
De
larative Semanti
s ofInput Consuming Logi
 ProgramsAnnalisa Bossi1, Ni
oletta Co

o1, Sandro Etalle2;3, and Sabina Rossi11 Universit�a di Venezia, fbossi,
o

o,srossig�dsi.unive.it2 University of Twente s.etalle�utwente.nl3 CWI, Amsterdam,Abstra
t. Most logi
 programming languages a
tually provide somekind of dynami
 s
heduling to in
rease the expressive power and to
on-trol exe
ution. Input
onsuming derivations have been introdu
ed to de-s
ribe dynami
 s
heduling while abstra
ting from the te
hni
al details.In this paper we review and
ompare the di�erent proposals given fordenotational semanti
s of programs with input
onsuming derivations.We also show how they
an be applied to termination analysis.1 Introdu
tion1.1 Dynami
 S
heduling in Logi
 ProgrammingIn logi
 programming the sele
tion rule determines whi
h atom in a query is se-le
ted at ea
h derivation step. The standard sele
tion rule is the left-to-right ruleof Prolog, simple to implement, but whi
h
an
ause problems both with termina-tion and with negation when sele
ted atoms are not fully instantiated. Moreoverthere are situations, e.g., in the
ontext of parallel exe
utions or the test-and-generate paradigm, that require a more
exible
ontrol me
hanism, where thesele
table atoms are determined at runtime.Most logi
 programming languages a
tually provide some kind of dynami
s
heduling in order to in
rease the expressive power and to
ontrol exe
ution.In pra
ti
al systems, dynami
 sele
tion rules are implemented by means of
on-stru
ts su
h as delay de
larations and blo
k de
larations. Delay de
larations,advo
ated by van Emden and de Lu
ena [46℄, were introdu
ed expli
itly in logi
programming by Naish [37, 34℄. Delay de
larations asso
iate
onditions to atoms,indi
ating when their evaluation
an pro
eed. Su
h
onditions are based on in-stantiation. Typi
al delay de
larations are ground(X) or nonvar(X) whi
h spe
-ify that the asso
iated atom
an be sele
ted for evaluation when its argument Xis respe
tively a ground term or a non-variable term. Delay de
larations
an bealso
onjoined or disjoined to allow more
omplex
ontrol.G�odel [26℄ and ECLiPSe [27℄ use delay de
larations, while SICStus Prolog[28℄ employs blo
k de
larations (whi
h are a spe
ial kind of delay de
larations).Also in
on
urrent logi
 languages, su
h as GHC [43℄, programs are aug-mented with guards in order to
ontrol the sele
tion of atoms dynami
ally. For

example Moded Flat GHC [45℄ use
onditions based on modes and instantiation
onstraints imposed on individual
lauses.To see how dynami
 s
heduling
an be
ontrolled by delay de
larations,
on-sider the following programs APPEND and IN ORDER:% append(Xs,Ys,Zs) Zs is the result of
on
atenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄) append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List) List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs) in order(Left,Ls),in order(Right,Rs),append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ : read tree(Tree), in order(Tree,List), write list(List):where read tree and write list are de�ned elsewhere. If read tree
annotread the whole tree at on
e { say, it re
eives the input from a stream { it wouldbe ni
e to be able to run the \pro
esses" in order and write list on theavailable input. This
an be done properly if one uses a dynami
 sele
tion rule.Prolog's rule would
all in order only after read tree has �nished, while other�xed rules would immediately diverge and/or have an unwanted behavior. Forinstan
e, the �xed rule that sele
ts always the se
ond atom in a
lause body,and that sele
ts the �rst one only when the body
ontains only one atom
anlead to nontermination, as the query in order(Tree,List)
an easily diverge.In the above program, in order to avoid nontermination one
an de
lare thatpredi
ates in order, append and write list
an be sele
ted only if their �rstargument is not just a variable. Formally,delay in order(T,) until nonvar(T).delay append(Ls, ,) until nonvar(Ls).delay write list(Ls,) until nonvar(Ls).These de
larations prevent in order, append and write list from being se-le
ted \too early", i.e., when their arguments are not \suÆ
iently instantiated".Note that instead of having interleaving \pro
esses", one
an also sele
t severalatoms in parallel, as long as the delay de
larations are respe
ted. This approa
hto parallelism has been �rst proposed by Naish [36℄ and { as observed by Aptand Luitjes [5℄ { \has an important advantage over the ones proposed in theliterature in that it allows us to parallelize programs written in a large subset ofProlog by merely adding to them delay de
larations, so without modifying theoriginal program".Compared to other me
hanisms for user-de�ned
ontrol, e.g., using the
utoperator in
onne
tion with built-in predi
ates that test for the instantiation of a2

variable (var or ground), delay de
larations are more
ompatible with the de
lar-ative
hara
ter of logi
 programming. Nevertheless, many important de
larativeproperties that have been proven for logi
 programs do not apply to programswith delay de
larations. The problem is mainly related to the fa
t that delayde
larations might
ause deadlo
k situations, in whi
h no atom in the queryrespe
ts its delay de
laration. For su
h programs the well-known equivalen
ebetween model-theoreti
 and operational semanti
s does not hold. As an exam-ple,
onsider the query append(X,Y,Z)with the exe
ution me
hanism des
ribedabove: it does not su

eed (it deadlo
ks) and this is in
ontrast with the fa
tthat (in�nitely many) instan
es of append(X,Y,Z) are
ontained in the leastHerbrand model of APPEND.1.2 Semanti
s of Logi
 Programs with Dynami
 S
hedulingBy introdu
ing dynami
 s
heduling we obtain more powerful and
exible pro-grams but we are fa
ed with the problem of �nding new te
hniques for ensuring
orre
tness and termination of su
h programs and more generally for analyzingthem. The standard semanti
s and properties are no longer valid when an atom
an be delayed under some
ondition, moreover it is not easy to extend su
hsemanti
s also be
ause of the possibility of
oundering when no atom in thegoal
an be sele
ted. Hen
e it is not surprizing that not so many proposals havebeen given for a semanti
s for logi
 programs with dynami
 s
heduling despiteof their pra
ti
al importan
e.The �rst proposal of an operational semanti
s for dynami
 s
heduling in theform of
oroutining was given by Naish [35℄. He de�ned SLDF resolution, whi
his a straightforward generalization of SLD resolution, where exe
ution of atomsmay be suspended inde�nitely. He also
onsidered termination of su
h programsand observed that, if the set of
allable atoms is
losed under instantiation, ter-mination properties are simpli�ed. Moreover Naish stressed the importan
e ofmode information for reasoning about termination of su
h programs. An oper-ational semanti
s for
onstraint logi
 programs (CLP) with dynami
 s
hedulinghave been given also by Debray et al. [19℄.Falas
hi et al. [24, 33, 23℄ have de�ned a denotational semanti
s for CLP pro-grams with dynami
 s
heduling where the semanti
s of a query is given by a setof
losure operators (ea
h operator
orresponds to a sequen
e of rule
hoi
es).They start from an operational semanti
s for
onstraint logi
 programs with dy-nami
 s
heduling given in terms of derivations from the goals, whi
h is similarto the one in [19℄ and in [32℄. Then they give a semanti
s in terms of and-trees,whi
h
apture the stru
ture of a derivation in a
ompositional way. An and-tree
an be seen as a fun
tion mapping an initial
onstraint to its answer. The deno-tation of a sequen
e of atoms is then a set of
losure operators,
orresponding tothe and-trees whi
h have this sequen
e as root. Their denotational semanti
s isthe analogue of the bottom-up S-semanti
s [13℄ for usual logi
 programs, whereatoms are mapped to their set of answers.Su
h a denotational semanti
s
an be used as a basis for the analysis of logi
programs with dynami
 s
heduling, sin
e
losure operators
an be abstra
ted by3

des
riptions whi
h
apture their behaviour. This idea was followed by Marriottet al. in [32℄ where a framework for global data
ow analysis for logi
 program-ming languages with dynami
 s
heduling is developed. Its main use is to giveinformation on
alling patterns. In [17℄ the analysis is further improved both inpre
ision and in eÆ
ien
y. From su
h proposals also optimization te
hniques forlogi
 programs with dynami
 s
heduling have been derived, su
h as in [38℄.A very elegant de�nition of an algebrai
 and logi
al semanti
s for
onstraintlogi
 languages with dynami
 s
heduling have been given by Marriott in [31℄.It
orresponds to an operational semanti
s based on the one given by Naishin [35℄ generalized to arbitrary
onstraints. Delayed atoms are
onsidered as
onstraints, then the soundness and
ompleteness results for su

ess and �nitefailure for CLP are extended to CLP with dynami
 s
heduling. The
ompletenessresult for �nite failure is ne
essarily weaker.In spite of these proposals some problems remain. Dynami
 s
heduling isoften introdu
ed to ensure the termination of the program, preventing possi-ble diverging derivations. Nevertheless, while for pure Prolog programs (i.e.,logi
 programs employing the �xed leftmost sele
tion rule) there exist results
hara
terizing when a program is terminating su
h as in [7, 18, 14℄ no su
h a
hara
terization was derived for programs with dynami
 s
heduling from thesesemanti
s.1.3 Semanti
s of Input Consuming DerivationsIn order to provide a
hara
terization of dynami
 s
heduling that is reasonablyabstra
t and amenable to termination analysis, Smaus [40℄ introdu
ed input
onsuming derivations. The de�nition of input
onsuming program relies on the
on
ept of mode. A moded program is a program in whi
h ea
h atom's argumentsare partitioned into input and output ones. Output arguments are those whi
h
an be produ
ed by the
omputation pro
ess, while input arguments should beonly
onsumed. Roughly speaking, in an input
onsuming program only atomswhose input arguments are not instantiated through the uni�
ation step areallowed to be sele
ted.We believe that { in many
ases { the adoption of \natural" delay de
larationsis equivalent to
onsidering only input
onsuming derivations [11℄. This is the
ase, for instan
e, of the programs mentioned in the example above togetherwith their natural mode where the �rst position of in order is
onsidered ininput, while the se
ond one is in output. In fa
t under normal
ir
umstan
es,the adoption of the stated delay de
larations enfor
es nothing but a restri
tionto input
onsuming derivations. Moreover also other
ontrol me
hanisms, su
has the one in Moded Flat GHC, are similar to requiring an input
onsumingderivation step: the resolution of an atom with a de�nition must not instantiatethe input arguments of the resolved atom.Input
onsuming programs allow for simpler de�nitions of denotational se-manti
s and have ni
e properties regarding termination. Hen
eforth they seemto be a resonable and safe approximation to programs with general dynami
s
heduling. In this paper we review and
ompare the di�erent proposals given4

for denotational semanti
s of programs with input
onsuming derivations. Wealso show how they
an be applied to termination analysis.1.4 Stru
ture of the PaperThe paper is organized as follows. Se
tion 2
ontains some preliminary notationsand de�nitions in
luding input
onsuming programs. Se
tion 3 introdu
es a �rstdenotational semanti
s
apturing
omputed answer substitutions of su

essfulderivations. This semanti
s applies to well and ni
ely moded input
onsumingprograms. In Se
tion 4 a se
ond denotational semanti
s for simply moded input
onsuming programs is presented whi
h is able to model also intermediate re-sults of partial derivations. Se
tion 5 shows how these semanti
s have been usedto
hara
terize termination properties of input
onsuming programs. Se
tion 6
on
ludes the paper.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi
 resultsof logi
 programs and their semanti
s [1, 2, 29℄. In this Se
tion we introdu
e fewnotions that will be used in the sequel.2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data
onstru
tors C and adenumerable set of variable symbols V . For any synta
ti
 obje
t o, we denote byVar(o) the set of variables o

urring in o. A synta
ti
 obje
t is linear if everyvariable o

urs in it at most on
e. A substitution � is a mapping from V toT . Given a substitution � = fx1=t1; : : : ; xn=tng, we say that fx1; : : : ; xng is itsdomain (denoted by Dom(�)), and Var(ft1; : : : ; tng) is its range (denoted byRan(�)). Note that Var(�) = Dom(�) [Ran(�). We denote by � the emptysubstitution: Dom(�) = Ran(�) = ;. Given a substitution � and a synta
ti
obje
t E, we denote by �jE the restri
tion of � to the variables in Var(E), i.e.,�jE(x) = �(x) if x 2 Var(E), otherwise �jE(x) = x. If t1; : : : ; tn is a permutationof x1; : : : ; xn then we say that � is a renaming. The
omposition of substitutionsis denoted by juxtaposition, i.e., ��(x) = �(�(x)). The result of the appli
ationof a substitution � to a term t is said an instan
e of t and it is denoted by t�.We say that t is a variant of t0, written t � t0, if t and t0 are instan
es of ea
hother. In this
ase there exists a renaming � su
h that t0 = t�. A substitution �is a uni�er of terms t and t0 if t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0.2.2 Programs and DerivationsLet P be a �nite set of predi
ate symbols. An atom is an obje
t of the formp(t1; : : : ; tn) where p 2 P is an n-ary predi
ate symbol and t1; : : : ; tn 2 T . Given5

an atom A, we denote by Rel(A) the predi
ate symbol of A. A query is a �nite,possibly empty, sequen
e of atoms A1; : : : ; Am. The empty query is denoted by2. Following the
onvention adopted in [2℄, we use bold
hara
ters to denotesequen
es of obje
ts: so, for instan
e, t denotes a sequen
e of terms, while B is aquery (i.e., a possibly empty sequen
e of atoms). A (de�nite)
lause is a formulaH B where H is an atom (the head) and B is a query (the body). WhenB is empty, H B is written H and is
alled a unit
lause. A (de�nite)program is a �nite set of
lauses. We denote atoms by A;B;H; : : : ; queries byQ;A;B;C; : : : ;
lauses by
; d; : : : ; and programs by P .Computations are
onstru
ted as sequen
es of \basi
" steps. Consider a non-empty query A; B;C and a
lause
. Let H B be a variant of
 variabledisjoint from A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is
alled a resolvent of A; B;C and
 with sele
ted atom B and mgu �. A derivationstep is denoted by A; B;C �=)P;
 (A;B;C)�. The
lause H B is
alled itsinput
lause. The atom B is
alled the sele
ted atom of A; B;C.If P is
lear from the
ontext or
 is irrelevant then we drop the referen
e tothem. A derivation is obtained by iterating derivation steps. A maximal sequen
eÆ : Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �is
alled a derivation of P [fQ0g provided that for every step the standardiza-tion apart
ondition holds, i.e., the input
lause employed is variable disjointfrom the initial query Q0 and from the substitutions and the input
lauses usedat earlier steps.Derivations
an be �nite or in�nite. If Æ : Q0 �1=)P;
1 � � � �n=)P;
n Qn is a�nite pre�x of a derivation, also denoted by Æ : Q0 ��! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation and � is a partial
omputed answer substitutionof P [fQ0g. If Æ is maximal and ends with the empty query, then � is
alled
omputed answer substitution (
.a.s., for short). In this
ase we say that thederivation is su

essful. The length of a (partial) derivation Æ, denoted by len(Æ),is the number of derivation steps in Æ.2.3 Modes & Input Consuming ProgramsModes are a
ommon tool for veri�
ation. A mode is a fun
tion that labels asinput or output the positions of ea
h predi
ate in order to indi
ate how thearguments of su
h a predi
ate should be used.De�nition 1 (Mode). A mode for a predi
ate symbol p of arity n, is a fun
tionmp from f1; : : : ; ng to fI ;Og.If mp(i) = I (resp. O), we say that i is an input (resp. output) position ofp (with respe
t to mp). In the examples, we often indi
ate the mode by writingthe atom p(mp(1); : : : ;mp(n)), e.g., append(I ; I ;O).We assume that ea
h predi
ate symbol has a unique mode asso
iated to it;multiple modes may be obtained by simply renaming the predi
ates. We denote6

by In(Q) (resp. Out(Q)) the sequen
e of terms �lling in the input (resp. output)positions of predi
ates in Q. Moreover, when writing an atom as p(s; t), we areindi
ating that s is the sequen
e of terms �lling in its input positions and t isthe sequen
e of terms �lling in its output positions.The notion of input
onsuming derivation was introdu
ed in [40℄ as a formal-ism for des
ribing dynami
 s
heduling in an abstra
t way.De�nition 2 (Input Consuming Derivation).{ A derivation step A; B;C �=) (A;B;C)� is input
onsuming if In(B)� =In(B).{ A derivation is input
onsuming if all its derivation steps are input
onsum-ing.In the following sometimes we use i
-derivation for input
onsuming deriva-tion and we
all input
onsuming program (i
-program) a program when
onsid-ered with respe
t to input
onsuming derivations only.Example 3. Consider the program REVERSE with a

umulator and the followingmodes: reverse(I ;O) and reverse a

(I ;O ; I).reverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).The following derivation Æ of REVERSE[freverse([X1,X2℄,Zs)g is input
on-suming.Æ: reverse([X1,X2℄,Zs)) reverse a

([X1,X2℄,Zs,[℄))reverse a

([X2℄,Zs,[X1℄)) reverse a

([℄,Zs,[X2,X1℄)) 2.Allowing only input
onsuming derivations is a form of dynami
 s
heduling,sin
e whether or not an atom
an be sele
ted depends on its degree of instantia-tion at runtime. Given a non-empty query, if no atom is resolvable via an input
onsuming derivation step and no failure arises, then we say that the querydeadlo
ks. Therefore, an i
-derivation
an either be su

essful or �nitely failingor in�nite or deadlo
k. Ea
h i
-derivation whi
h is not a deadlo
k is also a SLDderivation.2.4 Classes of Moded ProgramsIn the sequel we are going to refer to
lasses of programs that in some waybehave well with respe
t to the given mode. In parti
ular, we are going to usethe
on
epts of well moded program (Dembinski and Maluszynski [20℄), of ni
elymoded program (Chadha and Plaisted [15℄) and of simply moded program (Aptand Etalle [4℄).De�nition 4 (Well, Ni
ely and Simply Moded Program).7

{ Well Moded. A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 [1; n+ 1℄Var(si) � i�1[j=0Var(tj):If we
all produ
ing positions the input positions of the head and the outputpositions of the body and
onsuming positions the other ones, then we
anintuitively say that a
lause is well moded if every variable in a
onsum-ing position o

urs also in an earlier produ
ing position (noti
e that the
onsuming positions in the head are the \last" ones in this parti
ular order).{ Ni
ely Moded. A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is ni
elymoded if� t1; : : : ; tn is a linear sequen
e of terms� Var(t0) \ Var(t1; : : : ; tn) = ;.� and for all i 2 [1; n℄ Var(si) \ n[j=iVar(tj) = ;:Intuitively a
lause is ni
ely moded if there are no
on
i
ts among produ
ingpositions, (a variable may appear in at most one produ
ing position with oneex
eption: a variable may appear twi
e in a produ
ing position of the head),and a variable may not be
onsumed before it is produ
ed.{ Simply Moded. A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is simplymoded if it is ni
ely moded and t1; : : : ; tn is a linear sequen
e of variables.{ A query Q is well (resp. ni
ely, simply) moded, if the
lause q Q is well(resp. ni
ely, simply) moded, where q is a variable-free atom.Note that an atomi
 query p(s; t) is well moded if s is a sequen
e of groundterms and it is ni
ely moded if t is linear and Var(s) \ Var(t) = ;.{ A program is well (resp. ni
ely, simply) moded, if all of its
lauses are well(resp. ni
ely, simply) moded.Hen
e the
lass of simply moded programs is a sub
lass of ni
ely moded onesand it in
ludes both some well moded and some non-well moded programs.In [42℄ permutation well (ni
ely) moded programs and queries are also de-�ned, i.e., programs and queries whi
h would be well (ni
ely) moded after apermutation of the atoms respe
tively in the bodies and in the queries.Example 5.{ The program APPEND of the introdu
tion in the mode append(I ; I ;O) is wellni
ely and simply moded.{ REVERSE with a

umulator of Example 3 is well ni
ely and simply moded.{ Furthermore,
onsider the following program PALINDROME in the mode palindrome(I)palindrome(Xs) reverse(Xs,Xs).8

together with the program REVERSE with the modes reverse(I,O). Thisprogram is well moded but not ni
ely moded (sin
e Xs o

urs both in aninput and in an output position of the same body atom). However, sin
ethe program REVERSE is used here for
he
king whether a list is a palin-drome, its natural modes are reverse(I,I) and reverse a

(I,I,I). Withthese modes, the program PALINDROME is both well moded, ni
ely and simplymoded.Most programs are simply moded (see the mini-survey at the end of [4℄)and often non simply moded programs
an naturally be transformed into simplymoded ones (see [10℄).The above notions of well, ni
ely and simply moded are \persistent" with re-spe
t to input
onsuming derivations. The following Lemma is a straightforwardextension of [5, Lemma 30℄.Lemma 6. In a input
onsuming derivation, every resolvent of a well (resp.ni
ely, simply) moded query and a well (resp. ni
ely, simply) moded
lause iswell (resp. ni
ely, simply) moded.Noti
e that in the
ase of ni
ely and simply moded programs the aboveLemma depends on the fa
t that only input
onsuming derivations are
onsid-ered. Indeed, when \normal" SLD derivations are
onsidered, it is easy to �ndan example in whi
h the SLD resolvent of a ni
ely moded query and a ni
elymoded
lause is not ni
ely moded. On the other hand, for well moded programs,any SLD resolvent of a well moded query with a well moded
lause is well moded([2℄).Finally, it is worth reminding that, when
onsidering ni
ely (respe
tivelysimply) moded, input
onsuming programs, half of the famous swit
hing Lemmastill applies. The following Left-Swit
hing Lemma that has been proven in [10℄.Lemma 7. (Left-Swit
hing) Let the program P and the query Q0 be ni
elymoded. Let Æ be a (partial) input
onsuming derivation of P [fQ0g of the formÆ : Q0 �1=)
1 Q1 � � �Qn �n+1=)
n+1 Qn+1 �n+2=)
n+2 Qn+2where{ Qn is a query of the form A; A;B; B;C,{ Qn+1 is a resolvent of Qn and
n+1 wrt. B,{ Qn+2 is a resolvent of Qn+1 and
n+2 wrt. A�n+1.Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 su
h that�n+1�n+2 = �0n+1�0n+2andÆ0 : Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where Æ0 is input
onsuming and 9

{ Æ and Æ0
oin
ide up to the resolvent Qn,{ Q0n+1 is a resolvent of Qn and
n+2 wrt. A,{ Qn+2 is a resolvent of Q0n+1 and
n+1 wrt. B�0n+1,{ Æ and Æ0
oin
ide after the resolvent Qn+2.2.5 The S-semanti
sThe aim of the S-semanti
s approa
h (see [13℄) is modeling the observable beha-viors for a variety of logi
 languages. The observable we
onsider here is the
omputed answer substitutions. The semanti
s is de�ned as follows:S(P) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distin
t variables andp(x1; : : : ; xn) ��!P 2 is a SLD derivationg:This semanti
s enjoys all the valuable properties of the least Herbrand model.To present the main results on the S-semanti
s we need to introdu
e two further
on
epts: Let P be a program, and I be a set of atoms
losed under varian
e.{ The immediate
onsequen
e operator for the S-semanti
s is de�ned as:TSP (I) = f H� j 9 H B variant of a
lause of P9 C 2 I; renamed apart4 wrt. H;B� = mgu(B;C)g:{ I is
alled an S-model of P if TSP (I) � I .Falas
hi et al. [25℄ showed that TSP is
ontinuous on the latti
e of term inter-pretations, that is sets of possibly non-ground atoms, with the subset-ordering.They proved the following:{ S(P) = least S-model of P = TSP " !.Therefore, the S-semanti
s enjoys a de
larative interpretation and a bottom-up
onstru
tion, just like the Herbrand one. In addition, we have that the S-semanti
s re
e
ts the observable behavior in terms of
omputed answer substi-tutions, as shown by the following well-known result.Theorem 8 ([25℄). Let P be a program, A be a query. The following statementsare equivalent.{ There exists an SLD derivation A #�!P2,{ There exists A0 2 S(P) (renamed apart wrt. A), su
h that � = mgu(A;A0),4 Here and in the sequel, when we write \C 2 I, renamed apart wrt. some expressione", we naturally mean that I
ontains a set of atoms C01; : : : ; C0n, and that C is arenaming of C01; : : : ; C0n su
h that C shares no variable with e and that two distin
tatoms of C share no variables with ea
h other.10

where A� � A#.Example 9. Let us see this semanti
s applied to the programs APPEND and REVERSEso far en
ountered.{ S(APPEND) = f append([℄,X,X),append([X1℄,X,[X1|X℄),append([X1,X2℄,X,[X1,X2|X℄), : : : g.{ S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a

([℄,X,X),reverse a

([X1℄,X,[X1|X℄),reverse a

([X1,X2℄,X,[X2,X1|X℄), : : : g.2.6 Semanti
s of Input Consuming ProgramsIn the following two Se
tions we present two semanti
s for input
onsumingprograms whi
h are related to S-semanti
s. To de�ne su
h semanti
s, the ob-servables we fo
us on are the
omputed answer substitutions. First, we
onsider asemanti
s given by the
omputed answer substitutions of su

essful derivations.This
orresponds to the S-semanti
s of logi
 programming [13℄ when restri
tedto a parti
ular set of queries. Given a program P and a set of queries C, thissemanti
s
an be de�ned formally asOi
s (P;C) = fA�j A 2 C and there exists an i
-derivation A ��!P 2g:While this semanti
s appears very natural, it
an be unsuitable for modellingthe rea
tive nature of input
onsuming programs. In fa
t, as we mentioned inthe introdu
tion, input
onsuming derivations
an be used to model dynami
s
heduling and parallelism, and in this
ontext it is very important to model theresults of partial
omputations. Indeed, standard semanti
s for
on
urrent logi
languages su
h as

p [39, 22℄ and GHC [44℄ often
apture su
h intermediateresults, or in any
ase, also the results of non-su

essful
omputations [16℄. Infa
t, the (partial) result of a
omputation may trigger another
omputation byinstantiating suÆ
iently the input positions of another atom so that it be
omesresolvable. Be
ause of this, when one wants to
hara
terize for instan
e termi-nation, the adoption of a semanti
s whi
h is able to model intermediate resultsbe
omes essential, as shown in Se
tion 5. Thus we also
onsider a semanti
s
apturing the results of partial input
onsuming derivations. Given a programP and a set of queries C, this semanti
s
an be de�ned formally asOi
p (P;C) = fA�j A 2 C and there exists an i
-derivation A ��!P Bg:where B is any query. 11

3 Semanti
s of Well Moded Input Consuming ProgramsTo
hara
terize our semanti
s for i
-programs, we start from the simplest
ase:when one is interested only in the su

essful derivations. Then the observables(given by su

essful derivations)
an be re
ondu
ted to the S-semanti
s of
las-si
al logi
 programs.We show that the standard S-semanti
s is
ompositional and
orre
t also forinput
onsuming programs, provided that the programs are well and ni
ely modedand that only ni
ely moded queries are
onsidered. The results reported in thisSe
tion are proved in [9℄.Proposition 10. Let P be a well and ni
ely moded program, A be a ni
ely modedatomi
 query. The following statements are equivalent.(i) There exists an input
onsuming derivation A #�!P2,(ii) There exists A0 2 S(P) (renamed apart wrt. A), and � = mgu(A;A0) su
hthat In(A)� � In(A),where A� � A#.To extend Proposition 10 to arbitrary (non-atomi
) queries we need the fol-lowing de�nition.De�nition 11. Let Q = p1(s1; t1); : : : ; pn(sn; tn). We de�neVIn�(Q) := n[i=1fxj x 2 Var(si) and x 62 i�1[j=1Var(tj)g:VIn�(Q) denotes the set of variables o

urring in an input position of an atomof Q but not o

urring in an output position of an earlier atom. Note that if Qis well moded then VIn�(Q) = ;.Theorem 12. Let P be a well and ni
ely moded program, A be a ni
ely modedquery and NM be the
lass of ni
ely moded queries. The following statementsare equivalent.(i) There exists A# 2 Oi
s (P;NM),(ii) There exists A0 2 S(P) (renamed apart wrt. A), and � = mgu(A;A0) su
hthat A�jVIn�(A) � A,where A� � A#.Condition A�jVIn�(A) � A above says that the substitution � just renames thevariables o

urring in an input position of A but not o

urring in an outputposition of an earlier atom. In
ase of an atomi
 query A := A, we mightsubstitute this
ondition with the somewhat more attra
tive
ondition In(A)� �In(A) of Proposition 10.Hen
e S(P) is
ompositional and
orre
t for input
onsuming programs, pro-vided that programs are well and ni
ely moded and that queries are ni
ely12

moded. In other words, given the restri
tions on programs and queries, theS-semanti
s is
orre
t with respe
t to the observables given by the
omputedanswer substitutions of su

essful i
-derivations.Example 13. Consider the program APPEND of the Introdu
tion with the modingappend(I,I,O). S(APPEND), given in Example 9, allows us to draw a number of
on
lusions:{ append([X,b℄,Y,Z) has an input
onsuming su

essful derivation.In parti
ular, it has an input
onsuming derivation with
.a.s. fZ=[X; bjY℄g.This
an be derived by just looking at S(APPEND), from the fa
t that A =append([X1,X2℄,X3,[X1,X2|X3℄)2 S(P) and that append([X,b℄,Y,Z) is- in its input positions - an instan
e of A.{ append(Y,[X,b℄,Z) has no input
onsuming su

essful derivations.This is be
ause there is no A 2 S(P) su
h that append(Y; [X; b℄; Z) is aninstan
e of A in the input positions.{ Observe that the query append(Y,[X,b℄,Z) has in�nite su

essful SLDderivations and no failures. Therefore it does not fail also when we
on-sider i
-derivations. Sin
e, as noted above, the query has no input
onsum-ing su

essful derivations, this implies that { in presen
e of input
onsumingderivations { append(Y,[X,b℄,Z)will eventually either deadlo
k or run intoan in�nite derivation.The previous results hold also in
ase the programs are permutation well andni
ely moded and queries are permutation ni
ely moded (see [42℄).While in the
ontext of SLD (not input
onsuming) derivations the S-semanti
sis also fully abstra
t, when
onsidering input
onsuming program this is not so.Consider the following two trivial programs:P1 = f
1: p(X).
2: p(a). gP2 = f p(X). gIn both programs the mode is p(I). These two programs, despite being di�erent,yield exa
tly the same
omputed answer substitutions for all queries when i
-derivations are
onsidered. In fa
t the extra
lause
2 in P1
an resolve an atomA only if A
ontains the term a in its input position, but in this
ase
2 behavesexa
tly as
1 does5. Nevertheless, the S(P1) = fp(X); p(a)g 6= fp(X)g = S(P2),demonstrating that the S-semanti
s is not fully abstra
t when
onsidering i
-derivations. In the next Se
tion we present a more
omplex semanti
s, whi
h isalso fully abstra
t for i
-derivations.5 The only observable di�eren
e between P1 and P2 lies in the multipli
ity of theanswers: the query q(a) su

eeds twi
e in P1 and only on
e in P2, but answer mul-tipli
ity is not an observable we
onsider here.13

4 Semanti
s of Simply Moded Input ConsumingProgramsThe semanti
s presented in the previous Se
tion applies only when we are in-terested in the
omputed answer substitutions of su

essful derivations. As wedis
ussed before, there are many situations in whi
h we also want to modelthe (intermediate) results of partial derivations. For instan
e, this will be the
ase when { in the next Se
tion { we study the termination of input
onsumingprograms.In this Se
tion we de�ne a somewhat more
omplex denotational semanti
swhi
h has the advantage to model the observables given by both su

essful andpartial derivations in a rather symmetri
 way. In addition, in ex
hange for amoderate synta
ti
 restri
tion (instead of ni
ely moded programs and querieswe have to
onsider simply moded ones) it allows us to drop the requirementthat programs have to be well moded. The two semanti
s we are going to in-trodu
e are
ompositional,
orre
t and fully abstra
t with respe
t to the opera-tional semanti
s of input
onsuming simply moded programs and queries, i.e.,Oi
s (P;SM) and Oi
p (P;SM), where SM is the
lass of simply moded queries. Asin the standard S-semanti
s, we build a denotational semanti
s by means of abottom-up
onstru
tion.4.1 Simply Lo
al Substitutions and Simply Lo
al ModelsWhen input
onsuming derivations are applied to simply moded programs andqueries, important properties follow from the way
lauses be
ome instantiatedalong the derivations. The notion of simply lo
al substitution is introdu
ed in[12℄ to re
e
t this instantiation me
hanism. A
lause
 = H B1; : : : ; Bn be-
omes instantiated by its \
aller" (the atom that is resolved using
) and its\
allees" (the
lauses used to resolve the body atoms of
). Thus, a simply lo
alsubstitution is de�ned as the
omposition of several substitutions, �0; �1 : : : ; �n,one for ea
h atom in the given
lause, su
h that �0 binds the input variables ofthe head of the
lause, and ea
h �i (i > 0)
reates a binding from the outputvariables to input terms of Bi�0; : : : ; �i�1.De�nition 14 (Simply Lo
al Substitution). Let � be a substitution. We saythat � is simply lo
al with respe
t to the
lause H B1; : : : ; Bn if there existsubstitutions �0; �1 : : : ; �n and disjoint sets of fresh (with respe
t to
) variablesv0; v1; : : : ; vn su
h that � = �0�1 � � ��n where{ Dom(�0) � Var(In(H)) and Ran(�0) � v0,{ for i 2 [1::n℄,Dom(�i) � Var(Out(Bi)) and Ran(�i) � Var(In(Bi)�0�1 � � ��i�1) [vi.The substitution � is simply lo
al with respe
t to a query B if � is simply lo
alwith respe
t to the
lause q B where q is any variable-free atom.14

Example 15. Consider the program APPEND together with the mode append(I,I,O)and its re
ursive
lause
 : append([HjXs℄; Ys; [HjZs℄) append(Xs; Ys; Zs):The substitution � = fXs=[℄; Ys=W; Zs=Wg is simply lo
al with respe
t to
. Infa
t � = �0�1 where �0 = fXs=[℄; Ys=Wg and �1 = fZs=Wg. Consider now thequeryQ : append([a; X;
℄; Ys; Zs); append(Zs; [b℄; Ls):The substitution � = fZs=[a,X,
|Ys℄g is simply lo
al with respe
t to Q. In fa
t� = �1�2 where �1 = fZs=[a,X,
|Ys℄g and �2 is the empty substitution.The denotational semanti
s de�ned in [12℄ is based on a restri
ted notion ofmodel. Here and in the sequel we
onsider sets of moded atoms
losed undervarian
e.De�nition 16 (Simply Lo
al Model). Let M be a set of moded atoms. Wesay that M is a simply lo
al model of a
lause
 : H B1; : : : ; Bn if for everysubstitution � simply lo
al with respe
t to
,if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply lo
al model of a program P if it is a simply lo
al model of ea
h
lause of it.Clearly a simply lo
al model is not ne
essarily a model in the
lassi
al sense,sin
e the substitution � in (1) is required to be simply lo
al. For example, giventhe program fq(1):; p(X) q(X):g with modes q(I); p(O), a model must
ontainthe atom p(1), whereas a simply lo
al model does not ne
essarily
ontain p(1),sin
e fX=1g is not simply lo
al with respe
t to p(X) q(X):A minimal simply lo
al model exists and it is bottom-up
omputable byapplying the following operator [12℄.De�nition 17. Given a program P and a set of moded atoms I, we de�neTSLP (I) = I [fH� j 9
 : H B variant of a
lause of P;� is simply lo
al with respe
t to
;B� 2 IgTSLP is monotoni
 and
ontinuous on the latti
e where set of moded atomsare ordered by set in
lusion. Powers of an operator T are de�ned in the standardway as follows: T " 0(I) = I , T " (i + 1)(I) = T (T " i(I)), and T " !(I) =S1i=0 T " i(I).In the following we denote by SM P the set of all simply moded atoms of theextended Herbrand universe of P . In [12℄ it is proven that if P is simply modedand I � SM P thenTSLP " !(I) is the least simply lo
al model of P
ontaining I (2)This allows us to de�ne our models.15

De�nition 18. Let P be a program, we de�ne{ M SLP is the least simply lo
al model of P ,{ PM SLP is the least simply lo
al model of P
ontaining SM P .The existen
e of these models is guaranteed by (2), in fa
t (2) also shows howto
onstru
t them, as it implies thatM SLP = TSLP " !(;), and PM SLP = TSLP " !(SMP) (3)4.2 Relation among Denotational and Operational Semanti
sTo relate the M SLP and PM SLP to Oi
s (P;SM) and Oi
p (P;SM) we need to re-late TSLP to the results of input
onsuming derivations; this is a
hieved in thefollowing Lemma, proved in [12℄.Lemma 19. Let the program P and the query A be simply moded and I � SM Pbe a set of moded atoms. The following statements are equivalent.(i) There exists an input
onsuming derivation A #�!P C with C � I,(ii) There exists a substitution � simply lo
al with respe
t to A, su
h that A� �TSLP " !(I),where A# � A�.We
an now prove that M SLP and PM SLP fully
hara
terize the semanti
s of i
-derivations for simply moded programs and queries, namely they are equal toOi
s (P;SM) and Oi
p (P;SM), respe
tively.Theorem 20. Let P be simply moded. Then(i) M SLP = Oi
s (P;SM).(ii) PM SLP = Oi
p (P;SM).Proof. Immediate by (3), Lemma 19 and the de�nitions of Oi
s (P;SM) andOi
p (P;SM).An example follows.Example 21. Let us
onsider again the program APPEND.1. First let us
onsider its su

essful i
-derivations. Hen
e we have to buildM SLAPPENDM SLAPPEND = fappend([t1; : : : ; tn℄; s; [t1; : : : ; tnjs℄) j n 2 [0::1℄;and t1; : : : ; tn; s are any termsg:Noti
e that this model is di�erent from S(APPEND), reported in Example 9.We are going to relate S(P) and MSLP later in this Se
tion.16

2. Now let us
onsider the results of partial derivations. Re
all that PM SLAPPENDis obtained by repeatedly applying TSLP to ea
h simply moded atom. Simplymoded atoms are append(s; t; x) where s and t are arbitrary terms but x isa variable not o

urring in s or in t. We obtainPM SLAPPEND = M SLAPPEND[fappend(s; t; x) j x is a fresh variable g[fappend([t1; : : : ; tmjs℄; t; [t1; : : : ; tmjx℄) j x is a fresh variablegwhere s; t; t1; : : : ; tm are arbitrary terms.Consider now the query append([a; b;
jX℄; Y; Z). It is straightforward to
he
k that the substitution � = fZ=[a; bjZ0℄g is simply lo
al with respe
tto it, and that append([a; b;
jX℄; Y; Z)� 2 PM SLAPPEND. Therefore, by usingTheorem 20, we
an
on
lude that there exists a partial derivation startingin append([a; b;
jX℄; Y; Z), with
omputed answer �. Following the same rea-soning, one
an also
on
lude that the query has a partial derivation with
omputed answer �0 = fZ=[ajZ0℄g.4.3 Relation among S-semanti
s and Denotational Semanti
s forIC-programsIn this se
tion we
ompare the denotational semanti
sMSLP with the S-semanti
sS(P) of simply moded programs.First, we need a new de�nition: let I be a set of moded atoms, the input
losure of I is de�ned as:InCl(I) = fA� j A 2 I and Var(A) \ Var(�) � Var(In(A))gSo the input
losure of an atom is obtained by instantiating its input positionsin all possible ways, provided that no new links are
reated between the inputand the output positions.Theorem 22. Let P be a well and simply moded program, thenMSLP = InCl(S(P))Proof. First observe that the
lass of simply moded programs is
ontained in the
lass of ni
ely moded programs, hen
e Theorem 12 holds also when we
onsiderwell and simply moded programs and simply moded queries.- MSLP � InCl(S(P)). Let A be simply moded and A# 2 MSLP then, byTheorem 20, A# 2 Oi
s (P;SM). By Theorem 12 there exists A0 2 S(P) (renamedapart wrt. A), and � = mgu(A;A0) su
h that In(A)� � In(A) and A� � A#.Sin
e A is simply moded, we
an
hoose � su
h that Dom(�) \ Var(A0) �Var(In(A0)). Therefore A# � A� = A0� 2 InCl(S(P)).- MSLP � InCl(S(P)). Let A0� 2 InCl(S(P)) and A0 = p(s; t) 2 S(P).There exist a simply moded atom A = p(s0; z), renamed apart wrt. A0, and asubstitution � su
h that � = mgu(A;A0), In(A)� = In(A) and A� = A0� � A0�.By Theorem 12 there exists # su
h that A# 2 Oi
s (P;SM) and A# � A� � A0�.Hen
e, by Theorem 20, A0� 2MSLP . 17

5 Semanti
-Based Veri�
ation of TerminationThere have been only few proposals whi
h ta
kled the spe
i�
 problem of ver-ifying the termination of logi
 programs with dynami
 s
heduling. Namely byApt and Luitjes [5℄, Mar
hiori and Teusink [30℄ and Smaus. Input
onsumingderivations were indeed introdu
ed by Smaus in [40℄ to simplify the study ofprogram properties whi
h depend on sele
tion rules and in [41℄ he started tostudy in parti
ular the problem of termination of input
onsuming derivations.In [10℄ and [12℄ we study two
lasses of programs terminating with respe
tto input
onsuming derivations and well-formed queries. The two
lasses di�erin various aspe
ts. First of all, two di�erent
lasses of well-formed queries are
onsidered: ni
ely moded queries in [10℄, simply moded queries in [12℄. To givean uniform presentation, in [12℄ we
onsider a parametri

lass of programs inwhi
h all input
onsuming derivations terminate. The parameter is a given
lassC of queries.De�nition 23 (Input Termination wrt. a
lass C of queries). Let C be a
lass of queries. A program is
alled input terminating with respe
t to C if allits input
onsuming derivations started in a query in C are �nite.The se
ond di�eren
e among the two
lasses of terminating programs in [10℄and [12℄ is in the termination proof style. The �rst
lass follows the style of [3,8℄ and it uses a simple (synta
ti
) termination
ondition, but it is also a ratherrestri
tive
lass. The se
ond
lass follows the style of [6, 7℄, that is based on amore
omplex model theoreti
 approa
h, and it uses the semanti
s introdu
edin Se
tion 4; this is a signi�
antly larger
lass of programs.Let us
onsider �rst the more restri
tive and simple
lass introdu
ed in [10℄:The
lass of ni
ely moded quasi re
urrent programs. Its de�nition is based onthe notion of well moded level mapping, �rst introdu
ed in [21℄. Here we useits extension ([10℄) to all the terms on BEP , the extended Herbrand base of P ,that is the set of equivalen
e
lasses of all (possibly non-ground) atoms, modulorenaming, whose predi
ate symbols appear in P .De�nition 24 (Moded Level Mapping). Let P be a program and BEP be theextended Herbrand base for the language asso
iated with P . A fun
tion j j is amoded level mapping for P if:{ it is a fun
tion j j : BEP ! N from atoms to natural numbers;{ for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.De�nition 25 (Quasi Re
urren
y). Let P be a program.{ A
lause of P is
alled quasi re
urrent with respe
t to a moded level mappingj j if for every instan
e of it, H A; B;Cif Rel(H) ' 6Rel(B) then jH j > jBj:6 Given two predi
ate symbols de�ned in a program P we denote by p ' q the fa
tthat the de�nitions of the two predi
ates are mutually re
ursive.18

{ P is
alled quasi re
urrent with respe
t to j j if all its
lauses are. P is
alled quasi re
urrent if it is quasi re
urrent with respe
t to some modedlevel mapping j j : BEP ! N.Theorem 26. Let P be a ni
ely moded program. If P is quasi re
urrent then Pis input terminating with respe
t to the
lass of ni
ely moded queries.The proof of this Theorem
an be found in [10℄.Thus, the quasi re
urrent
ondition is a suÆ
ient
ondition for input ter-mination of ni
ely moded programs and ni
ely moded queries. But it is not ane
essary
ondition: there are ni
ely moded programs input terminating on allni
ely moded queries whi
h are not quasi re
urrent as shown by the followingsimple example taken from [10℄.Example 27. Consider the following program with moding p(I; O).p(X,a) p(X,b).p(X,b).This program is
learly input terminating, however it is not quasi re
urrent.If it was, we would have that jp(X; a)j > jp(X; b)j, for some moded level mappingj j (otherwise the �rst
lause would not be quasi re
urrent). On the other hand,sin
e p(X; a) and p(X; b) di�er only for the terms �lling in their output positions,by de�nition of moded level mapping, jp(X; a)j = jp(X; b)j. Hen
e, we have a
ontradi
tion.A full
hara
terization
an be obtained only by further restri
ting the
lassof programs, passing from ni
ely moded to simply moded and input-re
ursiveprograms.De�nition 28 (Input-Re
ursive Program). Let P be a program.{ A
lause H A; B;C of P is
alled input-re
ursive ifif Rel(H) ' Rel(B) then Var(In(B)) � Var(In(H)):{ A program P is
alled input-re
ursive if all its
lauses are.Input-re
ursive is a synta
ti

ondition on a
lause requiring that the setof variables o

urring in the arguments �lling in the input positions of ea
hre
ursive
all in the
lause body is a subset of the set of variables o

urringin the arguments �lling in the input positions of the
lause head. The
lassof input-re
ursive programs has strong similarities with the
lass of primitivere
ursive fun
tions. It does not in
lude programs su
h that qui
ksort, permute,transpose and we
an
ompare it with the
lass of re
urrent logi
 programs, thatis programs whose termination does not depend on the so-
alled inter-argumentrelations.Quasi re
urren
y fully
hara
terizes input termination of simply moded andinput-re
ursive programs with respe
t to ni
ely moded queries.19

Theorem 29. Let P be a simply moded and input-re
ursive program. P is quasire
urrent if and only if P is input terminating with respe
t to the
lass of ni
elymoded queries.The proof of this Theorem
an be found in [10℄.To
onsider a larger
lass of input terminating programs we
an follow thesame approa
h pursued by Apt and Pedres
hi in de�ning a

eptable programsand use a model to
apture the inter-argument relations between the atoms ina query. Intuitively, the model represents all the possible
ontexts in whi
h aspe
i�
 atom in a query
an be
alled. Standard models suÆ
e when standardleft-to-right derivations are
onsidered, that is when the
ontexts depends onlyon the
omputed answers of the atoms o

urring on the left of the
onsideredone. When input
onsuming derivations are
onsidered, the des
ription of all thepossible
ontexts is mu
h more
omplex sin
e there may be atoms in the querywhi
h are only partially
omputed when the
onsidered atom is sele
ted. Hen
ea
omputed answer semanti
s does not provide enough information, that is whywe need to
apture partial
omputed answers of input
onsuming derivations.The semanti
s de�ned in [12℄ and the
on
ept of simply lo
al model give usthe right tools and allow us to identify a large
lass of input terminating programswhi
h in
ludes also programs employing a non-trivial re
ursion s
heme su
h asqui
ksort, permute, transpose. In fa
t, based on the notion of simply lo
almodels, in [12℄ we introdu
ed the notion of simply a

eptable programs whi
h
orresponds to the notion of a

eptable programs introdu
ed in [6℄.De�nition 30 (Simply A

eptable Program). Let P be a program and Ma simply lo
al model of P
ontaining SM P .{ A
lause
 of P is simply a

eptable with respe
t to a moded level mappingj j and M if for every variant H A; B;C of
 and every substitution �simply lo
al with respe
t to
,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:{ P is simply a

eptable with respe
t to M if there exists a moded level map-ping j j su
h that ea
h
lause of P is simply a

eptable with respe
t to j j andM . We also say that P is simply a

eptable if it is simply a

eptable withrespe
t to some M and moded level mapping j j.Simple a

eptability fully
hara
terizes input termination of simply modedprograms with respe
t to simply moded queries.Theorem 31. Let P be a simply moded program. P is simply a

eptable if andonly if it is input terminating with respe
t to simply moded queries.The following example shows how we
an use the above Theorem to reasonabout termination of a program.Example 32. Consider the following PERMUTE program20

permute([X|Xs℄,Ys) insert(Zs,X,Ys), permute(Xs,Zs).permute([℄,[℄).insert([℄,X,[X℄).insert([U|Xs℄,X,[U|Zs℄) insert(Xs,X,Zs).We
onsider it with two di�erent modes.1. First,
onsider the mode permute(O ; I); insert(O ;O ; I).Noti
e that the program is not input terminating in this mode: by repeat-edly sele
ting the rightmost atom, the query permute(Xs,Ys) generates anin�nite input
onsuming derivation. By Theorem 31, we
an prove it by show-ing that PERMUTE in this mode
annot be simply a

eptable with respe
t toPM SLPERMUTE and a moded level mapping whi
h is invariant under renaming.First note that PM SLPERMUTE
ontains every atom of the form insert(Us; U; t)where Us and U are disjoint from t, i.e., every simply moded atom whose pred-i
ate is insert. Therefore, in parti
ular, insert(Us; U; Vs) 2 PM SLPERMUTE. Thesubstitution � = fYs=Vs; Zs=Us; X=Ug is simply lo
al with respe
t to the �rst
lause. Therefore, for this
lause to be simply a

eptable, by Theorem 31,there would have to be a moded level mapping, invariant under renaming,su
h that jpermute([UjXs℄; Vs)j > jpermute(Xs; Us)j. This is a
ontradi
tionsin
e a moded level mapping depends only on the input arguments (the se
-ond argument of permute) and we are
onsidering a level mapping invariantunder renaming.Thus Theorem 31
an be used to diagnose a program, in that we
an pinpointwhy it does not input terminate.2. Now
onsider the program PERMUTE together with the mode permute(I ;O);insert(I ; I ;O).In this
ase, in order to make the program simply moded we have to permutethe two body atoms of the �rst permute
lause7. I.e., permute is rede�nedas permute([X|Xs℄,Ys) permute(Xs,Zs), insert(Zs,X,Ys).permute([℄,[℄).Noti
e that the program is now input terminating with respe
t to simplymoded queries. This is in fa
t the natural mode of the PERMUTE program.To demonstrate the termination one
an apply Theorem 31 using any sim-ply lo
al model
ontaining SM P together with the following moded levelmapping:jpermute(l;)j = len(l);jinsert(l; ;)j = len(l):7 A
tually, everything we state applies to the
lass of permutation simply modedprograms, i.e., those programs and queries that are simply moded possibly after apermutation of body atoms. For the sake of notation simpli
ity, we avoid to refer tothis in a stru
tural way. 21

6 Con
lusionIn this paper, we have illustrated two denotational semanti
s proposed in [9℄and in [12℄ for input
onsuming derivation in logi
 programs and we have shownhow these semanti
s have been used for studying termination properties of su
hprograms.The two semanti
s are quite orthogonal to ea
h other: while the �rst one(introdu
ed in [9℄) models ex
lusively the results of su

essful derivations andrequires programs to be well moded and ni
ely moded, the se
ond one (introdu
edin [12℄) models also the results of in
omplete derivations and requires programsand queries to be simply moded.As mentioned in the Introdu
tion, in the
ontext of parallel and
on
ur-rent programs, one
an have derivations that never su

eed, and yet
omputesubstitutions [36℄. Thus we have provided a denotational semanti
s also for su
hprograms, whi
h goes beyond the usual su

ess-based SLD resolution me
hanismof logi
 programming.Input
onsuming derivations bear a
ertain resemblan
e with derivations inthe language ofModed (Flat) GHC [45℄. A
tually, input
onsuming programs
anbe seen as a simpli�ed version of moded (F)GHC. We want to note however thatModed (F)GHC is a full-
edged programming paradigm, while input
onsumingprograms are meant for abstra
tion purposes.As a
on
luding remark, we want to stress the relation between i
-programsand programs that use delay de
larations. A signi�
ant
lass of programs withdelay de
larations whose derivations are input
onsuming derivations has beenidenti�ed in [11℄.Referen
es1. K. R. Apt. Logi
 Programming. In J. van Leeuwen, editor, Handbook of Theoret-i
al Computer S
ien
e, volume B: Formal Models and Semanti
s, pages 495{574.Elsevier and The MIT Press, Amsterdam and Cambridge, MA, 1990.2. K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, London, 1997.3. K. R. Apt and M. Bezem. A
y
li
 programs. New Generation Computing,9(3&4):335{363, 1991.4. K. R. Apt and S. Etalle. On the uni�
ation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of the Conferen
e onMathemati
al Foundations of Computer S
ien
e (MFCS'93), volume 711 of Le
tureNotes in Computer S
ien
e, pages 1{19, Berlin, Germany, 1993. Springer-Verlag.5. K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
la-rations. In A. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of theFourth International Conferen
e on Algebrai
 Methodology and Software Te
hnol-ogy, (AMAST'95), volume 936 of Le
ture Notes in Computer S
ien
e, pages 1{19,Berlin, Germany, 1995. Springer-Verlag.6. K. R. Apt and D. Pedres
hi. Proving termination of general Prolog programs.In T. Ito and A. Meyer, editors, Pro
eedings of the International Conferen
e onTheoreti
al Aspe
ts of Computer Software, Le
ture Notes in Computer S
ien
e 526,pages 265{289, Berlin, Germany, 1991. Springer-Verlag.22

7. K. R. Apt and D. Pedres
hi. Reasoning about termination of pure Prolog programs.Information and Computation, 106(1):109{157, 1993.8. M. Bezem. Strong termination of logi
 programs. Journal of Logi
 Programming,15(1&2):79{97, 1993.9. A. Bossi, S. Etalle, and S. Rossi. Semanti
s of well-moded input-
onsuming logi
programs. Computer Languages, 26(1):1{25, 2000.10. A. Bossi, S. Etalle, and S. Rossi. Properties of input-
onsuming derivations. Theoryand Pra
ti
e of Logi
 Programming, 2(2):125{154, 2002.11. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Semanti
s and termination of simply-moded logi
 programs with dynami
 s
heduling. In D. Sands, editor, Pro
eedingsof the European Symposium on Programming, volume 2028 of Le
ture Notes inComputer S
ien
e, pages 402{416, Genova, Italy, 2001. Springer-Verlag.12. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Termination of simply-moded logi
programs with dynami
 s
heduling. ACM Transa
tions on Computational Logi
(TOCL), 2004. To appear.13. A. Bossi, M. Gabrielli, G. Levi, and M. Martelli. The S-semanti
s approa
h: Theoryand appli
ations. The Journal of Logi
 Programming, 19 & 20:149{198, May 1994.14. A. Bossi, S. Etalle N. Co

o, and S. Rossi. On Modular Termination Proofs ofGeneral Logi
 Programs. Theory and Pra
ti
e of Logi
 Programming, 2(3):263{291,2002.15. R. Chadha and D.A. Plaisted. Corre
tness of uni�
ation without o

ur
he
k inProlog. Te
hni
al report, Department of Computer S
ien
e, University of NorthCarolina, Chapel Hill, N.C., 1991.16. F.S. de Boer and C. Palamidessi. A fully abstra
t model for
on
urrent
onstraintprogramming. In S. Abramsky and T.S.E. Maibaum, editors, Pro
. of the Interna-tional Joint Conferen
e on Theory and Pra
ti
e of Software Development, (TAP-SOFT/CAAP), volume 493 of Le
ture Notes in Computer S
ien
e, pages 296{319,Brighton, UK, 1991. Springer-Verlag.17. M. Gar
ia de la Banda, K. Marriott, and P. Stu
key. EÆ
ient analysis of logi
programs with dynami
 s
heduling. In J. Lloyd, editor, Pro
. Twelfth InternationalLogi
 Programming Symposium, pages 417{431. The MIT Press, 1995.18. D. De S
hreye and S. De
orte. Termination of logi
 programs: the never-endingstory. Journal of Logi
 Programming, 19-20:199{260, 1994.19. S. Debray, D. Gudemann, and P. Bigot. Dete
tion and optimization of suspension-free logi
 programs. In M. Bruynooghe, editor, Pro
. Eleventh International Logi
Programming Symposium, pages 487{504. The MIT Press, 1994.20. P. Dembinski and J. Maluszynski. AND-parallelism with intelligent ba
ktra
kingfor annotated logi
 programs. In Pro
eedings of the International Symposium onLogi
 Programming, pages 29{38, Boston, 1985.21. S. Etalle, A. Bossi, and N. Co

o. Termination of well-moded programs. Journalof Logi
 Programming, 38(2):243{257, 1999.22. S. Etalle, M. Gabbrielli, and M. C. Meo. Transformations of

p programs. ACMTransa
tions on Programming Languages and Systems, 23(3):304{395, 2002.23. M. Falas
hi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Constraint logi
programming with dynami
 s
heduling: a semanti
s based on
losure operators.Information and Computation, 137(1):41{67, 1997.24. M. Falas
hi, M. Gabrielli, K. Marriott, and C. Palamidessi. Compositional analysisfor
on
urrent
onstraint programming. In Pro
eedings of the IEEE Symposiumon Logi
 in Computer S
ien
e. IEEE, 1993.23

25. M. Falas
hi, G. Levi, M. Martelli, and C. Palamidessi. De
larative modeling of theoperational behavior of logi
 languages. Theoreti
al Computer S
ien
e, 69(3):289{318, 1989.26. P. M. Hill and J. W. Lloyd. The G�odel programming language. The MIT Press,1994.27. IC Par
k, Imperial College London. The ECLiPSe Constraint Logi
 ProgrammingSystem, 2003. http://www-i
par
.do
.i
.a
.uk/e
lipse/.28. Intelligent Systems Laboratory, Swedish Institute of Computer S
ien
e,PO Box 1263, S-164 29 Kista, Sweden. SICStus Prolog Page, 2003.http://www.si
s.se/si
stus/.29. J. W. Lloyd. Foundations of Logi
 Programming. Symboli
 Computation { Arti-�
ial Intelligen
e. Springer-Verlag, Berlin, Berlin, Germany, 1987. Se
ond edition.30. E. Mar
hiori and F. Teusink. Termination of logi
 programs with delay de
lara-tions. Journal of Logi
 Programming, 39(1{3):95{124, 1999.31. K. Marriott. Algebrai
 and logi
al semanti
s for CLP languages with dynami
s
heduling. Journal of Logi
 Programming, 32(1):71{84, 1997.32. K. Marriott, M. Gar
ia de la Banda, and M. Hermenegildo. Analyzing logi
 pro-grams with dynami
 s
heduling. In Pro
. 21st Annual ACM Symp. on Prin
iplesof Programming Languages, pages 240{253. ACM Press, 1994.33. K. Marriott, M. Falas
hi, M. Gabrielli, and C. Palamidessi. A simple semanti
sfor logi
 programming languages with delay. In Pro
eedings of the EighteenthAustralian Computer S
ien
e Conferen
e, 1995.34. L. Naish. Negation and
ontrol in Prolog, volume 238 of Le
ture Notes in ComputerS
ien
e. Springer-Verlag, New York, 1986.35. L. Naish. Coroutining and the
onstru
tion of terminating logi
 programs. Aus-tralian Computer S
ien
e Communi
ations, 15(1):181{190, 1993.36. L. Naish. Parallelizing NU-Prolog. In K. A. Bowen and R. A. Kowalski, editors,Pro
eedings of the Fifth International Conferen
e/Symposium on Logi
 Program-ming, pages 1546{1564, Seattle, Washington, August 1988. The MIT Press.37. L. Naish. An introdu
tion to MU-Prolog. Te
hni
al Report 82/2, Departmentof Computer S
ien
e, University of Melbourne, Melbourne, Australia, Mar
h 1982(Revised July 1983).38. G. Puebla, M. Gar
ia de la Banda, K. Marriott, and P. Stu
key. Optimization oflogi
 programs with dynami
 s
heduling. In ICLP 1997, pages 93{107, 1997.39. V. A. Saraswat and M. Rinard. Con
urrent
onstraint programming. In Pro
. ofthe Seventeenth ACM Symposium on Prin
iples of Programming Languages, pages232{245, San Fran
is
o, California, 1990. ACM, New York.40. J.-G. Smaus. Modes and Types in Logi
 Programming. PhDthesis, University of Kent at Canterbury, 1999. Available fromhttp://www.
s.uk
.a
.uk/pubs/1999/986/.41. J.-G. Smaus. Proving termination of input-
onsuming logi
 programs. In D. DeS
hreye, editor, Pro
eedings of the 16th International Conferen
e on Logi
 Pro-gramming, pages 335{349, Las Cru
es, New Mexi
o, USA, 1999. The MIT Press.42. J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programs withblo
k de
larations running in several modes. In C. Palamidessi, editor, Pro
eed-ings of the 10th Symposium on Programming Language Implementations and Logi
Programming, volume 1490 of Le
ture Notes in Computer S
ien
e, pages 73{88,Pisa, Italy, 1998. Springer-Verlag.43. K. Ueda. Guarded Horn Clauses, a parallel logi
 programming language with the
on
ept of a guard. In M. Nivat and K. Fu
hi, editors, Programming of FutureGeneration Computers, pages 441{456. North Holland, Amsterdam, 1988.24

44. K. Ueda and K. Furukawa. Transformation rules for GHC Programs. In Pro
. of theInternational Conferen
e on Fifth Generation Computer Systems, pages 582{591,Tokyo, Japan, 1988. Institute for New Generation Computer Te
hnology, Tokyo,OHMSHA Ltd. Tokyo and Springer-Verlag.45. K. Ueda and M. Morita. Moded
at GHC and its message-oriented implementationte
hnique. New Generation Computing, 13(1):3{43, 1994.46. M. H. van Emden and G. J. de Lu
ena. Predi
ate logi
 as a language for parallelprogramming. In K.L. Clark and S.-A. T�arnlund, editors, Logi
 Programming,London, 1982. A
ademi
 Press.

25

