Termination of Well-Typed Logic Programs

Annalisa Bossi, Nicoletta Cocco, Sabina Rossi

Dipartimento di Informatica
Universita di Venezia - Ca Foscari
via Torino, 155, 30172 Mestre-Venezia, [taly
{bossi,cocco,srossi }Qdsi.unive.it

Abstract

We consider an extended definition of well-typed programs to general
logic programs, i.e., logic programs with negated literals in the body of
the clauses. This is a quite large class of programs which properly includes
all the well-moded ones. We study termination properties of well-typed
general logic programs while employing the Prolog’s left-to-right selection
rule. We introduce the notion of typed acceptable program and provide
an algebraic characterization for the class of well-typed programs which
terminate on all well-typed queries.

1 Introduction

In studying termination of logic programs two main directions can be recognized
as clearly described in [18]. The first one is intended to algebraically charac-
terize classes of programs and queries terminating wrt. a specific interpreter,
such as termination wrt. SLD-resolution [3, 11], LD-resolution [10, 22], LDNF-
resolution [9, 12], SLD-resolution with dynamic scheduling [14, 25]. The second
one is intended to automatize the verification by defining sufficient conditions
for termination wrt. the standard Prolog interpreter [27, 20, 13, 21, 19].

In this paper we follow the first approach: we define and characterize the
class of well-typed typed terminating programs, namely well-typed general pro-
grams terminating wrt. LDNF-resolution for any well-typed general query.
These programs and queries may contain negated literals; they are moded and
typed and they satisfy some correctness conditions relating the types of input
arguments to the types of output arguments.

Our work is in the style of Apt and Pedreschi in [9] for characterizing left
termination of general programs. We introduce the notion of typed acceptabili-
ty and prove that it is both a necessary and a sufficient condition for typed
termination. Our proposal exploits the well-behavior properties of well-typed
programs and queries similarly to what has be done in [22] for well-moded
definite programs. Actually, our present proposal can also be interpreted as

an extension of [22] to general programs. In fact, when we consider definite
programs and the set of ground terms as the only possible type, the class of
well-typed programs and queries coincides with the class of well-moded ones.
Hence, in this paper, we give also a full characterization of well-terminating
programs.

Well-typed definite programs and queries has been introduced by Bronsard et
al. in [15] and studied also by Apt et al. in [6, 7]. The extension of this notion to
general logic programs has been introduced in [12] where we study modular and
incremental techniques for proving termination properties of general programs
wrt. LDNF-resolution. In that paper we already observe how well-behavior
properties of programs can greatly simplify such verification proofs. These ideas
have been further developed in the present work and are used in the proofs.

Well-typed programs form an interesting class of programs, since they in-
clude the majority of the programs used in practice. In fact modes and types can
be viewed as an abstract specification of the intended meaning of the defined
predicates, while well-typedness guarantees that the correctness wrt. such a
specification is preserved through computations [8]. Both notions of well-moded
and well-typed programs are largely exploited in the development of logic pro-
grams and are incorporated in the most recent proposals of logic languages such
as Mercury [26].

The class of typed terminating programs is included neither in the class
of left terminating programs, i.e., programs terminating for any ground query,
nor in the class of well-terminating programs, i.e., programs terminating for
any well-moded query. As an example let us consider the following program
ROTATE. Given a list [containing at least one ground element different from 0,
it computes a permutation of [with a non-zero element as the first element.

rotate([0[Xs],Ys) < append(Xs,[0],Zs), rotate(Zs,¥Ys).
rotate([X|Xs], [X|Xs]) < —zero(X).

zero(0) .

append([1,Ys,Y¥s).
append([X|Xs],Ys, [X|Zs]) < append(Xs,Ys,Zs).

The intended use of rotate is to give the first argument in input and to
obtain the second one in output. It is easy to see that the program ROTATE
terminates for all queries of the form rotate(s,t), where s is a list contain-
ing at least one ground element different from 0. Moreover, ROTATE is neither
left terminating nor well-terminating since it does not terminate for all ground
queries whose first argument is a list of zero’s. The intended and correct use of
this program can be captured by mode and type specifications formalizing the
fact that the program is intended to be called with an appropriate list in input.
Intuitively, the program ROTATE is well-typed wrt. such specifications since,
whenever we call it with a query respecting the intended use, all the subcalls
will also respect such an intended use.

The paper is organized as follows. In Section 2 a few preliminary definitions
are given, in particular we briefly recall the notion of LDNF-resolution, and the

concepts of complete model, level mapping and bounded atom. In Section 3
the definition of well-typedness, extended to general programs and queries, is
recalled and its properties are proved. Typed termination is also defined in this
section. In Section 4 the concepts of typed level mappings and typed accepta-
bility are introduced. We prove that a well-typed program, typed acceptable
wrt. a typed level mapping and some complete model, is typed terminating.
In Section 5 we prove that typed acceptability is also a necessary condition
for typed termination. Section 6 briefly compares our proposal with other ap-
proaches. In the Appendix the proofs of some technical results used in the paper
are given.

2 Preliminaries

We use standard notation and terminology of logic programming (see [1, 2, 23]).
Just note that general logic programs are called normal logic programs in [23].
A general clause is a construct of the form H < Li,...,L, with (n > 0),
where H is an atom and L, ..., L, are literals (i.e., either atoms or the negation
of atoms). In turn, a general query is a possibly empty finite sequence of literals
Ly,...,Ly, with (n > 0). A general program is a finite set of general clauses'.
As in the paper we deal with general queries, clauses and programs, we omit
from now on the qualification “general”, unless some confusion might arise.

For a literal L, we denote by rel(L) the predicate symbol of L.

Following the convention adopted by Apt in [2], we use bold characters to
denote sequences of objects (so that L indicates a sequence of literals L1, .. ., Ly,
while t indicates a sequence of terms t1,...,t,).

For a given program P, we use the following notations: Bp for the Herbrand
base of P, ground(P) for the set of all ground instances of clauses from P,
comp(P) for the Clark’s completion of P [17].

We consider the LDNF-resolution, and following Apt and Pedreschi’s ap-
proach in studying the termination of general programs [9], we view the LDNF-
resolution as a top-down interpreter which, given a general program P and a
general query (), attempts to build a search tree for P U {Q} by constructing
its branches in parallel. The branches in this tree are called LDNF-derivations
of PU{Q} and the tree itself is called LDNF-tree of P U{Q}. Negative literals
are resolved using the negation as failure rule which calls for the construction of
a subsidiary LDNF-tree. If during this subsidiary construction the interpreter
diverges, the (main) LDNF-derivation is considered to be infinite.

By termination of a general program we actually mean termination of the
underlying interpreter. Hence in order to ensure termination of a query @ in a
program P, we require that all LDNF-derivations of P U {Q} are finite.

For an LDNF-descendant of P U {Q} we mean any query occurring during
the LDNF-resolution of P U {Q}, including @ and all the queries occurring
during the construction of the subsidiary LDNF-trees for P U {Q}.

!'In the examples through the paper, we will adopt the syntactic conventions of Prolog so
that each query and clause ends with the period “.” and “<” is omitted in the unit clauses.

Let P be a program and p and q be relations. We say that p refers to q if
there is a clause in P that uses p in its head and ¢ in its body; p depends on q if
(p, q) is in the reflexive, transitive closure of the relation refers to. We say that
p and g are mutually recursive and write p ~ ¢, if p depends on ¢ and ¢ depends
on p. We also write p 1 ¢, when p depends on ¢ but ¢ does not depend on p.

We denote by Negp the set of relations in P which occur in a negative literal
in a clause of P and by Neg}p the set of relations in P on which the relations in
Negp depend. P~ denotes the set of clauses in P defining a relation of Negjp.

In the sequel we refer to the standard definition of model of a program and
model of the completion of a program (see [1, 2] for details). In particular we
use the following notion of complete model for a program.

Definition 2.1 (Complete Model) A model M of a program P is called com-
plete if its restriction to the relations from Negp is a model of comp(P™).

The notion of bounded atom that we will use in the sequel is based on the
following definition of level mapping, originally due to Bezem [11] and Cave-
don [16].

Definition 2.2 (Level Mapping) A level mapping for a program P is a func-
tion | | : Bp — N of ground atoms to natural numbers. By convention, this
definition is extended in a natural way to ground literals by putting |~A| = |A|.
For a ground literal L, |L| is called the level of L.

Definition 2.3 (Bounded Atom) Let P be a program and | | be a level map-
ping for P. An atom A is called bounded wrt. | | if the set of all |A’|, where
A’ is a ground instance of A, is finite. In this case we denote by maz|A| the
mazimum value in this set.

Notice that if an atom A is bounded then, by definition of level mapping,
also the corresponding negative literal, —A, is bounded. Note also that this
definition is equivalent to the definition of bounded query introduced in [9] when
atomic queries are considered. In fact, in case of atomic queries the notion of
boundedness does not depend on a model.

In this paper we also use the following notion of extension of a program which
formalizes the situation where a program uses another one as a subprogram.

Definition 2.4 (Extension) Let P and R be two programs. A relation p is
defined in P if p occurs in a head of a clause of P; a literal L is defined in P if
rel(L) is defined in P; P extends R, denoted by P 1 R, if no relation defined
in P occurs in R.

Informally, P extends R if P defines new relations with respect to R. Note
that P and R are independent if no relation defined in P occurs in R and no
relation defined in R occurs in P, i.e., P J R and R J P.

We consider also hierarchies of programs, namely chains of extensions.

Definition 2.5 (Hierarchy of Programs) Let Pi,..., P, be programs such
that for alli € {1,...,n—1}, Poy; O3 (PLU---UP;). Thenwe call P, 2--- 1 P,
a hierarchy of programs.

3 Well-Typed Programs

In this section, we recall the definition of well-typed general program given in
[12] and show some properties of the programs in this class.
The notion of well-typedness relies both on the concepts of mode and type.

Definition 3.1 (Mode) Consider an n-ary predicate symbol p. By a mode for
p we mean a function m,, from {1,...,n} to the set {+, —}. If m,(i) =" +' then
we call i an input position of p; if m, (i) =" =" then we call i an output position

of p. By a moding we mean a collection of modes, one for each predicate symbol.
The following very general definition of a type is sufficient for our purposes.
Definition 3.2 (Type) A type is a set of terms closed under substitution.

Assume as given a specific set of types, denoted by Types, which includes
Any, the set of all terms, and Ground the set of all ground terms.

Definition 3.3 (Type Associated with a Position of an Atom) A type
for an n-ary predicate symbol p is a function t, from {1,...,n} to the set Types.
Ift,(i) =T, we call T the type associated with the position i of p. Assuming a
type t,, for the predicate p, we say that a literal p(s1,...,sy,) is correctly typed
in position i if s; € t,(i).

In a typed program we assume that every predicate p has a fixed mode m,,
and a fixed type ¢, associated with it and we denote it by

p(myp(1) s ,(1),...,mp(n) : tp(n)).

So, for instance, we write append(+ : List, + : List, — : List) to denote the com-
mon use of append where the first two argument positions are input positions,
the last one is an output position, and the type associated with each argument
position is List, i.e., the set of all lists.

The notion of well-typed queries and programs relies on the following concept
of type judgment.

Definition 3.4 (Type Judgment) By a type judgment we mean a statement
of the forms : S = t : T. We say that a type judgments : S = t : T is true, and
write =s: S =t : T, if for all substitutions 6, s € S implies t € T.

For example, the type judgments (z : Nat, I : ListNat) = ([z|l] : ListNat)
and ([z|l] - ListNat) = (I : ListNat) are both true.

A notion of well-typed program has been first introduced by Bronsard et al.
in [15] and studied also by Apt and Etalle in [6] and by Apt and Luitjes in [7].
This notion was developed for definite programs. In [12] we extend it to general
programs as defined below.

In the following definition, we assume that ig : I is the sequence of typed
terms filling in the input positions of Ly and og : Og is the sequence of typed
terms filling in the output positions of L.

Definition 3.5 (Well-Typed)
o A query Ly,...,L, is called well-typed if for all j € {1,...,n}
':Oj1 :Oj17"'70jk :Ojk :>ij :Ij
where Lj,, ..., Lj, are all the positive literals in Li,...,L;j_;.

e A clause Lo < Ly, ..., Ly is called well-typed if for all j € {1,...,n}

Eio:Ip,05 : Oj,,...,05 : 05, =15 : I
where Lj,, ..., Lj, are all the positive literals in L1,...,L;j_1, and
Eip: Ip,05 : Ojy,..., 05, : O3, = 09 : O
where Lj,, ..., Lj, are all the positive literals in Ly, ..., L,.

o A program is called well-typed if all of its clauses are well-typed.

The difference between this definition and the one usually given for definite
programs is that the correctness of the terms filling in the output positions of
negative literals cannot be used to deduce the correctness of the terms filling
in the input positions of a rightmost literal (or the output positions of the
head in a clause). The two definitions coincide either for definite programs
or general programs whose negative literals have all argument positions being
input positions.

Example 3.6 Consider again the program ROTATE of the introduction: it is
well-typed wrt. the modes and types specified below

rotate(+ : Listx, — : Listx)
zero(+ : Any)
append(+ : List,+ : List*, — : Listx)

where List* denotes the set of all (possibly non-ground) lists containing at least
one ground element different from 0.

Note that well-typedness does not imply correct typedness in all argument
positions: an atomic query is well-typed if it is correctly typed in its input
positions and a unit clause p(s: S,t: T) « is well-typed if =s: S = t: T.

Definition 3.7 (Correct Typedness) Let P be a typed program. We say that
an atom is correctly typed if it is correctly typed in all its argument positions.
A query is correctly typed if all its positive literals are correctly typed and all
its negative literals are correctly typed in all their input positions. A clause is
correctly typed if both the body and the head are correctly typed.

Note that correct typedness of a well-typed query is ensured just by requiring
correct typedness of the output positions of the positive literals, while correct
typedness of a well-typed clause is ensured just by requiring correct typedness
of the input positions of the head and of the output positions of the positive
literals in the body.

In the literature we find many properties of well-typed definite programs
which hold also for general programs. Here we recall some of them we will use
in the rest of the paper.

Remark 3.8 IfQ := Ly,...,L, is a non-empty well-typed query, then all pre-
fizes, L1,...,L; with i € {1,...,n}, of it are well-typed too. In particular, its
first literal Ly is well-typed.

The next Lemma states that well-typed queries are closed under LDNF-
resolution. It has been proved by Bronsard et. al. in [15] for definite programs
and extended to general programs in [12].

Lemma 3.9 Let P and @) be a well-typed program and a well-typed query, re-
spectively. Then all LDNF-descendants of P U {Q} are well-typed.

Lemma 3.10 Let P and QQ be a well-typed program and a well-typed query,
respectively. Let 6 be a computed answer substitution of a successful LDNF-
derivation of PU{Q}. Then Q8 is correctly typed.

Proof. The proof follows by a straightforward generalization of Corollary 10.9
and Corollary 10.10 in [2] to LDNF-resolution.]

In what follows we denote by ground . (P) the set of all correctly typed ground
instances of clauses of P. The proof of the following result is reported in the
Appendix.

Theorem 3.11 Let P and Q) be a well-typed program and a well-typed query,
respectively, and M be a complete model of ground_(P). If there is a successful
LDNF-derivation of PU{Q} with computed answer substitution 6 then M = Q8.

We now define the termination property we focus on.

Definition 3.12 (Typed Termination) A program P is called typed termi-
nating if all LDNF-derivations of P starting in a well-typed query Q are finite.

The following property holds.

Lemma 3.13 Let P be a well-typed program. P is typed terminating iff for all
well-typed positive literals A, all LDNF-derivations of P U {A} are finite.

Proof. Clearly, if P is typed terminating then for all well-typed positive literals
A, all LDNF-derivations of P U {A} are finite.

Suppose now that for all well-typed positive literals A, all LDNF-derivations
of PU {A} are finite. By Lemma 3.9 and Remark 3.8 all selected literals in
all LDNF-derivations of P starting in a well-typed query) are well-typed.
Moreover, if all LDNF-derivations of P U {A} are finite then also all LDNF-
derivations of P U {—A} are finite. Then P is typed terminating. L]

4 Typed Acceptable Programs

In order to prove typed termination of well-typed programs we introduce the
concept of typed acceptable program.
We first define the concept of typed level mapping.

Definition 4.1 (Typed Level Mapping) Let P be a typed program and | |
be a level mapping for P. We say that | | is a typed level mapping for P if

o cvery well-typed atom defined in P is bounded wrt. | |.

Example 4.2 Consider the program ROTATE of the introduction. The following
is a typed level mapping for ROTATE.

|rotate(l1,12)| = |l |1engtno
|zero(z)| =0
|append(i1,12,13)| = |l |1engtn

where for a term t, if t is a list then |t|1ength0 is the length of the maximal prefix
of t made by zero’s, otherwise it is 0, while |t|1engen is equal to the length of the
list, otherwise it is 0.

For well-typed programs, we introduce the following notion of typed accept-
ability. It is in the same style of the notion of well-acceptability introduced in
[22], but as we discuss later on there is a main difference in the requirement on
the level mapping.

Definition 4.3 (Typed Acceptable Program) Let P be a well-typed pro-
gram, | | be a typed level mapping for P and M be a complete model of ground . (P).

e A clause of P is called typed acceptable wrt. | | and M if for every
ground instance A < A, B,B of it such that A is correctly typed in its
input positions,

if M = A and rel(A) =~ rel(B) then |A| > |B].

e P is called typed acceptable wrt. | | and M if all its clauses are.

Notice that in the definition of typed acceptability we only require to com-
pare the level of the head with the level of the “reachable” mutually recursive
literals in clause bodies. This is a much weaker requirement than the one given
in both the notions of acceptability and of semi-acceptability, introduced in
[9, 10] for proving left termination. In fact, in [9, 10], all the “reachable” literals
in the bodies have to be measured.

We first prove a result which provides an incremental method for proving
typed termination.

Theorem 4.4 Let P and R be two programs such that P extends R and PUR
is well-typed. Let M be a complete model of ground (P U R). Suppose that

(7) if the predicate symbols p and q are both defined in P then neither p 1 q
nor ¢ 1 p (i.e., either they are mutually recursive or independent),

(i1) P is typed acceptable wrt. a typed level mapping | | and M,
(7i1) R is typed terminating.
Then P U R s typed terminating.

Proof. By Lemma 3.13, it is sufficient to prove that for all well-typed positive
literals A, all LDNF-derivations of (P U R) U {A} are finite. Let us consider a
well-typed atom A.

If A is defined in R, then the thesis trivially holds by (ii7).

If A is defined in P, by definition of typed level mapping, A is bounded wrt.
| | and then maz|A| is defined. The proof proceeds by induction on maz|A|.

Base. Let maz|A| = 0. In this case, by (7) and (ii), if ¢ : H < L is a clause
of P such that H unifies with A and L is non-empty, then all literals in L are
defined in R. The thesis follows by (iii).

Induction step. Let maz|A| > 0. It is sufficient to prove that for all direct
descendants (L1, ..., Ly,) in the LDNF-tree of (PUR)U{A}, if §; is a computed
answer for (PUR)U {(L1,...,L;_1)} then all LDNF-derivations of (P U R) U
{L;0;} are finite.

Let ¢ : H « L,...,L! be a clause of P such that o = mgu(H, A). For
all i € {1,...,n}, let L; = Lo and 6; be a computed answer for (P U R) U
{(L1,...,L;i—1)}. By Remark 3.8 and Lemma 3.9, each literal L;8; is well-typed.
We distinguish two cases.

If L;0; is defined in R then the thesis follows by (ii7).

Suppose that L;0; is defined in P. L;f; is bounded since it is well-typed.
We prove that maz|A| > maz|L;#;|. The thesis will follow by the induction
hypothesis.

First of all, by hypothesis (i), rel(L;0;) ~ rel(H').

Let v be a substitution such that L;0;7y is a ground instance of L;6;. Then
there exists ' such that (L, ..., L;_1)v is a ground instance of (Ly, ..., L;_1)6;,
covy' is a ground instance of c and L;y' = L;0;y. By the facts that A is well-typed
and Ly,...,L; is a prefix of an LDNF-descendant of (P U R) U {A}, it follows
that Li,...,L; is well-typed. Hence, by Theorem 3.11, M = (L, ..., Li—1)7'.
Moreover, since A is correctly typed in its input positions and Ac = Ho it
follows that Hoy is correctly typed in its input positions. Then,

\Libiy| = |Liv|
|Lioy'| (since L; = Lio)

< |Hoy'| (since P is typed acceptable wrt. M and | |)
= |Ao®'| (since o0 = mgu(H, A)).
Then we can conclude that maz|A| > max|L;6;]. m

Let us now prove our general result.

Theorem 4.5 Let P be a well-typed program, | | be a typed level mapping for
P and M be a complete model of ground_(P).

e If P is typed acceptable wrt. | | and M then P is typed terminating.

Proof. We decompose P into a hierarchy of n > 1 programs P := P,U...UP,
such that P, J ... O P; and for every i € {1,...,n} if the relation symbols
p; and ¢; are both defined in P; then neither p; J ¢; nor ¢; 1 p; (i.e., either
they are mutually recursive or independent). Moreover, for each P;, we consider
the level mapping | |; defined in the following way: if A is defined in P; then
|Al; = |A| else |A]; = 0. Notice that each | |; is a typed level mapping and each
P; is typed acceptable wrt. | |; and M.

We prove that for all well-typed queries @, all LDNF-derivations of PU{Q}
are finite. By induction on n.

Base. Let n = 1. This case follows immediately by Theorem 4.4, by putting
P = P; and R empty.

Induction step. Let n > 1. Also this case follows by Theorem 4.4, by putting
P=P,,and R=P,U...UP, ;. In fact,

e if the predicate symbols p, and g, are both defined in P, then neither
Prn 3 qn NOT qp, 1 Pp;

e P, is typed acceptable wrt. | |,, and M;

e (PLU...UP,_) is typed terminating, by the inductive hypothesis.

Example 4.6 The well-typed program ROTATE in the modes and types of Exam-
ple 3.6 is typed acceptable wrt.

o the typed level mapping of Example 4.2, and

e o complete model M of ground, (ROTATE) such that
M ': append(s, [0]7 t) lﬁ. |S|1ength0 = |t|length0-

It is worth noticing that the condition of typed acceptability offers an ex-
tremely powerful and simple method for proving typed termination of a well-
typed program. Consider a program (for instance the program MAP_COLOR in
[10]) composed by many definitions of independent recursive relations and a
“main” procedure which correctly calls such relations. All what we have to do
here for proving typed termination is to prove termination independently for
each recursive definition on its correct calls.

10

5 Characterizing Typed Terminating Programs

In this section we prove the converse of Theorem 4.5. This provides us with an
exact characterization of well-typed, typed terminating general programs.

Similarly to what has been done in [9] such a characterization is limited
to non-floundering programs. We recall that an LDNF-derivation flounders if
there occurs in it or in any of its subsidiary LDNF-trees a query with the first
literal being non-ground and negative. An LDNF-tree is called non-floundering
if none of its branches flounders.

To prove the converse of Theorem 4.5 we analyze the size of finite LDNF-
trees.

We need the following lemma from [9], where for a program P and a query
Q, nodesp(Q) denotes the total number of nodes in the LDNF-tree of P U {Q}
and in all its subsidiary LDNF-trees.

Lemma 5.1 [9] Let P be a program and Q be a query such that the LDNF-tree
of PU{Q} is finite and non-floundering. Then

(i) for all substitutions 6, the LDNF-tree of P U {Q6} is finite and non-
floundering and nodesp(Q0) < nodesp(Q);

(i) for all prefizes Q' of Q, the LDNF-tree of P U {Q'} is finite and non-
floundering and nodesp(Q') < nodesp(Q);

(iii) for all non-root nodes Q' in the LDNF-tree of P U {Q}, nodesp(Q') <
nodes p(Q).

We will use the following notion.

Definition 5.2 (Non-Floundering on Well-Typed Atoms) Let P be a ty-
ped program. We say that P is non-floundering on well-typed atoms if no
LDNF-derivation starting in a well-typed atom flounders.

Notice that if P is a well-typed program, the previous condition is satisfied
whenever all positions of negative literals occurring in the clause bodies are
input positions and have types which imply groundness.

The following result is proved in the Appendix.

Theorem 5.3 Let P be a well-typed program such that P is typed terminating
and non-floundering on well-typed atoms. Then

{A € Bp | A is well-typed and there is a successful LDNF-derivation of PU{A}}
is a complete model of ground_(P).
We are now ready to prove the main result of this section.

Theorem 5.4 Let P be a well-typed program, non-floundering on well-typed
atoms.

11

e If P is typed terminating then there exists a typed level mapping | | and a
complete model M for ground .(P) such that P is typed acceptable wrt. | |
and M .

Proof. Let us define a level mapping for P as follows: for all A € Bp

|A| = nodesp(A) if A is well-typed
Al =0 otherwise.

Assume that P is typed terminating. Then the level mapping | | for P is well-
defined. Moreover, it is a typed level mapping. Note that by definition, for
A € Bp, nodesp(—A) > nodesp(A) = |A] = |-A4], so nodesp(—A) > |-A|.

Let M be the complete model for ground,.(P) of Theorem 5.3.

We prove that P is typed acceptable wrt. | | and M.

Take a clause A + A, B, B of P and a ground instance Af < A#, B, B of
it such that A# is correctly typed in its input positions. We need to show that

it M = A8 and rel(Af) = rel(B6) then |A6| > |B4|.

Let o be an mgu of A6 and A, then § = ¢¢ for some §. We have:

|A68] = mnodesp(A6) (by definition of | |)
> mnodesp(Ao,Bo,Bo) (by Lemma 5.1 (iii) and the fact that
(Ao, Bo,Bo) is a resolvent of P U {A46})
> mnodesp(Af,B0,Bf) (by Lemma 5.1 (i), since § = g0)
> nodesp(B6,B6) (by Lemma 5.1 (4i7), since M = Af)
> nodesp(B6) (by Lemma 5.1 (i7))
= |Bf| (by definition of | |).

6 Conclusions

In this paper we propose a new termination property for general logic programs:
typed termination. A general program is typed terminating if it terminates for
any well-typed query. We follow the style introduced by Apt and Pedreschi
for left termination in [9], and give an algebraic characterization of well-typed,
typed terminating programs. To this end we use the concepts of typed level
mappings, namely level mappings for which any well-typed query is bounded,
and typed acceptability. We also prove that, for well-typed programs, typed
acceptability is a necessary and sufficient condition for typed termination.
Most of the programs we write are well-typed and typed termination seems
to be a very natural termination property for them. Furthermore typed accept-
ability supplies a very simple way to prove termination since it requires only
to compare the levels of “reachable” mutually recursive literals. Thus in the
termination proofs very simple level mappings can be used by exploiting both
the independence and the hierarchical dependence among predicate definitions.

12

Moreover the class of typed terminating programs is included neither into the
class of left terminating programs nor into the class of well-terminating ones. In
fact there are well-typed programs which terminate for all well-typed queries,
but they do not terminate for all ground queries or for all well-moded ones.

The present characterization of typed termination is also a generalization
of our previous work on well-termination [22]. In fact in [22] we consider only
definite programs while for typed termination we consider general programs.
Moreover, when we restrict our type system to the only type Ground, i.e., the
set of ground terms, well-typed programs coincide with well-moded ones. A
moded level mapping is also a typed level mapping, since all well-moded atomic
queries are bounded wrt. a moded level mapping. But the reverse is not true,
namely a typed level mapping is not a moded level mapping, hence our present
requirement of a typed level mapping is less restrictive. In [22] it was not possible
to prove that any well-moded well-terminating program is well-acceptable: this
property was proved only for a subclass of well-moded programs, the simply-
moded ones. By weakening the condition on the level mapping, now we obtain
a full characterization for well-terminating programs.

Another approach which can capture typed termination is the one proposed
by Pedreschi and Ruggeri in [24]. They give a general framework for proving
partial and total correctness of general logic programs wrt. Pre/Post specifica-
tions. Clearly with Pre/Post specifications also moding and typing properties
can be described and well-typing can be expressed. They basically consider
well-asserted programs, as they are called in [8], which are a generalization of
well-typed ones. On the other hand, for proving termination they adopt the
classical notion of acceptability defined in [9], thus they require a level mapping
for comparing all “reachable” literals in program clauses not only the recursive
ones. This is a much stronger requirement than our, it produces in general
more complicated level mappings and termination proofs, and in some cases it
may make impossible to find a proof, even for programs which are typed termi-
nating. This is due to the fact that they cannot give a full characterization of
well-asserted programs terminating for well-asserted queries.

References

[1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, pages 495-574. Elsevier, Amsterdam and The MIT Press,
Cambridge, 1990.

[2] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[3] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9(3&4):335-363, 1991.

13

[4]

[5]

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundation of Deductive Databases and
Logic Programming, pages 89-148. Morgan Kaufmann, 1988.

K. R. Apt and H. C. Doets. A new definition of SLDNF-resolution. Journal
of Logic Programming, 18(2):177-190, 1994.

K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Conference
on Mathematical Foundations of Computer Science (MFCS 93), volume 711
of Lecture Notes in Computer Science, pages 1-19. Springer-Verlag, 1993.

K. R. Apt and I. Luitjes. Verification of logic programs with delay dec-
larations. In A. Borzyszkowski and S. Sokolowski, editors, Proceedings of
the Fourth International Conference on Algebraic Methodology and Soft-
ware Technology, (AMAST’95), volume 936 of Lecture Notes in Computer
Science, pages 1-19. Springer-Verlag, 1995.

K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from
modes through types to assertions. Formal Aspects of Computing,
6(6A):743-765, 1994.

K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1):109-157, 1993.

K. R. Apt and D. Pedreschi. Modular termination proofs for logic and
pure Prolog programs. In G. Levi, editor, Advances in Logic Programming
Theory, pages 183-229. Oxford University Press, 1994.

M. Bezem. Strong termination of logic programs. Journal of Logic Pro-
gramming, 15(1&2):79-97, 1993.

A. Bossi, N. Cocco, S. Etalle, and S. Rossi. Termination in a hierarchy
of general logic programs. Technical Report CS-2001-05, Dipartimento di
Informatica, Universita Ca’ Foscari Di Venezia, Italy, March 2001.

A. Bossi, N. Cocco, and M. Fabris. Norms on terms and their use in proving
universal termination of a logic program. Theoretical Computer Science,
124:297-328, 1994.

A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming deriva-
tions. Theory and Practice of Logic Programming (TPLP), to appear, 2000.
Available on CoRR: http://arXiv.org/abs/cs/0101023.

F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of direc-
tionality for proving termination of logic programs. In K. R. Apt, editor,
Proceedings of the Joint International Conference and Symposium on Logic
Programming, pages 321-335. MIT Press, 1992.

14

[16]

[27]

L. Cavedon. Continuity, consistency and completeness properties for logic
programs. In G. Levi and M. Martelli, editors, Proceedings of the Sixth
International Conference on Logic Programming, pages 571-584. The MIT
press, 1989.

K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker, editors,
Logic and Data Bases, pages 293-322. Plenum Press, 1978.

D. De Schreye and S. Decorte. Termination of logic programs: the never-
ending story. Journal of Logic Programming, 19-20:199-260, 1994.

D. De Schreye and K. Verschaetse. Deriving linear size relations for
logic programs by abstract interpretation. New Generation Computing,
13(2):117-154, 1995.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for
analyzing the termination of definite logic programs with respect to call
patterns. In ICOT Staff, editor, Proceedings of the International Conference
on Fifth Generation Computer Systems (FGCS’92), Tokio, pages 481-488.
ICOT, 1992.

S. Decorte, D. De Schreye, and M. Fabris. Automatic inference of norms: a
missing link in automatic termination analysis. In D. Miller, editor, Proc.
Tenth International Logic Programming Symposium, number 526 in Lecture
Notes in Computer Science, pages 420—436. Springer-Verlag, 1993.

S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs.
Journal of Logic Programming, 38(2):243-257, 1999.

J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation
— Artificial Intelligence. Springer-Verlag, Berlin, 1987. Second edition.

D. Pedreschi and S. Ruggieri. Verification of Logic Programs. Journal of
Logic Programming, 39(1-3):125-176, 1999.

J.-G. Smaus. Proving termination of input-consuming logic programs. In
D. De Schreye, editor, Proceedings of the 16th International Conference on
Logic Programming, pages 335-349. MIT Press, 1999.

Z. Somogyi, F. Henderson, and T. Conway. Mercury: an
efficient purely declarative logic programming language. In
Australian Computer Science Conference, 1995. available at

http://www.cs.mu.oz.au/mercury /papers.html.

K. Verschaetse and D. De Schreye. Deriving termination proofs for logic
programs using abstract procedures. In K. Furukawa, editor, Proceedings
of the 8th International Conference on Logic Programming, pages 301-315.
MIT Press, 1991.

15

A Appendix

In this appendix we report the proofs of the technical results used in the paper.
Let us first establish the following claim.

Claim 1 Let P and @ be a well-typed program and a well-typed query, respec-
tively. The following statements hold.

(¢) If the LDNF-tree of ground(P)U{Q} is finitely failed then also the LDNF-
tree of ground_ (P)U{Q} is finitely failed.

(i7) If there is a successful LDNF-derivation of ground(P)U{Q} then there is
a successful LDNF-derivation of ground (P)U {Q}.

Proof. By simultaneous induction on k = rank(7,¥) where

(1) in case (i), T is the finitely failed LDNF-tree of ground(P) U {@Q} and
¥ =k,

(2) in case (it), T is the LDNF-tree of ground(P)U{Q} containing a successful
LDNF-derivation and 1 is its computed answer substitution.

For a formal definition of rank(T,¥) the reader is referred to [5]. Intuitively, &k
denotes the number of subsidiary trees that the interpreter would explore during
the construction of the finitely failed LDNF-tree of ground(P)U{Q} in case (i),
or the successful LDNF-derivation of ground(P)U {Q} in case (ii).

Base. k = 0. In this case no subsidiary tree is explored during the construc-
tion of the LDNF-tree of ground(P) U {Q}.

(i) Let the LDNF-tree of ground(P)U{Q} be finitely failed. Since ground(P) D
ground . (P), the LDNF-tree of ground, (P)U {Q} is finitely failed too.

(i7) Let 0 be a successful LDNF-derivation of ground(P) U {Q}. We prove
that all clauses from ground(P) used to resolve an atom in § are correctly typed
and thus belong to ground . (P). Indeed, let ¢ := H + L be a clause of ground(P)
and A be a selected atom in ¢ such that A and H unify. By properties of
LDNF-resolution, since there exists a successful derivation of ground(P)U {4},
then there exists a successful derivation of ground(P) U {H} too. Hence, by
Lemma 3.10, H is correctly typed. Moreover, since L is an LDNF-resolvent of
ground(P) U {A}, then there exists also a successful derivation of ground(P) U
{L}. Again, by Lemma 3.10, L is correctly typed. This proves that the clause
¢ is correctly typed and thus belong to ground. (P).

Induction step. k > 0.

(i) Let the LDNF-tree of ground(P)U{Q} be finitely failed. The proof follows
by a secondary induction on the depth h of this tree. Let Q := Lq,..., L,.

Base. h = 1. We distinguish two cases.

(a) Ly is a positive literal. In this case there is no clause in ground(P)
whose head unifies with L;. Since ground(P) D ground . (P), then there is also
no clause in ground . (P) whose head unifies with L, i.e., the LDNF-tree of
ground . (P) U {Q} is finitely failed.

16

(b) Ly is a negative literal. Let L; = —A. In this case, there exists a
successful LDNF-derivation of ground(P) U {A}. By the principal induction on
k, there exists also a successful LDNF-derivation of ground.(P)U {A}. This
proves that the LDNF-tree of ground.(P) U {Q} is finitely failed.

Induction step. h > 1. Again we distinguish two cases.

(a) Ly is a positive literal. In this case, all direct LDNF-descendants of
ground(P) U {Q} have a finitely failed LDNF-tree in ground(P). From the
fact that ground(P) D ground, (P), it follows that the set of direct LDNF-
descendants of ground,_ (P)U{Q} is contained in the set of direct LDNF-descen-
dants of ground(P) U {Q}. The thesis follows by the secondary induction on h,
since the depth of the subtrees is smaller than h.

(b) Ly is a negative literal. Let L; = —A. Since h > 1, the LDNF-tree of
ground(P) U {A} is finitely failed. By the principal induction on k, the LDNF-
tree of ground, (P) U {A} is finitely failed too. Hence Lo, ..., L, is the direct
LDNF-descendant both of ground(P) U {Q} and of ground_.(P) U {Q}. The
thesis follows by the secondary induction on h.

(i7) Let ¢ be a successful LDNF-derivation of ground(P) U {Q} and k& > 0.
By the principal induction on k, all the subsidiary trees explored during the
construction of ¢ are finitely failed in ground,(P). Moreover, as in the base
case for k = 0, for all positive literals selected in d, we can prove that all input
clauses are correctly typed and thus belong to ground, (P). This proves that
there exists a successful LDNF-derivation of ground. (P) U {Q}. L]

We are now in position to prove Theorem 3.11.

Theorem 3.11 Let P and Q) be a well-typed program and a well-typed query,
respectively, and M be a complete model of ground_(P). If there is a successful
LDNF-derivation of PU{Q} with computed answer substitution 6 then M = Q6.

Proof Suppose that there is a successful LDNF-derivation of P U {Q} with
computed answer #. For any ground instance Q' of 8, there is a success-
ful LDNF-derivation of ground(P) U {Q'}, by properties of LDNF-resolution.
Thus, there is a successful LDNF-derivation of ground, (P) U {Q'}, by Claim
1 (éi). Let M be a complete model of ground, (P). By soundness of LDNF-
resolution wrt. completion [17], for any ground instance Q' of Q8, M |= @', i.e.,
M = Q6.]

Let us recall the following theorem due to Apt, Blair and Walker [4] which
provides a method for verifying whether an interpretation is a model of comp(P).
It uses the following definition.

Definition A.1 (Supported Model) A model M of a program P is called
supported if for all ground atoms A, I |= A implies that I |= L for some general
clause A < L € ground(P).

Theorem A.2 A Herbrand interpretation I is a model of comp(P) iff it is a
supported model of P.

17

We can then prove the following theorem.
Theorem 5.3 Let P be a well-typed program such that P is typed terminating
and non-floundering on well-typed atoms. Then

{A € Bp | A is well-typed and there is a successful LDNF-derivation of PU{A}}

is a complete model of ground (P).

Proof. Let M be the set
{A € Bp | A is well-typed and there is a successful LDNF-derivation of PU{A}}.

We show that M is a Herbrand model of comp(ground, (P)). To this end, we
use Theorem A.2 and show that M is a supported model of ground._(P).

To establish that M is a model of ground(P), assume by contradiction that
some clause A < L from ground (P) is false in M. Then M = L and M [~ A.
Since P is typed terminating and non-floundering on well-typed atoms, M = A
implies that the LDNF-tree for P U {A} is finitely failed and non-floundering.

For some ground substitution v, A + L = (A’ + L')y where ¢ := A’ « L'
is a clause from P. Thus A and A’ unify.

Let L'o be the resolvent of PU{A} with the input clause ¢. The LDNF-tree
of PU{L'c} is also finitely failed and non-floundering. As L is an instance of L',
by Lemma 5.1 (i) we have that the LDNF-tree for P U {L} is non-floundering.
Moreover, it is finitely failed, since the queries occurring in the LDNF-tree of
PU{L} are all instances of the queries occurring in the LDNF-tree of PU{L'c}.
But the fact that L is well-typed and the LDNF-tree of P U{L} is finitely failed
and non-floundering contradicts the hypothesis that M |= L.

To establish that M is a supported model of ground..(P), consider A € Bp
such that M = A, and let ¢ be the first input clause used in a successful LDNF-
derivation of P U {A}. Let L'o be the resolvent of P U {A} from the clause c.
Clearly, a successful LDNF-derivation for P U {L'c} with computed answer
can be extracted from the successful LDNF-derivation of P U {A}. Let L be a
ground instance of L'cf. By Lemma 3.10, both A and L are correctly typed.
Hence A + L € ground_(P). By properties of LDNF-resolution there exists a
successful LDNF-derivation for P U {L}, hence M = L. This establishes that
M is a supported interpretation for ground . (P). [

18

