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tWe 
onsider an extended de�nition of well-typed programs to generallogi
 programs, i.e., logi
 programs with negated literals in the body ofthe 
lauses. This is a quite large 
lass of programs whi
h properly in
ludesall the well-moded ones. We study termination properties of well-typedgeneral logi
 programs while employing the Prolog's left-to-right sele
tionrule. We introdu
e the notion of typed a

eptable program and providean algebrai
 
hara
terization for the 
lass of well-typed programs whi
hterminate on all well-typed queries.1 Introdu
tionIn studying termination of logi
 programs two main dire
tions 
an be re
ognizedas 
learly des
ribed in [18℄. The �rst one is intended to algebrai
ally 
hara
-terize 
lasses of programs and queries terminating wrt. a spe
i�
 interpreter,su
h as termination wrt. SLD-resolution [3, 11℄, LD-resolution [10, 22℄, LDNF-resolution [9, 12℄, SLD-resolution with dynami
 s
heduling [14, 25℄. The se
ondone is intended to automatize the veri�
ation by de�ning suÆ
ient 
onditionsfor termination wrt. the standard Prolog interpreter [27, 20, 13, 21, 19℄.In this paper we follow the �rst approa
h: we de�ne and 
hara
terize the
lass of well-typed typed terminating programs, namely well-typed general pro-grams terminating wrt. LDNF-resolution for any well-typed general query.These programs and queries may 
ontain negated literals; they are moded andtyped and they satisfy some 
orre
tness 
onditions relating the types of inputarguments to the types of output arguments.Our work is in the style of Apt and Pedres
hi in [9℄ for 
hara
terizing lefttermination of general programs. We introdu
e the notion of typed a

eptabili-ty and prove that it is both a ne
essary and a suÆ
ient 
ondition for typedtermination. Our proposal exploits the well-behavior properties of well-typedprograms and queries similarly to what has be done in [22℄ for well-modedde�nite programs. A
tually, our present proposal 
an also be interpreted as1



an extension of [22℄ to general programs. In fa
t, when we 
onsider de�niteprograms and the set of ground terms as the only possible type, the 
lass ofwell-typed programs and queries 
oin
ides with the 
lass of well-moded ones.Hen
e, in this paper, we give also a full 
hara
terization of well-terminatingprograms.Well-typed de�nite programs and queries has been introdu
ed by Bronsard etal. in [15℄ and studied also by Apt et al. in [6, 7℄. The extension of this notion togeneral logi
 programs has been introdu
ed in [12℄ where we study modular andin
remental te
hniques for proving termination properties of general programswrt. LDNF-resolution. In that paper we already observe how well-behaviorproperties of programs 
an greatly simplify su
h veri�
ation proofs. These ideashave been further developed in the present work and are used in the proofs.Well-typed programs form an interesting 
lass of programs, sin
e they in-
lude the majority of the programs used in pra
ti
e. In fa
t modes and types 
anbe viewed as an abstra
t spe
i�
ation of the intended meaning of the de�nedpredi
ates, while well-typedness guarantees that the 
orre
tness wrt. su
h aspe
i�
ation is preserved through 
omputations [8℄. Both notions of well-modedand well-typed programs are largely exploited in the development of logi
 pro-grams and are in
orporated in the most re
ent proposals of logi
 languages su
has Mer
ury [26℄.The 
lass of typed terminating programs is in
luded neither in the 
lassof left terminating programs, i.e., programs terminating for any ground query,nor in the 
lass of well-terminating programs, i.e., programs terminating forany well-moded query. As an example let us 
onsider the following programROTATE. Given a list l 
ontaining at least one ground element di�erent from 0,it 
omputes a permutation of l with a non-zero element as the �rst element.rotate([0|Xs℄,Ys)  append(Xs,[0℄,Zs), rotate(Zs,Ys).rotate([X|Xs℄,[X|Xs℄)  :zero(X).zero(0).append([ ℄,Ys,Ys).append([X|Xs℄,Ys,[X|Zs℄)  append(Xs,Ys,Zs).The intended use of rotate is to give the �rst argument in input and toobtain the se
ond one in output. It is easy to see that the program ROTATEterminates for all queries of the form rotate(s; t), where s is a list 
ontain-ing at least one ground element di�erent from 0. Moreover, ROTATE is neitherleft terminating nor well-terminating sin
e it does not terminate for all groundqueries whose �rst argument is a list of zero's. The intended and 
orre
t use ofthis program 
an be 
aptured by mode and type spe
i�
ations formalizing thefa
t that the program is intended to be 
alled with an appropriate list in input.Intuitively, the program ROTATE is well-typed wrt. su
h spe
i�
ations sin
e,whenever we 
all it with a query respe
ting the intended use, all the sub
allswill also respe
t su
h an intended use.The paper is organized as follows. In Se
tion 2 a few preliminary de�nitionsare given, in parti
ular we brie
y re
all the notion of LDNF-resolution, and the2




on
epts of 
omplete model, level mapping and bounded atom. In Se
tion 3the de�nition of well-typedness, extended to general programs and queries, isre
alled and its properties are proved. Typed termination is also de�ned in thisse
tion. In Se
tion 4 the 
on
epts of typed level mappings and typed a

epta-bility are introdu
ed. We prove that a well-typed program, typed a

eptablewrt. a typed level mapping and some 
omplete model, is typed terminating.In Se
tion 5 we prove that typed a

eptability is also a ne
essary 
onditionfor typed termination. Se
tion 6 brie
y 
ompares our proposal with other ap-proa
hes. In the Appendix the proofs of some te
hni
al results used in the paperare given.2 PreliminariesWe use standard notation and terminology of logi
 programming (see [1, 2, 23℄).Just note that general logi
 programs are 
alled normal logi
 programs in [23℄.A general 
lause is a 
onstru
t of the form H  L1; : : : ; Ln with (n � 0),whereH is an atom and L1; : : : ; Ln are literals (i.e., either atoms or the negationof atoms). In turn, a general query is a possibly empty �nite sequen
e of literalsL1; : : : ; Ln, with (n � 0). A general program is a �nite set of general 
lauses1.As in the paper we deal with general queries, 
lauses and programs, we omitfrom now on the quali�
ation \general", unless some 
onfusion might arise.For a literal L, we denote by rel(L) the predi
ate symbol of L.Following the 
onvention adopted by Apt in [2℄, we use bold 
hara
ters todenote sequen
es of obje
ts (so that L indi
ates a sequen
e of literals L1; : : : ; Ln,while t indi
ates a sequen
e of terms t1; : : : ; tn).For a given program P , we use the following notations: BP for the Herbrandbase of P , ground(P ) for the set of all ground instan
es of 
lauses from P ,
omp(P ) for the Clark's 
ompletion of P [17℄.We 
onsider the LDNF-resolution, and following Apt and Pedres
hi's ap-proa
h in studying the termination of general programs [9℄, we view the LDNF-resolution as a top-down interpreter whi
h, given a general program P and ageneral query Q, attempts to build a sear
h tree for P [ fQg by 
onstru
tingits bran
hes in parallel. The bran
hes in this tree are 
alled LDNF-derivationsof P [ fQg and the tree itself is 
alled LDNF-tree of P [ fQg. Negative literalsare resolved using the negation as failure rule whi
h 
alls for the 
onstru
tion ofa subsidiary LDNF-tree. If during this subsidiary 
onstru
tion the interpreterdiverges, the (main) LDNF-derivation is 
onsidered to be in�nite.By termination of a general program we a
tually mean termination of theunderlying interpreter. Hen
e in order to ensure termination of a query Q in aprogram P , we require that all LDNF-derivations of P [ fQg are �nite.For an LDNF-des
endant of P [ fQg we mean any query o

urring duringthe LDNF-resolution of P [ fQg, in
luding Q and all the queries o

urringduring the 
onstru
tion of the subsidiary LDNF-trees for P [ fQg.1In the examples through the paper, we will adopt the synta
ti
 
onventions of Prolog sothat ea
h query and 
lause ends with the period \." and \ " is omitted in the unit 
lauses.3



Let P be a program and p and q be relations. We say that p refers to q ifthere is a 
lause in P that uses p in its head and q in its body; p depends on q if(p; q) is in the re
exive, transitive 
losure of the relation refers to. We say thatp and q are mutually re
ursive and write p ' q, if p depends on q and q dependson p. We also write p = q, when p depends on q but q does not depend on p.We denote by NegP the set of relations in P whi
h o

ur in a negative literalin a 
lause of P and by Neg�P the set of relations in P on whi
h the relations inNegP depend. P� denotes the set of 
lauses in P de�ning a relation of Neg�P .In the sequel we refer to the standard de�nition of model of a program andmodel of the 
ompletion of a program (see [1, 2℄ for details). In parti
ular weuse the following notion of 
omplete model for a program.De�nition 2.1 (Complete Model) A modelM of a program P is 
alled 
om-plete if its restri
tion to the relations from Neg�P is a model of 
omp(P�).The notion of bounded atom that we will use in the sequel is based on thefollowing de�nition of level mapping, originally due to Bezem [11℄ and Cave-don [16℄.De�nition 2.2 (Level Mapping) A level mapping for a program P is a fun
-tion j j : BP ! N of ground atoms to natural numbers. By 
onvention, thisde�nition is extended in a natural way to ground literals by putting j:Aj = jAj.For a ground literal L, jLj is 
alled the level of L.De�nition 2.3 (Bounded Atom) Let P be a program and j j be a level map-ping for P . An atom A is 
alled bounded wrt. j j if the set of all jA0j, whereA0 is a ground instan
e of A, is �nite. In this 
ase we denote by max jAj themaximum value in this set.Noti
e that if an atom A is bounded then, by de�nition of level mapping,also the 
orresponding negative literal, :A, is bounded. Note also that thisde�nition is equivalent to the de�nition of bounded query introdu
ed in [9℄ whenatomi
 queries are 
onsidered. In fa
t, in 
ase of atomi
 queries the notion ofboundedness does not depend on a model.In this paper we also use the following notion of extension of a programwhi
hformalizes the situation where a program uses another one as a subprogram.De�nition 2.4 (Extension) Let P and R be two programs. A relation p isde�ned in P if p o

urs in a head of a 
lause of P ; a literal L is de�ned in P ifrel(L) is de�ned in P ; P extends R, denoted by P = R, if no relation de�nedin P o

urs in R.Informally, P extends R if P de�nes new relations with respe
t to R. Notethat P and R are independent if no relation de�ned in P o

urs in R and norelation de�ned in R o

urs in P , i.e., P = R and R = P .We 
onsider also hierar
hies of programs, namely 
hains of extensions.De�nition 2.5 (Hierar
hy of Programs) Let P1; : : : ; Pn be programs su
hthat for all i 2 f1; : : : ; n�1g, Pi+1 = (P1[� � �[Pi). Then we 
all Pn = � � � = P1a hierar
hy of programs. 4



3 Well-Typed ProgramsIn this se
tion, we re
all the de�nition of well-typed general program given in[12℄ and show some properties of the programs in this 
lass.The notion of well-typedness relies both on the 
on
epts of mode and type.De�nition 3.1 (Mode) Consider an n-ary predi
ate symbol p. By a mode forp we mean a fun
tion mp from f1; : : : ; ng to the set f+;�g. If mp(i) =00 +0 thenwe 
all i an input position of p; if mp(i) =00 �00 then we 
all i an output positionof p. By a moding we mean a 
olle
tion of modes, one for ea
h predi
ate symbol.The following very general de�nition of a type is suÆ
ient for our purposes.De�nition 3.2 (Type) A type is a set of terms 
losed under substitution.Assume as given a spe
i�
 set of types, denoted by Types, whi
h in
ludesAny, the set of all terms, and Ground the set of all ground terms.De�nition 3.3 (Type Asso
iated with a Position of an Atom) A typefor an n-ary predi
ate symbol p is a fun
tion tp from f1; : : : ; ng to the set Types.If tp(i) = T , we 
all T the type asso
iated with the position i of p. Assuming atype tp for the predi
ate p, we say that a literal p(s1; : : : ; sn) is 
orre
tly typedin position i if si 2 tp(i).In a typed program we assume that every predi
ate p has a �xed mode mpand a �xed type tp asso
iated with it and we denote it byp(mp(1) : tp(1); : : : ;mp(n) : tp(n)):So, for instan
e, we write append(+ : List ;+ : List ;� : List) to denote the 
om-mon use of append where the �rst two argument positions are input positions,the last one is an output position, and the type asso
iated with ea
h argumentposition is List , i.e., the set of all lists.The notion of well-typed queries and programs relies on the following 
on
eptof type judgment.De�nition 3.4 (Type Judgment) By a type judgment we mean a statementof the form s : S) t : T: We say that a type judgment s : S) t : T is true, andwrite j= s : S) t : T; if for all substitutions �, s� 2 S implies t� 2 T.For example, the type judgments (x : Nat ; l : ListNat) ) ([xjl℄ : ListNat)and ([xjl℄ : ListNat)) (l : ListNat) are both true.A notion of well-typed program has been �rst introdu
ed by Bronsard et al.in [15℄ and studied also by Apt and Etalle in [6℄ and by Apt and Luitjes in [7℄.This notion was developed for de�nite programs. In [12℄ we extend it to generalprograms as de�ned below.In the following de�nition, we assume that is : Is is the sequen
e of typedterms �lling in the input positions of Ls and os : Os is the sequen
e of typedterms �lling in the output positions of Ls.5



De�nition 3.5 (Well-Typed)� A query L1; : : : ; Ln is 
alled well-typed if for all j 2 f1; : : : ; ngj= oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1.� A 
lause L0  L1; : : : ; Ln is 
alled well-typed if for all j 2 f1; : : : ; ngj= i0 : I0;oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1, andj= i0 : I0;oj1 : Oj1 ; : : : ;ojh : Ojh ) o0 : O0where Lj1 ; : : : ; Ljh are all the positive literals in L1; : : : ; Ln.� A program is 
alled well-typed if all of its 
lauses are well-typed.The di�eren
e between this de�nition and the one usually given for de�niteprograms is that the 
orre
tness of the terms �lling in the output positions ofnegative literals 
annot be used to dedu
e the 
orre
tness of the terms �llingin the input positions of a rightmost literal (or the output positions of thehead in a 
lause). The two de�nitions 
oin
ide either for de�nite programsor general programs whose negative literals have all argument positions beinginput positions.Example 3.6 Consider again the program ROTATE of the introdu
tion: it iswell-typed wrt. the modes and types spe
i�ed belowrotate(+ : List�;� : List�)zero(+ : Any)append(+ : List�;+ : List�;� : List�)where List* denotes the set of all (possibly non-ground) lists 
ontaining at leastone ground element di�erent from 0.Note that well-typedness does not imply 
orre
t typedness in all argumentpositions: an atomi
 query is well-typed if it is 
orre
tly typed in its inputpositions and a unit 
lause p(s : S; t : T) is well-typed if j= s : S) t : T.De�nition 3.7 (Corre
t Typedness) Let P be a typed program. We say thatan atom is 
orre
tly typed if it is 
orre
tly typed in all its argument positions.A query is 
orre
tly typed if all its positive literals are 
orre
tly typed and allits negative literals are 
orre
tly typed in all their input positions. A 
lause is
orre
tly typed if both the body and the head are 
orre
tly typed.6



Note that 
orre
t typedness of a well-typed query is ensured just by requiring
orre
t typedness of the output positions of the positive literals, while 
orre
ttypedness of a well-typed 
lause is ensured just by requiring 
orre
t typednessof the input positions of the head and of the output positions of the positiveliterals in the body.In the literature we �nd many properties of well-typed de�nite programswhi
h hold also for general programs. Here we re
all some of them we will usein the rest of the paper.Remark 3.8 If Q := L1; : : : ; Ln is a non-empty well-typed query, then all pre-�xes, L1; : : : ; Li with i 2 f1; : : : ; ng, of it are well-typed too. In parti
ular, its�rst literal L1 is well-typed.The next Lemma states that well-typed queries are 
losed under LDNF-resolution. It has been proved by Bronsard et. al. in [15℄ for de�nite programsand extended to general programs in [12℄.Lemma 3.9 Let P and Q be a well-typed program and a well-typed query, re-spe
tively. Then all LDNF-des
endants of P [ fQg are well-typed.Lemma 3.10 Let P and Q be a well-typed program and a well-typed query,respe
tively. Let � be a 
omputed answer substitution of a su

essful LDNF-derivation of P [ fQg. Then Q� is 
orre
tly typed.Proof. The proof follows by a straightforward generalization of Corollary 10.9and Corollary 10.10 in [2℄ to LDNF-resolution.In what follows we denote by ground� (P ) the set of all 
orre
tly typed groundinstan
es of 
lauses of P . The proof of the following result is reported in theAppendix.Theorem 3.11 Let P and Q be a well-typed program and a well-typed query,respe
tively, and M be a 
omplete model of ground� (P ). If there is a su

essfulLDNF-derivation of P[fQg with 
omputed answer substitution � thenM j= Q�.We now de�ne the termination property we fo
us on.De�nition 3.12 (Typed Termination) A program P is 
alled typed termi-nating if all LDNF-derivations of P starting in a well-typed query Q are �nite.The following property holds.Lemma 3.13 Let P be a well-typed program. P is typed terminating i� for allwell-typed positive literals A, all LDNF-derivations of P [ fAg are �nite.Proof. Clearly, if P is typed terminating then for all well-typed positive literalsA, all LDNF-derivations of P [ fAg are �nite.Suppose now that for all well-typed positive literals A, all LDNF-derivationsof P [ fAg are �nite. By Lemma 3.9 and Remark 3.8 all sele
ted literals inall LDNF-derivations of P starting in a well-typed query Q are well-typed.Moreover, if all LDNF-derivations of P [ fAg are �nite then also all LDNF-derivations of P [ f:Ag are �nite. Then P is typed terminating.7



4 Typed A

eptable ProgramsIn order to prove typed termination of well-typed programs we introdu
e the
on
ept of typed a

eptable program.We �rst de�ne the 
on
ept of typed level mapping.De�nition 4.1 (Typed Level Mapping) Let P be a typed program and j jbe a level mapping for P . We say that j j is a typed level mapping for P if� every well-typed atom de�ned in P is bounded wrt. j j.Example 4.2 Consider the program ROTATE of the introdu
tion. The followingis a typed level mapping for ROTATE.jrotate(l1 ; l2 )j = jl1 jlength0jzero(x )j = 0jappend(l1 ; l2 ; l3 )j = jl1 jlengthwhere for a term t, if t is a list then jt jlength0 is the length of the maximal pre�xof t made by zero's, otherwise it is 0, while jt jlength is equal to the length of thelist, otherwise it is 0.For well-typed programs, we introdu
e the following notion of typed a

ept-ability. It is in the same style of the notion of well-a

eptability introdu
ed in[22℄, but as we dis
uss later on there is a main di�eren
e in the requirement onthe level mapping.De�nition 4.3 (Typed A

eptable Program) Let P be a well-typed pro-gram, j j be a typed level mapping for P andM be a 
omplete model of ground� (P ).� A 
lause of P is 
alled typed a

eptable wrt. j j and M if for everyground instan
e A  A; B;B of it su
h that A is 
orre
tly typed in itsinput positions,if M j= A and rel(A) � rel(B) then jAj > jBj:� P is 
alled typed a

eptable wrt. j j and M if all its 
lauses are.Noti
e that in the de�nition of typed a

eptability we only require to 
om-pare the level of the head with the level of the \rea
hable" mutually re
ursiveliterals in 
lause bodies. This is a mu
h weaker requirement than the one givenin both the notions of a

eptability and of semi-a

eptability, introdu
ed in[9, 10℄ for proving left termination. In fa
t, in [9, 10℄, all the \rea
hable" literalsin the bodies have to be measured.We �rst prove a result whi
h provides an in
remental method for provingtyped termination.Theorem 4.4 Let P and R be two programs su
h that P extends R and P [Ris well-typed. Let M be a 
omplete model of ground� (P [ R). Suppose that8



(i) if the predi
ate symbols p and q are both de�ned in P then neither p = qnor q = p (i.e., either they are mutually re
ursive or independent),(ii) P is typed a

eptable wrt. a typed level mapping j j and M ,(iii) R is typed terminating.Then P [ R is typed terminating.Proof. By Lemma 3.13, it is suÆ
ient to prove that for all well-typed positiveliterals A, all LDNF-derivations of (P [ R) [ fAg are �nite. Let us 
onsider awell-typed atom A.If A is de�ned in R, then the thesis trivially holds by (iii).If A is de�ned in P , by de�nition of typed level mapping, A is bounded wrt.j j and then max jAj is de�ned. The proof pro
eeds by indu
tion on max jAj.Base. Let max jAj = 0. In this 
ase, by (i) and (ii), if 
 : H  L is a 
lauseof P su
h that H uni�es with A and L is non-empty, then all literals in L arede�ned in R. The thesis follows by (iii).Indu
tion step. Let max jAj > 0. It is suÆ
ient to prove that for all dire
tdes
endants (L1; : : : ; Ln) in the LDNF-tree of (P [R)[fAg, if �i is a 
omputedanswer for (P [ R) [ f(L1; : : : ; Li�1)g then all LDNF-derivations of (P [ R) [fLi�ig are �nite.Let 
 : H  L01; : : : ; L0n be a 
lause of P su
h that � = mgu(H;A). Forall i 2 f1; : : : ; ng, let Li = L0i� and �i be a 
omputed answer for (P [ R) [f(L1; : : : ; Li�1)g. By Remark 3.8 and Lemma 3.9, ea
h literal Li�i is well-typed.We distinguish two 
ases.If Li�i is de�ned in R then the thesis follows by (iii).Suppose that Li�i is de�ned in P . Li�i is bounded sin
e it is well-typed.We prove that max jAj > max jLi�ij. The thesis will follow by the indu
tionhypothesis.First of all, by hypothesis (i), rel(Li�i) � rel(H 0).Let 
 be a substitution su
h that Li�i
 is a ground instan
e of Li�i. Thenthere exists 
0 su
h that (L1; : : : ; Li�1)
0 is a ground instan
e of (L1; : : : ; Li�1)�i,
�
0 is a ground instan
e of 
 and Li
0 = Li�i
. By the fa
ts that A is well-typedand L1; : : : ; Li is a pre�x of an LDNF-des
endant of (P [ R) [ fAg, it followsthat L1; : : : ; Li is well-typed. Hen
e, by Theorem 3.11, M j= (L1; : : : ; Li�1)
0.Moreover, sin
e A is 
orre
tly typed in its input positions and A� = H� itfollows that H�
 is 
orre
tly typed in its input positions. Then,jLi�i
j = jLi
0j= jL0i�
0j (sin
e Li = L0i�)< jH�
0j (sin
e P is typed a

eptable wrt. M and j j)= jA�
0j (sin
e � = mgu(H;A)):Then we 
an 
on
lude that max jAj > max jLi�ij.Let us now prove our general result.9



Theorem 4.5 Let P be a well-typed program, j j be a typed level mapping forP and M be a 
omplete model of ground� (P ).� If P is typed a

eptable wrt. j j and M then P is typed terminating.Proof. We de
ompose P into a hierar
hy of n � 1 programs P := P1 [ : : :[Pnsu
h that Pn = : : : = P1 and for every i 2 f1; : : : ; ng if the relation symbolspi and qi are both de�ned in Pi then neither pi = qi nor qi = pi (i.e., eitherthey are mutually re
ursive or independent). Moreover, for ea
h Pi, we 
onsiderthe level mapping j ji de�ned in the following way: if A is de�ned in Pi thenjAji = jAj else jAji = 0. Noti
e that ea
h j ji is a typed level mapping and ea
hPi is typed a

eptable wrt. j ji and M .We prove that for all well-typed queries Q, all LDNF-derivations of P [fQgare �nite. By indu
tion on n.Base. Let n = 1. This 
ase follows immediately by Theorem 4.4, by puttingP = P1 and R empty.Indu
tion step. Let n > 1. Also this 
ase follows by Theorem 4.4, by puttingP = Pn, and R = P1 [ : : : [ Pn�1. In fa
t,� if the predi
ate symbols pn and qn are both de�ned in Pn then neitherpn = qn nor qn = pn;� Pn is typed a

eptable wrt. j jn and M ;� (P1 [ : : : [ Pn�1) is typed terminating, by the indu
tive hypothesis.Example 4.6 The well-typed program ROTATE in the modes and types of Exam-ple 3.6 is typed a

eptable wrt.� the typed level mapping of Example 4.2, and� a 
omplete model M of ground� (ROTATE) su
h thatM j= append(s ; [0℄; t) i� jsjlength0 = jtjlength0:It is worth noti
ing that the 
ondition of typed a

eptability o�ers an ex-tremely powerful and simple method for proving typed termination of a well-typed program. Consider a program (for instan
e the program MAP COLOR in[10℄) 
omposed by many de�nitions of independent re
ursive relations and a\main" pro
edure whi
h 
orre
tly 
alls su
h relations. All what we have to dohere for proving typed termination is to prove termination independently forea
h re
ursive de�nition on its 
orre
t 
alls.
10



5 Chara
terizing Typed Terminating ProgramsIn this se
tion we prove the 
onverse of Theorem 4.5. This provides us with anexa
t 
hara
terization of well-typed, typed terminating general programs.Similarly to what has been done in [9℄ su
h a 
hara
terization is limitedto non-
oundering programs. We re
all that an LDNF-derivation 
ounders ifthere o

urs in it or in any of its subsidiary LDNF-trees a query with the �rstliteral being non-ground and negative. An LDNF-tree is 
alled non-
ounderingif none of its bran
hes 
ounders.To prove the 
onverse of Theorem 4.5 we analyze the size of �nite LDNF-trees.We need the following lemma from [9℄, where for a program P and a queryQ, nodesP (Q) denotes the total number of nodes in the LDNF-tree of P [ fQgand in all its subsidiary LDNF-trees.Lemma 5.1 [9℄ Let P be a program and Q be a query su
h that the LDNF-treeof P [ fQg is �nite and non-
oundering. Then(i) for all substitutions �, the LDNF-tree of P [ fQ�g is �nite and non-
oundering and nodesP (Q�) � nodesP (Q);(ii) for all pre�xes Q0 of Q, the LDNF-tree of P [ fQ0g is �nite and non-
oundering and nodesP (Q0) � nodesP (Q);(iii) for all non-root nodes Q0 in the LDNF-tree of P [ fQg, nodesP (Q0) <nodesP (Q).We will use the following notion.De�nition 5.2 (Non-Floundering on Well-Typed Atoms) Let P be a ty-ped program. We say that P is non-
oundering on well-typed atoms if noLDNF-derivation starting in a well-typed atom 
ounders.Noti
e that if P is a well-typed program, the previous 
ondition is satis�edwhenever all positions of negative literals o

urring in the 
lause bodies areinput positions and have types whi
h imply groundness.The following result is proved in the Appendix.Theorem 5.3 Let P be a well-typed program su
h that P is typed terminatingand non-
oundering on well-typed atoms. ThenfA 2 BP j A is well-typed and there is a su

essful LDNF-derivation of P[fAggis a 
omplete model of ground� (P ).We are now ready to prove the main result of this se
tion.Theorem 5.4 Let P be a well-typed program, non-
oundering on well-typedatoms. 11



� If P is typed terminating then there exists a typed level mapping j j and a
omplete model M for ground� (P ) su
h that P is typed a

eptable wrt. j jand M .Proof. Let us de�ne a level mapping for P as follows: for all A 2 BPjAj = nodesP (A) if A is well-typedjAj = 0 otherwise:Assume that P is typed terminating. Then the level mapping j j for P is well-de�ned. Moreover, it is a typed level mapping. Note that by de�nition, forA 2 BP , nodesP (:A) > nodesP (A) = jAj = j:Aj; so nodesP (:A) > j:Aj:Let M be the 
omplete model for ground� (P ) of Theorem 5.3.We prove that P is typed a

eptable wrt. j j and M .Take a 
lause A A; B;B of P and a ground instan
e A�  A�;B�;B� ofit su
h that A� is 
orre
tly typed in its input positions. We need to show thatif M j= A� and rel(A�) � rel(B�) then jA�j > jB�j:Let � be an mgu of A� and A, then � = �Æ for some Æ. We have:jA�j = nodesP (A�) (by de�nition of j j)> nodesP (A�;B�;B�) (by Lemma 5.1 (iii) and the fa
t that(A�;B�;B�) is a resolvent of P [ fA�g)� nodesP (A�;B�;B�) (by Lemma 5.1 (i), sin
e � = �Æ)� nodesP (B�;B�) (by Lemma 5.1 (iii), sin
e M j= A�)� nodesP (B�) (by Lemma 5.1 (ii))= jB�j (by de�nition of j j):6 Con
lusionsIn this paper we propose a new termination property for general logi
 programs:typed termination. A general program is typed terminating if it terminates forany well-typed query. We follow the style introdu
ed by Apt and Pedres
hifor left termination in [9℄, and give an algebrai
 
hara
terization of well-typed,typed terminating programs. To this end we use the 
on
epts of typed levelmappings, namely level mappings for whi
h any well-typed query is bounded,and typed a

eptability. We also prove that, for well-typed programs, typeda

eptability is a ne
essary and suÆ
ient 
ondition for typed termination.Most of the programs we write are well-typed and typed termination seemsto be a very natural termination property for them. Furthermore typed a

ept-ability supplies a very simple way to prove termination sin
e it requires onlyto 
ompare the levels of \rea
hable" mutually re
ursive literals. Thus in thetermination proofs very simple level mappings 
an be used by exploiting boththe independen
e and the hierar
hi
al dependen
e among predi
ate de�nitions.12



Moreover the 
lass of typed terminating programs is in
luded neither into the
lass of left terminating programs nor into the 
lass of well-terminating ones. Infa
t there are well-typed programs whi
h terminate for all well-typed queries,but they do not terminate for all ground queries or for all well-moded ones.The present 
hara
terization of typed termination is also a generalizationof our previous work on well-termination [22℄. In fa
t in [22℄ we 
onsider onlyde�nite programs while for typed termination we 
onsider general programs.Moreover, when we restri
t our type system to the only type Ground, i.e., theset of ground terms, well-typed programs 
oin
ide with well-moded ones. Amoded level mapping is also a typed level mapping, sin
e all well-moded atomi
queries are bounded wrt. a moded level mapping. But the reverse is not true,namely a typed level mapping is not a moded level mapping, hen
e our presentrequirement of a typed level mapping is less restri
tive. In [22℄ it was not possibleto prove that any well-moded well-terminating program is well-a

eptable: thisproperty was proved only for a sub
lass of well-moded programs, the simply-moded ones. By weakening the 
ondition on the level mapping, now we obtaina full 
hara
terization for well-terminating programs.Another approa
h whi
h 
an 
apture typed termination is the one proposedby Pedres
hi and Ruggeri in [24℄. They give a general framework for provingpartial and total 
orre
tness of general logi
 programs wrt. Pre/Post spe
i�
a-tions. Clearly with Pre/Post spe
i�
ations also moding and typing properties
an be des
ribed and well-typing 
an be expressed. They basi
ally 
onsiderwell-asserted programs, as they are 
alled in [8℄, whi
h are a generalization ofwell-typed ones. On the other hand, for proving termination they adopt the
lassi
al notion of a

eptability de�ned in [9℄, thus they require a level mappingfor 
omparing all \rea
hable" literals in program 
lauses not only the re
ursiveones. This is a mu
h stronger requirement than our, it produ
es in generalmore 
ompli
ated level mappings and termination proofs, and in some 
ases itmay make impossible to �nd a proof, even for programs whi
h are typed termi-nating. This is due to the fa
t that they 
annot give a full 
hara
terization ofwell-asserted programs terminating for well-asserted queries.Referen
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A AppendixIn this appendix we report the proofs of the te
hni
al results used in the paper.Let us �rst establish the following 
laim.Claim 1 Let P and Q be a well-typed program and a well-typed query, respe
-tively. The following statements hold.(i) If the LDNF-tree of ground(P )[fQg is �nitely failed then also the LDNF-tree of ground� (P ) [ fQg is �nitely failed.(ii) If there is a su

essful LDNF-derivation of ground(P )[ fQg then there isa su

essful LDNF-derivation of ground� (P ) [ fQg.Proof. By simultaneous indu
tion on k = rank(T ; #) where(1) in 
ase (i), T is the �nitely failed LDNF-tree of ground(P ) [ fQg and# = �,(2) in 
ase (ii), T is the LDNF-tree of ground(P )[fQg 
ontaining a su

essfulLDNF-derivation and # is its 
omputed answer substitution.For a formal de�nition of rank(T ; #) the reader is referred to [5℄. Intuitively, kdenotes the number of subsidiary trees that the interpreter would explore duringthe 
onstru
tion of the �nitely failed LDNF-tree of ground(P )[fQg in 
ase (i),or the su

essful LDNF-derivation of ground(P ) [ fQg in 
ase (ii).Base. k = 0. In this 
ase no subsidiary tree is explored during the 
onstru
-tion of the LDNF-tree of ground(P ) [ fQg.(i) Let the LDNF-tree of ground(P )[fQg be �nitely failed. Sin
e ground(P ) �ground� (P ), the LDNF-tree of ground� (P ) [ fQg is �nitely failed too.(ii) Let Æ be a su

essful LDNF-derivation of ground(P ) [ fQg. We provethat all 
lauses from ground(P ) used to resolve an atom in Æ are 
orre
tly typedand thus belong to ground� (P ). Indeed, let 
 := H  L be a 
lause of ground(P )and A be a sele
ted atom in Æ su
h that A and H unify. By properties ofLDNF-resolution, sin
e there exists a su

essful derivation of ground(P )[ fAg,then there exists a su

essful derivation of ground(P ) [ fHg too. Hen
e, byLemma 3.10, H is 
orre
tly typed. Moreover, sin
e L is an LDNF-resolvent ofground(P ) [ fAg, then there exists also a su

essful derivation of ground(P ) [fLg. Again, by Lemma 3.10, L is 
orre
tly typed. This proves that the 
lause
 is 
orre
tly typed and thus belong to ground� (P ).Indu
tion step. k > 0.(i) Let the LDNF-tree of ground(P )[fQg be �nitely failed. The proof followsby a se
ondary indu
tion on the depth h of this tree. Let Q := L1; : : : ; Ln.Base. h = 1. We distinguish two 
ases.(a) L1 is a positive literal. In this 
ase there is no 
lause in ground(P )whose head uni�es with L1. Sin
e ground(P ) � ground� (P ), then there is alsono 
lause in ground� (P ) whose head uni�es with L1, i.e., the LDNF-tree ofground� (P ) [ fQg is �nitely failed. 16



(b) L1 is a negative literal. Let L1 = :A. In this 
ase, there exists asu

essful LDNF-derivation of ground(P )[ fAg. By the prin
ipal indu
tion onk, there exists also a su

essful LDNF-derivation of ground� (P ) [ fAg. Thisproves that the LDNF-tree of ground� (P ) [ fQg is �nitely failed.Indu
tion step. h > 1. Again we distinguish two 
ases.(a) L1 is a positive literal. In this 
ase, all dire
t LDNF-des
endants ofground(P ) [ fQg have a �nitely failed LDNF-tree in ground(P ). From thefa
t that ground(P ) � ground� (P ), it follows that the set of dire
t LDNF-des
endants of ground� (P )[fQg is 
ontained in the set of dire
t LDNF-des
en-dants of ground(P ) [ fQg. The thesis follows by the se
ondary indu
tion on h,sin
e the depth of the subtrees is smaller than h.(b) L1 is a negative literal. Let L1 = :A. Sin
e h > 1, the LDNF-tree ofground(P ) [ fAg is �nitely failed. By the prin
ipal indu
tion on k, the LDNF-tree of ground� (P ) [ fAg is �nitely failed too. Hen
e L2; : : : ; Ln is the dire
tLDNF-des
endant both of ground(P ) [ fQg and of ground� (P ) [ fQg. Thethesis follows by the se
ondary indu
tion on h.(ii) Let Æ be a su

essful LDNF-derivation of ground(P ) [ fQg and k > 0.By the prin
ipal indu
tion on k, all the subsidiary trees explored during the
onstru
tion of Æ are �nitely failed in ground� (P ). Moreover, as in the base
ase for k = 0, for all positive literals sele
ted in Æ, we 
an prove that all input
lauses are 
orre
tly typed and thus belong to ground� (P ). This proves thatthere exists a su

essful LDNF-derivation of ground� (P ) [ fQg.We are now in position to prove Theorem 3.11.Theorem 3.11 Let P and Q be a well-typed program and a well-typed query,respe
tively, and M be a 
omplete model of ground� (P ). If there is a su

essfulLDNF-derivation of P[fQg with 
omputed answer substitution � thenM j= Q�.Proof Suppose that there is a su

essful LDNF-derivation of P [ fQg with
omputed answer �. For any ground instan
e Q0 of Q�, there is a su

ess-ful LDNF-derivation of ground(P ) [ fQ0g, by properties of LDNF-resolution.Thus, there is a su

essful LDNF-derivation of ground� (P ) [ fQ0g, by Claim1 (ii). Let M be a 
omplete model of ground� (P ). By soundness of LDNF-resolution wrt. 
ompletion [17℄, for any ground instan
e Q0 of Q�, M j= Q0, i.e.,M j= Q�.Let us re
all the following theorem due to Apt, Blair and Walker [4℄ whi
hprovides a method for verifying whether an interpretation is a model of 
omp(P ).It uses the following de�nition.De�nition A.1 (Supported Model) A model M of a program P is 
alledsupported if for all ground atoms A, I j= A implies that I j= L for some general
lause A L 2 ground(P ).Theorem A.2 A Herbrand interpretation I is a model of 
omp(P ) i� it is asupported model of P . 17



We 
an then prove the following theorem.Theorem 5.3 Let P be a well-typed program su
h that P is typed terminatingand non-
oundering on well-typed atoms. ThenfA 2 BP j A is well-typed and there is a su

essful LDNF-derivation of P[fAggis a 
omplete model of ground� (P ).Proof. Let M be the setfA 2 BP jA is well-typed and there is a su

essful LDNF-derivation of P[fAgg:We show that M is a Herbrand model of 
omp(ground� (P )). To this end, weuse Theorem A.2 and show that M is a supported model of ground� (P ).To establish that M is a model of ground� (P ), assume by 
ontradi
tion thatsome 
lause A L from ground� (P ) is false in M . Then M j= L and M 6j= A.Sin
e P is typed terminating and non-
oundering on well-typed atoms, M 6j= Aimplies that the LDNF-tree for P [ fAg is �nitely failed and non-
oundering.For some ground substitution 
, A  L = (A0  L0)
 where 
 := A0  L0is a 
lause from P . Thus A and A0 unify.Let L0� be the resolvent of P [fAg with the input 
lause 
. The LDNF-treeof P[fL0�g is also �nitely failed and non-
oundering. As L is an instan
e of L0�,by Lemma 5.1 (i) we have that the LDNF-tree for P [ fLg is non-
oundering.Moreover, it is �nitely failed, sin
e the queries o

urring in the LDNF-tree ofP [fLg are all instan
es of the queries o

urring in the LDNF-tree of P [fL0�g.But the fa
t that L is well-typed and the LDNF-tree of P [fLg is �nitely failedand non-
oundering 
ontradi
ts the hypothesis that M j= L.To establish that M is a supported model of ground� (P ), 
onsider A 2 BPsu
h that M j= A, and let 
 be the �rst input 
lause used in a su

essful LDNF-derivation of P [ fAg. Let L0� be the resolvent of P [ fAg from the 
lause 
.Clearly, a su

essful LDNF-derivation for P [ fL0�g with 
omputed answer �
an be extra
ted from the su

essful LDNF-derivation of P [ fAg. Let L be aground instan
e of L0��. By Lemma 3.10, both A and L are 
orre
tly typed.Hen
e A  L 2 ground� (P ). By properties of LDNF-resolution there exists asu

essful LDNF-derivation for P [ fLg, hen
e M j= L. This establishes thatM is a supported interpretation for ground� (P ).
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