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Abstract—The computation of the steady-state distribution of
Continuous Time Markov Chains (CTMCs) may be a computa-
tionally hard problem when the number of states is very large.
In order to overcome this problem, in the literature, several
solutions have been proposed such as the reduction of the state
space cardinality by lumping, the factorisation based on product-
form analysis and the application of the notion of reversibility.
In this paper we address this problem by introducing the notion
of autoreversibility which is defined as a symmetric coinductive
relation which induces an equivalence relation among the chain’s
states. We show that all the states belonging to the same
equivalence class share the same stationary probabilities and
hence the computation of the the steady-state distribution can be
computationally more efficient. The definition of autoreversibility
takes inspiration by the Kolmogorov’s criteria for reversible
processes and hence requires to test a property on all the minimal
cycles of the chain. We show that the notion of autoreversibility
is different from that of reversible processes and does not
correspond to other state aggregation techniques such as lumping.
Finally, we discuss the applicability of our results in the case of
models defined in terms of a Markovian process Algebra such
as the Performance Evaluation Process Algebra.

I. INTRODUCTION

Discrete and continuous time Markov Chains are the theo-
retical foundations of many approaches to the performance
evaluation of computer systems. In particular, many for-
malisms that have been introduced for defining performance
and reliability models have an underlying stochastic process
that is a Markov chain. To mention some examples, queueing
networks may be defined both with discrete or continuous
time (see, [1] for a recent survey), while stochastic Petri
nets [2], Markovian process algebras [3], [4] and stochastic
automata networks [5] have underlying Continuous Time
Markov Chains (CTMCs). The analysis of the underlying
process allows one to derive the desired performance indices
of the model. Often these indices are computed in steady-state
(if it exists), i.e., we compute the stationary state probabilities
when the time elapsed from the initial instant tends to infinity.
A discrete or continuous time Markov chain that is ergodic
admits a unique limiting distribution that is called steady-state
distribution. The conditions for ergodicity are well-known for
both the discrete and continuous time cases (see, e.g., [6]).

Hereafter, we focus on CTMCs but the results we are
presenting may be straightforwardly reformulated for the dis-
crete time case. A CTMC is characterised by its infinitesimal

generator Q = (qij), i.e., a square matrix whose dimension
corresponds to the number of model’s states, and each entry
qij , for i 6= j, is the transition rate from state i to state j,
while qii is the opposite of the sum of the row extra-diagonal
entries. Let π = (πi) be the row vector associating each state
i with its steady-state probability πi, 0 < πi ≤ 1. Then, π is
the unique vector that satisfies the following matrix equations:

πQ = 0 ∧ π1T = 1 ,

where 1 is the row vector of 1 with the right dimension.
The first system of equations is usually referred to as the
system of global balance equations (GBEs) while the second
equation is the normalising condition that ensures that the sum
of the probabilities is 1 since for ergodic chains the rank of
Q is n − 1, where n is the number of states. In practice,
for large chains, solving the GBEs can be a computationally
difficult task since the algorithms may turn to be numerically
unstable and time consuming. In the literature, several methods
have been introduced to deal with this problem. Exact and
approximate solutions of the GBEs are discussed in [7], [6].
A different approach is that taken by the product-form theory
that allows for the derivation of the steady-state distribution
as normalised product of the steady-state distributions of the
model’s sub-components considered in isolation and oppor-
tunely parametrised [8], [9], [10], [11], [12], [13]. Neuts and
other authors proposed a way to exploit the block-regular
structure of a certain class of infinitesimal generators [14]. The
approach we propose here aims at avoiding the solution of the
GBE system of a CTMC by exploiting some structural proper-
ties that also leads to a reduction of the number of states that
must be considered. Although the idea of reducing the number
of states of a Markov process is the base of the aggregation
and the lumping techniques studied for instance in [15], to
the best of our knowledge, the results we propose are novel.
Specifically, we introduce the notion of autoreversibility for
CTMCs which relies on a symmetric coinductive relation,
named reversal bisimulation, which induces an equivalence
relation among the chain’s states called reversal equivalence.
The formal definition of this equivalence relation is inspired by
the generalised Kolmogorov’s criteria proved in [9]. However,
while in [9] and in [16] the authors deal with two distinct
processes, the original CTMC and its reversed, in this paper



we study only the forward process and use similar criteria to
identify some internal symmetries that allow us to simplify
the system of GBE. A CTMC is autoreversible if every state
i is associated with another state i′ that could be interpreted
as its reversed. Two states belong to the same equivalence
class if they share the same reversed states. We prove that
all the states belonging to the same equivalence class must
have the same steady-state probability and that given the
stationary probability of state i, we can easily compute that
of i′ which depends also on the cardinality of the equivalence
classes of i and i′. These properties allow the definition of
extremely efficient ways for the computation of the steady-
state distribution.

The paper is structured as follows. Section II discusses some
related work and introduces the notation and the basic notions
needed to keep the paper self-contained. Section III introduces
the notion of weak similarity among states which is at the basis
of the definition of autoreversibility. Section IV introduces the
definition of autoreversibility and discusses the properties of
autoreversible CTMCs. Section V shows the application of
these results for models specified using the Markovian process
algebra PEPA. Section VI concludes the paper.

II. THEORETICAL BACKGROUND

In this section we introduce the notion of reversibility of
Markov chains with the aim of helping the intuition behind
the definition of autoreversibility and reviewing the existing
literature. For the sake of brevity we just consider CTMCs
although the theory of reversibility can be formulated also for
Discrete Time Markov Chains.

An ergodic CTMC with state space S admits a unique
steady-state distribution. Let Q = (qij) be its infinitesimal
generator, then the steady-state distribution π is the unique
vector that satisfies the equation:

πQ = 0 ∧
∑
s∈S

πs = 1 .

Any non-trivial solution of the GBE differs by a constant
(invariant measure) but only one satisfies the normalising
condition.

Given an ergodic CTMC in steady-state X(t) with t ∈
R+, we call X(τ − t) its reversed process. It can be
shown that X(τ − t) is also a stationary CTMC. We say
that X(t) is reversible if it is stochastically identical to
X(τ − t), i.e., Xt1 , . . . , Xtn has the same distribution of
(Xτ−t1 , . . . , Xτ−tn) for all ti, τ ∈ R+ [16, Ch. 1].

A CTMC is reversible if and only if the following detailed
balance equations are satisfied [16, Theorem 1.3]:

πiqij = πjqji for all states i 6= j ,

where Q = (qij) is the process’s instantaneous state transition
rate matrix (its generators, apart from the diagonal) and π is
the vector associated with its steady-state distribution. Clearly,
a reversible CTMC X(t) and its dual X(τ − t) have the same
steady-state distribution.

An important property of reversible CTMCs is the Kol-
mogorov’s criterion which states that the reversibility of a
process can be established directly from its transition rates.

Proposition 1 (Kolmogorov’s criteria [16]). A stationary
Markov process with state space S and infinitesimal generator
Q is reversible if and only if its transition rates satisfy
the following equation: for every finite sequence of states
i1, i2, . . . in ∈ S.

qi1i2qi2i3 · · · qin−1inqini1 = qi1inqinin−1 · · · qi3i2qi2i1 . (1)

Notice that the reversed process X(τ − t) can still be
defined when X(t) is not reversible. In [9] the author shows
that X(τ − t) is a CTMC and proves that the transition rates
are defined in terms of the stationary distribution of the process
X(t) as stated by the following proposition.

Proposition 2 (Reversed process transition rates [9]). Given
the stationary Markov chain X(t), the transition rates of the
reversed process X(τ − t) are defined as follows:

qRji =
πi
πj
qij , (2)

where qRji denotes the transition rate from state j to i in
the reversed process. It still holds that the forward and the
reversed process have the same stationary distribution.

Observe that we can replace in Equation (2) any non-
trivial solution of the GBE. Roughly speaking, we can say
that the knowledge of the reversed process’ transition rates
allows for an efficient computation of the invariant measure
of the process and vice versa the latter allows for an efficient
definition of the reversed process. In [9] the author generalises
the Kolmogorov’s criteria in order to encompass non-reversible
CTMCs. Hereafter, for a given state i we denote by qi (resp.
qRi ) the quantity

∑
j∈S,i 6=j qij (resp.

∑
j∈S,i 6=j q

R
ij).

Proposition 3 (Kolmogorov’s generalised criteria [9]). A
stationary Markov process with state space S and infinitesimal
generator Q has reversed process with infinitesimal generator
QR if and only if the following conditions hold:

1) qRi = qi for every state i ∈ S;
2) for every finite sequence of states i1, i2, . . . , in ∈ S,

qi1i2qi2i3 . . . qin1inqini1 = qRi1inq
R
inin−1

qRi2i3q
R
i2i1 . (3)

Proposition 3 suggests us a proof method for verifying
whether a vector π satisfies the GBE system πQ = 0 for
a given process X(t). It consists in:

1) defining the reversed process X(τ − t) using Proposi-
tion 2 and assuming π,

2) verifying the generalised Kolmogorov’s criteria of
Proposition 3.

If the generalised Kolmogorov’s criteria are verified and∑
s∈S πs = 1 then, by uniqueness of the steady-state distri-

bution, we can conclude that π is the steady-state distribution
of the process.

The last notion we introduce in this section is that of similar
states proposed by Yap in [17].



Definition 1 (Similar states). Two distinct states i1 and i2 of a
CTMC are similar if their rates to every other state agree, i.e.:

∀j 6= i1, i2 qi1j = qi2j

In [17] the author proves that the similarity relation is
not transitive (and hence it is not an equivalence relation).
Moreover, given a partition of the chain’s state space into
similarity classes1 S1, . . . , St then S1, . . . , St is a lumping [15]
for the original CTMC. In [17] the author discusses the
applicability of this result with special attention to the analysis
of DNA sequences.

III. WEAK SIMILARITY OF STATES

In this section we generalize the Yap’s notion of similarity
among states by relating those states whose rates to (and from)
any class of weakly similar states agree. We show that weak
similarity is an equivalence relation.

In the following, i→ j denotes a transition from state i to
state j and [j]∼w denotes the set of states which are weakly
similar to j. Moreover, we denote by mi[j]∼w

the number of
transitions from state i to the set of states [j]∼w

and by m[j]∼w i

the number of transitions from the set [j]∼w
to i.

Definition 2 (Weak similarity). Given a CTMC with state
space S, a relation ∼w⊆ S × S is a weak similarity if:

1) For every i1 → j1 and i2 → j2 such that i1 ∼w i2 and
j1 ∼w j2 it holds that

qi1j1 = qi2j2 ;

2) for every state j and for every state i1 and i2 such that
i1 ∼w i2, it holds that:

mi1[j]∼w
= mi2[j]∼w

m[j]∼w i1
= m[j]∼w i2

where for every i, j ∈ S, mi[j]∼w
= |{i→ k : j ∼w k}| and

m[j]∼w i
= |{k → i : j ∼w k}|.

Before giving the intuition behind each of the definition
items, we prove the following proposition.

Proposition 4. The weak similarity is an equivalence relation.

Proof: Reflexivity and symmetry follow immediately. We
prove that ∼w is transitive. Let i1, i2, i3 be three states such
that i1 ∼w i2 and i2 ∼w i3.

In order to prove the first item of Definition 2, let j1, j2, j3
be three states such that i1 → j1, i2 → j2 and i3 → j3 and
j1 ∼w j2 and j2 ∼w j3. From i1 ∼w i2 we have qi1j1 = qi2j2
and from i2 ∼w i3 we have qi2j2 = qi3j3 , hence qi1j1 = qi3j3 .

To prove the second item of Definition 2 consider a state j.
From i1 ∼w i2 we have mi1[j]∼w

= mi2[j]∼w
and m[j]∼w i1

=
m[j]∼w i2

. From i2 ∼w i3 we have mi2[j]∼w
= mi3[j]∼w

and m[j]∼w i2
= m[j]∼w i3

. Hence mi1[j]∼w
= mi3[j]∼w

and
m[j]∼w i1

= m[j]∼w i3
.

Informally, Condition 1 of Definition 2 asks that all the
transitions from the states of an equivalence class [i]∼w

to

1Note that two elements belonging to the same class are similar but two
similar elements can belong to different classes.
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Fig. 1: CTMC studied in Example 2 (running example).

any state of an equivalence class [j]∼w
have the same rate.

Condition 2 asks that the number transitions from equivalent
states to the states of a fixed equivalence class are the
same, and the number transitions from the states of a fixed
equivalence class to distinct equivalent states are the same.

Notice that Yap’s notion of similarity classes does not al-
ways imply weak similarity. Indeed, let us consider the exam-
ple presented in [17] of a CTMC with infinitesimal generator

Q =

 ∗ α2 α3

α1 ∗ α3

α1 α4 ∗


where ∗ denotes the opposite of the sum of the row extra
diagonal entries and all αi are distinct. Notice that according to
Definition 1 state 1 is similar to state 2 and the latter is similar
to state 3. However, states 1 and 3 are not similar since α2 6=
α4. Notice that in the case of weak similarity if 1 ∼w 2, then
it must hold α1 = α2 by Condition 1 of Definition 2. In [17]
the author proves that for reversible CTMC, state similarity
becomes an equivalence relation. In these cases it implies our
notion of weak similarity.

The following example shows a CTMC and its partition into
equivalence classes according to ∼w.

Example 1 (Weak similarity). Let us consider the CTMC
depicted by Figure 1.

We can easily prove that A ∼w C, D ∼w F and hence the
state space S is partitioned as follows:

S/ ∼w= {{A,C}, {D,F}, {B}, {E}} .

The following Propositions 5 and 6 and Theorem 1 allow
us to characterise the steady-state distribution of an ergodic
CTMC on which a weak similarity relation has been defined.

Proposition 5. Given a CTMC with state space S, if i, j ∈ S
and i ∼w j then qi = qj where qh =

∑
k∈Sr{h} qhk is the

total rate out of state h, with h = i, j.

Proof: The proof immediately follows by Definition 2.

Proposition 6. Given a CTMC with state space S and a weak
similarity relation ∼w⊆ S×S, then S/ ∼w is a strong lumping
of the chain.

Proof: Consider the states i1, i2 ∈ S and let i1 ∼w i2.
We must prove that taken any other equivalence class [j]∼w



the following relation holds [15]:∑
j∈[j]∼w

qi1j =
∑

j∈[j]∼w

qi2j .

This immediately follows by Definition 2.

Another interesting property of weak similarity that will be
used in Section IV is the following:

Proposition 7. Given a CTMC and a weak similarity relation
∼w⊆ S × S, for each class [i]∼w

, [j]∼w
∈ S/ ∼w it holds:

nimi[j]∼w
= njm[i]∼w j

(4)

where nh is the cardinality of equivalence class [h]∼w
, with

h = i, j.

Proof: The proof follows from Definition 2 by observing
that the total number of arcs from class [i]∼w

to [j]∼w
can be

computed using either the expression on the left-hand-side or
that on the right-hand-side of Equation (4).

Theorem 1. Given an ergodic CTMC with state space S and a
weak similarity relation ∼w⊆ S×S and two states i1, i2 ∈ S,
such that i1 ∼w i2, then πi1 = πi2 .

Proof: Since ∼w induces a lumping of the CTMC we can
write down the system of Global Balance Equations (GBEs)
of the lumped process:

π[i]∼w

∑
[j]∼w

qijmi[j]∼w
=

∑
[j]∼w

π[j]∼w
qjimj[i]∼w

, (5)

where π[h]∼w
=

∑
h∈[h]∼w

πh, for h = i, j. We now prove
that i1 ∼w i2 implies πi1 = πi2 by substitution in the
system of GBE. So let us assume the steady-state distribution
πh = π[h]∼w

/nh, where nh denotes the cardinality of [h]∼w
.

Therefore, the GBE associated with state i is:
π[i]∼w

ni

∑
j

qij =
∑
j

π[j]∼w

nj
qji ,

which can be rewritten as:
π[i]∼w

ni

∑
[j]∼w

∑
j∈[j]w

qij =
∑

[j]∼w

π[j]∼w

nj

∑
j∈[j]∼w

qji ,

where we notice that
∑
j∈[j]w

qij = mi[j]∼w
qij and∑

j∈[j]∼w
qji = m[j]∼w i

qji where qij and qji which appears
on the right-hand-side of these equalities represent the positive
rate of an arbitrary transition between a sate of classes i and
j or j and i, respectively (this is sound by Definition 2).
Therefore, we have:

π[i]∼w

ni

∑
[j]∼w

mi[j]∼w
qij =

∑
[j]∼w

π[j]∼w

nj
m[j]∼w i

qji .

We can multiply both hand-sides by ni and observe that by
Proposition 7 we have m[j]∼w i

/nj = mj[i]∼w
/ni we obtain

again Equation (5) which is an identity.

IV. AUTOREVERSIBILITY

In this section we introduce the notion of autoreversibility
for a given Markov process through the definition of two
relations over its states: a reversal bisimulation which allows
us to relate “reversed” sates and a reversal equivalence rela-
tion which relates states corresponding to the same class of
reversed states. We also study the properties of autoreversible
CTMCs and, in particular, the relationships among the sta-
tionary probabilities of its states. Henceforth we will consider
only stationary Markov chains.

The reversal bisimulation over the states of CTMC is
a coinductive definition, in the style of bisimulation [18],
formally expressed ad follows.

Definition 3 (Reversal bisimulation). Consider an ergodic
CTMC with state space S and infinitesimal generator Q. A
symmetric relation R ⊆ S × S is a reversal bisimulation if

1) for every (i, i′) ∈ R, qi = qi′ ;
2) for every (i1, i

′
1) ∈ R and for every finite sequence of

one-step transitions i1 → i2 → . . . → in−1 → in there
exist i′n → i′n−1 → · · · → i′2 → i′1 such that (ik, i

′
k) ∈

R for all k ∈ {1, . . . , n} and

qi1i2qi2i3 · · · qin−1inqini1 = qi′1i′nqi′ni′n−1
· · · qi′3i′2qi′2i′1 .

We are interested in the relation which is the largest reversal
bisimulation, formed by the union of all reversal bisimulations.

The following proposition ensures that any union of reversal
bisimulations is itself a reversal bisimulation.

Proposition 8. Consider an ergodic CTMC with state space
S and infinitesimal generator Q. Let R1,R2 ⊆ S × S
be two reversal bisimulations. Then R1 ∪ R2 is a reversal
bisimulation.

Proof: Let (i, i′) ∈ R1 ∪R2. Then either (i, i′) ∈ R1 or
(i, i′) ∈ R2 and hence Conditions 1 and 2 of Definition 3 are
satisfied.

Based on the above result we can define the maximal
reversal bisimulation as the union of all reversal bisimulations.

Definition 4 (Reversal bisimilarity). Given an ergodic CTMC
with state space S, we denote by ∼r the maximal reversal
bisimulation over S which is defined by

∼r =
⋃
{R | R is a reversal bisimulation}.

If ∼r⊆ S×S is complete, i.e., for all i ∈ S there exists i′ ∈ S
such that i ∼r i′, then ∼r is called reversal bisimilarity over S.

It is worth notice that the effective computation of reversal
bisimilarity over a finite state space chain can be implemented
as a reformulation of the well-known algorithms that have been
developped in the literature of formal models for bisimulation
[19], [20].

Notice that reversal bisimilarity ∼r is symmetric but in
general it is neither reflexive nor transitive. Roughly speaking,
we say that i ∼r i′ if i′ is a “reversed” state of i. The following
lemma shows that if two states i and j share a reversed state



i′ then the set of reversed states corresponding to i and j are
the same.

Lemma 1. Consider an ergodic CTMC with state space S
and infinitesimal generator Q. For all i, j, i′ ∈ S such that
i ∼r i′ and j ∼r i′, it holds that

{i′ : i ∼r i′} = {i′ : j ∼r i′}.

Proof: Let i′′ ∈ S such that i ∼r i′′. We prove that also
j ∼r i′′. From the facts that i ∼r i′, j ∼r i′ and i ∼r i′′ we
have qi = q′i = qj = qi′′ and then Condition 1 of Definition 3
is satisfied. In order to prove Condition 2 of Definition 3,
consider a finite sequence of one-step transitions j = j1 →
j2 → . . . → jn−1 → jn. From j ∼r i′ there exist i′n →
i′n−1 → · · · → i′2 → i′1 = i′ such that (jk, i

′
k) ∈ R for all

k ∈ {1, . . . , n} and

qj1j2qj2j3 · · · qjn−1jnqjnj1 = qi′1i′nqi′ni′n−1
· · · qi′3i′2qi′2i′1 .

From i ∼r i′ there exist i = i1 → i2 → . . . → in−1 → in
such that (ik, i

′
k) ∈ R for all k ∈ {1, . . . , n} and

qi1i2qi2i3 · · · qin−1inqini1 = qi′1i′nqi′ni′n−1
· · · qi′3i′2qi′2i′1 .

Finally, from i ∼r i′′ there exist i′′n → i′′n−1 → · · · → i′′2 →
i′′1 = i′′ ∈ S such that (ik, i

′′
k) ∈ R for all k ∈ {1, . . . , n} and

qi1i2qi2i3 · · · qin−1inqini1 = qi′′1 i′′nqi′′ni′′n−1
· · · qi′′3 i′′2 qi′′2 i′′1

and hence

qj1j2qj2j3 · · · qjn−1jnqjnj1 = qi′′1 i′′nqi′′ni′′n−1
· · · qi′′3 i′′2 qi′′2 i′′1 .

Analogously, we can prove that for every sequence i′′ = i′′1 →
i′′2 → . . .→ i′′n−1 → i′′n there exist jn → jn−1 → · · · → j2 →
j1 = j such that (i′′k , jk) ∈ R for all k ∈ {1, . . . , n} and

qi′′1 i′′2 qi′′2 i′′3 · · · qi′′n−1
i′′n
qi′′ni′′1 = qj1jnqjnjn−1 · · · qj3j2qj2j1 .

This concludes the proof that j ∼r i′′.
Reversal bisimilarity induces an equivalence relation over

the states of the CTMC, denoted ∼, which equates states
corresponding to the same set of reversed states. We call this
equivalence relation, reversal equivalence.

Definition 5 (Reversal equivalence). Consider an ergodic
CTMC with state space S and reversal bisimilarity ∼r⊆ S×S.
We call reversal equivalence, denoted by ∼, the relation over
S defined as: for all i, j ∈ S,

i ∼ j iff {i′ : i ∼r i′} = {i′ : j ∼r i′}.

Proposition 9. The relation defined by Definition 5 is an
equivalence relation.

Proof: The proof trivially follows by Definition 5.

The reversal equivalence ∼⊆ S × S induces a partition on
the state space S. Let S/ ∼ denote the set of equivalences
classes generated in this way. Let [i] ∈ S/ ∼ denote the
equivalence class containing i ∈ S, that is [i] = {j ∈ S| i ∼ j}
and ni denote the cardinality of this set, that is ni = |[i]| =
|{j ∈ S| i ∼ j}|.

We are now ready to introduce our notion of autoreversibil-
ity for a given CTMC. The following definition states that a
CTMC is autoreversible if it admits a reversal bisimilarity over
its states which induces a weak similarity. A further condition
relating forward and reverse transitions is required.

Definition 6 (Autoreversibility). An ergodic CTMC with state
space S and infinitesimal generator Q is said autoreversible if

1) ∼r⊆ S × S is a reversal bisimilarity over S,
2) ∼⊆ S × S is a weak similarity,
3) for every i, i′, j, j′ such that i ∼r i′ and j ∼r j′,

mi[j] = mj′[i′].

Example 2 (Autoreversibility). Consider the CTMC depicted
by Figure 1. Since it has a finite number of states and is
irreducible it is trivially ergodic. Assume λ = 2a, µ = a,
ν = 8a and ρ = 4a, with a ∈ R+, then it can be proved that
the chain is autoreversible and the reversal bisimilarity ∼r is:

{(A,E), (C,E), (B,D), (F,B), (E,A), (E,C), (D,B), (B,F )} .

Then, the equivalence classes of S/ ∼ are: {A,C}, {D,F},
{B}, {E} with nA = nC = 2, nD = nF = 2, nB = 1 and
nE = 1. Observe that {B} is the class of the “reversed” of
{A,C} and {D,F} is the class of the “reversed” of {E}.

The following proposition shows that ∼r is well-defined.

Proposition 10. Consider an ergodic CTMC with state space
S, infinitesimal generator Q and reversal bisimilarity ∼r⊆
S × S. For every finite sequence of one-step transitions i1 →
i2 → . . . → in−1 → in and i′n → i′n−1 → · · · → i′2 → i′1
such that ik ∼r i′k for all k ∈ {1, . . . , n} it holds that

qi1i2qi2i3 · · · qin−1inqini1 = qi′1i′nqi′ni′n−1
· · · qi′3i′2qi′2i′1 .

Proof: Let i1, i2, . . . , in−1, in ∈ S and i′1 = i′′1 ∈ S
be a state such that i1 ∼r i′′1 . By Definition 3, there exist
i′′n, i

′′
n−1, . . . , i

′′
2 , i
′′
1 ∈ S such that (ik, i

′′
k) ∈ R for all k ∈

{1, . . . , n} and

qi1i2qi2i3 · · · qin−1inqini1 = qi′′1 i′′nqi′′ni′′n−1
· · · qi′′3 i′2qi′′2 i′′1 .

By Lemma 1 and Definition 5, i′k ∼ i′′k for all k ∈ {1, . . . , n}.
Since ∼ is a weak similarity, the proof follows by Condition 1
of Definition 2.

We now show that ∼r is reflexive for the class of reversible
Markov processes.

Proposition 11. For a stationary Markov process X(t) with
state space S, if X(t) is reversible then ∼r∈ S×S is reflexive.

Proof: Let X(t) be reversible. Then, by Proposition 1,
for any finite sequence of states i1, i2, . . . , in−1, in ∈ S,
qi1i2qi2i3 · · · qin−1inqini1 = qi1inqinin−1

· · · qi3i2qi2i1 . Con-
sider R = {(i, i) : i ∈ S}. It is easy to see that R is a
reversal bisimulation and hence R ⊆∼r, i.e., ∼r is reflexive.

In the following example we show Proposition 11 applied to
the well-known reversible process called Birth&Death process
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Fig. 2: Autoreversible Birth&Death process.

which is underlying to the M/M/n queues with n ∈ N r {0}
or n =∞.

Example 3 (Birth&Death processes). Consider the
Birth&Death process of Figure 2. The CTMC is autoreversible
and its reversal relation is reflexive since, given an arbitrary
state i, each cycle of states starting from i can be followed
backward. Moreover, the sequence of states encountered by
the forward and the backward paths are trivially associated
by the reversal bisimulation.

Example 4 (Exponential queue with batch arrivals and depar-
tures). In this example we consider a Birth&Death process
with constant death rate, µn = µ for all n > 0 and constant
arrival rate λ. We consider the possibility of bath arrivals of
size N and batch departures of the same size.

Let us denote by λN and µN the batches’ arrival and
service rate. We assume that when there are less than N
customers in the queue the batch departure is disabled. We
can easily prove that the CTMC underlying this model is
autoreversible with a reflexive reverse relation if (λN/µN ) =
(λ/µ)N . Indeed, consider the path n, n+1, . . . , n+N , then the
product of the rates forming the forward cycle is λNµN , while
the product of the rates in the backward cycle is λNµN . Since
these two quantities must be identical we have the required
condition dividing both hand-sides by µNµN . Notice that we
can extend this analysis to batches of size N1, N2, . . . , NB that
arrive at and leave from the queue, obtaining the condition
(λ/µ)Nb = λNb

/µNb
for all b = 1, . . . , B.

The following theorem plays an important role in the
analysis of autoreversible CTMCs since it gives an effective
way to compute their steady-state distribution without solving
the system of global balance equations, i.e., by inspections of
the transition rates.

Theorem 2 (Steady-state distribution). Consider an ergodic
CTMC with state space S, infinitesimal generator Q, sta-
tionary probability π and reversal bisimilarity ∼r⊆ S × S.
Let i0 ∈ S be an arbitrary state. For all states i ∈ S, let
i = in → in−1 → · · · → i1 → i0 (n ≥ 1) be a chain of
one-step transitions and i′0 → i′1 → · · · → i′n−1 → i′n = i′

such that ik ∼r i′k for all k ∈ {0, . . . , n}. Then

πi = Ci0
ni0
ni

n∏
k=1

qi′
k−1

i′
k

qikik−1

(6)

where Ci0 ∈ R+.

Proof: First, we prove that Equation (6) gives a unique
definition of πi. Then, we will prove that it is the steady-state
probability of state i as required.

Observe that for all j, k ∈ S, we can find a chain j →
j1 → · · · → jn−1 → k (for n ≥ 1) of one-step transitions
since the Markov process is irreducible. Now we show that
πi is well-defined. Indeed, if i = jm → jm−1 → · · · →
j1 → j0 = i0 (m ≥ 1) is another chain, we can always
find a chain i0 = h0 → h1 → · · · → hl−1 → hl = i.
Since the Markov process is autoreversible, there exist a chain
i′ = h′l → h′l−1 → · · ·h′1 → h′0 = i′′0 = j′0 → j′1 → · · · →
j′m−1 → j′m = i′ such that hk ∼r h′k for all k ∈ {0, . . . , l}
and jk ∼r j′k for all k ∈ {0, . . . ,m}, and

m∏
k=1

qjkjk−1

l∏
k=1

qhk−1hk
=

l∏
k=1

qh′
k
h′
k−1

m∏
k=1

qj′
k−1

j′
k
. (7)

Moreover, considering the one-step chain i = in → in−1 →
· · · → i1 → i0 = h0 → h1 → · · · → hl−1 → hl = i, by
Definition 6 there exists a chain i′′ = h′′l → h′′l−1 → · · ·h′′1 →
h′′0 = i′′0 → i′′1 → · · · → i′′n−1 → i′′n such that hk ∼r h′′k for
all k ∈ {0, . . . , l}, ik ∼r i′′k for all k ∈ {0, . . . , n}, and

n∏
k=1

qikik−1

l∏
k=1

qhk−1hk
=

l∏
k=1

qh′′
k
h′′
k−1

n∏
k=1

qi′′
k−1

i′′
k
.

By Proposition 10, h′k ∼ h′′k for all k ∈ {0, . . . , l} and also
i′k ∼r i′′k for all k ∈ {0, . . . , n}. Hence by Condition 1 of
Definition 2,

l∏
k=1

qh′′
k
h′′
k−1

n∏
k=1

qi′′
k−1

i′′
k

=

l∏
k=1

qh′
k
h′
k−1

n∏
k=1

qi′
k−1

i′
k

and then
n∏
k=1

qikik−1

l∏
k=1

qhk−1hk
=

l∏
k=1

qh′
k
h′
k−1

n∏
k=1

qi′
k−1

i′
k
. (8)

From Equations (7) and (8), we obtain
m∏
k=1

qj′
k−1

j′
k

qjkjk−1

=

n∏
k=1

qi′
k−1

i′
k

qikik−1

.

Hence

πi = Ci0
ni0
ni

n∏
k=1

qi′
k−1

i′
k

qikik−1

where Ci0 is a positive constant, is well-defined.
In order to prove that Equation (6) is the stationary proba-

bility of state i, we use the approach described in Section II.
Since the CTMC is stationary, we can define its reversed
whose transition matrix QR is defined according to Lemma 2.
Let us assume Equation (6) and we show that the reversed
process satisfies the generalised Kolmogorov’s criteria of
Proposition 3. By uniqueness of the steady-state distribution
we will conclude the proof.

Let us consider an arbitrary transition from state i to j with
rate qij in the forward chain, then the corresponding transition
in the reversed process goes from j to i with rate qRji. Observe
that we have just proved that we can choose an arbitrary path
from i to the reference state i0, in particular we can choose
the path going from i to j and then a path from j to i0. By



Definition 6 there will surely exist i′0, i
′, j′ such that i0 ∼r i′0,

i ∼r i′ and j ∼r j′ and a path going from i′0 to j′ and one
step from j′ to i′ such that

πi =
Ψ′i0→jqj′i′

Ψj→i0qij
πj =

Ψ′i0→j
Ψj→i0

where Ψ′i0→j =
∏n
k=1 qi′k−1

i′
k

and Ψj→i0 =
∏n
k=1 qikik−1

with j = in.
By Equation (2), we have:

qRji =
πi
πj
qij =

Ci0
ni0

ni

Ψ′i0→jqj′i′

Ψj→i0
qij

Ci0
ni0

nj

Ψ′
i0→j

Ψj→i0

qij =
nj
ni
qj′i′ .

The generalised Kolmogorov’s criteria on the cycles is readily
verified. Consider the sequence of states i1, . . . , in associated
with the product qi1i2 · · · qin−1inqini1 , then the product of the
rates in the reversed process is:

qRi1inq
R
inin−1

· · · qRi2i1 =
ni1
nin

qi′1i′n
nin
nin−1

qi′ni′n−1
· · · ni2

ni1
qi′2i′1 .

After simplifying we obtain an identity by Definition 6.
We now verify the first generalised Kolmogorov’s criteria.

Let us consider an arbitrary state j, then the outgoing flow
from the reversed process is:

qRj =
∑
i∈S
qRji>0

qRji =
∑
i∈S
qij>0

nj
ni
qj′i′ .

We prove that
qj′ =

∑
i∈S
qij>0

nj
ni
qj′i′ (9)

and this will conclude the proof since, by Definition 3, q′j = qj .
Let us consider the right-hand-side of Equation (9), then we
have:∑

i∈S
qij>0

nj
ni
qj′i′ =

∑
[i]∈S/∼

∑
i∈[i]
qij>0

nj
ni
qj′i′

=
∑

[i]∈S/∼

m[i]j
nj
ni
qj′i′ =

∑
[i]∈S/∼

mi[j]ni

ni
qj′i′ ,

where the last equality follows from Proposition 7. By Condi-
tion 3 of Definition 6 we have mi[j] = mj′[i′] and since every
equivalence class has exactly one counterpart (possibly itself)
by definition, we conclude the proof:∑
[i]∈S/∼

mj′[i′]qj′i′ =
∑

[i′]∈S/∼

mj′[i′]qj′i′ =
∑

i′∈S/∼

qj′i′ = q′j .

We now state two corollaries that aim at simplifying the
application of Theorem 2.

Corollary 1. Consider an ergodic CTMC with state space
S, infinitesimal generator Q, stationary probability π and
reversal bisimilarity ∼r⊆ S × S. Then for all i, j ∈ S
such that i = in → in−1 → · · · → i1 → i0 = j and

j′ = i′0 → i′1 → · · · → i′n−1 → i′n = i′ with ik ∼r i′k
for all k ∈ {0, . . . , n}, it holds

niπi = njπj

n∏
k=1

qi′
k−1

i′
k

qikik−1

.

Proof: By Theorem 2,

πi = Cj
nj
ni

n∏
k=1

qi′
k−1

i′
k

qikik−1

where Cj is a positive constant. In particular, πj = Cj and
hence

πi = πj
nj
ni

n∏
k=1

qi′
k−1

i′
k

qikik−1

.

Corollary 2. Consider an ergodic CTMC with state space
S, infinitesimal generator Q, stationary probability π and
reversal bisimilarity ∼r⊆ S × S. Then for all i, j ∈ S with
qji > 0 and for all i′, j′ ∈ S such that i ∼r i′, j ∼r j′ and
qi′j′ > 0 it holds

njπjqji = niπiqi′j′ .

Proof: Let i, j ∈ S such that i ∼r i′, j ∼r j′ and qi′j′ >
0. Let i0 ∈ S be an arbitrary state, i = in → in−1 → · · · →
i1 → i0 (n ≥ 1) be a chain of one-step transitions and i′0 →
i′1 → · · · → i′n−1 → i′n = i′ such that ik ∼r i′k for all
k ∈ {0, . . . , n}. By Theorem 2,

πi = Ci0
ni0
ni

n∏
k=1

qi′
k−1

i′
k

qikik−1

where Ci0 is a positive constant. Now suppose that qji > 0
and qi′j′ > 0. Again, by Theorem 2,

πj = Ci0
ni0
nj

qi′j′

qji

n∏
k=1

qi′
k−1

i′
k

qikik−1

and hence
njπjqji = niπiqi′j′ .

We apply Theorem 2 to our running example.

Example 5. Let us consider again the CTMC depicted in Fig-
ure 1 with the reversal bisimilarity and the reversal equivalence
derived in Example 2. Let us choose an arbitrary reference
state i0 = A and then pick the shortest sequence of states
from any other state i to A (whose reversed is E). Notice that
nA = 2 since it stays in an equivalence class of cardinality
2. For instance, take B whose reversed is either D or F and
nB = 1. Then we have:

πB = CA
2

1

qED
qBA

= CA .



In a similar way we obtain:

πC = CA
2

2

qEF qFBqBE
qCF qFBqBA

= CA
ρµν

λ2ν
= CA

πD = CA
2

2

qEDqDB
qDBqBA

= CA
νµ

λν
=
CA
2

πE = CA
2

1

qEF qFBqBC
qEF qFBqBA

= 2CA
λ

λ
= 2CA

πF = CA
2

2

qEDqDB
qFBqBA

= CA
µν

νλ
=
CA
2

We can now derive πA = CA and by imposing
∑
i∈S πA = 1

this gives CA = 1/6.

The next Theorem shows that equivalent states have the
same stationary probability.

Theorem 3. Consider an ergodic CTMC with state space
S, infinitesimal generator Q, stationary probability π and
reversal equivalence ∼⊆ S × S. For all states i, j ∈ S such
that i ∼ j it holds πi = πj .

Proof: Since the Markov chain satisfies the conditions
of Definition 2 by hypothesis, then the result follows by
Theorem 1.

The following theorem establishes the relation between the
stationary probability of a state i and that of its reversed i′.
We will show that this relation highly improves the efficiency
of the computation of the steady-state distribution for autore-
versible processes.

Theorem 4. Consider an ergodic CTMC with state space
S, infinitesimal generator Q, stationary probability π and
reversal bisimilarity ∼r⊆ S × S. For all states i, i′ ∈ S such
that i ∼r i′ it holds niπi = ni′πi′ .

Proof: Consider the following chain of one step transi-
tions: i = in → in−1 → · · · → i0 = i′. Let i′0 → · · · →
i′n−1 → i′n such that ik ∼r i′k for k ∈ {0, . . . , n}. By
Theorem 2,

niπi = ni′πi′
n∏
k=1

qi′
k−1

i′
k

qikik−1

.

Let i′ = jm → jm−1 → · · · → j0 = i and j′0 → · · · →
j′m−1 → j′m such that jk ∼r j′k for k ∈ {0, . . . , n}. By
definition of autoreversibility,

m∏
k=1

qjkjk−1

n∏
k=1

qi′
k−1

i′
k

=

n∏
k=1

qikik−1

m∏
k=1

qj′
k−1

j′
k

(10)

and also
m∏
k=1

qjkjk−1

n∏
k=1

qikik−1
=

n∏
k=1

qi′
k−1

i′
k

m∏
k=1

qj′
k−1

j′
k
. (11)

By equations (10) and (11),
n∏
k=1

qi′
k−1

i′
k

qikik−1

=

m∏
k=1

qj′
k−1

j′
k

qjkjk−1

=

m∏
k=1

qjkjk−1

qj′
k−1

j′
k

and hence
n∏
k=1

qi′
k−1

i′
k

qikik−1

= 1

which proves niπi = ni′πi′ .

We give an example of application of Theorems 3 and 4.

Example 6. Let us reconsider the steady-state probabilities
derived in Example 5. Notice that from Theorems 3 and 4
we immediately know that given πA = CA we have πC =
CA because they belong to the same equivalence class, and
also πE = 2CA since E is the inverse of A (and C) but
its equivalence class has cardinality 1. Then we can compute
πE as done in Example 5 and using again Theorem 3 we
immediately derive the remaining stationary probabilities. In
practice, Theorem 3 reduces the number of cycles one has
to consider to compute the process’ stationary distribution.
Specifically, in this example we have to consider only one
cycle.

V. EXAMPLES

In this section we illustrate some examples of autoreversible
processes. Clearly, all the product-form models that are re-
versible are also autoreversible (see, e.g., [16], [21], [22]) in
which a reflexive reversal bisimilarity can be defined. For this
reason we will focus on non-product-form models and show
that the notion of autoreversibility simplifies the computation
of the stationary distribution.

Moreover, it is worth notice that the CTMCs with the regular
structures that are required by autoreversibility often underlie
Markovian process algebra cooperations. For the sake of
readability we briefly introduce a Markovian process algebra,
i.e., the Performance Evaluation Process Algebra (PEPA) [3].
We consider a reduced syntax of PEPA. Prefix: (a, λ).P is
the agent that performs an activity of type a whose duration
is an exponentially distributed random variable with parameter
λ and then behaves as P . Symbol > denotes that the duration
of an activity is determined by another agent. Choice: The
choice operator P +Q describes an agent that can choose to
behave as P or Q according to the standard race policy [3]
(i.e., the fastest sampled time determines the activity to carry
out). Constant: A new constant agent A is defined to behave
as P by writing A def

= P . Cooperation: The modularity of this
Markovian process algebra strongly depends on the operator
specifying the cooperation among two agents: P ��

L
Q. In this

case, all the transitions in P and Q whose type belongs to the
set L can be carried out only jointly. The rate of the joint
transition must be decided according to the rules described in
the semantics [3]. In particular, in case of cooperation on a
type a between an activity with a specified rate λ (active) and
one with unspecified rate >, the joint activity has type a and
rate λ.

Example 7. This example aims at showing the simplest ex-
ample of a non-product-form cooperation between two agents
that is autoreversible. Let us consider the following PEPA
components:



P1
def
= (a, α).P2 Q1

def
= (a,>).Q2

P2
def
= (b, β).P1 Q2

def
= (c, γ).Q1.

Now consider the system Sys1 defined by: Sys1
def
= P1 ��{a} Q1

whose derivation graph is:

P1 ��{a} Q1
�(b, β)

P2 ��{a} Q1

P1 ��{a} Q2

(c, γ)
6

�
(b, β)

P2 ��{a} Q2

(c, γ)
6(a, α)

-

The underlying CTMC has the same state space S and is:

s0
� β

s1

s2

γ

6

�
β

s3

γ

6
α

-

with s0 = P1 ��{a} Q1, s1 = P2 ��{a} Q1, s2 = P1 ��{a} Q2 and
s3 = P2 ��{a} Q2. Consider the relation

R = {(s0, s3), (s1, s2)}.

It is easy to see that if α = β + γ and β = γ then R is
a reversal bisimilarity over {s0, s1, s2, s3}, and the above
CTMC is autoreversible (but not reversible). To derive the
steady-state distribution: fix a state, e.g., s0 with πs0 = C > 0.
It immediately follows that its inverse has the same stationary
probability, i.e., πs3 = πs0 . The computation of πs1 follows
by Theorem 2 considering the path from the inverse of s0, i.e.,
s3 to the inverse of s1, i.e., s2 and dividing its rate by the
transition rate of the forward path from s1 to s0. This gives
πs1 = πs0 and hence also πs2 = πs0 .

Example 8. Consider the following PEPA components:

P1
def
= (a, α).P2 + (e, α).P2

P2
def
= (b, β).P1

Q1
def
= (a,>).Q2

Q2
def
= (c, γ).Q1 + (d, δ).Q3

Q3
def
= (e,>).Q2

and the system Sys2 defined by:

Sys2
def
= P1 ��

{a,e}
Q1.

The derivation graph of Sys2 is

P1 ��
{a,e}

Q1
�(b, β)

P2 ��
{a,e}

Q1

P1 ��
{a,e}

Q2

(c, γ)
6

�
(b, β)

P2 ��
{a,e}

Q2

(c, γ)
6(a, α)

-

P1 ��
{a,e}

Q3

(d, δ)

?
�
(b, β)

(e,
α)

-

P2 ��
{a,e}

Q3

(d, δ)

?

Notice that with the opportune rate conditions, the underlying
CTMC is that of the running example of Figure 1.

Example 9. Consider the PEPA components depicted below:

P1
def
= (a, α1).P2 + (b, α2).P2

P2
def
= (c, β).P1 + (d, β).P3

P3
def
= (a,>).P2 + (b,>).P2

Q1
def
= (a, α).Q2

Q2
def
= (e, β).Q1 + (f, β).Q3

Q3
def
= (b, α).Q2

with α1 ≥ α and α2 ≥ α. Let Sys3 defined by:

Sys3
def
= P1 ��

{a,b}
Q1.

The derivation graph Sys3 is defined by:

P1 ��
{a,b}

Q1
�(e, β)

P1 ��
{a,b}

Q2
(f, β)- P1 ��

{a,b}
Q3

P2 ��
{a,b}

Q1

(c, β)
6

�
(e, β)

P2 ��
{a,b}

Q2

(c, β)
6

(f, β)
-

�

(b,
α)(a, α)

-

P2 ��
{a,b}

Q3

(c, β)
6

P3 ��
{a,b}

Q1

(d, β)

?
�
(e, β)

(a
, α

)
-

P3 ��
{a,b}

Q2

(d, β)

?

(f, β)
- P3 ��

{a,b}
Q3

(d, β)

?

�
(b, α)

It is easy to see that its underlying CTMC is autoreversible.

Example 10. We consider a last example that aims at illus-
trating the methodology for the computation of the steady-
state probabilities for autoreversible processes. We consider
the following ergodic CTMC:



B A C

D G E

F

β

λ λ

β

γ

β

γ

α

ε

α

In this case we have the following equivalence classes:
{C,B} that contains the inverse states of {G}, {D,E} that
contains the inverse states of {F} and, finally, {A} which is
inverse of itself, provided that 2α+ε = γ. Let us compute the
steady-state distribution starting from the reference state B,
i.e., πB = πC = K > 0. We immediately derive πG = 2K.
To compute πA we choose the path from A to C and its inverse
G → A, obtaining, by Theorem 2, πA = πCβ/λ = Kβ/λ.
We can derive πF considering F → G and its inverse C → E,
obtaining πF = πGβ/ε = 2Kβ/ε. Then we immediately de-
rive the probability of its inverses πD = πE = πF /2 = Kβ/ε.
The value of K is obtained by normalising the probabilities.

VI. CONCLUSION

In this paper we have characterised a class of CTMCs
called autoreversible whose steady-state analysis is particu-
larly efficient. The notion of autoreversibility is related to that
of lumping [15] and similarity of states [17] as discussed
in Section III where we introduce the definition of weak
similarity. Weak similarity among states is different from Yap’s
definition of state similarity [17] and for reversible CTMCs
we can say that weak similarity generalises the notion of
similarity. Autoreversibility is introduced in Section IV and it
is defined in terms of a symmetric coinductive relation, called
reversal bisimilarity, which induces an equivalence relation
among the states of a CTMC called reversal equivalence. We
have shown that every reversible CTMC is also autoreversible:
each equivalence class has a singleton and, roughly speaking,
is the inverse of itself. However, we have shown examples of
CTMCs that are autoreversible but not reversible (nor quasi-
reversible). Finally, in Section V we showed that the regular
structures required by autoreversibility are often generated
by the operators for the cooperation in Markovian process
algebras. It is worth notice that similarly to what happens when
using product-form solutions, autoreversibility requires strong
conditions in the structure of the CTMC [9] and often also
on its transition rates [23], [24]. Nevertheless, the improve-
ment in the computation of the steady-state distribution of
autoreversible processes is very high and, differently for what
happens for lumped models, it does not need the solution of
the system of global balance equations.

Future research efforts will be addressed to study the im-
plications of autoreversibility at a higher level of abstraction,
for instance by characterising the class of Markovian process
algebra agents originating autoreversible CTMCs.
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