktra
kingwill fall into an in�nite derivation without returning answers anymore.For languages with delay de
larations the program PERMUTE behaves sym-metri
ally. In parti
ular, if we
onsider the delay de
larations:DELAY perm(Xs,) UNTIL nonvar(Xs).DELAY delete(, ,Zs) UNTIL nonvar(Zs).the query Q2 above does not fall into a deadlo
k.3

P 2 Programs P ::= pr1; : : : ; prn (n > 0)pr 2 Pro
edures pr ::=
1; : : : ;
n (n > 0)
 2 Clauses
 ::= h : �g:h 2 ClauseHeads h ::= p(x1; : : : ; xn) (n � 0)g 2 LiteralSequen
es g ::= l1; : : : ; ln (n � 0)l 2 Literals l ::= a j ba 2 Atoms a ::= p(xi1 ; : : : ; xin) (n � 0)b 2 Built-ins b ::= xi = xj j xi1 = f(xi2 ; : : : ; xin)p 2 Pro
edureNamesf 2 Fun
torsxi 2 ProgramVariablesFig. 1. Abstra
t Syntax of Normalized ProgramsUnder the assumption that delay de
larations are
losed under instantiation,the following result, whi
h is a variant of Theorem 4 in Yeli
k and Za
hary [21℄,holds.Theorem 1. Let P be a program augmented with delay de
larations, g be a goaland g0 be a permutation of g. Then qansP (g) and qansP (g0) are equals modulothe ordering of delayed atoms.It follows that both su

essful and deadlo
ked derivations are \independent"from the
hoi
e of the sele
tion rule. Moreover, Theorem 1 allows us to treatgoals as multisets instead of sequen
es of atoms.3 The Con
rete Operational Semanti
sIn this se
tion we des
ribe a
on
rete operational semanti
s for pure Prologaugmented with delay de
larations. The
on
rete semanti
s is the link betweenthe standard semanti
s of the language and the abstra
t one. We assume apreliminary knowledge of logi
 programming (see, [1, 16℄).3.1 Programs and SubstitutionsPrograms are assumed to be normalized a

ording to the syntax given in Fig. 1.The variables o

urring in a literal are distin
t; distin
t pro
edures have distin
tnames; all
lauses of a pro
edure have exa
tly the same head; if a
lause uses mdi�erent program variables, these variables are x1; : : : ; xm. If g := a1; : : : ; an wedenote by g n ai the goal g0 := a1; : : : ; ai�1; ai+1; : : : ; an.We assume the existen
e of two disjoint and in�nite sets of variables: programvariables, whi
h are ordered and denoted by x1, x2, . . . , xi, . . . , and standardvariables whi
h are denoted by letters y and z (possibly subs
ripted). Programsare built using program variables only.A program substitution is a set fxi1=t1; : : : ; xin=tng, where xi1 ; : : : ; xin aredistin
t program variables and t1, . . . , tn are terms (built with standard variables4

only). Program substitutions are not substitutions in the usual sense; they arebest understood as a form of program store whi
h expresses the state of the
om-putation at a given program point. It is meaningless to
ompose them as usualsubstitutions. The domain of a program substitution � = fxi1=t1; : : : ; xin=tng,denoted by dom(�), is the set of program variables fxi1 ; : : : ; xing. The appli
a-tion xi� of a program substitution � to a program variable xi is de�ned onlyif xi 2 dom(�): it denotes the term bound to xi in �. Let D be a �nite set ofprogram variables. We denote by PSD the set of program substitutions whosedomain is D.3.2 Con
rete BehaviorsThe notion of
on
rete behavior provides a mathemati
al model for the in-put/output behavior of programs. To simplify the presentation, we do not pa-rameterize the semanti
s with respe
t to programs. Instead, we assume given a�xed underlying program P augmented with delay de
larations.We de�ne a
on
rete behavior as a relation from input states to output statesas de�ned below. The input states have the form- h�; pi, where p is the name of a pro
edure and � is a program substitution also
alled a
tivation substitution. Moreover, � 2 PSfx1;:::;xng, where x1; : : : ; xnare the variables o

urring in the head of every
lause of p.The output states have the form- h�0; �i, where �0 2 PSfx1;:::;xng and � is a deadlo
k state, i.e., it is an elementfrom the set fÆ; �g, where Æ stands for de�nite deadlo
k, while � stands for nodeadlo
k. In
ase of no deadlo
k, �0 restri
ted to the variables fx1; : : : ; xngis a
omputed answer substitution (the one
orresponding to a su

essfulderivation), while in
ase of deadlo
k, �0 is the substitution part of a quali�edanswer to p and
oin
ides with a partial answer substitution for it.We use the relation symbol 7�! to represent
on
rete behaviors, i.e., we writeh�; pi 7�! h�0; �i: this notation emphasizes the similarities between this
on
retesemanti
s and the stru
tural operational semanti
s for logi
 programs de�nedin [15℄. Con
rete behaviors are intended to model su

essful and deadlo
kedderivations of atomi
 queries.3.3 Con
rete Semanti
 RulesThe
on
rete semanti
s of an underlying program P with delay de
larations isthe least �xpoint of a
ontinuous transformation on the set of
on
rete behav-iors. This transformation is de�ned in terms of semanti
 rules that naturallyextend
on
rete behaviors in order to deal with
lauses and goals. In parti
ular,a
on
rete behavior is extended through intermediate states of the form h�;
iand h�; g d; g e; g ri, where
 is a
lause and g d; g e; g r is a partition of a goal5

g su
h that: g d
ontains all literals in g whi
h are delayed, g e
ontains all lit-erals in g whi
h are not delayed and have not been exe
uted yet, g r
ontainsall literals in g whi
h are allowed to be reexe
uted, i.e., all literals that are notdelayed and have already been exe
uted but fallen into a deadlo
k.{ Ea
h pair h�;
i, where
 is a
lause, � 2 PSfx1;:::;xng and x1; : : : ; xn are thevariables o

urring in the head of
, is related to an output state h�0; �i,where �0 2 PSfx1;:::;xng and � 2 fÆ; �g is a deadlo
k state;{ Ea
h tuple h�; g d; g e; g ri, where � 2 PSfx1;:::;xmg and x1; : : : ; xm are thevariables o

urring in (g d; g e; g r), is related to an output state h�0; �i,where �0 2 PSfx1;:::;xmg and � 2 fÆ; �g is a deadlo
k state.We brie
y re
all here the
on
rete operations whi
h are used in the de�nitionof the
on
rete semanti
 rules depi
ted in Fig. 2. The reader may refer to [14℄for a
omplete des
ription of all operations but the last one, SPLIT, that is brandnew.- EXTC is used at
lause entry: it extends a substitution on the set of variableso

urring in the body of the
lause.- RESTRC is used at
lause exit: it restri
ts a substitution on the set of variableso

urring in the head of the
lause.- RETRG is used when a literal l o

urring in the body of a
lause is ana-lyzed. Let fxi1 ; : : : ; xing be the set of variables o

urring in l. This opera-tion expresses a substitution on variables xi1 ; : : : ; xin in terms of the formalparameters x1; : : : ; xn.- EXTG it is used to
ombine the analysis of a built-in or a pro
edure
all(expressed in terms of the formal parameters x1; : : : ; xn) with the a
tivatingsubstitution.- UNIF-FUNC and UNIF-VAR are the operations that a
tually perform the uni�-
ation of equations of the form xi = xj or xi1 = f(xi2 ; : : : ; xin), respe
tively.- SPLIT is a new operation: given a substitution � and a goal g, it partitionsg into the set of atoms g d whi
h do not satisfy the
orresponding delayde
larations, and then are not exe
utable, and the set of atoms g e whi
hsatisfy the
orresponding delay de
larations, and then are exe
utable.The de�nition of the
on
rete semanti
 rules pro
eeds by indu
tion on thesynta
ti
 stru
ture of program P . Rule R1 de�nes the result of exe
uting a pro-
edure
all: this is obtained by exe
uting any
lause de�ning it. Rule R2 de�nesthe result of exe
uting a
lause: this is obtained by exe
uting its body underthe same input substitution after splitting the body into two parts: exe
utableliterals and delayed literals. Rule R3 de�nes the result of exe
uting the emptygoal, generating a su

essful output substitution. Rule R4 de�nes a deadlo
k sit-uation that yields a de�nite deadlo
k information Æ. Rules R5 to R8 spe
ify theexe
ution of a literal. First, the literal is exe
uted produ
ing an output substitu-tion �3; then reexe
utable atoms are (re)exe
uted through the auxiliary relationh�3; g ri 7�!r h�4; �g ri: its e�e
t is to re�ne �3 into �4 and to remove from g rthe atoms that are
ompletely solved in �4 returning the new list of reexe
utable6

 is a
lause de�ning ph�;
i 7�! h�0; �iR1 h�; pi 7�! h�0; �i

 := h : �g�1 = EXTC(
; �)hg d; g ei = SPLIT(�1; g)h�1; g d; g e;< >i 7�! h�2; �i�0 = RESTRC(
; �2)R2 h�;
i 7�! h�0; �iR3 h�;< >;< >< >; i 7�! h�; �i either g d 6=< > or g r 6=< >R4 h�; g d;< >; g ri 7�! h�; Æi�g e := g e n bb := xi = xj�1 = RESTRG(b; �)�2 = UNIF VAR(�1)�3 = EXTG(b; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR5 h�; g d; g e; g ri 7�! h�0; �i
�g e := g e n bb := xi = f(xi1 ; : : : ; xin)�1 = RESTRG(b; �)�2 = UNIF FUNC(b; �1)�3 = EXTG(b; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR6 h�; g d; g e; g ri 7�! h�0; �i�g e := g e n aa := p(xi1 ; : : : ; xin)�1 = RESTRG(a; �)h�1; pi 7�! h�2; �i�3 = EXTG(a; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR7 h�; g d; g e; g ri 7�! h�0; �i
�g e := g e n aa := p(xi1 ; : : : ; xin)�1 = RESTRG(a; �)h�1; pi 7�! h�2; Æi�3 = EXTG(a; �; �2)h�3; g r:ai 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR8 h�; g d; g e; g ri 7�! h�0; �iFig. 2. Con
rete Semanti
 Rules

7

atoms �g r; �nally, the sequen
e of delayed atoms with the new substitution �4is partitioned in two sets: the atoms that are still delayed and those that havebeen awakened. Rules R5 and R6 spe
ify the exe
ution of built-ins and use theuni�
ation operations. Rules R7 and R8 de�ne the exe
ution of an atom a inthe
ase that a has not been
onsidered yet. The �rst rule applies when theexe
ution of a is deadlo
k free; while the se
ond rule applies when the exe
utionof a with the
urrent a
tivation substitution falls into deadlo
k: in this
ase, ais moved in the reexe
utable atoms list.The reexe
utable rules de�ning the auxiliary relation 7�!r
an be easilyobtained a

ording to the methodology in [15℄.The
on
rete semanti
s of a program P with delay de
larations is de�ned as a�xpoint of this transition system. We
an prove that this operational semanti
s issafe with respe
t to the standard resolution of programs with delay de
larations.4 Colle
ting and Abstra
t Semanti
sAs usual in the Abstra
t Interpretation approa
h [9, 10℄, in order to de�ne anabstra
t semanti
s we pro
eed in three steps. First, we depi
t a
olle
ting se-manti
s, by lifting the
on
rete semanti
s to deal with sets of substitutions.Then, any abstra
t semanti
s will be de�ned as an abstra
tion of the
olle
tingsemanti
s: it is suÆ
ient to provide an abstra
t domain that enjoys a Galois
onne
tion with the
on
rete domain }(Subst), and a suite of abstra
t opera-tions that safely approximate the
on
rete ones. Finally, we draw an algorithmto
ompute a (post-)�xpoint of an abstra
t semanti
s de�ned this way.The
olle
ting semanti
s
an be trivially obtained from the
on
rete one by- repla
ing substitutions with sets of substitutions;- using �, standing for possible deadlo
k, instead of Æ;- rede�ning all operations in order to deal with sets of substitutions (as donein [14℄).In parti
ular, the
olle
ting version of operation SPLIT, given a set of substitu-tions �, will partition a goal g into the set of atoms g d whi
h do not satisfy the
orresponding delay de
larations for some � 2 �, and the set of atoms g e whi
hdo satisfy the
orresponding delay de
larations for some � 2 �. Noti
e that thisapproa
h is sound, i.e., if an atom is exe
uted at the
on
rete level then it willbe also at the abstra
t level. However, sin
e some atoms
an be put both in g dand in g e some level of impre
ision
ould arise.On
e the
olle
ting semanti
s is �xed, deriving abstra
t semanti
s is almostan easy job. Any domain abstra
ting substitutions
an be used to des
ribe ab-stra
t a
tivation states. Similarly to the
on
rete
ase, we distinguish amonginput states, e.g., h�; pi where � is an approximation of a set of a
tivation sub-stitutions, and output states, e.g., h�0; �i where �0 is an approximation of a setof output substitutions and � 2 f�; �g is an abstra
t deadlo
k state. Clearly,the a

ura
y of deadlo
k analysis will depend on the mat
hing between delayde
larations and the information represented by the abstra
t domains. It is easy8

to understand, by looking at the
on
rete semanti
s presented above, that veryfew additional operations should be implemented on an abstra
t substitutiondomain like the ones in [6, 7, 14℄, while a great amount of existing spe
i�
ationand
oding
an be reused for free.TAB(sat) = f(�; p; h�0; �i) : (�; p) is an input state and h�0; �i = Tp(�; p; sat)g.Tp(�; p; sat) = UNION(h�1; �1i : : : ; h�n; �ni)where h�i; �ii = T
(�;
i; sat),
1; : : : ;
n are the
lauses de�ning p.T
(�;
; sat) = hRESTRC(
; �0); �iwhere h�0; �i = Tb(EXTC(
; �); g d; g e;< >; sat),hg d; g ei = SPLIT(�; b) where b is the body of
.Tb(�;< >;< >;< >; sat) = h�; �i.Tb(�; g d;< >; g r; sat) = h�; �iwhere either g d or g r is not empty:Tb(�; g d; l:g e; g r; sat) = Tb(�4; �g d; g e:�g e; �g r; sat)where h�g d; �g ei = SPLIT(�4; g d)h�4; �g ri = Tr(�3; g r; sat) if � = �,Tr(�3; g r:l; sat) if � = �,�3 = EXTG(l; �; �2),h�2; �i = sat (�1; p) if l is p(� � �)hUNIF VAR(�1); �i if l is xi = xj ,hUNIF FUNC(l; �1); �i if l is xi = f(� � �),�1 = RESTRG(l; �).Tr(�; (a1; : : : ; an); sat) = u1i=1h�i; giiwhere h�0; g0i = h�; (a1; : : : ; an)i�i+1 = REFINE(�i; Tr(�i; a1; sat); : : : ; Tr(�i; an; sat)) (i � 1)gi+1 = fai j i 2 f1; : : : ; ng and h�; �i = Tr(�i; ai; sat)gTr(�; a; sat) = hRENAME(a; �2); �iwhere h�2; ki = sat(�1; p) if a is p(� � �)�1 = RESTRG(a; �).Fig. 3. The abstra
t transformationFig. 3 reports the �nal step in the Abstra
t Interpretation pi
ture des
ribedabove: an abstra
t transformation that abstra
ts the
on
rete semanti
s rules.The abstra
t semanti
s is de�ned as a post-�xpoint of transformation TAB on9

sets of abstra
t tuples, sat, as de�ned in the pi
ture. An algorithm
omputingthe abstra
t semanti
s
an be de�ned by simple modi�
ation of the reexe
ution�xpoint algorithm presented in [15℄. The reexe
ution fun
tion Tr is in the spiritof [15℄. It uses the abstra
t operations REFINE and RENAME, where- REFINE is used to re�ne the result � of exe
uting an atom by
ombining itwith the results obtained by reexe
ution of atoms in the reexe
utable atomlists starting from � itself;- RENAME is used after reexe
ution of an atom a: it expresses the result ofreexe
ution in terms of the variables xi1 ; : : : ; xin o

urring in a.As already observed before, most of the operations that are used in the algo-rithm are simply inherited from the GAIA framework [14℄. The only ex
eptionis SPLIT, whi
h depends on a given set of delay de
larations.The
orre
tness of the algorithm
an be proven the same way as in [14℄ and[15℄. What about termination ? The exe
ution of Tb terminates sin
e the numberof literals in g d and g e de
reases of exa
tly one at ea
h re
ursive
all. The fa
tthat the exe
ution of Tr terminates depends on some hypothesis on the abstra
tdomain su
h as to be a
omplete latti
e (when this is not the
ase, and it is justa
po, an additional widening operation is usually provided by the domain).Example 2. Consider again the program PERMUTE illustrated above. Using oneof our domains for abstra
t substitutions, like Pattern (see [5, 20℄), and startingfrom an a
tivation state of the form perm(ground,var) our analysis returns theabstra
t quali�ed answer hperm(ground; ground); �i, whi
h provides the infor-mation that any
on
rete exe
ution, starting in a query of perm with the �rstargument being ground and the se
ond one being variable, is deadlo
k free.5 Con
lusionsThe framework presented in this paper is part of a proje
t aimed at integratingmost of the work, both theoreti
al and pra
ti
al, on abstra
t interpretation oflogi
 programs developed by the authors in the last years. The �nal goal is to geta pra
ti
al tool that ta
kles a variety of problems raised by the re
ent resear
hand development dire
tions in de
larative programming. Dynami
 s
heduling isan interesting example in that respe
t, as most of
urrent logi
 programmingenvironments integrate this feature.In the next future, we plan to adapt the existing implementations of GAIAsystems in order to pra
ti
ally evaluate the a

ura
y and eÆ
ien
y of the thisframework.A
knowledgmentsThis work has been partially supported by the Italian MURST Proje
ts \Inter-pretazione Astratta, Type Systems e Analisi Control-Flow", and \Certi�
azioneautomati
a di programmi mediante interpretazione astratta".10

Referen
es1. K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.2. K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
larations.Le
ture Notes in Computer S
ien
e, 936:66{80, 1995.3. M. Bruynooghe. A pra
ti
al framework for the abstra
t interpretation of logi
programs. Journal of Logi
 Programming, 10(2):91{124, February 1991.4. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstra
t interpreta-tion: Towards the global optimization of Prolog programs. In Pro
eedings of the1987 Symposium on Logi
 Programming, pages 192{204, San Fran
is
o, California,August 1987. Computer So
iety Press of the IEEE.5. A. Cortesi, G. Fil�e, and W. Winsborough. Optimal groundness analysis usingpropositional logi
. Journal of Logi
 Programming, 27(2):137{167, May 1996.6. A. Cortesi, B. Le Charlier, and P. Van Hentenry
k. Combination of abstra
t do-mains for logi
 programming. In Pro
eedings of the 21th ACM SIGPLAN{SIGACTSymposium on Prin
iples of Programming Languages (POPL'94), Portland, Ore-gon, January 1994.7. A. Cortesi, B. Le Charlier, and P. Van Hentenry
k. Combination of abstra
tdomains for logi
 programming: open produ
t and generi
 pattern
onstru
tion.S
ien
e of Computer Programming, 28(1{3):27{71, 2000.8. A. Cortesi, S. Rossi, and B. Le Charlier. Operational semanti
s for reexe
ution-based analysis of logi
 programs with delay de
larations. Ele
troni
 Notes in The-oreti
al Computer S
ien
e, 48(1), 2001. http://www.elsevier.nl/lo
ate/ent
s.9. P. Cousot and R. Cousot. Abstra
t interpretation: A uni�ed latti
e model for stati
analysis of programs by
onstru
tion or approximation of �xpoints. In Conferen
eRe
ord of Fourth ACM Symposium on Programming Languages (POPL'77), pages238{252, Los Angeles, California, January 1977.10. P. Cousot and R. Cousot. Systemati
 design of program analysis frameworks.In Conferen
e Re
ord of Sixth ACM Symposium on Programming Languages(POPL'79), pages 269{282, Los Angeles, California, January 1979.11. M. Gar
ia de la Banda, K. Marriott, and P. Stu
key. EÆ
ient analysis of logi
programs with dynami
 s
heduling. In J. Lloyd, editor, Pro
. Twelfth InternationalLogi
 Programming Symposium, pages 417{431. MIT Press, 1995.12. M. Falas
hi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Constraint logi
programming with dynami
 s
heduling: A semanti
s based on
losure operators.Information and Computation, 137(1):41{67, 1997.13. Intelligent Systems Laboratory, Swedish Institute of Computer S
ien
e, POBox 1263, S-164 29 Kista, Sweden. SICStus Prolog User's Manual, 1998.http://www.si
s.se/isl/si
stus/si
stus to
.html.14. B. Le Charlier and P. Van Hentenry
k. Experimental Evaluation of a Generi
Abstra
t Interpretation Algorithm for Prolog. ACM Transa
tions on ProgrammingLanguages and Systems (TOPLAS), 16(1):35{101, January 1994.15. B. Le Charlier and P. Van Hentenry
k. Reexe
ution in abstra
t interpretation ofProlog. A
ta Informati
a, 32:209{253, 1995.16. J.W. Lloyd. Foundations of Logi
 Programming. Springer Series: Symboli
Computation{Arti�
ial Intelligen
e. Springer-Verlag, se
ond, extended edition,1987.17. E. Mar
hiori and F. Teusink. Proving termination of logi
 programs with delayde
larations. In John Lloyd, editor, Pro
eedings of the International Symposium onLogi
 Programming, pages 447{464, Cambridge, De
ember 4{7 1995. MIT Press.11

18. K. Marriott, M. Gar
ia de la Banda, and M. Hermenegildo. Analyzing logi
 pro-grams with dynami
 s
heduling. In Pro
. 21st Annual ACM Symp. on Prin
iplesof Programming Languages, pages 240{253. ACM Press, 1994.19. L. Naish. Negation and
ontrol in Prolog. Number 238 in Le
ture Notes in Com-puter S
ien
e. Springer-Verlag, New York, 1986.20. P. Van Hentenry
k, A. Cortesi, and B. Le Charlier. Evaluation of the domain Prop.Journal of Logi
 Programming, 23(3):237{278, June 1995.21. K. Yeli
k and J. Za
hary. Moded type systems for logi
 programming. In Pro-
eedings of the Sixteenth Annual ACM Symposium on Prin
iples of ProgrammingLanguages (POPL'89), pages 116{124, 1989.

12

