Static Analysis of Prolog with Cut

Gilberto Filé, Sabina Rossi

Dipartimento di Matematica Pura ed Applicata
Universita di Padova
Via Belzoni, 7 1-35131 Padova (Italy)
E-mail: {gilberto,sabina}@zenone.unipd.it

Abstract. This paper presents a general approach to the Abstract In-
terpretation of Prolog programs with cut. In most of previous approaches
the cut primitive is merely ignored.

Our method consists in trasforming an interpreter for Prolog into an in-
terpreter that computes on abstract values and that performs loop-checks
by storing all encountered call patterns into a table. In order to guaran-
tee correctness, this tabled interpreter needs information about the sure
success of the corresponding concrete computations. Such information,
called control information, is used to control the execution of the cuts by
the tabled interpreter: a cut is executed only if the control information
guarantees that it is also executed at the concrete level, otherwise, the
cut is ignored. Control information can be easily added to any abstract
domain.

Introduction

Abstract Interpretation has been successfully developed in recent years for the
static analysis of programs. It has been applied to many types of languages.
Recently Abstract Interpretation techniques have been applied to logic program-
ming and Prolog. However, little attention has been devoted to the Abstract
Interpretation of “full” Prolog with cut and built-ins, except for [2, 11]. Tt is
easy to see that ignoring the cut has a negative consequence on the quality of
the information produced (not executing a cut means to consider computations
that are pruned at the concrete level).

The cut is a non-logical operator whose meaning is specified only by means of
an operational semantics [9].

The intuition at the basis of the Abstract Interpretation method is that the
data-flow analysis of a program consists of executing it on a special domain
called abstract because it abstracts some interesting properties of the normal
concrete domain. According to this idea, the operational approach to Abstract
Interpretation that we have adopted, is as follows. Let L be a programming
language.

1. Using the usual approximation relation that exists between an abstract do-
main D and the concrete domain ' of the prgrams of L, it is easy to define
for each concrete program P of L a corresponding abstract program P’.

2. Let I be an intepreter of L and use I to interpret P’: such execution is a
data-flow analysis of the execution of P by I.

3. Even if D is a finite set, the execution of P’ by I can be not finite. In order to
guarantee termination on finite domains, a loop-check mechanism is added
to 1.

This operational approach has been adopted in [3] for logic and constraint pro-
grams and in [10] for logic programs. In these works the interpreter used was
simply a program (N D-I) that nondeterministically traverses the L D-trees. N D-
I was sufficient because no control built-in like cut was considered, and thus, it
was not necessary to model the depth-first left-to-right traversal of a standard
Prolog interpreter (called standard traversal in what follows). At the contrary,
this becomes necessary in this paper where we want to treat also the cut opera-
tor. To this end we consider the standard Prolog interpreter St-I that plays the
role of I in point 2 above. The program for the data-flow analysis is obtained
adding a loop-check in the form of a tabulation mechanism to St¢-I, cf. point 3
above. This program is called St-T'I. Intuitively, a tabulation mechanism con-
sists of collecting in a table all the atoms A, called during an execution, together
with the solutions found for them. In this way, when an equivalent call A’ is en-
countered later on, the solutions of A are used to expand A’. In what follows A is
called a solution call, since it produces solutions, whereas A’ is called a look-up
call because it just looks up the solutions of A. The addition of a tabulation
mechanism to St-I gives rise to several problems that are new wrt [3, 10]. The
main one is as follows. Assume that, according with the operational approach
described above, the data-flow analysis of a Prolog program P, is obtained by
executing the corresponding program P’ with the tabled interpreter St-T'I. If P
has cuts, so will P’ and they will be executed by S¢-T'T just as by St-I. This can
lead to incompleteness, in fact, the execution of P’, being on the abstract domain
D (i.e., simpler than the concrete one), can lead to more derivations than the
execution of P. Hence, a cut of P/ may be executed whereas the corresponding
derivation of P fails before such point. If this happens the execution of the cut
may prune computations that, at the contrary, are not pruned for P and thus
these concrete computations are not analyzed: incompleteness! The solution to
this problem is to enhance the abstract domain D with some extra information,
called control information, in such a way that St-T'I, when executing P’ on this
new abstract domain, knows whether the corresponding concrete computations
are all successful. Only in this case a cut 1s executed. Control information can
be added to every abstract domain.

The rest of the paper is as follows. Section 1 contains some preliminary
definitions. In Section 2 the tabulation mechanism in [3] is described by means
of an example. The necessity of modeling the standard traversal when treating
the cut and the inappropriateness of the original mechanism in this case are
all explained by means of examples. In Section 3 the extensions of the original
tabulation mechanism needed for modelling the standard traversal and handling
the cut are described. Finally, in Section 4 some more examples show the need
of control information for ensuring completeness and explain its use.

1 Preliminaries

The reader is assumed to be familiar with the basic concepts of Logic Program-
ming, see [1, 12].

V is an infinite set of variables. A substitution is a mapping from V to T(X, V)
which acts as the identity almost everywhere. A renaming is a bijection on vari-
ables. With Subst we denote the set of all idempotent substitutions and with
0, the restriction of § to the set of variables V.

The list operation tail is as follows: tail(nil) = nil and tail([s | L]) = L.

If o is a sintactical object, then Var(o) is the set of all variables occurring in o.
A computation system D is a b-tuple, (D, @, I, <, =), where:

1. D is a complete lattice, called computation domain. Its bottom element is
1 p,and for all d€ D and for all renamings o, do € D; with C'Pp we denote
the set of all call patterns on D, i.e., the set of all pairs [A, d] such that A is
an atom and d€ D;

2. @ is a function on D of the type: (D? x Subst) — D;

3. II is a projection of the type: (D x p(V)) — D, such that, if d € D and
Vep(V), then I1(d, V) projects d onto the variables of V;

4. <is a partial order on D,

5. = is an equivalence relation on C'Pp such that for all [A,d]€ C'Pp and for
all renaming substitution o, [A4,d] = [A4, d]o.

D is called finite if 1ts computation domain D is finite modulo renaming.

The function @ represents the unification function on D.

A normalized atom is an atom of the form p(X) containing distinct variables.
A normalized program P over D is a finite sequence of definite clauses of the
form: H:—d, Ay, ..., Ag, where H, Ay, ..., A; are either normalized atoms or the
control primitive cut, and d€ D.

A normalized goalis a normalized clause whose head is empty.

In the following only normalized programs and goals are considered.

Observe that considering normalized programs brings no loss of generality: any
Prolog program can be put into this form where d is a substitution.

The usual concrete computation system of Prolog is

Cs = (SUbSta@Sa Hsa ga Es)

where @, is the unification function on Subst; II, is defined by: I1,(6,V) = 0),;
=, is the equivalence relation on C Psyps; defined by: [Ay, 01] =5 [As, 02] iff there
exists a renaming o such that (A16,)0 = Aaxfs.

As an example, append over C; is:

append(X,Y, Z):—{X/[S | T, Z/[S | U]}, append(T,Y,U).
append(X,Y, Z):—{X/[],Y/Z}.

Let P be a program with goal Gy. The LD-tree of PU{Gg} is the SLD-tree [12]
corresponding to the Prolog selection rule.
Consider any LD-tree and a node (; in it containing a cut. The parent node of

this cut is the ancestor of G whose expansion has produced this cut.

The Standard Interpreter, St-1, 1s a program that explores the LD-trees by em-
ploying the standard traversal rule and by executing cuts according to their
operational semantics, i.e., pruning all the branches to the right of a path from
the parent goal to the goal that has executed the cut.

We recall below the notion of abstraction between computation systems.

Let D = (D, ®p,1Ip,<p,=p) and C = (C,P¢, ¢, <¢c,=c¢) be two computa-
tion systems. D abstracts C iff the following properties hold:

1. there exists a function 7, called concretization function, from D to 2¢ such
that v is monotone;

2. VY6 € Subst, VYey, e € C and Vdy,ds € D, ¢1 <¢ Y(d1),ca <¢ y(dz2) implies
De(er,e2,0) <¢ v(Pp(di,ds,0));

3. VVep(V),VeeC and Yde D, ¢ <¢ v(d) implies (e, V) <c v(IIp(d, V)).

Given a program P over C, a corresponding program P’ over D is as follows: for
each clause H:—c, Ay,..., Ay of P P’ has a clause H:—d, Ay, ..., A} such that
e <¢ y(d).

2 Tabled Computations for Pure Prolog Programs

In this section we describe, by means of examples, the tabled interpreter N D-T'1
presented in [3]. Later it will be shown that N D-TT is unsuitable if one wants
to treat the cut operator.

Let D be an arbitrary computation system. In this section pure Prolog programs
(i.e. without cuts) over D are considered.

Given a goal G = :—d, Ay, ..., Ay, the leftmost call pattern of G, noted {f((G), is
the call pattern [Aq, I1(d, Var(A;p))] over D.

For example, consider the goal over C;:
G =:—{X =[a|U],T = [a|W]}append(X,Y, 7),append(7, 7, V).

Tts leftmost call pattern is: [f(G) = [append(X,Y, 7), {X = [a|U]}].

The idea of N D-T1 is as follows: collect in a table all the leftmost call patterns
of the goals found so far in the computation with their computed solutions, and
whenever a new goal (G is produced, check whether the table already contains a
call pattern [f(G") equivalent to {f((). In this case use the solutions of [f(G'),
collected in the table, for expanding G.

ND-TT constructs a tree-table pair (t,7T), as follows. T' is a table where each
entry consists of a key, which is a call pattern, and a solution list associated
to that key, which 1s a list of distinct elements of the computation domain D.
t is similar to an L D-tree. It contains two types of nodes: nodes that generate
an entry in the table, called solution nodes and nodes that use these solutions,
called look-up nodes.

The keys of the table are call patterns [A, d], where Var(d) C Var(A). Also in
the tree it is convenient to keep values d projected. Every goal in the tree will
be :—d, A1, ..., Ay where Var(d) is included in the variables of the clause that

has A; in its body. In order to manage correctly the switches of sets of variables
during the computation, it is necessary to introduce special values called call-ezit
markers. A call-exit marker contains the information ¢ = [cs1,¢s0, 4 = H,d].
Suppose to have a goal G = :—d, A, R, where A is an atom of the body of
cs1 such that A is unifiable with the head of c¢s;. Then the new goal will be
—=d",By,...,Bn,[cs1,e82, A = H,d], R, where d" = II($(d,d’, §), Var(css)),
8§ = mgu(A = H) and ¢s; = H:—d', By, ..., By, The call-exit marker e is said
to correspond to [f(G) = [A,d], where d = IT(d, Var(A)).

When e becomes the leftmost element of a goal, it means that a refutation for
A under d has been computed and a solution for it has been reached.

Call-exit markers are useful in order to know when new solutions for a left-most

call pattern must be added to the table.

FEzample 1. Let P be the program:

¢(X):=d, p(X); r(X):=d, p(X);

p(X):=d'; p(X):=d".

and Gy be the goal :—dgy, ¢(X), r(Y), where d = dy = ¢, d' = {X/a} and d' =
{X/b}.

By executing P with Gg by ND-T'I, one obtains the tree-table pair represented
in Fig. 1. At the beginning the table is empty.

Since it does not contain a key equivalent to [f(Gy), a new entry with key
lf(Go) = [¢(X),do] and empty solution list is added to it. Gy is a solution
node. Selecting the left most atom of GGy and using the renamed first clause, esq,
q(X1):=d,p(X1), in P, the resolvent G = :—dy, p(X1), 01, 7(Y) is computed,
where dy = II(P(do,d,é), Var(esy)) = {X1/X}, 6 = {X/X1, X1/X} and O is
the call-exit marker [esg, ¢s1,¢(X) = ¢(X1),do]. Solving in the same way G4,
a new entry with key [f(G1) = [p(X1),d1] and empty solution list is added to
the table. (G1 is a solution node and it is resolved by using a renaming of the
third clause, ¢sy. The resolvent Ga = :—da, Oy, Op, (V) with dy = {X2/a} and
Oy = [es1, ¢82, p(X1) = p(X2),d] is computed.

Consider now G'2. In general, when a node G in the tree starting with a call-exit
marker, has the form :—d, [cs1,¢s2, A = H,d'], Ay, ..., Ag, then it is resolved
by computing G' = :—d", Ay, ..., Ay, where d" = II(®(d',d, §), Var(csy)) and
8§ = mgu(A = H). Moreover, the solution IT(d”, Var(A)) is added to the end of
the solution list corresponding to the key [A, IT(d', Var(A))] in the table.
Solving in this way the two call-exit markers, Os and O, and using the renamed
second clause ¢sz, r(Y7):—d, p(Y1), to solve r(Y), one obtains the resolvents G,
(4 and G5 represented in Fig. 1, where ds = {X1/a}, dy = {X/a}, ds = {Y1/Y},
and Oz = [esg, es3,7(Y) = 7(Y1), d4].

Consider now (5. Observe that there exists in the table an entry with key
lf(G1) = [p(X1),d1] equivalent to [f(Gs) = [p(Y1), ds]. In this case the solutions
of f(Gy) are used to expand [f(Gs). Thus, G5 becomes a look-up node and
a pointer to the solution list L = [{Xy/a}|nil] of [f(G1) is added to G'5. The
solution {X; /a} is used to expand G5 by computing G = :—dg, O3 where dg =
II(@P(ds, {X1/a},8"),Var(ess)) = {Y1/a} and §"" = mgu(p(X1) = p(¥1)). Then
the pointer of [f(G's) is moved to tail(L).

Since this pointer is now to an empty list in the table, when the computation
backtracks to (5, the expansion of (5 is suspended. It can be continued only if

a new solution for [f((1) is added in the table. O
Go = :=do,q(X),r(Y) solution [4(X), do] (X} il
Gy = —dy, p(X1), D1,\I‘\(Y) solution [p(X1), di] [{)&Jﬂ@ T@
\\\\ [r(Y), ds] [{?//a} nil]

Go = :—ds, 05,0, 7(Y)

Gz =:—d3, 0, r(Y)

Gy =:=ds,r(Y) solution

Gy = :—ds,p(V1),03 look-up

Ge = :1—ds, 03

Gy = :—dr

Fig. 1.

It is easy to see that using ND-TI, it is not possible to follow the standard
traversal rule to expand the tree of derivations. However in order to treat the
control operator cut the standard traversal must be followed.

Ezample 2. Let P be the program:

¢(X):=d, p(X); #(X):=d, p(X);

p(X):=d'; p(X):—d";

s(X):—d".

and Gy be the goal :—dy, ¢(X), r(YV),s(Y),!, where d = dy = ¢, d' = {X/a} and
d" = {X/b}. By executing with ND-TT, G; = :—{X1 /X }p(X1), O1,7(Y), s(Y), !,
G2 = Z—{Xz/a}, Dz, Dl; T(Y), S(Y), !, G3 = :—{Xl/a}, Dl; T(Y), S(Y), !, G4 =
—{X/a}t,r(Y),s(Y),!and G5 = :—{¥1/Y },p(Y1), Os,s(Y), ! are computed. G5
is a look-up node to the solutions of {f(G1) in the table. The solution {X;/a}
of {f(G1) is used to expand [f(G5) and Gg = :—{Y1/a},03,s(Y),! and Gz =
:—{Y/a},s(Y),! are computed. Then a failure is reached and the computation
backtracks to G'5. Since there are no more solutions of {f(G1) in the table, the

computation cannot continue the expansion of G5 and thus it backtracks to ex-
pand another node. However, branches of the tree that are in fact not expanded
by the effect of the cut obtained using the fourth clause of P to expand G5 are
in this way computed.

3 Tabled Computations for Prolog Programs with Cut

In this section we describe the tabled interpreter St-T'I obtained by adding
tabulation to a standard Prolog interpreter. From now on, clauses can contain
cuts in their bodies. The presence of cuts complicates the use” of the table.
When a new generalized goal GG is produced and there exists; in the table, an
entry with key [f(G") equivalent to [f((), then three different kinds of relations
between GG and G' can occur: (1) {f(G’) has been completely solved, i.e., it is to
the left of [f(G) in the tree; (2) G and G' are in the same derivation and {f(G)
is not part of the proof of {f(G'), i.e., G does not contain a call-exit marker
corresponding to [f(G'); (3) {f(G) is part of the proof of I f(G), i.e., G contains
a call- exit marker corresponding to [f(G') (this is the case of a recursive call).
In order to treat cuts correctly, the tabulation mechanism of St-7'7 is defined in
such a way that, if there is no recursion, a solution list in the table is used to
expand a node in the tree only when it is sure that this list has not been (or will
not be) shortened because of a cut. In the case of a recursive call, as in point
(3), the solutions of [f(G") are used to expand G, independently of whether G’
contains cuts or not. This is based on the following argument: the part of the
search space of {f(G') explored so far led to the recursive call {f(G). Hence,
If(G) either needs less search than [f(G’) (if a cut prunes part of it), or it needs
the same search in which case the computation falls into a loop. According to
these ideas, the three cases distinguished above are dealt with in the following
ways:

(1) If G’ does not contain cuts, then the solutions of [f(G’) that have been
collected in the table are used to expand GG. Thus, (G becomes a look-up node.
Otherwise, if G’ contains cuts, then the computation of If((G) is executed
independently of that of [f(G").

(2) In this case, according to the standard traversal rule, [f(G) will be com-
pletely solved before {f(G’). Therefore, if G does not contain cuts, then the
solutions of [f((G) can be used to expand G’. GG becomes a solution node and
(' is turned into a look-up node (notice that it was a solution node). More-
over, the key [f(G") in T; is replaced by {f((G), the corresponding solution
list is accordingly renamed and a pointer to the end of that list is added to
G'. Otherwise, if G contains cuts, then the computation of [f(() is executed
independently of that of [f(G").

(3) G becomes a look-up node independently of whether G or G’ contain cuts or
not. A pointer to the solution list in the table associated to the key {f(G') is
added to G. In this situation, when there are no more solutions of {f(G’) to
consider for expanding G, a loop is discovered and the whole computation
is stopped.

The following examples illustrate the points described above.

G = :1—¢,¢(X),7(Y) solution

G = :—{X1/X}, p(X1), 04, r(mon

ook-up

Gy = —{X3z/a}, 0y, 00, 7(Y)

[a(X), €] H;;RMK
Gy =:—{Xi/a}, 00, 2(Y)

’ \
(V). (Vi/ V)] [(V1/a)] mil]

Gy = :—{X/a},r(Y) solution

/ \ [r(¥),e] [{Y/a}|]
M

Gy =:—{Y1/Y}.p(Y1),03 solutionGy = :—{Y5/Y },7(Y3). O5

look-up

Go =:—{Y2/a}, 04,03 Gip = :—{Ya/a},05

Gr=:—{Y1/a}, 03 G =:—{X/a,Y/a}

Gg =:—{X/a,Y/a}
Fig. 2.

FEzample 3. Let P be the program:

g(X)i—e,p(X); r(X)i—e, p(X);

r(X)i—e,r(X); p(X):—{X/a}.

and Gg be the goal :—¢, ¢(X), r(Y). Starting from Gy, the tree-table pair repre-
sented in Fig. 2 is reached.

Observe that, when G5 is considered, the case (2) described above occurs. In
fact, there exists in the table a key, {f(G1) = [p(X1), {X1/X}], equivalent to
lf(Gs) = [p(Y1),{Y1/Y}]. G1 and G5 are in the same derivation and {f(G5) is
not part of the proof of {f(G1). Since G5 does not contain cuts, G5 becomes a
solution node and (; is turned into a look-up node. The entry in the table with
key {f(G1) is modified as described in point (2) above.

When Gy is generated, the case (3) is applied. G4 and Gy are in the same
derivation and [f(Gy) is part of the proof of [f(G4) (because Gy contains Os
that corresponds to [f(G4)). In this case Gy becomes a look-up node and a
pointer to the solution list associated to the key [f(G4) in the table is added
to Glg. The solution {Y/a} is used to expand (g and when the computation
backtracks to Gg a loop is discovered. a

Given a tree-table pair (¢,77), the table T could contain several entries with
equivalent keys. This is because, when a new goal G is produced and there exists
in the table an entry with key {f(G’) equivalent to {f(G) such that G’ contains
cuts, then a new entry with key [f(G) could be added to the table. However,
this happens only when there is no recursion between G and G’ (see point (3)
above). This guarantees that, if a finite computation system D is taadopted,
then only a finite number of different entries will be added to the table during
the computation. When a new goal (7 is considered, there may exist in the table
several entries with key equivalent to [f(G). However, it is possible to show that
at most one of them 1s usable by (¢, according to the above description of St-T'1.

4 Tabled Computations for Prolog Programs with Cut
and Their Static Analysis

Using St-T'1 as an interpreter for the Abstract Interpretation of Prolog programs,
one may obtain incomplete analysis because of the way St-771 handles cuts and
loops.

Frample 4. In this example P is a program which contains a cut and P’ is a
corresponding abstract program abstracting its groundness and freeness infor-
mation. The cut in P is not executed by St-T'I, whereas that in P’ is executed.
Because of this, the static analysis results incorrect.

A computation system for representing this information is

GF = (GF,Pqp,<gr,lar,=ar)

where GF = (p(V) x p(V)) U {L}.
The partial order, <gp, is defined by: V(G, F'), (G1, F1), (G2, F2) € p(V) x p(V),

L <gr (G, F)and (G, F1) <gp (G2, F5) if G1 D G2 & Fy D F.

Computation systems for computing groundness and/or freeness analysis are
proposed in cf. [5, 6, 8].

Let P be the concrete Prolog program:

gq(X)={Y/H(Z2)},p(Y), 5y a(X):—{X/a}; p(X):—{X/g(a)}.

and Gg be the goal :—¢, ¢(X). The computation of P with Gy by St-T'I is finite
and produces one answer substitution, {X/a}.

Consider the abstract program P’ over GF corresponding to P:
(=0, XD, (V). 5 a(X)y—((X},0); p(X)—({X}0).

with goal G = :—(0,{X}), ¢(X). Using a renaming of the first clause in P’ to
resolve [f((F}), one obtains the resolvent G4 = :—(0, {X}),p(Y1),!,0;. Then
lf(G1) is unified with the head of the third clause. The unification succeds and
G = :—({Y2},0),0,,!, 0, is computed. The computation proceeds by executing
Og, the primitive ! and O0y. G5 = :—({¥1 },{X1}), 1, Oy, G = :—({1}, {X1}), Oy
and Gf = :—(,{X}) are successively computed.

Because of the execution of the cut, the second clause of P’ is not considered and

thus an abstraction of the concrete answer substitution {X/a} is not produced.
Therefore the analysis concludes incorrectly that variable X of the initial goal
is always free at the end of the computation. a

A similar phenomenon can occur when St-T'T detects a loop during an abstract
computation: it is possible that the concrete computation does not fall into the
same loop (for instance, because of a previous failure).

In order to treat cuts and check loops correctly when executing an abstract
program, information about the sure success of the goals in the concrete com-
putations must be available. We call this knowledge control information from
now on. Control information can be represented by a complete lattice, C'I, con-
sisting in two elements, {s, u}, where s is for sure and u for unsure with the
ordering s < u. Adding control information to a domain D (that is another com-
plete lattice) consists in performing the product D x C1, cf. [4]. This amouts to
having two copies of each value d € D: one (d, s) and one (d, u). The obtained
extended domain will be denoted by D.;. D.; is the corresponding augmented
computation system. The original abstract unification @ on D is transformed to
obtain a function @.; on D,; that produces also control information. @.;, must be
correct, i.e., if it produces s, as control information, then all the corresponding
concrete computations are successful. This is always possible (in the worst case
u is always produced). However, the quality of the control information computed
depends on D.

One may wonder whether it is realistic to assume that control information can
be inferred during a static analysis. In [7] it is shown that, with the abstract
domain £ X P it 1s possible to infer control information. In particular, the treat-
ment of some Prolog built-ins, can help considerably the inference process.

The computation of St-T7 on D,; is illustrated by the following example.

Gy = —((0, {X}),s),¢(X) solution

GY = :—((0.{X1}),s),p(¥1), 1,01 solution Gy = :—(({X2},0),s),03

I
\

=(({Y2},0),), 05, 1, 0y Gr =—(({X},0),s)

Gy =—(({M1}.{X1}),9), L Oy

[(X), 0X), 9] | [0, (X)), w). ({X},0), 5)] nil

Gy = —(({"1}{X1}),9), 0 [p(¥1), (0, 8), 5)] ({1}, 0), w)| nil]

Fig. 3.

Fzample 5. Let P’ and G§ be as in the previuos example except that each
(G, F) € GF is replaced with ((G, F),s) € GF; and let GF,; be the abstract

computation system obtained from GF by adding to it control information. Ex-
ecuting P’ with G{, by using the control information to control the execution of
the cut, the tree-table pair in Fig. 3 1s reached.

L is —((0,{X1}), s),p(Y1),!,0; and it contains sure information since X and
X; are both free and thus it is sure that the unification succeeds. However, G}
contains unsure information because in G no information about Y7 is repre-
sented. Then Oy is computed and G% is reached. The leftmost element of G5 is a
cut. In this case we consider all the path from the parent node of this cut (Gj) to
G4, looking at the corresponding control information. If the control information
in all the goals in this path is sure then we are sure that the cut is executed in
all the corresponding concrete computations and thus it can be executed; other-
wise the cut is ignored. In this case, the second alternative occurs and thus the
cut operator is not executed. An abstraction of the concrete answer substitution
{X/a} is computed. O

In the following example a cut is reached at the abstract level with sure infor-
mation. It is executed producing a more efficent and precise analysis.

Frample 6. Consider the program obtained by replacing the first clause of P’
in the previous example with ¢(X):—(, {X}), p(X),!. The tree-table pair repre-
sented in Fig. 4 is obtained. Observe that, considering the path from Gj to G4
a sure information is reached at each step. We are sure that the cut is executed
in all the corresponding concrete computations and thus we can safely execute
it also at the abstract level.

Gy =:—((0.{X}),5),¢(X) solution

G = :—=((0,{X1}),s),p(X1), !,01 solution

Gy = :—(({X21},0),s),0,, 1,0¢
[¢(X), (0, {X}). 5)] [({X3.0),5) | nil]
Gy = =(({X1},0),5), 1,0 : ‘
3 {X11,0),5) 1 (X, (0, {X11), 5)] [(({X1},0).5) | nil]
Gy = —(({X1},0),5). 04
Gy = —(({X},0),5)
Fig. 4.

Acknowledgement

We thank Luca Righi for his help in designing the figures. We thank Giuseppe Nardiello
for a careful reading of the paper.

References

10.

11.

12.

K. Apt: Introduction to Logic Programming. Handbook of Theoretical Computer
Science, J.van Leeuwen, editor, North Holland, 1990.

R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi: Modelling Prolog Control. In:
Proc. Nineteenth Annual ACM Symposium on Principles of Programming Lan-
guages, pp 95-104. ACM Press, 1992.

. P. Codognet and G. Filé: Computations, abstractions and constraints in logic

programs. In: Proc. Fourth International Conference on Programming Languages
(ICCL’92), Oakland, U.S.A., April 1992.

P. Cousot and R. Cousot: Abstract Interpretation and Application to Logic Pro-
grams. Journal of Logic Programming, 13(2&3):103-179, July, 1992.

M. Bruynooghe, M. Codish, D. Dams and G. Filé: Freeness analysis for logic pro-
grams, 1992. To appear in ICLP’93.

A. Cortesi and G. Filé: Abstract Interpretation of Logic Programs: an abstract
domain for groundness, equivalence, sharing and freeness analysis. In: N.D. Jones
and P. Hudak (eds): ACM Symposium on partial evaluation and semantics based
program manipulation. SIGPLAN NOTICES, 26(9), pp. 52-61. 1991.

A. Cortesi, G. Filé, and S. Rossi: Abstract Interpretation of Prolog: the treatment
of the buit-ins. In: Costantini (ed): Proc. GULP’92, 1992.

. A. Cortesi, G. Filé, and W. Winsborough: Prop revisited: Propositional Formulas

as Abstract Domain for Groundness Analysis. In: G. Kahn (ed): Proceedings of
the IEEE sixth annual symposium on Logic In Computer Science (LICS’91), pp.
322-327, Amsterdam, 1991. IEEE Press.

. S.K. Debray and P. Mishra: Denotational and Operational Semantics for Prolog.

In: M. Wirsing (ed): Formal Description of Programming Concepts III, pp. 245—
269. North-Holland, Amsterdam, 1987. 1987.

T. Kanamori and 7T. Kawamura: Abstract Interpretation based on OLDT-
resolution. ICOT Research Report, Tokyo, July, 1990.

B. Le Charlier and S. Rossi: An Accurate Abstract Interpretation Framework for
Prolog with cut. Submitted to ILP5’93.

J.W. Lloyd: Foundations of Logic Programming. Springer, 1987.

This article was processed using the INTpX macro package with LLNCS style

