
Behavioral Equivalences and Interference Metrics for

Mobile Ad-hoc Networks

Michele Bugliesia, Lucia Gallinaa, Sardaouna Hamadoub, Andrea Marina,
Sabina Rossia

aUniversità Ca’ Foscari Venezia, Italy
bSaclay and LIX, École Polytechnique, France

Abstract

Connectivity and communication interference are two key aspects in mobile

ad-hoc networks (MANETs). This paper proposes a process algebraic model

targeted at the analysis of both such aspects. The framework includes a

probabilistic process calculus and a suite of analytical techniques based on a

probabilistic observational congruence and an interference-sensitive preorder.

The former enables the verification of behavioural equivalences; the latter

makes it possible to evaluate the interference level of behaviourally equivalent

networks. The result is a comprehensive and effective framework for the

behavioural analysis and a quantitative assessment of interference for wireless

networks in the presence of node mobility. We show our techniques at work

on two realistic case studies.

Keywords: MANETs, Process Algebra, Interference, Quantitative Analysis

Email addresses: bugliesi@unive.it (Michele Bugliesi), lgallina@dais.unive.it
(Lucia Gallina), sardaouna.hamadou@polymtl.ca (Sardaouna Hamadou),
marin@dais.unive.it (Andrea Marin), srossi@dais.unive.it (Sabina Rossi)

Preprint submitted to Performance Evaluation October 28, 2013

1. Introduction

Mobile ad-hoc networks are systems of mobile devices communicating

over wireless links without a pre-established connectivity structure. Con-

nectivity and communication interference are two key aspects in such net-

works. Node mobility is unconstrained: each device in a MANET moves

autonomously, thereby seamlessly modifying the underlying topology, and

hence creating the need for dynamic routing algorithms to ensure the desired

level of connectivity among the mobile network nodes. Communication in-

terference, in turn, is especially challenging in MANETs, as the half-duplex

nature of wireless channels makes it impossible for a transmitter to atomi-

cally detect the presence of other, conflicting transmitters on the same chan-

nel. As a consequence, interfering transmissions may only be detected by

receivers located at the intersection of the emitters’ transmission ranges.

The problem is even more complex in the presence of node mobility due

to the dynamic structure of the network topology. While ad-hoc protocols

that address these problems exist in the current literature [1, 2], controlling

interferences remains one of the pivotal aspects in the design of MANETs.

Drawing on earlier work on the subject (by the authors [3, 4], and by

others [5, 6]), the present paper introduces a calculus to provide a formal

basis for the analysis of connectivity and the evaluation of interference in

MANETs. Like its predecessors [3, 6], the new calculus is built around

nodes, representing the devices of the systems, and locations, identifying

the position cells across which each device may move inside the network.

Node mobility is governed by probability distributions as in [3]. Conversely,

wireless synchronization is nondeterministic, and controlled by (sequential)

2

processes inside the nodes: each transmission broadcasts a message at a

given radio frequency and within a given transmission range. Importantly,

multiple nodes may simultaneously transmit along the same channel, within

overlapping areas: the calculus provides for an explicit representation of the

collisions that may occur at the receiver sites.

The semantics of the calculus is inspired by Segala’s probabilistic au-

tomata [7], and driven by schedulers to resolve the nondeterministic choice

among the probability distributions over target states. We define a proba-

bilistic observational congruence in the style of [8] to equate networks ex-

hibiting the same observable behaviour. As in [4, 3], and in contrast to [6],

the notion of observability is associated with nodes listening at specific lo-

cations in the network, so as to allow a fine grained analysis of connectivity

and interference at different network areas. We give a coinductive character-

ization of observational congruence based on a labelled transition semantics.

Then, we introduce interference-sensitive preorders over networks to measure

the relative interference level of different, but observationally equivalent, net-

works.

The result is a comprehensive framework for the behavioural analysis and

a quantitative assessment of interference for wireless networks in the pres-

ence of node mobility. We demonstrate the effectiveness of this framework

on two cases studies. The first is an in-depth analysis of the well-known Al-

ternating Bit Protocol, in which we contrast the standard implementation of

the protocol with an alternative implementation that exploits an interference

cancellation scheme for CDMA transmissions. Based on our framework, we

are able to show that the two solutions are observationally equivalent, but the

3

latter is superior as it guarantees a strictly lower level of interference. The

second case study focuses on routing protocols with a comparative analysis

of simple route discovery protocols based on AODV-like flooding policies [9]

and Location Aided Routing (LAR) protocols [10] which try to control the

flooding by addressing route requests to specific areas of the network based

on information about the nodes’ locations. We show that the LAR heuristic

is equally effective in path discovery with respect to the flooding algorithms.

Related Work. The analysis of mobile and sensor networks has attracted

broad interest in the literature on process algebraic and probabilistic models.

Various proposals target the analysis of behavioural properties related to

node mobility, network connectivity, communication and message routing in

non-deterministic settings. Merro introduces CMN [6], a value-passing CCS

style [11] calculus with nodes and locations which has inspired a number of

the initial design choices of our calculus. Singh, Ramakrishnan and Smolka

define the ω-calculus [12], a conservative extension of the π-calculus which

combines node mobility, and various forms of communication with the pi-

calculus native mechanisms of scope extrusion by which nodes may also be

connected with private channels. Nanz and Hankin introduce CBS# [13], an

extension of the Calculus of Broadcasting Systems [14]: their mechanisms for

communication is related to ours in that transmissions are not atomic (when

a node executes an output the topology of the network may change arbi-

trarily before the reception of the message by the neighbors of the sender).

Sangiorgi and Lanese also address non-atomic transmissions in their calculus

CWS [5], and specifically target a detailed analysis of interferences. Their

framework, however, does not include node mobility nor do they introduce

4

any interference metric. van Glabbeek et al. proposes AWN [15], a pro-

cess algebra equipped with communication mechanisms and data structures

specifically targeted at very precise and detailed modelling of wireless mesh

routing protocols.

Several other papers propose probabilistic and stochastic models to pro-

vide quantitative analysis for various purposes. Song and Godskesen [16]

propose a probabilistic broadcast calculus for mobile and wireless networks

with unreliable connections. They do no address interference, and focus in-

stead on message loss which in their calculus may only arise with a certain

inherent probability and as a consequence of change in connectivity, deter-

mined by mobility (which, in turn, is governed by probabilities). Palamidessi

et al. [17] define an extension of the applied pi-calculus with nondeterministic

and probabilistic choice operators: our notion of probabilistic observational

congruence is directly inherited from their work. Merro et al. discuss TCWS

[18], a timed broadcasting process calculus targeted at security analysis of

wireless networks with fixed nodes communicating at the same transmission

power and over the same transmission frequency. Lanotte and Merro propose

a probabilistic version of TCWS [19], aimed at the analysis of communication

protocols. The main peculiarity of this calculus is the definition of a relation

of simulation up to probability, which allows one to compare networks which

exhibit the same behaviour up to a certain probability. This is an interesting

result with respect, e.g., to the probabilistic applied π-calculus, presented

in [17], where two networks can be compared only if they have exactly the

same probability of performing observable actions. On the other hand, their

model inherits the limitations due to the absence of mobility and of multiple

5

frequencies of the original proposal in [18]. Hennessy and Cerone [20] pro-

pose a calculus to model the high-level behaviour of Wireless Systems (i.e.,

MAC-layer protocols). The calculus is characterized by a two-level struc-

ture: on one hand, it includes probabilistic and non-deterministic processes

behaviour, as well as communications through a fixed set of channels; on the

other hand, the topology is expressed through an undirected graph where

each edge represents the direct link between a pair of network nodes. There

is no notion of distance, nor of transmission radius; furthermore, modelling

communication links with an undirected graph presupposes that all nodes

use the same fixed radius to communicate, an assumption that is not real-

istic for MANETs, which include different kinds of devices, with different

physical structure and power resources.

In the context of performance evaluation, Hillston [21] introduces the Per-

formance Evaluation Process Algebra (PEPA) which is used for modelling

systems composed of concurrently active components which co-operate and

share work. Bernardo et al. introduce the Extended Markovian Process Al-

gebra (EMPAgr) [22]. All those calculi are built upon atomic actions and

do not allow multiple devices to transmit at the same time. Although these

shortcomings are overcome by the Hermanns’ Interactive Markov Chains

(IMCs) [23], the process algebra we propose deals both with non-determinism

and probabilistic behaviours. This allows us to naturally model node mo-

bility, transmission interferences and define observational relations aimed at

capturing the peculiar aspects of ad-hoc wireless networks. In our model,

the time is partially abstracted out and we leave to the schedulers the role

of solving the non determinism rather than using a semantics based on the

6

activity durations.

Finally, existing frameworks based on Petri Nets and queueing networks

fall short of accounting for node mobility while maintaining a good accuracy

in specifying the protocol design [24, 25].

Plan of the paper. Section 2 introduces the calculus and its observational

semantics. Section 3 defines the LTS semantics and the associated notion of

probabilistic bisimilarity. Section 4 develops a technique for measuring the

level of interference. Sections 5 and 6 shows our framework at work on the

two case studies. Section 7 concludes the paper.

The present paper is a revised version of [26], extended with proofs for

all results, a new case study (in Section 6) and an extended review of related

work.

2. The Calculus

The calculus extends the Probabilistic Energy-aware Broadcast Unicast

and Multicast (PEBUM) calculus introduced in [3] with a new semantics of

communication. The novelty of the present extension is the non-atomicity

of the output and input actions, which we define after [5] to capture the

presence of interference caused by the simultaneous transmissions of two (or

more) nodes using the same channel in a common transmission area.

We use letters c for channels, n for nodes, l for locations, r for trans-

mission radii, x and y for variables. Closed values contain nodes, locations,

transmission radii and any basic value (booleans, integers, ...). Values in-

clude also variables. We use u and v for closed values and w for (open)

7

Networks Processes

M, N ::= 0 Empty network P, Q ::= 0 Inactive process
| n[P]l Node (or device) | in(c, x̃).P Input
| (νc)M Channel restriction | out〈cL,r, w̃〉.P Output
|M1|M2 Parallel composition | [w1 = w2]P,Q Matching

| A〈w̃〉 Recursion

Table 1: Syntax

values, and write ṽ, w̃ for tuples of values, N for the set of networks, C for

the set of channels and Loc for the set of all locations. As anticipated, while

movements may be assumed to be continuous, we identify locations as the

countable set of cells that constitute the observing areas within the network.

The syntax of our calculus is shown in Table 1.

Networks are collections of nodes, devices that run concurrently and use

channels to exchange messages. 0 denotes the empty network and M1|M2

the parallel composition of two networks. n[P]l is a network node named n

located at the physical location l, and executing the process P . In (νc)M the

channel c is private with scope M , and we say it is bound in M : we denote

by fc(M) the set of channels which are not bound in M . We remark that

in our calculus channels are distinct from values and cannot be transmitted;

furthermore, given the structure of the syntactic productions, channels may

not be dynamically created and thus (νc)M simply plays the role of a CCS-

style hiding operator1.

1Since channels represent radio frequencies, they are all public, hence they need not be
transmitted, and may not be hidden in practice. Indeed, the use of the hiding operator is
only meant to specialize the verification method to some specific class of contexts.

8

Processes are sequential and run inside nodes: 0 is the inactive process;

in(c, x̃).P is ready to listen to a transmission, while out〈cL,r, w̃〉.P is ready

to transmit. In in(c, x̃).P , the variables in x̃ are bound with scope in P .

In out〈cL,r, w̃〉.P , the tag r represents the transmission radius of the sender:

the choice of specific transmission ranges may depend on various parameters,

and is left to the process running inside the transmitter node. The tag L, in

turn, signals the locations from which the transmission will be observed.

The remaining syntactic forms are: [w1 = w2]P,Q behaves as P if w1 =

w2, and as Q otherwise. A〈w̃〉 is the process defined via a (possibly recursive)

definition A(x̃)
def
= P , with |x̃| = |w̃| where x̃ contains all channels and

variables that are free in P .

Two further process forms arise as a result of reduction. In particular,

processes that are ready to send or receive evolve into active senders and

receivers:

P,Q ::= . . . The expressions of Table 1

| c(x̃).P Active input

| c̄L,r〈w̃〉.P Active output

Here, c(x̃).P is actively receiving a tuple w̃ of (closed) values via channel c and

continues as P{w̃/x̃}, i.e., as P with w̃ substituted for x̃ (where |x̃| = |w̃|).

Dually, c̄L,r〈w̃〉.P is transmitting a tuple of values w̃ via channel c and then

continues as P. Processes of the form c(x̃).P or c̄L,r〈w̃〉.P are called active.

Predicate Active(P) is true when P is active, and A(M) denotes the network

composed of all the active nodes inM , i.e., all nodes n[P]l inM with P active.

Node connectivity is verified by looking at the physical location and the

9

transmission radius of the sender: a message broadcast by a node is received

only by the nodes that lie in the area delimited by the transmission radius of

the sender. We presuppose a function d(·, ·) which takes two locations and

returns the distance separating them (function d can be simply the euclidean

distance between two locations, or a more complex function dealing with

potential obstacles).

A networkM is defined as the parallel composition of nodes with pairwise-

distinct names moving independently from each other. We denote by
∏

i∈IMi

the parallel composition of the networks Mi, for i ∈ I. Each node n is

associated with a pair < rn,J
n >, where rn is a non-negative real number

denoting the maximum transmission radius that n can use to transmit, while

Jn is the transition matrix of a discrete time Markov chain: each entry

Jnlk denotes the probability that the node n located at l may move to the

location k. Hence,
∑

k∈Loc Jnlk = 1 for all locations l ∈ Loc. Static nodes are

associated with the identity Markov chain, i.e., the identity matrix Jnll = 1

for all l ∈ Loc and Jnlk = 0 for all l 6= k. We note by µnl the probability

distribution associated with node n located at l, that is, the function over

Loc such that µnl (k) = Jnlk, for all k ∈ Loc2.

Let n be a node of a network M and l its location. In the following we

denote by M{n : l′/l} the network obtained by substituting l by l′ inside the

2Notice that Jn is a matrix, while µnl is a function. We also remark that when the set of
locations is infinite, the transition matrix is infinite. There are indeed possible situations:
(i) the set of locations is infinite but each node moves only in a finite portion or, (ii) the
locations reachable rom a node also are infinitely many. In the first case the model is
tractable with a sparse representation); in the second case, we may resort to the common
assumption that transition matrix associated with the Markov chain has a regular block
structure, hence admits a finite representation.

10

node n and by JMKµnl the probability distribution over the set of networks

induced by µnl and defined as follows: for all network M ′,

JMKµnl (M ′) =


µnl (l′) if M ′ = M{n : l′/l}

0 otherwise.

Intuitively, JMKµnl (M ′) is the probability that the network M evolves to M ′

due to the movement of its node n located at l. We say that M ′ is in

the support of JMKµnl if JMKµnl (M ′) 6= 0. We write JMK∆ for the Dirac

distribution on the network M , namely the probability distribution defined

as: JMK∆(M) = 1 and JMK∆(M ′) = 0 for all M ′ such that M ′ 6= M . Finally,

we let θ range over {µnl |n is a node and l ∈ Loc} ∪ {∆}.

Example 2.1. (Probability distributions) Consider a network

M = n1[out〈cL,r1 , ṽ1〉.P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[in(c, x̃).P3]k

consisting of two mobile sender nodes, n1 and n2, communicating with a

static receiver node m. Node n1 moves back and forth between locations l1

and l2 according to the probability distribution defined by the discrete time

Markov chain with the following transition matrix

J =

∣∣∣∣∣∣1− p p

q 1− q

∣∣∣∣∣∣ ,
where 0 < p, q < 1. Similarly, n2 moves between l2 and l1 according to the

same transition matrix J. Then the probabilistic mobility of the network

11

induced by the movement of the node n1 is

JMKµn1
l1

(M ′) =


1− p if M ′ = M{n1 : l1/l1} = M

p if M ′ = M{n1 : l2/l1}

0 otherwise.

Similarly for the second node we have

JMKµn2
l2

(M ′) =


1− q if M ′ = M{n2 : l2/l2} = M

q if M ′ = M{n2 : l1/l2}

0 otherwise.

while for the static receiver we have

JMKµmk (M ′) =


1 if M ′ = M{m : k/k} = M

0 otherwise.

Note that for the static node movement, we have JMKµmk = JMK∆.

The dynamics of the calculus is specified by the probabilistic reduction

relation (−→), described in Table 3. It relies on an auxiliary relation, called

structural congruence (≡), which is the least contextual equivalence relation

satisfying the rules defined in Table 2. The probabilistic reduction relation

takes the form M−→JM ′Kθ denoting a transition that leaves from network M

and leads to a probability distribution JM ′Kθ.

The synchronization over a wireless channel is described by the two rules

12

n[0]l ≡ 0 (Struct Zero)
n[[v = v]P,Q]l ≡ n[P]l (Struct Then)
n[[v1 = v2]P,Q]l ≡ n[Q]l v1 6= v2 (Struct Else)

n[A〈ṽ〉]l ≡ n[P{ṽ/x̃}]l if A(x̃)
def
= P ∧ |x̃| = |ṽ| (Struct Rec)

M |N ≡ N |M (Struct Par Comm)
(M |N)|M ′ ≡M |(N |M ′) (Struct Par Assoc)
M |0 ≡M (Struct Zero Par)
(νc)0 ≡ 0 (Struct Zero Res)
(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)
(νc)(M | N) ≡M | (νc)N if c 6∈ fc(M) (Struct Res Par)

Table 2: Structural Congruence

(R-Bgn-Bcast) and (R-End-Bcast). (R-Bgn-Bcast) models the start of a

transmission, with node n transiting from ready to active state to transmit

message ṽ on channel c with radius r. The state change in n may cause a

collision, which the rule captures as follows. We abuse the notation and write

nh ∈ H to note nodes nh with h ∈ H, for any index set H. The premise of

the rule describes a situation in which nodes nk ∈ K and ni ∈ I are actively

involved in a synchronization, while node n and the nj ∈ J are in (output

and input, respectively) ready state. Given that all the active transmitters

are out of n’s range (because d(l, li) > ri), n transits into active state: this

awakes the nj ∈ J , as they are now in range of an active transmitter, and at

the same time causes a collision at the nk ∈ K, which also are in range and

were already active on input: as a result the nk ∈ K exit their active state,

receiving the error signal ⊥. All the remaining active receivers that do not

sense a collision, and are in the range of an active sender may conclude the

synchronisation (see the R-End-Bcast rule).

13

(R-Bgn-Bcast)

∀i ∈ I.d(l, li) > ri ∀i ∈ I ∀j ∈ J.d(li, lj) > ri ∀h ∈ (J ∪K).d(l, lh) ≤ r

n[out〈cL,r, ṽ〉.P]l |M−→Jn[c̄L,r〈ṽ〉.P]l |M ′K∆

where
M ≡

∏
i∈Ini[c̄Li,ri〈ṽi〉.Pi]li |

∏
j∈Jnj[in(c, x̃j).Pj]lj |

∏
k∈Knk[c(x̃k).Pk]lk ,

M ′ ≡
∏

i∈Ini[c̄Li,ri〈ṽi〉.Pi]li |
∏

j∈Jnj[c(x̃j).Pj]lj |
∏

k∈Knk[Pk{⊥/x̃i}]lk

(R-End-Bcast)

∀j ∈ J.d(l, lj) ≤ r

n[c̄L,r〈ṽ〉.P]l |
∏

j∈Jnj[c(x̃j).Pj]lj−→Jn[P]l |
∏

j∈Jnj[Pj{ṽ/x̃j}]ljK∆

(R-Res)
M−→JM ′Kθ

(νc)M−→J(νc)M ′Kθ
(R-Move)

Active(P) = false

n[P]l−→Jn[P]lKµnl

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 3: Reduction Semantics

As we mentioned earlier, the label L signals the set of locations at which

the transmission will be observed. Notice that L does not play a role in a

synchronization reduction, as messages are broadcast and observable (and

received) by any active receiver in range. On the other hand, we use L to

fine-tune our notion of observation in the definition of barb, to be discussed

shortly.

Example 2.2. (Interference) Consider again the network of the previous

example where the two sender nodes are not within the radius of each other,

i.e., d(l1, l2) > max(r1, r2), and they are both able to reach the receiver, i.e.,

14

d(l1, k) ≤ r1 and d(l2, k) ≤ r2. Then the following reductions, obtained by

applying rule (R-Bgn-Bcast), lead to a state where an interference is caused

at the receiver node:

M → Jn1[c̄L,r1〈ṽ1〉.P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[c(x̃).P3]kK∆

and if M ′ = n1[c̄L,r1〈ṽ1〉.P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[c(x̃).P3]k then

M ′ → Jn1[c̄L,r1〈ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 | m[P3{⊥/x̃}]kK∆.

The first sender node starts broadcasting on the channel c causing the receiver

to become active. Then the second sender being too far away from n1 to

notice that the channel is occupied starts broadcasting on the same channel

and hence causes an interference at the receiver side. If we are interested in

observing the transmissions at location k, i.e., k ∈ L then our semantics will

allows us to detect the interference.

Rule (R-Move) describes node mobility. A node n located at l and exe-

cuting a move action will reach a location with a probability described by the

distribution µnl that depends on the Markov chain Jn statically associated

with n. We assume that a node can move only if it is not actively involved

in any synchronization: as a result, nodes may move before starting a syn-

chronization (when they are in a ready, but not active state), while they are

static during the actual synchronization. This is a reasonable assumption in

wireless network analysis, since, in most practical situations, packet trans-

mission delays may be assumed to be orders of magnitude faster than node

mobility.

15

All the remaining rules are standard [11], but a further remark is in order

about the (R-Par) rule and its interaction with the rules that govern syn-

chronization. In fact, such interactions may give rise to inconsistent network

configurations. To see that, observe that an application of the (R-Par) rule

may cause messages to be lost by active receivers located within the range

of an active sender, even when there is no interference. Similarly, an appli-

cation of (R-Par) may exclude any set of active sender and/or receiver from

a synchronization: in both cases, the network is left in an inconsistent state,

with active senders (dually receivers) and no receiver (sender) in range.

Example 2.3. (Inconsistent networks) Consider again the network of the

previous example where now the two sender nodes are within the radius of

each other, that is d(l1, l2) ≤ min(r1, r2). By applying rule (R-Bgn-Bcast)

we obtain

M → Jn1[out〈cL,r1 , ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 | m[c(x̃).P3]kK∆.

Now let M ′ = n1[out〈cL,r1 , ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 | m[c(x̃).P3]k. The

following reduction obtained by applying rule (R-Par)

M ′ → Jn1[c̄L,r1〈ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 | m[c(x̃).P3]kK∆

leads to an inconsistent state where both sender nodes are broadcasting on

the same channel while being within a reachable distance of each other.

Similarly, consider the following application of rule (R-Bng-Bcast):

M → Jn1[c̄L,r1〈ṽ1〉.P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[c(x̃).P3]kK∆

16

If M ′′ = n1[c̄L,r1〈ṽ1〉.P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[c(x̃).P3]k then by an

application of rule (R-Par) we obtain

M ′′ → Jn1[P1]l1 | n2[out〈cL,r2 , ṽ2〉.P2]l2 | m[c(x̃).P3]kK∆

leading to an inconsistent state where m is actively receiving a message while

there is no active sender.

While it would be possible to rectify the problem by including conditions

to exclude critical pairs for the (R-Par) and the synchronization rules, it

is technically more convenient to simply disregard any undesired reduction.

This is achieved in our framework by resorting to the notion of “admissible

scheduler” (discussed shortly) to guide the dynamics of networks through

“well-formed” executions.

Formally, given a network M , we write M−→θN if M−→JM ′Kθ and N is

in the support of JM ′Kθ. Following [17], an execution for M is a (possibly

infinite) sequence of steps M−→θ1M1−→θ2M2.... We write ExecM for the set

of all possible executions starting from M , last(e) for the final state of a

finite execution e, ej for the prefix execution M−→θ1M1 . . .−→θjMj of length j

of the execution e = M−→θ1M1 · · · −→θjMj−→θj+1
Mj+1 · · · , and e ↑ for the set

of e′ such that e is a prefix of e′. We write M−→
∗
M ′ if there exists a finite

execution e ∈ ExecM such that last(e) = M ′.

Following [8], we formalize the observational semantics for our calculus

in terms of a notion of barb that provides the basic unit of observation. As

in other calculi for wireless communication [6, 27], the definition of barb is

naturally expressed in terms of message transmission.

17

We denote by behave(M) = {JM ′Kθ |M −→ JM ′Kθ} the set of the possible

behaviours of M . In order to solve the nondeterminism in a network execu-

tion, we consider each possible probabilistic transition M −→ JM ′Kθ as arising

from a scheduler (see [7, 17]). Let Execf be the set of all finite executions and

Behave(Execf) the set of all the distributions in behave(last(e)) with e ∈

Execf . Then, a scheduler is a total function F from Execf to Behave(Execf)

assigning to a finite execution e a distribution JNKθ ∈ behave(last(e)). No-

tice that we consider deterministic schedulers in the style of [17] rather than

randomized ones as in [7]. Indeed, we aim at modelling network behaviours

where probabilities are used to describe only node mobility while leaving

the control of the transmissions to the standard deterministic scheduler. We

define the set of executions starting from a network M and driven by a sched-

uler F as:

ExecFM = {e = M−→θ1M1−→θ2M2... | ∀j, Mj−1 −→ JM ′
jKθj ,

JM ′
jKθj = F (ej−1) and Mj is in the support of JM ′

jKθj}.

Given a finite execution e = M−→θ1M1...−→θkMk starting from M and driven

by a scheduler F we define

P F
M(e) = JM ′

1Kθ1(M1) · ... · JM ′
kKθk(Mk)

where ∀j ≤ k, JM ′
jKθj = F (ej−1). We define the probability space on the ex-

ecutions starting from a given network M as follows. Given a scheduler

F , σFieldFM is the smallest sigma field on ExecFM that contains the ba-

sic cylinders e ↑, where e ∈ ExecFM . The probability measure ProbFM is

the unique measure on σFieldFM such that ProbFM(e ↑) = P F
M(e). Given a

18

measurable set of networks H, we note by ExecFM(H) the set of executions

starting from M and crossing a state in H. Formally ExecFM(H) = {e ∈

ExecFM | last(ej) ∈ H for some j}. We denote the probability for a net-

work M to evolve into a network in H according to the policy given by F as

ProbFM(H) = ProbFM(ExecFM(H)).

As anticipated, we restrict to suitable subclasses of networks and exe-

cutions, namely well-formed networks and executions driven by admissible

schedulers, respectively. Well formed-networks are such that (1) before tran-

siting to active state, each transmitter checks (locally) that the communica-

tion channel is not busy with other transmissions, and (2) each active receiver

in the network is in the transmission cell of exactly one transmitter. Below

we give the formal definition.

Recall that A(M) is the network composed by active nodes in M and

introduce the auxiliary operator Top(·) over networks, used as follows: a

channel c is at the top level of a network M , denoted c ∈ Top(M), if M ≡

(νd̃)(n[P]l | N) and P is of the form c(x̃).Q or c̄L,r〈w̃〉.Q.

Definition 2.4. (Well-formed network) A networkM is well-formed if either

A(M) ≡ 0 or A(M) ≡ (νd̃)
(∏

i∈I ni[c̄Li,ri〈ṽi〉.Pi]li |
∏

j∈J nj[c(x̃j).Pj]lj |A(N)
)

for some N and the following conditions hold:

• ∀i, i′ ∈ I.d(li, li′) > max(ri, ri′),

• ∀j ∈ J.∃!i ∈ I such that d(li, lj) ≤ ri,

• c 6∈ Top(A(N)), and N is well-formed.

Back to Example 2.3, we see that the final states of the reductions are not

well-formed. In the first case, the inconsistent state breaks the first well-

19

formedness condition in Definition 2.4, since there are two active senders on

the same channel within the radius of each other; the second inconsistent

state, in turn, breaks the second well-formedness condition as there is no

single active sender reaching the active receiver. Restricting to admissible

schedulers rules out any unwanted transition and inconsistent state, preserv-

ing network well-formedness along execution.

Definition 2.5. (Admissible scheduler) A scheduler F is admissible if for all

executions e and for all networks M in the support of F (e), M is well-formed.

We let Sched note the set of all admissible schedulers.

Schedulers constitute an essential feature for modeling communication

protocols, as they provide freedom in modelling implementation and incom-

plete knowledge of a system. Therefore in introducing our notion of network

equivalence (cf. Definition 2.12 below) we seek parametricity with respect to

the schedulers driving execution, so as to provide corresponding flexibility in

the analysis. In addition, as it is customary in process algebraic frameworks,

we expect our equivalence to be a congruence (equivalently, contextual).

In order to define a congruence relation among networks, we have to select

a set of schedulers guaranteeing that network behavior is preserved when the

network in included in any possible context. We henceforth define a context

as a network term with a hole [·], defined by the following grammar:

C[·] ::= [·] | [·]|M | M |[·] | (νc)[·].

The following definition introduces a relation between the executions of a

network M and those of the same network once embedded into a context.

20

Definition 2.6. Let M0 and O0 ≡ M0 be networks, F, F ′ ∈ Sched admis-

sible schedulers, C0 a context, and e ∈ ExecFM0
and e′ ∈ ExecF

′

C0[O0] two

executions such that:

e = M0 −→θ1 M1 −→θ2 M2... −→θh Mh

e′ = C0[O0] −→θ′1
C1[O1] −→θ′2

C2[O2]... −→θ′k
Ck[Ok]

We say that that e and e′ have the same behavior with respect to M0 –

written e ∼M0 e
′ – if there exists a monotonic surjective function f from

[0..k] to [0..h] such that:

(i) ∀i ∈ [0..k], Oi ≡Mf(i)

(ii) ∀j ∈ [1..k], θ′j = θf(j) when Mf(j−1) −→θf(j) Mf(j).

The next definition helps formalize our notion of observational congruence.

Intuitively it defines a set of schedulers FM
C that depends on F and a network

M , and which includes F and all the schedulers driving M in an arbitrary

context. The schedulers in FM
C are selected based on the way they drive the

interactions between the contexts and M , so as to ensure that they preserve

the behaviour of M according to F (and are otherwise unconstrained in their

driving any context behavior independent of M).

Definition 2.7. Given a networkM and an admissible scheduler F ∈ Sched,

we define the set FM
C as follows:

FM
C = {F ′ ∈ Sched | ∀C[·] context, ∀e′ ∈ ExecF ′

C[M]

there exists e ∈ ExecFM such that e ∼M e′}

21

We say that FM
C is consistent with F if F ∈ FM

C . Hereafter, we consider only

schedulers F ensuring that FM
C is consistent.

Given a network M and F ⊆ Sched, we also define FMC =
⋃
F∈FF

M
C .

Example 2.8. Let M0 ≡ m[out〈cL,r, v〉.P]l and F ∈ Sched such that

M0 −→∆ M1 −→∆ M2 ∈ ExecFM0
,

with M1 ≡ m[c̄L,r〈v〉.P]l and M2 ≡ m[P]l.

Consider N0 ≡ n[in(c, x).Q]k such that d(l, k) ≤ r. All the admissible

schedulers allowing M0 and N0 to interact are candidate for being in FM0
C .

Indeed, consider F1 ∈ Sched such that, by applying rules (Struct-Bgn-Bcast)

and (Struct-End-Bcast)

M0 | N0 −→∆ M1 | N1 −→∆ M2 | N2 ∈ ExecF1

M0|N0

with N1 ≡ n[c(x).Q]k and N2 ≡ n[Q{v/x}]k, and consider also F2 such that,

by applying rule (R-Par)

M0 | N0 −→∆ M1 | N0 −→∆ M2 | N0 ∈ ExecF2

M0|N0
.

Both F1 and F2 satisfy the properties of Definition 2.7 when considering the

context N0|[·].

Consider now the network L0 defined as L0 ≡ `[out〈cL,r, w〉.R]j with

d(j, k) ≤ r. Consider also the admissible scheduler F1 for the network M0|N0

22

and let F3 be a scheduler for L0|M0|N0 such that:

L0|M0|N0 −→∆ L0|M1|N1 −→∆ L1|M1|N3 ∈ ExecF3

L0|M0|N0
,

with L1 ≡ `[c̄L,r〈w〉.R]j and N3 ≡ n[Q{⊥/x}]k. Then, according to Defi-

nition 2.7, F3 /∈ FM0|N0

1C . Notice that this example shows that although the

contexts and a network can interact, the class of interactions allowed by

Definition 2.7 are not completely arbitrary. Indeed, the scheduler F which

is initially selected for the network will have an important role in the def-

inition of our observational equivalence since only the behaviours admitted

by the schedulers in FM
C will be considered for the proposed definition of

equivalence.

We are now ready to discuss our notion of observation. We first introduce

a notation for strong barbs : for any network M , we write M↓c@K whenever

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l | M ′) with c 6∈ d̃, K ⊆ L, K 6= ∅ and for all k

in K, d(l, k) ≤ r. In other words, the strong barb M↓c@K signals that an

active transmission from c can be observed in M from some of the intended

observation points in L for that transmission. This notion of strong barb

generalizes the corresponding notion in related calculi, notably [6]: indeed,

taking L to be Loc uniformly on all output prefixes, our definition coincides

with that in [6].

Example 2.9. Consider the network M of Example 2.2. If k ∈ L then

M↓c@{k} otherwise M 6 ↓c@{k}.

Definition 2.10. (Probabilistic barb) A well-formed network M has a barb

23

with probability p on a channel c at locations in K according to the scheduler

F , written M⇓Fp c@K, if ProbFM(H) = p with H = {M ′ |M −→
∗
M ′ ↓c@K}.

Intuitively, for a given network M and scheduler F , if M⇓Fp c@K then p

is the positive probability that M , driven by F , performs a transmission on

channel c and at least one of the nodes in the intended observation locations

is able to correctly listen to it.

In the following, we introduce a probabilistic observational congruence,

in the style of [17], parametrically with respect to a set of schedulers.

Definition 2.11. Given a set F ∈ Sched of schedulers, and a relation R

over networks:

• Barb preservation. R is barb preserving w.r.t. F ifMRN andM⇓Fp c@K

for some F ∈ FMC implies that there exists F ′ ∈ FNC such thatN⇓F ′

p c@K.

• Reduction closure. R is reduction closed w.r.t. F if MRN implies

that for all F ∈ FMC , there exists F ′ ∈ FNC such that for all classes

C ∈ N /R, ProbFM(C) = ProbF
′

N (C).

• Contextuality. R is contextual if MRN implies that for every con-

text C[·] such that C[M] and C[N] are well formed, it holds that

C[M]RC[N].

Definition 2.12. (Probabilistic Observational Congruence w.r.t. F) Given

a set F of schedulers, the probabilistic observational congruence w.r.t. F ,

written∼=Fp , is the largest symmetric relation over networks which is reduction

closed, barb preserving and contextual.

24

(Beg-Out)
−

out〈cL,r, ṽ〉.P
c̄L,r−−→ c̄L,r〈ṽ〉.P

(End-Out)
−

c̄L,r〈ṽ〉.P
c̄L,r ṽ−−−→ P

(Beg-In)
−

in(c, x̃).P
c−→ c(x̃).P

(End-In)
−

c(x̃).P
cϑ−→ P{ϑ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′ A(x̃)

def
= P

A〈ṽ〉 η−→ P ′

Table 4: LTS rules for Processes

3. A Bisimulation-based Proof Technique

We develop a co-inductive proof technique for the probabilistic observa-

tional congruence ∼=Fp .

3.1. Labelled Transition Semantics

As for its predecessor, we define a LTS semantics for our calculus, which is

built upon two sets of rules: one for processes and one for networks. Table 4

presents the LTS rules for processes. Transitions are of the form P
η−→ P ′,

where η ranges over input and output actions of the form:

η ::= c | cϑ | c̄L,r | c̄L,rṽ with ϑ ::= ṽ | ⊥.

Rules (Beg-Out) and (End-Out) model the beginning and the end of an out-

put action. Rule (Beg-In) models a process beginning listening to a channel

25

in order to receive a value. Rule (End-In) models either the correct reception

of a message or the reception of a ⊥ due to a collision. All the remaining

rules are standard as in [11].

Table 5 presents the LTS rules for networks. The transitions are of the

form M
γ−→ JM ′Kθ, where M is a network, JM ′Kθ is a distribution over net-

works, and γ ranges over the following labels:

γ ::= c?@l | c?ϑ@l | cL![l, r] | cL!ṽ[l, r] | c!ṽ@K / R | τ.

We denote by AsM(c, l) the set of active senders of M on channel c reaching

l, i.e., if A(M) ≡ (νd̃)
(∏

i∈Ini[c̄Li,ri〈ṽi〉.Pi]li |
∏

j∈Jnj[c(x̃j).Pj]lj | N
)

and

c 6∈ Top(N) then AsM(c, l) = {ni : i ∈ I, d(l, li) ≤ ri}.

Rules (Beg-Snd) and (End-Snd) model the transmission of a message ṽ

through channel c with radius r to the set L of observers. Transmissions are

non-atomic actions: indeed, since mobile ad-hoc networks are not controlled

by any fixed infrastructure, we have to take into account the possibility for

nodes to be not perfectly synchronized with each other. (Beg-Rcv) models

the beginning of a message reception, while (End-Rcv) models both the suc-

cessful reception of a message or the reception of a failure message (denoted

by ⊥) due to an interference. Rule (Beg-Bcast) models the beginning of a

broadcast message propagation: all the nodes lying within the transmission

cell of the sender may begin to receive a message (regardless of the fact that

they are in L). Rule (Coll-Bcast) models the collision occurred at the lo-

cation of a receiver lying within the intersection of the transmission area of

different nodes transmitting simultaneously through the same channel. Rule

(End-Bcast) models the conclusion of a broadcast message propagation: all

26

(Beg-Snd)
P

c̄L,r−−→ P ′

n[P]l
cL![l,r]−−−−→ Jn[P ′]lK∆

(End-Snd)
P

c̄L,r ṽ−−−→ P ′

n[P]l
cL!ṽ[l,r]−−−−−→ Jn[P ′]lK∆

(Beg-Rcv)
P

c−→ P ′

n[P]l
c?@l−−−→ Jn[P ′]lK∆

(End-Rcv)
P

cϑ−→ P ′

n[P]l
c?ϑ@l−−−→ Jn[P ′]lK∆

(Beg-Bcast)
M

cL![l,r]−−−−→ JM ′K∆ N
c?@l′−−−→ JN ′K∆ d(l, l′) ≤ r ∧ AsN (c, l) = AsN (c, l′) = ∅

M |N cL![l,r]−−−−→ JM ′|N ′K∆

(Coll-Bcast)
M

cL![l,r]−−−−→ JM ′K∆ N
c?⊥@l′−−−−→ JN ′K∆ d(l, l′) ≤ r ∧ AsN (c, l) = ∅

M |N cL![l,r]−−−−→ JM ′|N ′K∆

(End-Bcast)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ N
c?ṽ@l′−−−−→ JN ′K∆ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−−→ JM ′|N ′K∆

(Lose1)
M

cL![l,r]−−−−→ JM ′K∆

M
τ−→JM ′K∆

(Lose2)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆

M
τ−→JM ′K∆

(Move)
Active(P) = false

n[P]l
τ−→ Jn[P]lKµnl

(Res)
M

γ−→ JM ′Kθ Chan(γ) 6= c

(νc)M
γ−→ J(νc)M ′Kθ

(Obs)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ R = {l′ : d(l, l′) ≤ r ∧ | AsM (c, l′) |= 1} K ⊆ R ∩ L, K 6= ∅

M
c!ṽ@K/R−−−−−−→ JM ′K∆

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ

Table 5: LTS rules for Networks

27

the nodes lying within the transmission cell of the sender will successfully

receive a message. Rule (Obs) models the observability of a transmission:

every transmission may be detected (and hence observed) by any recipient lo-

cated within the transmission cell of one sender and outside the “interference

area”, that is the intersection of the transmission areas of the active senders

of the network. The label c!ṽ@K /R represents the transmission of the tuple

ṽ of messages via c to the subset K of observers inside the reachable locations

R within the transmission cell of the sender. Notice that collisions are not

observable and only a correctly ended transmission may be observed. Rule

(Move) models migration of a mobile node n from a location l to a location

k according to the probability distribution µnl , which depends on the Markov

chain Jn statically associated with n. Nodes can move only if they are not

executing any active action (i.e., nodes cannot move while transmitting or

receiving). Rules (Lose1) and (Lose2) model both message loss and a local

activity of the network which an observer is not party to. As usual [11],

τ -transitions are used to denote non-observable actions. Finally, rule (Res)

models the standard channel restriction, where Chan(γ) = c if γ is of the

form: c?@l; c?ϑ@l; cL![l, r]; cL!ṽ[l, r] or c!ṽ@K / R, and Chan(τ) = ⊥. Rule

(Par) is defined as in [11].

We prove that the LTS-based semantics coincides with the reduction se-

mantics and the notion of observability (barb) given in the previous section.

We first prove that if M
γ−→ JM ′K∆, then the structure of M and M ′ can

be determined up to structural congruence.

Lemma 3.1. Let M be a network.

1. If M
c?@l−−→ JM ′K∆, then there exist n, x̃, a (possibly empty) sequence d̃

28

such that c /∈ d̃, a process P and a (possibly empty) network M1 such

that: M ≡ (νd̃)(n[in(c, x̃)P]l |M1) and M ′ ≡ (νd̃)(n[c(x̃).P]l|M1).

2. If M
c?ϑ@l−−−→ JM ′K∆, then there exist n, x̃, a (possibly empty) sequence d̃

such that c /∈ d̃, a process P and a (possibly empty) network M1 such

that M ≡ (νd̃)(n[c(x).P]l|M1) and M ′ ≡ (νd̃)(n[P{ϑ/x̃}]l|M1).

3. If M
cL![l,r]−−−−→ JM ′K∆, then there exist n, ṽ, a (possibly empty) sequence

d̃ such that c /∈ d̃, a process P , two (possibly empty) sets J and

K such that ∀h ∈ J ∪ K d(l, lh) ≤ r and a (possibly empty) net-

work M1 such that: M ≡ (νd̃)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈Jnj[in(c, x̃j).Pj]lj

|
∏

k∈Knk[c(x̃k).Pk]lk |M1) andM ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈Jnj[c(x̃j).Pj]lj

|
∏

k∈KnK [Pk{⊥/x̃k}]lk |M1).

4. If M
cL!ṽ[l,r]−−−−→ JM ′K∆, then there exist n, a (possibly empty) sequence

d̃ such that c /∈ d̃, a process P , a (possibly empty) set J , such that

∀j ∈ J d(l, lj) ≤ r and a (possibly empty) network M1 such that:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈Jnj[c(x̃j).Pj]lj | M1) and M ′ ≡ (νd̃)(n[P]l|∏
j∈Jnj[Pj{ṽ/x̃j}]lj |M1).

Proof. See Appendix. ut

Now we show that structural congruence respects the transitions of Ta-

ble 5.

Lemma 3.2. If M
γ−→ JM ′Kθ and M ≡ N , then there exists N ′ such that

N
γ−→ JN ′Kθ and M ′ ≡ N ′.

Proof. By induction on the depth of the inference M
γ−→ JM ′Kθ. ut

29

The following theorem establishes the relationship between the reduction

semantics and the LTS one.

Theorem 3.3. (Harmony) Let M be a network.

1. If M −→ JM ′Kθ then there exist N and N ′ such that N
τ−→ JN ′Kθ, M ≡ N

and M ′ ≡ N ′.

2. M ↓c@K iff M is well-formed and N
c!ṽ@K/R−−−−−→ JM ′K∆ for some R, ṽ,

N ≡M and M ′.

3. If M
τ−→ JM ′Kθ then M −→ JM ′Kθ.

4. If M
c!ṽ@K/R−−−−−→ JM ′K∆ then M −→ JM ′K∆.

Proof. See Appendix. ut

3.2. Probabilistic Labelled Bisimilarity

As for the previous versions of the calculus, we define a probabilistic

labelled bisimilarity that is a complete characterisation of our probabilistic

observational congruence. It is built upon the following actions:

α ::= c?@l | c?ϑ@l | c!ṽ@K / R | τ.

Again, we write M
α−→θ N if M

α−→ JM ′Kθ and N is in the support of JM ′Kθ.

Moreover we write M
α−→ N if M

α−→θ N for some θ. A labelled execution e

of a network M is a finite (or infinite) sequence of steps: M
α1−→θ1 M1

α2−→θ2

M2...
αk−→θk Mk. With abuse of notation, we define ExecM , last(e), ej and e↑

as for unlabeled executions. We denote by lbehave(M) the set of all possible

behaviours of M, i.e., lbehave(M) = {(α, JM ′Kθ) | M
α−→ JM ′Kθ}. Labelled

executions arise by resolving the non-determinism of both α and JMKθ. As a

30

consequence, a scheduler3 for the labelled semantics is a function F assigning

a pair (α, JMKθ) ∈ lbehave(last(e)) with a finite labelled execution e. We

denote by LSched the set of (admissible) schedulers for the LTS semantics,

i.e., the set of all the schedulers F such that, for each network M in the

support of F , M is well formed. Given a network M and a scheduler F ∈

LSched, we define ExecFM as the set of all labelled executions starting from

M and driven by F .

Since we are interested in weak observational equivalences, that abstract

over τ -actions, we introduce the notion of weak action.

Definition 3.4. (Weak Action) We denote by ==⇒ the transitive and reflex-

ive closure of
τ−→ and by

α
==⇒ the weak action ==⇒ α−→==⇒. We denote by

α̂
==⇒

the weak action
α

==⇒ if α 6= τ , and ==⇒ otherwise.

In the following we will give the definition of probabilistic labelled bisim-

ilarity with respect to a given set of schedulers.

Definition 3.5. Given a network M0 and an admissible scheduler F ∈

Sched, we denote by F̂M0
C ⊆ LSched the set of admissible schedulers F̂ ∈

LSched such that ∀e ∈ ExecF̂M0
of the form

e = M0
α1−→θ1 M1...

αh−→θh Mh

∃F ′ ∈ FM0
C , a context C0 and e′ ∈ ExecF ′

C0[O0] with O0 ≡M0 such that

e′ = C0[O0] −→θ′1
C1[O1]... −→θ′k

Ck[Ok]

and there exists a monotone surjective function f from [0..k] to [0..h] such

that:

3We abuse notation and still use F to denote a scheduler for the LTS semantics.

31

(i) ∀i ∈ [0..k], Oi ≡Mf(i)

(ii) ∀j ∈ [1..k], θ′j = θf(j) when Mf(j−1)

αf(j)−−−→θf(j) Mf(j).

Given a set F ⊆ Sched of schedulers and a network M0, we define F̂M0
C =⋃

F∈F F̂
M0
C .

Example 3.6. Consider the networks M0 and N0, and the schedulers F and

F1 introduced in the Example 2.8. If we take F̂1 ∈ LSched such that

M0
cL![l,r]−−−−→∆ M1

cL!v[l,r]−−−−→∆ M2 ∈ ExecF̂1
M0

M0
,

then, since

M0 −→∆ M1 −→∆ M2 ∈ ExecFM0

the conditions of Definition 3.5 are satisfied when considering the empty

context C[·] = 0 | · and the identity function f(i) = i for i ∈ [0..2]. Hence

F̂1 is a candidate for being in F̂M0
C .

Moreover, if we consider F̂2 ∈ LSched such that

N0
c?@k−−−→∆ N1

c?v@k−−−→∆ N2 ∈ ExecF̂2
N0
,

since

M0 | N0 −→∆ M1 | N1 −→∆ M2 | N2 ∈ ExecF1

M0|N0

with F1 ∈ FM0
C , by considering the contexts Ci[·] ≡ Mi | · for i ∈ [0..2], and

the identity function f(i) = i for i ∈ [0..2] we get that F̂2 is a candidate for

being in F̂M0
C .

Proposition 3.7.

32

1. SchedC = Sched

2. ŜchedC = LSched

Proof.

1. The Proof follows straightforwardly from Definition 2.7.

2. ∀F ∈ LSched, ∀M0 ∈ N and ∀e ∈ ExecFM0
of the form:

e = M0
α1−→θ1 M1...

αk−→θk Mk

it is always possible to find a context C0[·] and a scheduler F ′ ∈ LSched

such that e′ ∈ ExecF ′

C0[M0] with

e′ = C0[M0]
τ−→θ1 ...C1[M1]...

τ−→θk Ck[Mk].

By Theorem 3.3, ∃F ′′ ∈ Sched such that e′′ ∈ ExecF ′′

C0[M0] with

e′′ = C0[M0] −→θ1 ...C1[M1]... −→ Ck[Mk],

meaning that F ∈ ŜchedC as required.

ut

In the probabilistic setting, while considering a computation with observ-

able content, it is necessary to take into account the actual probability of this

computation to ensure that weakly bisimilar systems may not only match one

another’s transitions but also perform these transitions with matching prob-

abilities. To achieve this, we denote by ExecFM(
α

==⇒, H) the set of executions

that, starting from M , according to the scheduler F , lead to a network in the

set H by performing
α

==⇒. Moreover, we define the probability of reaching

a network in H from M by performing
α

==⇒, according to a scheduler F as

ProbFM(
α

==⇒, H) = ProbFM(ExecFM(
α

==⇒, H)).

Definition 3.8. (Probabilistic Labelled Bisimilarity) Let M and N be two

networks. An equivalence relation R over networks is a probabilistic labelled

33

bisimulation w.r.t. F if MRN implies: for all scheduler F ∈ F̂MC there exists

a scheduler F ′ ∈ F̂NC such that for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K / R then ProbFM(
α−→, C) = ProbF

′
N (

α̂
==⇒ C);

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α−→, C) = ProbF

′
N (

α
==⇒, C)

or ProbFM(
α−→, C) = ProbF

′
N (==⇒, C).

Probabilistic labelled bisimilarity, written ≈Fp , is the largest probabilistic la-

belled bisimulation w.r.t. F over networks.

Notice that, in the above definition, input actions are allowed to be

matched by τ actions. This reflects the fact that reception of messages cannot

be directly observed by an external observer (see, e.g., [6]).

We prove that our probabilistic labelled bisimulation is a complete char-

acterisation of our notion of probabilistic barbed congruence.

The following proposition will be useful.

Proposition 3.9. Let M and N be two networks. If MRN for some bisim-

ulation R w.r.t. F , then for all schedulers F ∈ F̂MC there exists a scheduler

F ′ ∈ F̂NC such that for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K / R then ProbFM(
α̂

==⇒, C) = ProbF
′

N (
α̂

==⇒, C);

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α

==⇒, C) = ProbF
′

N (
α

==⇒, C)

or ProbFM(
α

==⇒, C) = ProbF
′

N (==⇒, C).

Proof. The proof follows by induction on the length of the weak transition
α̂

==⇒. ut

We can now prove that our bisimilarity is a proof method for our obser-

vational congruence, i.e., that ≈Fp is contained in ∼=Fp .

34

Theorem 3.10. (Soundness) Let M and N be two networks and F ⊆

Sched. If M ≈Fp N then M ∼=Fp N.

Proof. See Appendix. ut

Finally, we prove that the observational congruence is contained in the

labelled bisimilarity.

Theorem 3.11. (Completeness) Let M and N be two networks and F ⊆

Sched. If M ∼=Fp N then M ≈Fp N.

The following result is a consequence of Theorems 3.10 and 3.11.

Theorem 3.12. (Characterization) For every set F ⊆ Sched, ∼=Fp =≈Fp .

4. Interference Metrics

We define a preorder over networks which allows us to compare the av-

erage level of interferences of networks exhibiting the same connectivity be-

haviour relative to a specific set of schedulers F . We consider two metrics.

The first focuses on emitters, and counts how many currently broadcasting

nodes might interfere with each other due to an overlap in their communi-

cation ranges. The second metric is centred on receiver nodes and counts

the number of active receivers which are simultaneously reached by two (or

more) transmissions.

4.1. Sender-based interference

Let M be a network. Given a channel c, we denote by Overlaps(M, c)

the set of nodes currently broadcasting over c and whose transmission areas

are overlapping at some locations. Formally, let

35

A(M) ≡ (νd̃)
(∏

i∈I ni[c̄Li,ri〈ṽ〉.Pi]li |
∏

j∈Jnj[c(x̃j).Pj]lj |M ′)
be the active nodes of M , where c 6∈ Top(M ′), then

Overlaps(M, c) = {ni | i ∈ I,∃i′ ∈ I.i 6= i′ and d(li, li′) ≤ ri + ri′}.

For example, consider the following network

M̂ = n1[out〈cL1,r1 , ṽ1〉.P1]l1 | n2[c̄L2,r2〈ṽ2〉.P2]l2

| n3[c̄L3,r3〈ṽ3〉.P3]l3 | n4[d̄L,r〈ṽ〉.P4]l4

| n5[c(x̃).P5]l5 | n6[in(c, ỹ).P6]l6

where d(li, li′) > ri for all i, i′ ∈ {1, 2, 3} with i 6= i′, i.e., the nodes n1, n2,

and n3 are all far enough away from each other and can broadcast at the same

time over the channel c. In this case, function Overlaps(M̂, c) is defined as

follows: for all c′ 6= c (e.g., c′ = d) Overlaps(M̂, c′) = ∅, while

Overlaps(M̂, c) =

 {n2, n3} if d(l2, l3) ≤ r2 + r3

∅ otherwise.

We define the sender-based level of interference induced by a probabilistic

transition as follows:

Interf s(M,N)=


|Overlaps(N, c)| − |Overlaps(M, c)|

if M
cL![l,r]−−−−→ JNK∆ for some L, l, r;

0 otherwise.

Consider again the above network M̂ . Since d(l1, li) > r1 for i ∈ {2, 3}, we

36

have M̂
cL1

![l1,r1]
−−−−−→ JN̂K∆, where

N̂ = n1[c̄L1,r1〈ṽ1〉.P1]l1 | n2[c̄L2,r2〈ṽ2〉.P2]l2

| n3[c̄L3,r3〈ṽ3〉.P3]l3 | n4[d̄L,r〈ṽ〉.P4]l4

| n5[P ′5]l5 | n6[P ′6]l6

The sender-based level of interference induced by M̂
cL1

![l1,r1]
−−−−−→ JN̂K∆ is, e.g.:

• If n1 is too far away from both n2 and n3, i.e., d(l1, lj) > r1 + rj for

j ∈ {2, 3}, then Overlaps(N̂ , c) = Overlaps(M̂, c). Hence:

Interf s(M̂, N̂) = 0 .

• If n2 and n3 were already overlapping, i.e., d(l2, l3) ≤ r2 + r3 and n1

is not too far away from at least one of them, i.e., d(l1, l2) ≤ r1 + r2

or d(l1, l3) ≤ r1 + r3 then Overlaps(N̂ , c) = {n1, n2, n3}. Therefore,

Interf s(M̂, N̂) = 1. The additional potentially disturbed communica-

tion is the one just started by n1.

• If n2 and n3 were not overlapping, but n1 is not too far away of both of

them, then Overlaps(N̂ , c) = {n1, n2, n3}. Thus, InterfS(M,N) = 3.

Here the started broadcast by n1 overlaps with both the previously safe

existing transmission areas.

• Finally, n2 and n3 were not overlapping, but n1 is not too far away of

exactly one of them (e.g., n2), then Overlaps(N̂ , c) = {n1, n2}, and

InterfS(M,N) = 2.

37

4.2. Receiver-based interference

Hereafter, we denote by Collr(M, c, l, r) the set of nodes in M which are

currently listening over channel c and lie in the transmission range of a sender

located at l with radius r. Formally, let A(M) ≡ (νd̃)
(∏

i∈I ni[c̄Li,ri〈ṽ〉.Pi]li |∏
j∈Jnj[c(x̃j).Pj]lj |M ′) be the active nodes of M , where c 6∈ Top(M ′), then

Collr(M, c, l, r) = {nj | j ∈ J and d(l, lj) ≤ r}.

The number of receiver-based interferences induced by a probabilistic step

is defined as follows:

Interf r(M,N) =


|Collr(M, c, l, r)|

if M
cL![l,r]−−−−→ JNK∆ for some L;

0 otherwise.

For instance, if we consider again our previous networks M̂ and N̂ , assum-

ing that n1 can reach both l5 and l6 then P ′5 = P5{⊥/x̃} and P ′6 = c(ỹ).P6.

Then, Collr(M̂, c, l1, r1) = {n5}. Hence Interf r(M̂, N̂) = 1.

Now, let χ ∈ {s, r}. The χ-type number of interferences induced by an

execution e = M0
α1−→θ1 M1...

αk−→θk Mk is

Interfχ(e) =
∑k

i=1 Interfχ(Mi−1,Mi).

Let H be a set of networks, we denote by PathsFM(H) the set of all execu-

tions from M ending in H and driven by F which are not prefixes of any other

execution ending in H. Formally, PathsFM(H) = {e ∈ ExecFM(H) | last(e) ∈

H and ∀e′ such that e is a prefix of e′, e′ 6∈ PathsFM(H)}. The average num-

38

ber of interferences is computed by weighting the number of interferences

of each execution by its probability according to F and normalized by the

overall probability of reaching H.

Definition 4.1. Let H be a set of networks. The average number of inter-

ferences to reach H from M according to scheduler F is

InterfχM,F (H) =

∑
e∈PathsFM (H) Interfχ(e)× P F

M(e)∑
e∈PathsFM (H) P

F
M(e)

Definition 4.2. Let H be a countable set of sets of networks and F a set of

schedulers. We say that N is at least as interference efficient as M relative

to H and F , written

N vχ〈H,F〉 M,

if N ≈Fp M and, for all H ∈ H and for all schedulers F ∈ F , there exists a

scheduler F ′ ∈ F such that InterfχN,F ′(H) ≤ InterfχM,F (H).

5. Case study: the Alternating Bit Protocol

The alternating bit protocol (ABP) is a simple network protocol designed

to achieve a point to point reliable transmission on unreliable channels. Mes-

sages are sent from a transmitter to a receiver and include the payload (i.e.,

the meaningful data) and some control information (e.g., the address iden-

tifying the destination, a checksum for the integrity checks, etc.). Among

the control information, there is packet sequence number of 1 bit. When the

sender sends a message with sequence number b, it waits for an acknowledge

(ack) identified with the same sequence number from the receiver. If the

39

SNDj〈bj , Tj〉= [empty(T) = false](out〈c{k},rj , (bj , head(Tj), nj)〉.WAIT Ackj〈bj , Tj〉),
out〈ok{k},rj , (nj , END)〉

WAIT Ackj〈bj , Tj〉 = in(c, (x, y, z)).[y = nj]([(x = bj) ∧ (z = ACK)]SNDj〈¬bj , dequeue(Tj)〉,
SNDj〈bj , Tj〉),WAIT Ackj〈bj , Tj〉

RCV 〈b1, b2〉 = in(c, (x, y, z)).[z = n1]
(
([x = b1]out〈c{l1,l2,l3,l4},r, (b1, n1, ACK)〉.

RCV 〈¬b1, b2〉, out〈c{l1,l2,l3,l4},r, (b1, n1, NACK)〉.RCV 〈b1, b2〉),
[z = n2]([x = b2]out〈c{l1,l2,l3,l4},r, (b2, n2, ACK)〉.RCV 〈b1,¬b2〉,
out〈c{l1,l2,l3,l4},r, (b2, n2, NACK)〉.RCV 〈b1, b2〉)

)
,

out〈c{l1,l2,l3,l4},r, (b1, n1, NACK)〉.out〈c{l1,l2,l3,l4},r, (b2, n2, NACK)〉.
RCV 〈b1, b2〉

ABP = (νc)
(
n1[SND1〈1, T1〉]l1 | n2[SND2〈1, T2〉]l3 m[RCV 〈1, 1〉]k

)

Table 6: ABP

ack does not arrive before a given deadline then the sender assumes that the

packet has been lost and tries to resent it. The deadline is chosen according

to the channel characteristics and must be greater than its round trip time.

When the ack is received correctly, the sender flips the sequence number and

starts a new transmission.

We consider a network consisting of two mobile sender nodes, n1 and n2,

communicating with a static receiver node m. Node n1 moves back and forth

between locations l1 and l2 according to the probability distribution defined

by the discrete time homogeneous Markov chain with the following transition

matrix (where 0 < p, q < 1):

J =

∣∣∣∣∣∣1− p p

q 1− q

∣∣∣∣∣∣ .
Node n2 moves similarly between l3 and l4 according to a discrete time

Markov chain with the same transition matrix J. We also assume that the

receiver node is always in the transmission range of both senders (and that

40

n1

n1 n2

n2

m

l3

l2 l4

l1

k

q

p q

1-q 1-q

p

1-p 1-p

Figure 1: Graphical representation of node mobility

the senders are always in the range of the receiver) regardless of where the

senders are located. This guarantees that m receives any packet from the

senders (unless a collision occurs), and that both senders receive any ack

sent by m.

Furthermore, we assume that the transmission ranges of the senders over-

lap only when n1 is at l1 and n2 is at l3. As a result, unless n1 is at l1 and n2

is at l3, the senders are in the condition to attempt a simultaneous transmis-

sion (as they don’t sense each other) leading to an interference (see Figure 1):

in literature, this is known as the hidden station problem. Notice that while

communications can be damaged by many factors, we shall consider only the

interference factor in this analysis.

Table 6 shows an encoding of the sender and receiver processes. SNDj

runs inside node nj, sending a queue of messages Tj with sequence bit bj;

RCV, in turn, runs inside the receiver node m, expecting messages with

sequence bits b1 and b2 from n1 and n2, respectively. We presuppose few

auxiliary functions: empty(), dequeue() and head() implement the standard

queue operations, while ¬b flips the value of the bit b. Finally, ok is a channel

41

name and a location introduced for the purposes of our analysis.

5.1. Successive Interference Cancellation (SIC) for CDMA

Here, we sketch a simplified version of the successive interference cancel-

lation (SIC) method for CDMA/CA [2] transmission scheme. Assume that

nodes n1 and n2 cause an interference at m by sending packets encoded by

signals xA and xB. Node m receives the signal y1 = xA + xB, detects the

interference and stores y1 in memory. In the successive time slot, n1 success-

fully resends xA, i.e., m receives y2 = xA and sends an ack to n1. Now, xB

may be extracted from y1 by m without further retransmissions as the result

of y1 − xA. Although in practice this procedure is not always successful, we

assume that messages can always be recovered correctly.

In modelling this protocol, the sender processes remain the same as in

the simple ABP protocol defined in Table 6, while the receiver process is

defined as shown in Table 7.

RCVSIC〈b1, b2〉= in(c, (x1, x2, x3))[x3 = n1]
(
([x1 = b1]out〈c{l1,l2,l3,l4},r, (b1, n1, ACK)〉.

RCVSIC〈¬b1, b2〉, out〈c{l1,l2,l3,l4},r, (b1, n1, NACK)〉.RCVSIC〈b1, b2〉),
[x3 = n2]([x1 = b2]out〈c{l1,l2,l3,l4},r, (b2, n2, ACK)〉.RCVSIC〈b1,¬b2〉,
out〈c{l1,l2,l3,l4},r, (b2, n2, NACK)〉.RCVSIC〈b1, b2〉)

)
,

out〈c{l1,l2,l3,l4},r, (b1, n1, NACK)〉.WAIT 〈⊥x1,x2,x3 , b1, b2〉
WAIT 〈⊥p1,p2,p3 , b1, b2〉 = in(c, (x1, x2, x3))[x3 = n1]([x1 = b1](out〈c{l1,l2,l3,l4},r, (b1, n1, ACK)〉.

[f(x3, p3) = n2][b2 = f(x1, p1)](out〈c{l1,l2,l3,l4},r, (b2, n2, ACK)〉.
RCVSIC〈¬b1,¬b2〉), out〈c{l1,l2,l3,l4},r, (b2, n2, NACK)〉.RCVSIC〈¬b1, b2〉),
out〈c{l1,l2,l3,l4},r, (x1, n1, NACK)〉.WAIT 〈⊥x1,x2,x3 , b1, b2〉

SIC ABP = (νc)
(
n1[SND1〈1, T1〉]l1 | n2[SND2〈1, T2〉]l3 | m[RCVSIC〈1, 1〉]k

)

Table 7: SIC ABP

In order to compare the observational behaviours of the protocols, we as-

sume that a successful completion of transmission of the packets by a sender,

42

indicated by broadcasting the message ”END” over the channel ok, is ob-

servable to any observer node located at k. In this analysis, we are only

interested in the levels of interference due to the internal nodes of the proto-

cols. Therefore, we restrict communications over the channel c to the internal

nodes of the protocols.

5.2. Measuring the interference level of the protocols

Schedulers constitute an essential feature for modeling communication

protocols as they provide freedom in modeling implementation and incom-

plete knowledge of the system. However, many schedulers could be unrealistic

or useless. Indeed, schedulers giving priority to communications over move-

ments will, for instance, cancel the two-state nature of the sender nodes,

while those giving priority to end broadcasting actions over begin broadcast-

ing actions will prevent any interference. Therefore, we consider the following

set Ffas of fair alternating schedulers which:

1. always alternate between sending packets and node movements so that

at each interaction of the transmitters with the receiver, the formers

could be far enough away from each other to cause interference or not;

2. give priority to acknowledgment actions (ACK and NACK) to model

our assumption of an error-free feedback channel;

3. give priority to begin broadcasting actions (Beg-Bcast) over end broad-

casting actions (End-Bcast).

Notice that the analysis of the model under the set of fair alternating

schedulers is general because it establishes a relative speed between the packet

transmissions and node movements that, in practice, can be regulated by

43

means of the transition probabilities of J. Moreover, all the events that may

influence the performance of the protocols, and in particular the interferences,

are allowed.

We now prove some preliminary results needed to show that applying the

SIC method to the alternating bit protocol reduces the level of interference in

the system. We first prove that the two networks exhibit the same observable

behaviour relative to Ffas.

Proposition 5.1. ABP ≈Ffas
p SIC ABP .

Proof. For brevity, we give just a sketch of the proof. In both protocols,

the only observable actions, are the final messages sent by n1 and n2 through

the channel ok, that occur when all the messages of their respective queues

are completely and correctly received by m, since the other actions are either

silent, or hidden by the restriction operator applied to the channel c. Hence,

in both protocols the only observable actions are of the form:

==⇒ ok!(n1,END)@k/k−−−−−−−−−−→==⇒,

or

==⇒ ok!(n2,END)@k/k−−−−−−−−−−→==⇒ .

We can conclude that ABP and SIC ABP are probabilistic bisimilar, be-

cause they exhibit the same behaviour, with the same probability. Indeed,

the characteristics of matrix J ensures that for both the protocols the prob-

ability of eventually transmitting the whole queue of messages in 1. ut

44

Now let T1 and T2 be the queues of messages to be transmitted by the

senders. We compare the interference efficiency of the protocols in the context

of the set H(T1, T2) = {Hρ(T1, T2) | ρ ≤ max(|T1|, |T2|)} where Hρ(T1, T2)

means that all the packets up to ρ have been correctly transmitted by both

senders and is defined as Hρ(T1, T2) = H1
ρ(T1, T2) ∪H2

ρ(T1, T2) where

H1
ρ(T1, T2) = {M |M ≡ (νc)

(
n1[SND1〈b1, dequeue

ρ(T1)〉]l′

| n2[SND2〈b2, dequeue
ρ(T2)〉]k′ | m[RCV 〈b1, b2〉]k

)
}

with the assumption that dequeue(∅) = ∅, and b1, b2 ∈ {0, 1}. Similarly

H2
ρ(T1, T2) = {N |N ≡ (νc)

(
n1[SND1〈b1, dequeue

ρ(T2)〉]l′′

| n2[SND2〈b2, dequeue
ρ(T2)〉]k′′ | m[RCVSIC〈b1, b2〉]k

)
}

with b1 and b2 in {0, 1}, l′, l′′ in {l1, l2}, and k′, k′′ in {l3, l4}. Then, we

compute the interference level of the protocols assuming that we start by a

move action for each sender node so that their first transmissions could create

an interference if they move too far away from each other4. The results are

summarized in the following propositions.

Proposition 5.2. For all F in Ffas and for all ρ ≤ max(|T1|, |T2|) we have:

Interf sABP,F (Hρ(T1, T2)) =

2× Interf rABP,F (Hρ(T1, T2)) = 2×
(

(p+ q)2

q2
− 1

)
×min(ρ, |T1|, |T2|)

4The analysis for the other case is similar.

45

with 0 < p, q < 1.

The proof relies on the observation that correct packets are sent only when

the mobile nodes are in the locations l1 and l3. Hence, by exploiting the inde-

pendence between the stochastic processes underlying the node movements,

the result follows by standard analysis of absorbing Markov chains.

Note that our sender-based interference metric coincides with the number

of lost packets. For the ABP with SIC, we have:

Proposition 5.3. For all F in Ffas and each ρ ≤ max(|T1|, |T2|) we have:

Interf sSIC ABP,F (Hρ(T1, T2)) = 2× InterfrSIC ABP,F (Hρ(T1, T2)) =

2× p

(p+ q)3

(
n(p+ q)(p+ 2q)−

((1− p− q)n − 1)(p+ q − 1)(p2 − p(1− p− q)n+1 − 4q + 3pq + 2q2 − p)
p+ q − 2

)
×min(ρ, |T1|, |T2|)

with 0 < p, q < 1.

Also in this case the proof is based on standard transient Markov chain

analysis and exploits the independence among the processes that regulate

the node movements. Indeed, the n-th steps transition probability matrix

(J)n is:

(J)n =

∣∣∣∣∣∣
p(1−p−q)n+q

p+q
p−p(1−p−q)n

p+q

q−q(1−p−q)n
p+q

p+q(1−p−q)n
p+q

∣∣∣∣∣∣
According to the SIC specification, nodes need only to send one packet for

a successful packet transmission if they are in the locations l1 and l3. All

the other location combinations require one of the nodes to send two packets

46

(a) Plotting of InterfrABP,F (Hρ) given by
Prop. 5.2

(b) Plotting of InterfrSIC ABP,F (Hρ) given by
Prop. 5.3

(c) Plotting of InterfrABP,F (Hρ) −
InterfrSIC ABP,F (Hρ)

Figure 2: Interference levels for ABP and SIC ABP and their comparison

for each successful transmission (while the other sends just one). Starting

from states l1 and l3, the probability of being still in the same state after

i > 0 steps is given by (p(1 − p − q)i + q)2/(p + q)2 (by independence). We

derive the expression given by Proposition 5.3 as the closed expression of the

following sum which represents the expected number of observed interferences

for sending n packets:

n∑
i=1

(
1−

(
p(1− p− q)i + q

p+ q

)2
)
.

47

Let us denote by Hρ the set Hρ(T1, T2). In Fig. 2 (a) and (b) we show

a plot of Interf sABP,F (Hρ) and Interf rSIC ABP,F (Hρ), respectively, as a func-

tion of p and q, for min(ρ, |T1|, |T2|) = 100, while Fig. 2 (c) shows a plot

of Interf rABP,F (Hρ) − Interf rSIC ABP,F (Hρ). Finally, from Propositions 5.1,

5.2, and 5.3, we can conclude that the SIC-based ABP protocol is at least

efficient as the flooding version in terms of interference.

Theorem 5.4. SIC ABP vχ〈Ffas,H(T1,T2)〉 ABP .

Proof. Apply Propositions 5.1, 5.2 and 5.3. ut

6. Case study: Location Aided Routing Protocols

Our second case study shows how to exploit our framework to model

a location based routing protocol, specifically the Location Aided Routing

(LAR) [10]. Informally, location based routing algorithms assume that each

node of the wireless network is aware of its own location thanks to a Global

Positioning System (GPS) device or thanks to other mechanisms such as

the knowledge of the distances between its location at a given epoch and

some other static stations. The main idea behind the development of these

algorithms is that in very large mobile networks using a flooding policy in

an AODV style [9] may turn out to be very expensive in terms of number

of sent packets and hence of energy consumption. Location based routing

algorithms aim at controlling the flooding by guessing the possible location

of the destination node. The guess can be driven by several factors, such as

the knowledge of the destination node’s location in the latest communication

joint with some assumptions on the node’s maximum movement speed. In

48

this section, we show our framework at work on a simplified version of the

LAR protocol, and prove that, under mild assumptions on the node mobility,

it is equivalent to the flooding algorithm in terms of the probability of discov-

ering a path. Obviously, it is not possible to establish a general interference

preorder between the two protocols, but this can be done (algorithmically)

for specific instances of wireless networks.

6.1. Simple flooding: description

Protocol LAR extends the route discovery based on flooding by exploiting

information about locations within the network. The simplest route discovery

algorithm based on flooding consists of three simple packets: request, reply

and error [28], which are forwarded within the network. They are structured

as follows:

• Route Request packet (RREQ) has the form:

(S,Bid,D, seq#S, hop counter) ,

where S is the permanent source address, Bid is the Request Id (unique

identifier), D is the permanent address of the destination, seq#S de-

notes the sequence number of the source, and hop counter is the num-

ber of hops to reach the destination (which is initially set to 0 and then

incremented at each request forwarding).

• Route Reply packet (RREP) has the form:

(S,Bid,D, seq#D, hop counter, Lifetime) ,

49

where S, Bid and D are as above, seq#D is the sequence number

of the destination, hop counter is the number of hops to reach the

destination and Lifetime is the duration of the route validity.

• Route Error packet (RERR) has the form:

(S,D, seq#D) ,

where S D and seq#D are as in the previous case.

Normally, a node looking for a path to a given destination, simply broadcasts

a RREQ within the network. Having sent the packet, the node sets a time-

out to manage the cases when the destination does not receive the request,

or the reply packet is lost. If the timeout expires, the node broadcasts a

new request, using a different sequence number to avoid loops. When the

destination finally receives the RREQ, it immediately sends back the corre-

sponding RREP, using unicast communication, i.e., each intermediate node

forwards the RREP using the information in its routing table. When, during

a communication, a node realizes that a link failed, it broadcasts a RERR

and each node will update its routing table.

6.2. Exploiting location data: the LAR policy

LAR extends the simple flooding algorithm described above by directing

the propagation of the discovery packets to a particular network area based

on the expected locations of the destination node. In the LAR specification,

the Expected Zone is the network area where the source expects to find the

destination node. This is determined by means of the information that the

50

source has previously retrieved about the destination location. In practice,

if node S knows that destination node D was located at location l1 at epoch

t, and it moves with a speed v, then it can calculate the circle area centered

at l1, with radius v(t′− t), where t′ is the current epoch. If S does not know

anything about D, then the Expected Zone coincides with the entire network.

The Request Zone is the network area that the source defines to specify

a candidate route to the destination. An intermediate node forwards a route

request only if it is within the Request Zone. There are different ways to

define a Request Zone: usually choosing a smaller area reduces the message

overhead (because it reduces the number of forwarded packets), while a larger

area reduces the latency of the route discovery because the network finds a

path with higher probability.

LAR behaves similarly to the simple flooding, with the difference that a

node that is not inside the Request Zone does not forward the request. LAR

can use two different policies for determining the Request Zone: we focus on

the first such policy, known as LAR Scheme 1.

LAR Scheme 1 uses a rectangular Request Zone, depending on the po-

sition of the source with respect to the Expected Zone. In particular, the

Request Zone will be the smallest rectangle containing both the Expected

Zone and the position of the source node, as shown in Figure 3.

Let (XS, YS) and (XD, YD) the Cartesian coordinates of S and D, and

R the radius of the Expected Zone. If S is outside the Expected Zone, the

coordinates of the rectangle area are:

A: → (XS, YD +R) B: → (XD +R, YD +R)

C: → (XD +R, YS) D: → (XS, YS)

51

n

m
v(t’ – t)

EXPECTED	

ZONE	

REQUEST	

ZONE	

A	

C	
 D	

B	

Figure 3: Expected and Request Zones in the LAR protocol

S hopcounter BID Seq# D

(a) A simple route request packet

� ��������	
��
 �	��
 �������
�

(b) Aroute request packet with location in-
formation

Figure 4: Different route request packets of LAR - Scheme 1

If S falls inside the Expected Zone, the coordinates of the rectangle area are:

A: → (XD −R, YD +R) B:→ (XD +R, YD +R)

C: → (XD −R, YD −R) D: → (XD +R, YD −R)

When S broadcasts its request, it includes the coordinates of the Request

Zone rectangle (see Figure 4). Once an intermediate node receives a RREQ,

this is discarded if its location does not fall within the rectangle specified

in the packet. To take into account the location measuring error, a positive

value e is added to the radius of the Expected Zone, consequently enlarging

also the Request Zone.

6.3. Modelling the network

We encode the simple flooding and the LAR protocols using PEBUM. We

abstract out all details about how the Expected Zone and Request Zone are

52

determined, by using pre-defined functions that are implemented according

to the specifications of LAR Scheme 1.

We first introduce some auxiliary functions to simplify the protocol spec-

ification:

• gps : returns the actual geographical position of the node executing

the process (by means, e.g., of GPS technology);

• dist(l) : returns the distance from location l and the location of the

node executing the process;

• self : returns the name (permanent address) of the node executing

the process;

• geq(k, l) = true if k ≥ l, false otherwise;

• inside(s, A) = true if s ∈ A, false otherwise;

• unable(n) = refreshes the route table, removing the existing path to

n;

• find path(n) = true if there exists a valid path for n in the route

table of the node executing the process;

• newBid: generates a new unique Bid identifier for a packet;

• lastBid: returns the latest generated Bid identifier;

• control(Bid) = true if the request associated with Bid has been al-

ready received by the node executing the process.

Each node maintains a routing table containing information about the paths

to the other nodes in the network. Each entry has the following form:

(d, seq#d, next hopd, hopcountd, locd, vd, timeout) ,

53

where d is the destination name, seq#d is the sequence number of the route

to d, next hopd is the name of the next node to reach d, hopcountd is the

number of hops to reach d, locd is the last location known for d, vd is the

average speed of d and timeout is the timeout associated with the entry.

Each node is also associated with a request table containing the list of all

the requests already processed by the node; this is needed to prevent loops

during the route request forwarding. For brevity, we model a network in

which all the nodes use a common transmission radius r.

Let’s now consider N = (νc)(n[P]l |
∏

i∈Ini[Q SIMPLE]li) where a node

n broadcasts a route request using the simple flooding algorithm to find a

path to m in the network
∏

i∈Ini, and M = (νc)(n[P]l |
∏

i∈Ini[Q LAR1]li)

which is the same network but with nodes in I using the LAR protocol

(Scheme 1) instead of the simple flooding algorithm.

The process executed by node n simply broadcasts a RREQ packet for

node m and waits for a RREP packet until a timeout expires. The timeout is

modelled using the operator ⊕ that behaves as the non-deterministic choice

and can be implemented in our calculus by means of the parallel composition

is the standard way. In case of timeout, a new RREQ is sent.

P = out〈c∅,r, (rreq, n, newBid,m, Request Zone, seq#n, 0)〉.P ′

P ′ = P ⊕ in(c, x1, x2, x3, x4, x5, x6, x7).[x1 = rrep][x2 = n][x3 = lastBid]

[x4 = m][geq(hop countm, x7)]out〈okgps,r, route found〉 , P ′

where m = ni for some i ∈ I, and x7 = hop count in the RREP packet

received. Basically, once a route is found, n broadcasts on channel ok a

54

Q X = in(c, x1, x2, x3, x4, x5, x6, x7).

[x1 = rreq]([control(x3) = false]([x4 = self]

out〈cnext hopx2
,r, (rrep, s, Bid, d, seq#s, hop counter)〉.Q X,RREQ X〈x̃〉), Q X),

[x1 = rrep]([x2 = self]out〈udgps,r, x2, x3, x4, x5, x6, x7〉,
out〈cnext hopx2

,r, (rrep, s, Bid, d, seq#s, hop counter)〉.Q X),

[x1 = rerr]unable(x4).Q X,Q X

RREQ SIMPLE〈(rreq, s, Bid, d, seq#s, hop counter)〉 =

[find path(d) = true].

out〈cnext hopd,r
, (rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,

out〈cRequest Zone,r, (rreq, s, Bid, d, seq#s, (hop counter) + 1)〉.Q SIMPLE

RREQ LAR1〈(rreq, s, Bid, d, Request Zone, seq#s, hop counter)〉 =

([inside(gps, Request Zone) = true](

[find path(d) = true]

out〈cnext hopd,r
, (rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,

out〈cRequest Zone,r, (rreq, s, Bid, d, Request Zone, seq#s, (hop counter) + 1)〉)).Q LAR1

Table 8: Process specifications used in the case study of Section 6

packet that signals this event. Therefore, we consider that the two networks

are probabilistic equivalent with respect to their ability to find a route to m

if we observe this transmission with the same probability. Notice that, the

output on channel c will not be observed by any location because we want

to allow the route discovery packets used in the two networks to be arbitrary

different.

Hereafter, we use X ∈ {SIMPLE,LAR1} to denote the simple flooding

or LAR Scheme 1. The RREQ SIMPLE and the RREQ LAR1 subprocess

are defined as shown by Table 8.

In order to compare the behaviour of the protocols, we focus our attention

on the following restricted set F ⊆ Sched of admissible schedulers:

1. the timeout for a RREQ identified by Bid occurs when in the networks

55

there are no packets related to Bid;

2. nodes’ movements are allowed at least every time a timeout occurs;

3. begin broadcasting actions (Beg-Bcast) have priority over end broad-

casting actions (End-Bcast).

Condition 1 on F is a requirement inherited by the protocol design; the

timeout is usually set by knowing the physical dimension of the network.

Roughly speaking, we aim at preventing that in the analysis we consider

unrealistic schedulers that always choose the timeout option too quickly and

hence a route to the destination is never found and those schedulers that

wait for an answer indefinitely long. Condition 2 is needed because we do

not want to consider those schedulers that never allow for node movements.

Finally, Condition 3 gives us the worst case scenario about the interference,

i.e., whenever an interference could occur it is measured.

Proposition 6.1. Let M , N and F as above. A sufficient condition for

M ≈Fp N is that the Markov chains Jni associated with the mobile nodes ni

(i ∈ I) are ergodic.

For brevity we omit the formal proof. This relies on the fact that the prob-

ability of finding a route is always 1 both for the LAR and the flooding pro-

tocol. Indeed, node m keeps sending RREQ until it gets an answer thanks

to the timeout mechanism that is eventually chosen by the hypothesis on F .

A route is surely eventually found thanks to the second assumption on the

schedulers in F and the condition on the ergodicity of the chains modelling

the nodes’ movements (there is at least a node spatial configuration reachable

with non zero probability in which the route from m to n is found without

interference).

56

The comparison between LAR and flooding protocols in terms of inter-

ference must be carried out using PEBUM given the physical properties of

the networks. Indeed, the interference levels can depend on several factors

such as the node density and the good estimation of the Request Zone and

the Expected Zone in the LAR.

7. Conclusion

One of the most critical challenges in managing mobile ad-hoc networks

is to find a good trade off between network connectivity, power saving and in-

terference reduction. We have proposed an effective framework for analysing

protocol connectivity and measuring the level of interference and, based

on that for developing novel interference-aware communication strategies.

Though other models exist in the literature, ours appears to be the most

comprehensive and effective for the behavioural analysis and a quantitative

assessment of interference for wireless networks in the presence of node mo-

bility.

Plans for the future, include work on developing a model checker for our

calculus based on PRISM [29, 30] to perform automated, quantitative verifi-

cation and analysis of wireless networks for a range of performance metrics.

PRISM appears an excellent tool for the purpose, as it allows one to model

process algebra operators, it supports models where non-deterministic and

probabilistic aspects coexist, and provides support for the specification of a

wide range of properties and rewards.

57

Acknowledgments

Work partially supported by the Italian MIUR - PRIN Project CINA:

Compositionality, Interaction, Negotiation and Autonomicity.

References

[1] X. Wang, K. Kar, Throughput modelling and fairness issues in

CSMA/CA based ad-hoc networks, in: Proc. of the 24th Annual Joint

Conf. of the IEEE Computer and Communications Societies (INFO-

COM’05), IEEE, 2005, pp. 23–34.

[2] A. Muqattash, M. Krunz, CDMA-based MAC protocol for wireless ad

hoc networks, in: Proc. of the 4th ACM International Symposium on

Mobile ad hoc Networking & Computing (MobiHoc’03), ACM, 2003, pp.

153–164.

[3] L. Gallina, S. Hamadou, A. Marin, S. Rossi, A probabilistic energy-

aware model for mobile ad-hoc networks, in: Proc. of the 18th Interna-

tional Conference on Analytical and Stochastic Modelling Techniques

and Applications (ASMTA’11), Vol. 6751 of LNCS, Springer-Verlag,

2011, pp. 316–330.

[4] L. Gallina, S. Rossi, Sender- and receiver-centered interference in wire-

less ad hoc networks, in: Proc. of IFIP Wireless Days 2010 (WD’10),

IEEE, 2010.

[5] I. Lanese, D. Sangiorgi, An operational semantics for a calculus for wire-

less systems, Theoretical Computer Science 411 (19) (2010) 1928–1948.

58

[6] M. Merro, An observational theory for mobile ad hoc networks, Infor-

mation and Computation 207 (2) (2009) 194–208.

[7] R. Segala, N. Lynch, Probabilistic simulations for probabilistic pro-

cesses, in: Proc. of the 5th International Conference on Concurrency

Theory (CONCUR’94), Vol. 836 of LNCS, Springer-Verlag, 1994, pp.

481–496.

[8] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. of International

Colloquium on Automata, Languages and Programming (ICALP’92),

Vol. 623 of LNCS, Springer-Verlag, 1992, pp. 685–695.

[9] Ad hoc on-demand distance vector routing protocol, available at

http://moment.cs.ucsb.edu/AODV.

[10] Y. Ko, N. Vaidya, Location aided routing (lar) in mobile ad hoc net-

works, Wireless Networks 6 (2000) 307–321.

[11] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[12] A. Singh, C. Ramakrishnan, S. Smolka, A process calculus for mobile

ad hoc networks, in: Proc. of the 10th International Conference on

Coordination Models and Languages (COORDINATION’08), Vol. 5052

of LNCS, Springer-Verlag, 2008, pp. 296–314.

[13] S. Nanz, C. Hankin, A framework for security analysis of mobile wireless

networks, Theoretical Computer Science 367 (1) (2006) 203 – 227.

[14] K. V. S. Prasad, A calculus of broadcasting systems, Science of Com-

puter Programming 25 (2-3) (1995) 285–327.

59

[15] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann,

W. Tan, A process algebra for wireless mesh networks, in: Programming

Languages and Systems, Vol. 7211 of lncs, Springer Berlin / Heidelberg,

2012, pp. 295–315.

[16] L. Song, J. Godskesen, Probabilistic mobility models for mobile and

wireless networks, in: Theoretical Computer Science, Vol. 323 of IFIP

Advances in Information and Communication Technology, Springer

Boston, 2010, pp. 86–100.

[17] J. Goubault-Larrecq, C. Palamidessi, A. Troina, A probabilistic applied

pi-calculus, in: Proc. of the 5th Asian Symposium on Programming Lan-

guages and Systems (APLAS’07), Vol. 4807/2009 of LNCS, Springer-

Verlag, 2007, pp. 175–190.

[18] D. Macedonio, M. Merro, A Semantic Analysis of Wireless Network Se-

curity Protocols, in: NASA Formal Methods, Vol. 7226 of lncs, Springer

Berlin / Heidelberg, 2012, pp. 403–417.

[19] R. Lanotte, M. Merro, Semantic Analysis of Gossip Protocols for Wire-

less Sensor Networks, in: CONCUR 2011 Concurrency Theory, Vol.

6901 of lncs, Springer Berlin / Heidelberg, 2011, pp. 156–170.

[20] A. Cerone, M. Hennessy, Modelling probabilistic wireless networks, in:

Formal Techniques for Distributed Systems, Vol. 7273 of lncs, Springer

Berlin / Heidelberg, 2012, pp. 135–151.

[21] J. Hillston, A Compositional Approach to Performance Modelling, Cam-

bridge University Press, 1996.

60

[22] M. Bernardo, M. Bravetti, Performance measure sensitive congruences

for Markovian process algebras, Theoretical Computer Science 290 (1)

(2003) 117–160.

[23] H. Hermanns, Interactive Markov Chains: The Quest for Quantified

Quality, LNCS 2428, Springer-Verlag, 2002.

[24] G. Mohimani, F. Ashtiani, A. Javanmard, M. Hamdi, Mobility Mod-

eling, Spatial Traffic Distribution, and Probability of Connectivity for

Sparse and Dense Vehicular Ad Hoc Networks, IEEE Trans. on Vehicu-

lar Technology 58 (4).

[25] M. Beccuti, M. D. Pierro, A. Horvàth, A. Horvàth, K. Farkas, A Mean

Field Based Methodology for Modeling Mobility in Ad Hoc Networks,

in: Proc. of 73rd IEEE Vehicular Technology Conference (VTC Spring),

IEEE, Budapest, HU, 2011, pp. 1–5.

[26] M. Bugliesi, L. Gallina, S. Hamadou, A. Marin, S. Rossi, Interference-

sensitive preorders for manets, in: Proc. 9th International Conference

on Quantitative Evaluation of SysTems (QEST’12), IEEE, 2012, pp.

189–198.

[27] A. Cerone, M. Hennessy, Modelling probabilistic wireless networks, Log-

ical methods in computer science 9 (3).

[28] A. S. Tanenbaum, Computer Networks, Prentice Hall, 2003.

[29] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, Prism: A tool for

automatic verification of probabilistic systems, in: Proc. of the 12th

61

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’06), Vol. 3920 of LNCS, Springer-

Verlag, 2006, pp. 441–444.

[30] M. Z. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification

of probabilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer

(Eds.), CAV, Vol. 6806 of Lecture Notes in Computer Science, Springer,

2011, pp. 585–591.

62

Appendix A.

This supplement contains the proofs of some of the main results presented

in the paper.

Proof of Lemma 3.1. By induction on the transition rules of Table 5.

Case 1 : M
c?@l−−→ JM ′K∆

(Beg-Rcv) Let M
c?@l−−→ JM ′K∆ inferred by rule (Beg-Rcv), then there

exist n, P, l, r such that M ≡ n[P]l, M
′ ≡ n[P ′]l and

P = in(c, x̃).Q and P ′ = c(x̃).Q. If we consider the empty network M1

and the empty sequence d̃ the lemma is proved.

(Par) Let M
c?@l−−→JM ′K∆ inferred by rule (Par), where M ≡ M1 | N ,

M ′ ≡ M ′
1 | N and M1

c?@l−−→JM ′
1K∆. By induction hypothesis we have

M1 ≡ (νd̃)(n[in(c, x̃).P]l|M2) and M ′
1 ≡ (νd̃)(n[c(x̃).P]l|M2), for some

n, P , x̃, (possibly empty) d̃ such that c /∈ d̃, and (possibly empty) M2.

By applying rule (Struct Cxt Par), (Struct Par Assoc), (Struct Res

Par) and (Struct Trans) we obtain

M ≡M1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N))

and

M ′ ≡M ′
1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N)),

as required.

(Res) Let M
c?@l−−→JM ′K∆ inferred by rule (Res), where M ≡ (νd)M1,

M ′ ≡ (νd)M ′
1 and M1

c?@l−−→JM ′
1K∆ and c 6= d. By induction hypothesis

we have M1 ≡ (νd̃′)(n[in(c, x̃).P]l|M2) and M ′
1 ≡ (νd̃′)(n[c(x̃).P]l|M2)

63

for some n, P , x̃, (possibly empty) d̃′ such that c /∈ d̃′, and (possibly

empty) M2. If we consider d̃′′ = d̃′ ∪ d, since c /∈ d̃′′, we get:

M ≡ (νd̃′′)(n[in(c, x̃).P]l|M2) and M ′ ≡ (νd̃′′)(n[in(c, x̃).P]l|M2).

Case 2 : M
c?ϑ@l−−−→ JM ′K∆. The proof of this case is analogous to the

previous one.

Case 3 : M
cL![l,r]−−−−→ JM ′K∆

(Beg-Snd) Let M
cL![l,r]−−−−→ JM ′K∆ inferred by rule (Beg-Snd). Then

there exist ṽ and P such that: M ≡ n[out〈cL,r, ṽ〉.P]l.

Since out〈cL,r, ṽ〉.P
¯cL,r−−→ c̄L,r〈ṽ〉.P , if we suppose d̃, J , K and M1

empty, lemma is proved because M ≡

(νd̃)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈J nj[in(c, x̃j)Pj]lj |
∏

k∈K nk[c(x̃k)Pk]lk |M1)

and M ′ ≡

(νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj |
∏

k∈K nk[Pk{⊥/x̃k}]lk |M1).

(Beg-Bcast) Let M
cL![l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡

M ′
1 | N ′, M1

cL![l,r]−−−−→ JM ′
1K∆ and N

c?@l′−−−→ JN ′K∆, with d(l, l′) ≤ r. By

induction hypothesis: M1 ≡

(νd̃1)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈J nj[in(c, x̃j)Pj]lj |
∏

k∈K nk[c(x̃k)Pk]lk |M2)

and M ′
1 ≡

(νd̃1)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj |
∏

k∈K nk[Pk{⊥/x̃k}]lk |M2),

for some n, P , ṽ, l, some (possible empty) sequence d̃1 such that c /∈

d̃1, some (possibly empty) sets J and K and some (possibly empty)

network M2, and by indcution hypothesis we get:

N ≡ (νd̃2)(m[in(c, x̃).Q]l′ |N1) and N ′ ≡ (νd̃2)(m[c(x̃).Q]l′|N1),

for some m, Q, x̃, some (possible empty) sequence d̃2 such that c /∈ d̃2

64

and (possibly empty) network N1 . By applying rules (Struct Cxt Par),

(Struct Par Assoc), (Struct Res Par) and (Struct Trans), if we consider

d̃ = d̃1 ∪ d̃2, we get:

M ≡ (νd̃)(n[out〈cL,r, ṽ〉.P]l|m[in(c, x̃).Q]l′ |
∏

j∈J nj[in(c, x̃j)Pj]lj

|
∏

k∈K nk[c(x̃k)Pk]lk | (M2 | N1))

and

M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|m[c(x̃).Q]l′ |
∏

j∈J nj[c(x̃j)Pj]lj

|
∏

k∈K nk[Pk{⊥/x̃k}]lk | (M2 | N1)).

(Coll) Let M
cL![l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡ M ′

1 | N ,

M1
cL![l,r]−−−−→ JM ′

1K∆ and N
c?⊥@l′−−−−→ JN ′K∆, with d(l, l′) ≤ r. By induction

hypothesis: M1 ≡

(νd̃1)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈J nj[in(c, x̃j)Pj]lj |
∏

k∈K nk[c(x̃k)Pk]lk |M2)

and M ′
1 ≡

(νd̃1)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj |
∏

k∈K nk[Pk{⊥/x̃k}]lk |M2),

for some n, P , some (possibly empty) sequence d̃1 such that c /∈ d̃1,

some (possibly empty) sets J and K and some (possibly empty) net-

work M2, and by induction hypothesis we get:

N ≡ (νd̃2)(m[c(x̃).Q]l′ |N1) and N ′ ≡ (νd̃2)(m[Q{⊥/x̃}]l′|N1),

for some m, Q, x̃, some (possibly empty) sequence d̃2 such that c /∈ d̃2

and (possibly empty) network N1 . By applying rules (Struct Cxt Par),

(Struct Par Assoc), (Struct Res Par) and (Struct Trans), if we consider

d̃ = d̃1 ∪ d̃2 we get:

65

M ≡ (νd̃)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈J nj[in(c, x̃j)Pj]lj

|
∏

k∈K nk[c(x̃k)Pk]lk | m[c(x̃).Q]l′ |(M2 | N1))

and

M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj

|
∏

k∈K nk[Pk{⊥/x̃k}]lkm[Q{⊥/x̃}]l′ | (M2 | N1)).

The proof of the other cases is analogous to the first part of the lemma.

Case 4 : M
cL!ṽ[l,r]−−−−→ JM ′K∆.

(End-Snd) Let M
cL!ṽ[l,r]−−−−→ JM ′K∆ inferred by rule (End-Snd), then

there exists P such that M ≡ n[c̄L,r〈ṽ〉.P]l. Since c̄L,r〈ṽ〉.P
¯cL,r ṽ−−−→ P , if

we suppose J , d̃ and M1 empty, lemma is proved because

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj |M1)

and

M ′ ≡ (νd̃)(n[P]l|
∏

j∈J nj[Pj{ṽ/x̃j}]lj |M1).

(End-Bcast) Let M
cL!ṽ[l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡

M ′
1 | N , M1

cL!ṽ[l,r]−−−−→ JM ′
1K∆ and N

c?ṽ@l′−−−→ JN ′K∆, with d(l, l′) ≤ r. By

induction hypothesis:

M1 ≡ (νd̃1)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J nj[c(x̃j)Pj]lj |M2)

and

M ′
1 ≡ (νd̃1)(n[P]l|

∏
j∈J nj[Pj{ṽ/x̃j}]lj |M2),

for some n, P , some (possibly empty) sequence d̃1 such that c /∈ d̃1,

some (possibly empty) set J and some (possibly empty) network M2,

and by induction hypothesis we get:

N ≡ (νd̃2)(m[c(x̃).Q]l′ |N1) and N ′ ≡ (νd̃2)(m[Q{ṽ/x̃}]l′|N1),

66

for some m, Q, x̃, some (possibly empty) sequence d̃2 such that c /∈ d̃2

and (possibly empty) network N1 . By applying rules (Struct Cxt Par),

(Struct Par Assoc), (Struct Res Par) and (Struct Trans), if we consider

d̃ = d̃1 ∪ d̃2 we get:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|m[c(x̃).Q]l′ |
∏

j∈J nj[c(x̃j)Pj]lj | (M1 | N1))

and

M ′ ≡ (νd̃)(n[P]l|m[Q{ṽ/x̃}]l′ |
∏

j∈J nj[Pj{ṽ/x̃}]lj | (M1 | N1)).

The proof of the other cases is analogous to the first part of the lemma. ut

Proof of Theorem 3.3.

1. By induction on the reduction M −→ JM ′Kθ. Suppose that M −→ JM ′Kθ

is due to the application of the rule (R-Move). We deduce M ≡M ′ ≡

n[P]l and θ = µnl , for some name n, some location l and some process

P . We simply apply (Move) to obtain:

Active(P) = false

n[P]l
τ−→ Jn[P]lKµnl

.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Par).

If we consider M ≡M1 |M2 and M ′ ≡M ′
1 |M2 we have:

M1 −→ JM ′
1Kθ

M1 |M2 −→ JM ′
1 |M2Kθ

.

By induction hypothesis M
τ−→ JM ′Kθ, then by rule (Par) we get:

M1
τ−→ JM ′

1Kθ
M1 |M2

τ−→ JM ′
1 |M2Kθ

.

67

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Res).

If we consider M ≡ (νc)M1 and M ′ ≡ (νc)M ′
1 we have

M1 −→ JM ′
1Kθ

(νc)M1 −→ J(νc)M ′
1Kθ

,

by induction hypothesis M
τ−→ JM ′Kθ, then by applying rule (Res), since

Chan(τ) 6= c we get:

M1
τ−→ JM ′

1Kθ
(νc)M1

τ−→ J(νc)M ′
1Kθ

.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Bgn-

Bcast). It means:

M ≡ (νd̃)(n[out〈cL,r, ṽ〉.P]l |
∏

i∈In[c̄Li,ri〈ṽi〉.Pi]li
|
∏

j∈Jn[c(xj).Pj]lj |
∏

k∈Kn[in(c, xk).Pk]lk)

and

M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l |
∏

i∈In[c̄Li,ri〈ṽi〉.Pi]li
|
∏

j∈Jn[Pj{⊥/x̃j}]lj |
∏

k∈Kn[c(xk).Pk]lk),

for some n, some process P , some channel c, some set L of locations,

some radius r, some tuple ṽ of messages, some tuple d̃ of channels, and

some (possibly empty) sets I, J and K of networks. Then, by applying

rule (Beg-Snd), (Beg-Rcv), and then | K | times rule (Beg-Bcast), | J |

times rule (Coll-Bcast), and, finally rules (Res), (Lose1) and (Par), we

obtain:

M
τ−→≡ J(νd̃)(n[c̄L,r〈ṽ〉.P]l |

∏
i∈In[c̄Li,ri〈ṽi〉.Pi]li |

∏
j∈Jn[Pj{⊥/x̃j}]lj |∏

k∈Kn[c(xk).Pk]lk)Kθ

as required.

68

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-End-

Bcast). It means:

M ≡ (νd̃)n[c̄L,r〈ṽ〉.P]l |
∏

j∈Jnj[c(x̃j).Pj]lj

and

M ′ ≡ (νd̃)n[P]l |
∏

j∈Jnj[Pj{ṽ/x̃j}]lj
for some channel c, some tuple d̃ of channels such that c /∈ d̃, some node

n, some process P , some tuple ṽ of messages, some location l, some set

L of locations, some radius r, some process P , and some (possibly

empty set) J such that d(l, li) ≤ r ∀i ∈ J .

Then, by applying rule (End-Snd), (End-Rcv), | I | times rule (End-

Bcast), | d̃ | times (Res) and finally rule (Lose2), we get:

(νd̃)n[c̄L,r〈ṽ〉.P]l |
∏

j∈Jnj[c(x̃j).Pj]lj
τ−→J(νd̃)n[P]l |∏

j∈Jnj[Pj{ṽ/x̃j}]ljK∆

as required.

Finally let suppose that the reduction M −→ JM ′Kθ is due to an appli-

cation of rule (R-Struct):

M ≡ N N−→JN ′Kθ N ′ ≡M ′

M−→JM ′Kθ
.

By induction hypothesis there exists N1 ≡ N and N2 ≡ N ′ such that

N1
τ−→ JN2Kθ. Then, by applying the rule for structural congruence

(Struct Trans) we get M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2, as required.

2. The second point of the theorem follows from Lemma 3.1 and the def-

inition of barb. If M ↓c@K , by definition of barb there exists ṽ, L, r,

a (possibly empty) sequence d̃ such that c 6∈ d̃, a process P , a (possi-

69

bly empty) network M1 such that: M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l | M1), with

K ⊆ {k ∈ L s.t. d(l, k) ≤ r} and K 6= ∅.

By applying the rules (End-Snd) and (Par) we obtain:

n[c̄L,r〈ṽ〉.P]l
cL!ṽ[l,r]−−−−→ Jn[P]lK∆

n[c̄L,r〈ṽ〉.P]l |M1
cL!ṽ[l,r]−−−−→ Jn[P]l |M1K∆

;

then, since K ⊆ R ∩ L and K 6= ∅, we can apply rule (Obs):

n[c̄L,r〈ṽ〉.P]l |M1
c!ṽ@K/R−−−−−→ Jn[P]l |M1K∆,

where R = {l′ ∈ Loc : d(l, l′) ≤ r}, as required.

IfM
c!ṽ@K/R−−−−−→ JM ′K∆, becauseM

cL!ṽ[l,r]−−−−→ JM ′K∆, by applying Lemma 3.1

then there exist n, a (possibly empty) sequence d̃ such that c /∈ d̃, P , a

(possibly empty) network M1 and a (possibly empty) set J , such that

∀j ∈ J d(l, lj) ≤ r and:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈Jnj[c(x̃j).Pj]lj |M1)

and

M ≡ (νd̃)(n[P]l|
∏

j∈Jnj[Pj{ṽ/x̃j}]lj |M1).

By applying the definition of barb we conclude M ↓c@K .

3. The third point of the theorem is proved by induction on the derivation

M
τ−→ JM ′Kθ. Suppose that M

τ−→ JM ′Kθ is due to an application of the

rule (Move), that means:

Active(P) = false

n[P]l
τ−→ Jn[P]lKµnl

,

70

hence , by applying (R-Move) we get:

Active(P) = false

n[P]l−→Jn[P]lKµnl
.

If M
τ−→ JM ′Kθ is due to an application of (Lose1):

M
cL![l,r]−−−−→ JM ′K∆

M
τ−→JM ′K∆

,

then, by applying Lemma 3.1, there exists n, ṽ, P d̃ such that c /∈ d̃

and P , a (possibly empty) network M1 and two (possibly empty) sets

J and K such that ∀i ∈ J ∪K d(l, li) ≤ r, such that:

M ≡ (νd̃)(n[out〈cL,r, ṽ〉.P]l|
∏

j∈J
nj[in(c, x̃j).Pj]lj |∏

k∈K
nk[c(x̃k).Pj]lj |M1)

M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l|
∏

j∈J
nj[c(x̃j).Pj]lj |

∏
k∈K

nk[Pk{⊥/x̃k}]lk |M1).

Finally, by applying rule (R-Bgn-Bcast), (R-Res) and (R-Struct) we

get M −→ JM ′Kθ.

For the application of the rule (Lose2) the proof is analogous to the

previous one.

Suppose that M
τ−→ JM ′Kθ is due to the application of (Res), we have

M ≡ (νc)M1, M ′ ≡ (νc)M ′
1 and

M1
τ−→ JM ′

1Kθ
(νc)M1

τ−→ J(νc)M ′
1Kθ

.

71

By induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Res)

we get (νc)M1 −→ J(νc)M ′
1Kθ.

Finally, suppose that M
τ−→ JM ′Kθ is due to the application of (Par),

we have M ≡M1 | N , M ′ ≡M ′
1 | N and:

M1
τ−→ JM ′

1Kθ
M1|N

τ−→ JM ′
1|NKθ

,

by induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Par)

we get M1|N −→ JM ′
1|NKθ.

4. The last point of the theorem follows from definition of barb and

Lemma 3.1. Formally, since M
c!ṽ@K/R−−−−−→ JM ′K∆ because M

cL!ṽ[l,r]−−−−→

JM ′K∆ for some location l, radius r and set L of intended recipients, by

applying Lemma 3.1:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P]l |
∏

j∈Jnj[c(x̃j).Pj]lj |M1)

and

M ′ ≡ (νd̃)(n[P]l |
∏

j∈Jnj[Pj{ṽ/x̃j}]lj |M1)

for some n, P , for some (possibly empty) sequence d̃ such that c /∈ d̃,

some (possibly empty) set J , and some (possibly empty) network M1.

Then, by applying the rule (R-End-Bcast), (R-Par) and (R-Res) we get

(νd̃)(n[c̄L,r〈ṽ〉.P]l |
∏

j∈Jnj[c(x̃j).Pj]lj |M1) −→ J(νd̃)(n[P]l |∏
j∈Jnj[Pj{ṽ/x̃j}]lj |M1)K∆,

and, by applying (R-Struct), we obtain M −→ JM ′K∆, as required. ut

Proof of Theorem 3.10. In order to prove that bisimulation is a sound

characterisation of Probabilistic Barbed Congruence we have to prove that

≈F̂p is:

72

1. reduction closed w.r.t. F

2. probabilistic barb preserving w.r.t. F

3. contextual.

Probabilistic Labelled Bisimulation is reduction closed.

We have to prove that if M ≈Fp N , then for all F ∈ FMC , there exists

F ′ ∈ FNC such that for all classes C ∈ N /R, ProbFM(C) = ProbF
′

N (C).

By Theorem 3.3 there exists an admissible scheduler F̂ ∈ LSched such

that ProbFM(C) = ProbF̂M(==⇒, C ′), where C ′ = C ∪ {M ′ : M ′ ≡ M ′′ ∈ C},

but since ∀M ′ such that M ′ ≡M ′′ ∈ C, by applying rule (R-Struct) it holds

M ′ ∼=Fp M ′′, we get {M ′ : M ′ ≡ M ′′ ∈ C} ⊆ C, that means C ′ = C. By

Definition 3.5 we deduce F̂ ∈ F̂MC , since for all the executions in ExecF̂M(==⇒

, C), the correspondent reduction executions are allowed by F , which is an

element of FMC . By Proposition 3.9 we have that ∃F̂ ′ ∈ F̂NC such that

ProbF̂M(==⇒, C) = ProbF̂
′

N (==⇒, C). Finally, by Theorem 3.3, ∃F ′ ∈ Sched

such that ProbF̂
′

N (==⇒, C) = ProbF
′

N (C). Finally, we can deduce F ′ ∈ FNC by

applying Definitions 3.5 and 2.7.

Probabilistic Labelled Bisimulation is Probabilistic barb preserving.

To prove that bisimulation is probabilistic barb preserving we have to

show that, if M ≈Fp N , then, for each scheduler F ∈ FMC , for each channel

c, and for each set K of locations such that M⇓Fp c@K, then ∃F ′ ∈ FNC such

that N⇓F ′

p c@K.

Let M⇓Fp c@K for some channel c, some set K of locations, and scheduler

F ∈ FMC . It means that ProbFM(H) = p, where M ′ ∈ H iff M ′ ↓c@K . We can

partition H in a set of equivalence classes for ≈Fp . Hence ∃I such that ∀i ∈ I

Ci ∈ N / ≈Fp , Ci ∩H 6= ∅, and H ⊆
⋃
i∈I Ci. We get:

73

ProbFM(H) =
∑

e∈ExecFM (H)P
F
M(e) =

∑
i∈I Prob

F
M(Ci) = p.

By Theorem 3.3, ∃F̂ ∈ LSched such that ∀i ∈ I:

ProbFM(Ci) = ProbF̂M(==⇒, C ′i),

where C ′i = Ci ∪ {M ′ | ∃M ′′ ∈ Ci and M ′ ≡ M ′′}, but, since ∼=Fp is

closed under structural congruence, ∀M ′ ≡ M ′′ ∈ Ci, M ′ ∼=Fp M ′′, hence

{M ′ : M ′ ≡ M ′′ ∈ Ci} ⊆ Ci, that means C ′i = Ci. Now we have to prove that

F̂ ∈ F̂MC , but this follows straightforwardly by Definition 3.5. Hence:

ProbFM(Ci) = ProbF̂M(==⇒, Ci) ∀i ∈ I and∑
i∈I Prob

F
M(Ci) =

∑
i∈I Prob

F̂
M(==⇒, Ci).

Since M ≈Fp N , ∃F̂ ′ ∈ F̂NC such that, ∀i ∈ I:

ProbF̂M(==⇒, Ci) = ProbF̂
′

N (==⇒, Ci).

Again by Lemma 3.3 ∃F ′ ∈ LSched such that:

p =
∑

i∈I Prob
F̂ ′
N (==⇒, Ci) =

∑
i∈I Prob

F ′
N (Ci) = ProbF

′
N (H),

that means N⇓F ′

p c@K.

By Definition 3.5 we finally deduce that F ′ ∈ FNC , as required.

Probabilistic Labelled Bisimulation is contextual

We start with the parallel composition. Let R be the following relation:

R = {(M | O,N | O) : M,N,M | O,N | O are well-formed, and ,M ≈Fp N}.

We will prove that it is a probabilistic labelled bisimulation w.r.t. F . For

this purpose, we need to prove that, ∀F ∈ F̂M |OC ∃F ′ ∈ F̂N |OC such that,

∀C ∈ N /R, ∀α:

1. α = τ then ProbFM |O(
τ−→, C) = ProbF

′

N |O(==⇒, C).

If P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈Fp

74

Q̄. But then there exists D ∈ N / ≈Fp such that D = {P̄ : P̄ | Ō ∈ C}.

Now we have three cases to consider:

(i) if M | O τ−→ JM | O′Kθ the proof is simple, because we have,

∀M̄ in the support of JM | O′Kθ, such that M̄ ∈ C, M̄ ≡ M | O′′

and, since M ≈Fp N , N | O′′ ∈ C too, by definition of R. Hence

(by applying rule (Par) to the action O
τ−→ JO′Kθ), since N | O is

well-formed, ∃F ′ ∈ LSched such that

ProbFM |O(
τ−→, C) = ProbF

′

N |O(==⇒, C).

We have only to prove that F ′ ∈ F̂N |OC , but the proof follows

straightforwardly by the Definitions 2.7 and 3.5.

(ii) If M | O τ−→ JM ′ | OKθ, since M is well-formed, by Defini-

tion 3.5 ∃F1 ∈ F̂MC such that ProbFM |O(
τ−→, C) = ProbF1

M (
τ−→,D).

But since M ≈Fp N , and N is well-formed, ∃F2 ∈ F̂NC such that

ProbF1
M (

τ−→,D) = ProbF2
N (==⇒,D). Again, since the network N | O

is well-formed, ∃F ′ ∈ LSched such that, by applying rule (Par)

to the executions in ExecF2
N (==⇒,D), we get

ProbF2
N (==⇒,D) = ProbF

′

N |O(==⇒, C).

Since by Definitions 3.5 each execution in the set ExecF2
N (==⇒,D)

has a correspondent reduction execution allowed by FN |OC , and by

Definition 2.7 we know that the same executions can be performed

by N when interacting with any context, we can finally deduce,

by applying again Definition 3.5, that F ′ ∈ F̂N |OC , as required.

(iii) If M | O τ−→ M ′ | O′ due to a synchronization between M

and O, then there are two cases to consider.

75

If M
c!ṽ[l,r]−−−→ JM ′K∆ and O

c?ṽ@k−−−→ JO′K∆, for some message ṽ, chan-

nel c, locations l, k and radius r, such that d(l, k) ≤ r, we can

apply rule (Obs) obtaining M
c!ṽ@K/R−−−−−→ M ′ for some K ⊆ L and

for some R, with k ∈ R. Therefore, ∃F1 ∈ LSched such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c!ṽ@K/R−−−−−→,D).

By Definition 3.5 we deduce F1 ∈ F̂MC and, since N ≈Fp M , ∃F2 ∈

F̂NC such that

ProbF1
M (

c!ṽ@K/R−−−−−→,D) = ProbF2
N (

c!ṽ@K/R
=====⇒,D),

where each execution e in ExecF2
N (

c!ṽ@K/R
=====⇒,D) is of the form

e = N
τ−→θ1 N1 −→ ...Ni−1

c!ṽ@K/R−−−−−→∆ Ni −→ ...N ′,

and, by applying rule (Obs) backwardly, Ni−1
c!ṽ[l′,r′]−−−−→∆ Ni for

some l′ and r′ such that d(l′, k) ≤ r′. We can apply rule (Bcast)

obtaining Ni−1 | O
c!ṽ[l′,r′]−−−−→∆ Ni | O′ without changing probability.

Finally if we take F ′ ∈ LSched which applies rule (Lose2) to the

output action, we obtain the required result:

ProbF2
N (

c!ṽ@K/R
=====⇒,D) = ProbF

′

N |O(==⇒, C).

We have finally to prove that F ′ ∈ F̂N |OC . We start by the con-

sideration that, by Definition 3.3, for any execution of the form
α

==⇒ in F̂NC , where α is a silent or an output action there exists

a correspondent reduction in FN |OC . Since by Definition 2.7, for

any context, there exists a scheduler in FN |OC mimicking the be-

haviour exhibited by N when interacting with the given context,

we can affirm that ∃F̄ ∈ FN |OC such that ExecF̄N |O contains all the

reductions corresponding to the executions of ExecF
′

N |O. Hence, by

76

Definition 3.5, F ′ ∈ F̂N |OC , as required.

If M
c?ṽ@k−−−→ JM ′K∆ and O

cL!ṽ[l,r]−−−−→ JO′K∆, for some message ṽ, some

set L of locations, some channel c, some locations l, k and radius

r, such that d(l, k) ≤ r, then ∃F1 ∈ F̂MC such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c?ṽ@k−−−→,D).

Since N ≈Fp M , ∃F2 ∈ F̂NC such that:

ProbF1
M (

c?ṽ@k−−−→,D) = ProbF2
N (

c?ṽ@k
===⇒,D) or

ProbF1
M (

c?ṽ@k−−−→,D) = ProbF2
N (==⇒,D).

In the first case, since by hypothesis k ∈ R and N | O is well-

formed, also N is able to synchronize with O. Hence ∃F ′ ∈

LSched such that for all

e = N
τ−→θ1 N1 −→ ...Ni−1

c?ṽ@k−−−→ Ni −→ ...N ′ ∈ ExecF2
N (

c?ṽ@k
===⇒,D)

there exists a matching execution such that, by applying rule

(Bcast) Ni−1 | O
c!ṽ[l,r]−−−→ Ni | O, and by applying rule (Lose2),

we get:

e′ = N | O τ−→θ1 N1 | O −→ ...Ni−1 | O
τ−→ Ni | O′ −→ ...N ′ | O′

in ExecF
′

N |O(==⇒, C). Hence,

ProbF2
N (

c?ṽ@k
===⇒,D) = ProbF

′

N |O(==⇒, C).

In order to prove F ′ ∈ F̂N |OC , we start by the consideration that,

since O
cL!ṽ[l,r]−−−−→ JO′K∆, by Definition 2.7, for any context, there

exists a scheduler in FN |OC mimicking the behaviour of O in its

interaction with the given context. Then we can affirm that ∃F̄ ∈

FN |OC such that ExecF̄N |O contains all the reductions corresponding

to the executions of ExecF
′

N |O. Hence, by Definition 3.5, F ′ ∈

77

F̂N |OC , as required.

If N is not able to receive the message the proof is analogous: it is

sufficient to apply the rule (Par) to O
c!ṽ@K/R−−−−−→ JO′K∆, obtaining:

ProbF2
N (==⇒,D) = ProbF

′

N |O(==⇒, C).

2. α = c!ṽ@K / R

The proof is analogous to the point (iii) of the previous item.

3. α = c?@k then ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

==⇒, C) or ProbFM |O(
α−→, C) =

ProbF
′

N |O(==⇒, C).

If P,Q ∈ C, then P ≡ M̄ | Ō, Q ≡ N̄ | Ō and M̄ ≈Fp N̄ . But then

∃D ∈ N / ≈Fp such that D = {M̄ : M̄ | Ō ∈ C}. Now we have two

cases to consider:

(i) The transition is due to an action performed by O, hence

O
α−→∆ O′ and M | O′ ∈ C. But since M ≈Fp N , N | O′ ∈ C too,

∃F ′ ∈ LSched such that by applying parallel composition to the

input of O, we obtain the desired result:

ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

==⇒, C).

Finally, by Definition 3.5 we deduce F ′ ∈ F̂N |OC , as required.

(ii) The transition is due to an action performed by M, in this

case, by Definition 3.5 ∃F1 ∈ F̂MC such that:

ProbFM |O(
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈Fp N ∃F2 ∈ F̂NC such that:

ProbF1
M (

α−→,D) = ProbF2
N (

α
==⇒,D), or

ProbF1
M (

α−→,D) = ProbF2
N (==⇒,D).

78

In both cases, since N | O is well-formed, ∃F ′ ∈ LSched such that

by applying parallel composition, we have:

ProbF2
N (

α
==⇒,D) = ProbF

′

N |O(
α

==⇒, C), or

ProbF2
N (==⇒,D) = ProbF

′

N |O(==⇒, C).

In order to prove that F ′ ∈ F̂N |OC , we start by the consideration

that, by Definition 3.5 there exists at least a context C[·] and

∃F̄ ∈ FC[N]
C such that C[N] −→ C ′[N ′], and, by the reduction rules

we get:

C[·] ≡ (νd̃)m[out〈cL,r, ṽ〉.P]l |M1

for some d̃ such that c 6∈ d̃, some m, some set L of locations, some

process P , some (possibly empty) network M1, some location l and

some radius r such that d(l, k) ≤ r. Then, by Definition 2.7 we

have that there exists a scheduler allowing m[out〈cL,r, ṽ〉.P]l −→

Jm[P]lK∆, and again by Definition 2.7 there exists a scheduler

allowing the reduction m[out〈cL,r, ṽ〉.P]l | N | O −→
∗

Jm[P]l | N ′ |

O′K∆, meaning, by Definition 3.5, F ′ ∈ F̂N |OC as required.

4. α = c?ϑ@k the proof is analogous as for α = c?@k.

Now we proceed with the restriction.

Let R = {((νd)M, (νd)N) : M ≈Fp N} be a relation. We need to prove

that it is a probabilistic labelled bisimulation w.r.t. F .

Let us consider C: if P,Q ∈ C, by definition of R, P ≡ (νd̄)P̄ , Q ≡ (νd̄)Q̄

and P̄ ≈Fp Q̄. But then ∃D ∈ N / ≈Fp such that D = {P̃ : (νd̄)P̄ ∈ C}.

We have to prove that, ∀F ∈ F̂ (νd)M
C ∃F ′ ∈ F̂ (νd)N

C such that, ∀C ∈ N /R,

∀α:

79

1. α = τ implies that ProbF(νd)M(
τ−→, C) = ProbF

′

(νd)N(==⇒, C).

Since Chan(τ) = ⊥, by Definition 3.5 ∃F1 ∈ F̂MC such that

ProbF(νd)M(
τ−→, C) = ProbF1

M (
τ−→,D) and, since M ≈Fp N ∃F2 ∈ F̂NC such

that: ProbF1
M (

τ−→,D) = ProbF2
N (==⇒,D).

Finally we can take F ′ ∈ LSched mimicking the executions in the set

ExecF2
N (==⇒,D), when applying the restriction on N . Hence:

ProbF2
N (==⇒,D) = ProbF

′

(νd)N(==⇒, C).

In order to prove that F ′ ∈ F̂ (νd)N
C , we start by the consideration that,

by Definition 2.7, for any context there exists a scheduler in F (νd)N
C

mimicking the behaviour of N when interacting with the given context.

Hence ∃F̄ ∈ F (νd)N
C such that ExecF̄(νd)N contains all the reductions

corresponding to the executions in ExecF
′

(νd)N , meaning, by Definition

3.5, F ′ ∈ F̂ (νd)N
C as required.

2. α = c!ṽ@K / R. Since d 6= c, by Definition 3.5 ∃F1 ∈ F̂MC such that

ProbF(νd)M(
α−→, C) = ProbF1

M (
α−→,D), then since M ≈Fp N , ∃F2 ∈ F̂NC

such that ProbF1
M (

α−→,D) = ProbF2
N (

α
==⇒,D).

Therefore, since Chan(α) 6= d, ∃F ′ ∈ LSched such that:

ProbF2
N (

α
==⇒,D) = ProbF

′

(νd)N(
α

==⇒, C).

Again, we prove that F ′ ∈ F̂ (νd)N
C as for the previous case.

3. α = c?@k. Again, since d 6= c, by Definition 3.5 ∃F1 ∈ F̂MC such that

ProbF(νd)M(
α−→, C) = ProbF1

M (
α−→,D). Since M ≈Fp N , there exists F2 ∈

F̂NC such that ProbF1
M (

α−→,D) = ProbF2
N (

α
==⇒,D) or ProbF1

M (
α−→,D) =

ProbF2
N (==⇒,D). In both cases we can apply rule (Res) to N, since

Chan(τ) 6= Chan(α) 6= d. Therefore, there exists F ′ ∈ LSched such

that the required result holds, that is

ProbF2
N (

α
==⇒,D) = ProbF

′

(νd)N(
α

==⇒, C) or

80

ProbF2
N (==⇒,D) = ProbF

′

(νd)N(==⇒, C).

In order to prove that F ′ ∈ F̂ (νd)N
C we proceed as for the previous cases.

4. α = c?ϑ@k. The proof is analogous to the one for α = c?@k. ut

Proof of Theorem 3.11. In order to prove the completeness we show that

the relationR = {(M,N) : M ∼=Fp N} is a probabilistic labelled bisimulation.

We have to prove that, ∀F ∈ F̂MC ∃F ′ ∈ F̂NC such that, ∀C ∈ N /R, ∀α:

if α = τ then ProbFM(
τ−→, C) = ProbF

′
N (==⇒, C).

By Theorem 3.3 we know that there exists a scheduler F̄ ∈ Sched

such that ProbFM(
τ−→, C) = ProbF̄M(C), and, by Definition 3.5 we deduce

F̄ ∈ FMC . Since M ∼=Fp N , ∃F̄ ′ ∈ FNC such that ProbF̄M(C) = ProbF̄
′

N (C).

Again by Theorem 3.3 and Definition 3.5, there exists F ′ ∈ F̂NC such

that ProbF̄
′

N (C) = ProbF
′

N (==⇒, C ∪ {N̄ ≡ N ′ ∈ C}), but since ∼=Fp is

closed under structural equivalence, ∀N̄ ≡ N ′ ∈ C, N̄ ∈ C, hence:

ProbFM(
τ−→, C) = ProbF

′
N (==⇒, C).

if α = c!ṽ@K / R then ProbFM(
α−→, C) = ProbF

′
N (

α
==⇒, C).

First we notice that ProbFM(
c!ṽ@K/R−−−−−→, C) is either 0 or 1.

If ProbFM(
c!ṽ@K/R−−−−−→, C) = 0 we are done, because it will be enough to

take any scheduler F ′ ∈ F̂NC not allowing observable output actions on

the channel c, and we get ProbFM(
c!ṽ@K/R−−−−−→, C) = ProbF

′
N (

c!ṽ@K/R
=====⇒, C).

If ProbFM(
c!ṽ@K/R−−−−−→, C) = 1, then, by Definition 3.5 there exists a sched-

uler F̄ ∈ FMC such that M⇓F̄1 c@K, and it means that ∃F̄ ′ ∈ FNC such

that N⇓F̄ ′

1 c@K, hence ∃R′ such that K ⊆ R′ and N
c!ṽ@K/R′

======⇒. Now in

order to mimic the effect of the action c!ṽ@K /R, we build the context

81

C[·] =
∏n

i=1(ni[in(c, x̃i).[x̃i = ṽ]out〈fiki,r, x̃i〉]ki |

mi[in(fi, ỹi).out〈okiki,r, ỹi〉]ki),

where R = {k1, ..., kn} and fi and oki fresh ∀i ∈ [1− n].

Since M
c!ṽ@K/R−−−−−→, then the message is reachable by all nodes ni, hence,

by Definition 2.7, which captures the behaviour of a network when

interacting in any context, since C[M] is well-formed, ∃F̄1 ∈ FC[M]
C

such that C[M] −→
∗
M̄ , where

M̄ ≡M ′ |
∏n

i=1(ni[0]ki | mi[out〈okiki,r, ṽi〉]ki),

with M̄ 6↓fi@R and M̄⇓F̄1
1 oki@R, ∀i ∈ [1− n].

The absence of the barb on the channels fi together with the presence

of the barb on the channels oki ensures that all the locations in R have

been able to receive the message. Since C[M] ∼=Fp C[N], ∃F̄2 ∈ FC[N]
C

such that ProbF̄1

C[M](C ′) = ProbF̄2

C[N](C ′) where M̄ ∈ C ′.

Therefore, C[N] −→
∗
N̄ with N̄ 6↓f@R and N̄⇓F̄2

1 ok@R. The constrains

on the barbs allow us to deduce that

N̄ ≡ N ′ |
∏n

i=1(ni[0]ki | mi[out〈okiki,r, ṽi〉]ki)

which implies N
c!ṽ@K/R

=====⇒ N ′, or N ==⇒ N ′ in case (Lose2) has been

applied to the output action on the channel c. Since M̄, N̄ ∈ C, then

M̄ ∼=Fp N̄ . Since ∼=Fp is contextual, it results (νok)M̄ ∼=Fp (νok)N̄ ,

from which we can derive that M ′ ∼=Fp N ′. But since N ′ ∈ C and

N
c!ṽ@K/R

=====⇒ N ′, then, by Definition 3.5 ∃F ′ ∈ F̂NC such that:

ProbF
′

N (
c!ṽ@K/R

=====⇒, C) = 1 = ProbFM(
c!ṽ@K/R

=====⇒, C).

if α = c?@k then we notice that ProbFM(
c?ṽ@k−−−→, C) is either 0 or 1.

82

If ProbFM(
c?@k−−−→, C) = 0 we are done, because it will be enough to take

any scheduler F ′ ∈ F̂NC not allowing input actions on the channel c,

and we get ProbFM(
c?@k−−−→, C) = ProbF

′
N (

c?@k
===⇒, C).

If ProbFM(
c?@k−−−→, C) = 1, because M

c?@k−−−→ JM ′K∆, by Definition 2.7 there

exists at least a context C[·] and ∃F̄ ∈ FC[M]
C such that C[M] −→ C ′[M ′],

and by Theorem 3.3 we deduce that:

C[·] ≡ (νd̃)m[out〈cL,r, ṽ〉.P]l |M1,

and

C ′[·] ≡ (νd̃)m[c̄L,r〈ṽ〉.P]l |M ′
1,

for some m, some tuple d̃ of channel such that c /∈ d̃, dome set L of

messages, some radius r, some process P , some location l such that

d(l, k) ≤ r and some (possibly empty) network M1 and M ′
1.

By Definition 2.7, for any context there exists a scheduler in FC[M]
C

allowing m to perform the output when interacting with any context.

Hence we can build the following context:

C1[·] = · | m[out〈cL,r, ṽ〉.P]l | m1[in(c, x̃).out〈fk,r′ , x̃〉.out〈okk,r′ , x̃〉]k,

in order to mimic the behaviour of the networks, with m static, f and

ok fresh, r′ > 0 and d(l, k) > r′ ∀l ∈ Loc s.t. l 6= k. There exists a

scheduler F̄1 ∈ FC1[M]
C such that:

C1[M] −→
∗
M ′ | m[P]l | m1[out〈okk,r′ , ṽ〉]k ∈ ExecF̄1

C1[M],

with M ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k 6↓f@k and

M ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k⇓F̄1
1 ok@k.

The reduction sequence above must be matched by a corresponding

83

reduction sequence C1[N] −→
∗
N ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k, with

M ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k ∼=p N
′ | m[P]l | m[out〈okk,r′ , ṽ〉]k,

N ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k 6↓f@k and

N ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k⇓F̂2
1 ok@k for some F̄2 ∈ FC1[N]

C .

This does not ensure that N actually performed the input action, but

we can conclude that there exists F ′ ∈ LSched and N ′ such that either

N
c?@k

===⇒ N ′ or N ==⇒ N ′. Since M ′ | m[P]l | m[out〈okk,r′ , ṽ〉]k ∼=p N
′ |

m[P]l | m[out〈okk,r′ , ṽ〉]k and ∼=Fp is preserved by the parallel compo-

sition, we can easily derive M ′ ∼=Fp N ′ (applying rules for structural

equivalence), that means M ′, N ′ ∈ C and ∃F ′ ∈ LSched such that:

ProbFM(
c?@k−−−→, C) = 1 = ProbF

′
N (

c?@k
===⇒, C) or

ProbFM(
c?@k−−−→, C) = 1 = ProbF

′
N (==⇒, C).

Now we have only to prove that F ′ ∈ F̂NC , but this follows straightfor-

wardly by Definition 3.5, since F̄2 ∈ FC1[N]
C .

if α = c?ϑ@k the proof is analogous as for α = α = c?@k.

ut

84

