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t. Most logi
 programming languages a
tually provide somekind of dynami
 s
heduling to in
rease the expressive power and to 
on-trol exe
ution. Input 
onsuming derivations have been introdu
ed to de-s
ribe dynami
 s
heduling while abstra
ting from the te
hni
al details.In this paper we review and 
ompare the di�erent proposals given fordenotational semanti
s of programs with input 
onsuming derivations.We also show how they 
an be applied to termination analysis.1 Introdu
tion1.1 Dynami
 S
heduling in Logi
 ProgrammingIn logi
 programming the sele
tion rule determines whi
h atom in a query is se-le
ted at ea
h derivation step. The standard sele
tion rule is the left-to-right ruleof Prolog, simple to implement, but whi
h 
an 
ause problems both with termina-tion and with negation when sele
ted atoms are not fully instantiated. Moreoverthere are situations, e.g., in the 
ontext of parallel exe
utions or the test-and-generate paradigm, that require a more 
exible 
ontrol me
hanism, where thesele
table atoms are determined at runtime.Most logi
 programming languages a
tually provide some kind of dynami
s
heduling in order to in
rease the expressive power and to 
ontrol exe
ution.In pra
ti
al systems, dynami
 sele
tion rules are implemented by means of 
on-stru
ts su
h as delay de
larations and blo
k de
larations. Delay de
larations,advo
ated by van Emden and de Lu
ena [46℄, were introdu
ed expli
itly in logi
programming by Naish [37, 34℄. Delay de
larations asso
iate 
onditions to atoms,indi
ating when their evaluation 
an pro
eed. Su
h 
onditions are based on in-stantiation. Typi
al delay de
larations are ground(X) or nonvar(X) whi
h spe
-ify that the asso
iated atom 
an be sele
ted for evaluation when its argument Xis respe
tively a ground term or a non-variable term. Delay de
larations 
an bealso 
onjoined or disjoined to allow more 
omplex 
ontrol.G�odel [26℄ and ECLiPSe [27℄ use delay de
larations, while SICStus Prolog[28℄ employs blo
k de
larations (whi
h are a spe
ial kind of delay de
larations).Also in 
on
urrent logi
 languages, su
h as GHC [43℄, programs are aug-mented with guards in order to 
ontrol the sele
tion of atoms dynami
ally. For



example Moded Flat GHC [45℄ use 
onditions based on modes and instantiation
onstraints imposed on individual 
lauses.To see how dynami
 s
heduling 
an be 
ontrolled by delay de
larations, 
on-sider the following programs APPEND and IN ORDER:% append(Xs,Ys,Zs)  Zs is the result of 
on
atenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs),append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ : read tree(Tree), in order(Tree,List), write list(List):where read tree and write list are de�ned elsewhere. If read tree 
annotread the whole tree at on
e { say, it re
eives the input from a stream { it wouldbe ni
e to be able to run the \pro
esses" in order and write list on theavailable input. This 
an be done properly if one uses a dynami
 sele
tion rule.Prolog's rule would 
all in order only after read tree has �nished, while other�xed rules would immediately diverge and/or have an unwanted behavior. Forinstan
e, the �xed rule that sele
ts always the se
ond atom in a 
lause body,and that sele
ts the �rst one only when the body 
ontains only one atom 
anlead to nontermination, as the query in order(Tree,List) 
an easily diverge.In the above program, in order to avoid nontermination one 
an de
lare thatpredi
ates in order, append and write list 
an be sele
ted only if their �rstargument is not just a variable. Formally,delay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).delay write list(Ls, ) until nonvar(Ls).These de
larations prevent in order, append and write list from being se-le
ted \too early", i.e., when their arguments are not \suÆ
iently instantiated".Note that instead of having interleaving \pro
esses", one 
an also sele
t severalatoms in parallel, as long as the delay de
larations are respe
ted. This approa
hto parallelism has been �rst proposed by Naish [36℄ and { as observed by Aptand Luitjes [5℄ { \has an important advantage over the ones proposed in theliterature in that it allows us to parallelize programs written in a large subset ofProlog by merely adding to them delay de
larations, so without modifying theoriginal program".Compared to other me
hanisms for user-de�ned 
ontrol, e.g., using the 
utoperator in 
onne
tion with built-in predi
ates that test for the instantiation of a2



variable (var or ground), delay de
larations are more 
ompatible with the de
lar-ative 
hara
ter of logi
 programming. Nevertheless, many important de
larativeproperties that have been proven for logi
 programs do not apply to programswith delay de
larations. The problem is mainly related to the fa
t that delayde
larations might 
ause deadlo
k situations, in whi
h no atom in the queryrespe
ts its delay de
laration. For su
h programs the well-known equivalen
ebetween model-theoreti
 and operational semanti
s does not hold. As an exam-ple, 
onsider the query append(X,Y,Z)with the exe
ution me
hanism des
ribedabove: it does not su

eed (it deadlo
ks) and this is in 
ontrast with the fa
tthat (in�nitely many) instan
es of append(X,Y,Z) are 
ontained in the leastHerbrand model of APPEND.1.2 Semanti
s of Logi
 Programs with Dynami
 S
hedulingBy introdu
ing dynami
 s
heduling we obtain more powerful and 
exible pro-grams but we are fa
ed with the problem of �nding new te
hniques for ensuring
orre
tness and termination of su
h programs and more generally for analyzingthem. The standard semanti
s and properties are no longer valid when an atom
an be delayed under some 
ondition, moreover it is not easy to extend su
hsemanti
s also be
ause of the possibility of 
oundering when no atom in thegoal 
an be sele
ted. Hen
e it is not surprizing that not so many proposals havebeen given for a semanti
s for logi
 programs with dynami
 s
heduling despiteof their pra
ti
al importan
e.The �rst proposal of an operational semanti
s for dynami
 s
heduling in theform of 
oroutining was given by Naish [35℄. He de�ned SLDF resolution, whi
his a straightforward generalization of SLD resolution, where exe
ution of atomsmay be suspended inde�nitely. He also 
onsidered termination of su
h programsand observed that, if the set of 
allable atoms is 
losed under instantiation, ter-mination properties are simpli�ed. Moreover Naish stressed the importan
e ofmode information for reasoning about termination of su
h programs. An oper-ational semanti
s for 
onstraint logi
 programs (CLP) with dynami
 s
hedulinghave been given also by Debray et al. [19℄.Falas
hi et al. [24, 33, 23℄ have de�ned a denotational semanti
s for CLP pro-grams with dynami
 s
heduling where the semanti
s of a query is given by a setof 
losure operators (ea
h operator 
orresponds to a sequen
e of rule 
hoi
es).They start from an operational semanti
s for 
onstraint logi
 programs with dy-nami
 s
heduling given in terms of derivations from the goals, whi
h is similarto the one in [19℄ and in [32℄. Then they give a semanti
s in terms of and-trees,whi
h 
apture the stru
ture of a derivation in a 
ompositional way. An and-tree
an be seen as a fun
tion mapping an initial 
onstraint to its answer. The deno-tation of a sequen
e of atoms is then a set of 
losure operators, 
orresponding tothe and-trees whi
h have this sequen
e as root. Their denotational semanti
s isthe analogue of the bottom-up S-semanti
s [13℄ for usual logi
 programs, whereatoms are mapped to their set of answers.Su
h a denotational semanti
s 
an be used as a basis for the analysis of logi
programs with dynami
 s
heduling, sin
e 
losure operators 
an be abstra
ted by3



des
riptions whi
h 
apture their behaviour. This idea was followed by Marriottet al. in [32℄ where a framework for global data
ow analysis for logi
 program-ming languages with dynami
 s
heduling is developed. Its main use is to giveinformation on 
alling patterns. In [17℄ the analysis is further improved both inpre
ision and in eÆ
ien
y. From su
h proposals also optimization te
hniques forlogi
 programs with dynami
 s
heduling have been derived, su
h as in [38℄.A very elegant de�nition of an algebrai
 and logi
al semanti
s for 
onstraintlogi
 languages with dynami
 s
heduling have been given by Marriott in [31℄.It 
orresponds to an operational semanti
s based on the one given by Naishin [35℄ generalized to arbitrary 
onstraints. Delayed atoms are 
onsidered as
onstraints, then the soundness and 
ompleteness results for su

ess and �nitefailure for CLP are extended to CLP with dynami
 s
heduling. The 
ompletenessresult for �nite failure is ne
essarily weaker.In spite of these proposals some problems remain. Dynami
 s
heduling isoften introdu
ed to ensure the termination of the program, preventing possi-ble diverging derivations. Nevertheless, while for pure Prolog programs (i.e.,logi
 programs employing the �xed leftmost sele
tion rule) there exist results
hara
terizing when a program is terminating su
h as in [7, 18, 14℄ no su
h a
hara
terization was derived for programs with dynami
 s
heduling from thesesemanti
s.1.3 Semanti
s of Input Consuming DerivationsIn order to provide a 
hara
terization of dynami
 s
heduling that is reasonablyabstra
t and amenable to termination analysis, Smaus [40℄ introdu
ed input
onsuming derivations. The de�nition of input 
onsuming program relies on the
on
ept of mode. A moded program is a program in whi
h ea
h atom's argumentsare partitioned into input and output ones. Output arguments are those whi
h
an be produ
ed by the 
omputation pro
ess, while input arguments should beonly 
onsumed. Roughly speaking, in an input 
onsuming program only atomswhose input arguments are not instantiated through the uni�
ation step areallowed to be sele
ted.We believe that { in many 
ases { the adoption of \natural" delay de
larationsis equivalent to 
onsidering only input 
onsuming derivations [11℄. This is the
ase, for instan
e, of the programs mentioned in the example above togetherwith their natural mode where the �rst position of in order is 
onsidered ininput, while the se
ond one is in output. In fa
t under normal 
ir
umstan
es,the adoption of the stated delay de
larations enfor
es nothing but a restri
tionto input 
onsuming derivations. Moreover also other 
ontrol me
hanisms, su
has the one in Moded Flat GHC, are similar to requiring an input 
onsumingderivation step: the resolution of an atom with a de�nition must not instantiatethe input arguments of the resolved atom.Input 
onsuming programs allow for simpler de�nitions of denotational se-manti
s and have ni
e properties regarding termination. Hen
eforth they seemto be a resonable and safe approximation to programs with general dynami
s
heduling. In this paper we review and 
ompare the di�erent proposals given4



for denotational semanti
s of programs with input 
onsuming derivations. Wealso show how they 
an be applied to termination analysis.1.4 Stru
ture of the PaperThe paper is organized as follows. Se
tion 2 
ontains some preliminary notationsand de�nitions in
luding input 
onsuming programs. Se
tion 3 introdu
es a �rstdenotational semanti
s 
apturing 
omputed answer substitutions of su

essfulderivations. This semanti
s applies to well and ni
ely moded input 
onsumingprograms. In Se
tion 4 a se
ond denotational semanti
s for simply moded input
onsuming programs is presented whi
h is able to model also intermediate re-sults of partial derivations. Se
tion 5 shows how these semanti
s have been usedto 
hara
terize termination properties of input 
onsuming programs. Se
tion 6
on
ludes the paper.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi
 resultsof logi
 programs and their semanti
s [1, 2, 29℄. In this Se
tion we introdu
e fewnotions that will be used in the sequel.2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data 
onstru
tors C and adenumerable set of variable symbols V . For any synta
ti
 obje
t o, we denote byVar(o) the set of variables o

urring in o. A synta
ti
 obje
t is linear if everyvariable o

urs in it at most on
e. A substitution � is a mapping from V toT . Given a substitution � = fx1=t1; : : : ; xn=tng, we say that fx1; : : : ; xng is itsdomain (denoted by Dom(�)), and Var(ft1; : : : ; tng) is its range (denoted byRan(�)). Note that Var(�) = Dom(�) [ Ran(�). We denote by � the emptysubstitution: Dom(�) = Ran(�) = ;. Given a substitution � and a synta
ti
obje
t E, we denote by �jE the restri
tion of � to the variables in Var(E), i.e.,�jE(x) = �(x) if x 2 Var(E), otherwise �jE(x) = x. If t1; : : : ; tn is a permutationof x1; : : : ; xn then we say that � is a renaming. The 
omposition of substitutionsis denoted by juxtaposition, i.e., ��(x) = �(�(x)). The result of the appli
ationof a substitution � to a term t is said an instan
e of t and it is denoted by t�.We say that t is a variant of t0, written t � t0, if t and t0 are instan
es of ea
hother. In this 
ase there exists a renaming � su
h that t0 = t�. A substitution �is a uni�er of terms t and t0 if t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0.2.2 Programs and DerivationsLet P be a �nite set of predi
ate symbols. An atom is an obje
t of the formp(t1; : : : ; tn) where p 2 P is an n-ary predi
ate symbol and t1; : : : ; tn 2 T . Given5



an atom A, we denote by Rel(A) the predi
ate symbol of A. A query is a �nite,possibly empty, sequen
e of atoms A1; : : : ; Am. The empty query is denoted by2. Following the 
onvention adopted in [2℄, we use bold 
hara
ters to denotesequen
es of obje
ts: so, for instan
e, t denotes a sequen
e of terms, while B is aquery (i.e., a possibly empty sequen
e of atoms). A (de�nite) 
lause is a formulaH  B where H is an atom (the head) and B is a query (the body). WhenB is empty, H  B is written H  and is 
alled a unit 
lause. A (de�nite)program is a �nite set of 
lauses. We denote atoms by A;B;H; : : : ; queries byQ;A;B;C; : : : ; 
lauses by 
; d; : : : ; and programs by P .Computations are 
onstru
ted as sequen
es of \basi
" steps. Consider a non-empty query A; B;C and a 
lause 
. Let H  B be a variant of 
 variabledisjoint from A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is
alled a resolvent of A; B;C and 
 with sele
ted atom B and mgu �. A derivationstep is denoted by A; B;C �=)P;
 (A;B;C)�. The 
lause H  B is 
alled itsinput 
lause. The atom B is 
alled the sele
ted atom of A; B;C.If P is 
lear from the 
ontext or 
 is irrelevant then we drop the referen
e tothem. A derivation is obtained by iterating derivation steps. A maximal sequen
eÆ : Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �is 
alled a derivation of P [ fQ0g provided that for every step the standardiza-tion apart 
ondition holds, i.e., the input 
lause employed is variable disjointfrom the initial query Q0 and from the substitutions and the input 
lauses usedat earlier steps.Derivations 
an be �nite or in�nite. If Æ : Q0 �1=)P;
1 � � � �n=)P;
n Qn is a�nite pre�x of a derivation, also denoted by Æ : Q0 ��! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation and � is a partial 
omputed answer substitutionof P [ fQ0g. If Æ is maximal and ends with the empty query, then � is 
alled
omputed answer substitution (
.a.s., for short). In this 
ase we say that thederivation is su

essful. The length of a (partial) derivation Æ, denoted by len(Æ),is the number of derivation steps in Æ.2.3 Modes & Input Consuming ProgramsModes are a 
ommon tool for veri�
ation. A mode is a fun
tion that labels asinput or output the positions of ea
h predi
ate in order to indi
ate how thearguments of su
h a predi
ate should be used.De�nition 1 (Mode). A mode for a predi
ate symbol p of arity n, is a fun
tionmp from f1; : : : ; ng to fI ;Og.If mp(i) = I (resp. O), we say that i is an input (resp. output) position ofp (with respe
t to mp). In the examples, we often indi
ate the mode by writingthe atom p(mp(1); : : : ;mp(n)), e.g., append(I ; I ;O).We assume that ea
h predi
ate symbol has a unique mode asso
iated to it;multiple modes may be obtained by simply renaming the predi
ates. We denote6



by In(Q) (resp. Out(Q)) the sequen
e of terms �lling in the input (resp. output)positions of predi
ates in Q. Moreover, when writing an atom as p(s; t), we areindi
ating that s is the sequen
e of terms �lling in its input positions and t isthe sequen
e of terms �lling in its output positions.The notion of input 
onsuming derivation was introdu
ed in [40℄ as a formal-ism for des
ribing dynami
 s
heduling in an abstra
t way.De�nition 2 (Input Consuming Derivation).{ A derivation step A; B;C �=) (A;B;C)� is input 
onsuming if In(B)� =In(B).{ A derivation is input 
onsuming if all its derivation steps are input 
onsum-ing.In the following sometimes we use i
-derivation for input 
onsuming deriva-tion and we 
all input 
onsuming program (i
-program) a program when 
onsid-ered with respe
t to input 
onsuming derivations only.Example 3. Consider the program REVERSE with a

umulator and the followingmodes: reverse(I ;O) and reverse a

(I ;O ; I ).reverse(Xs,Ys)  reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs)  reverse a

(Xs,Ys,[X|Zs℄).The following derivation Æ of REVERSE[freverse([X1,X2℄,Zs)g is input 
on-suming.Æ: reverse([X1,X2℄,Zs) ) reverse a

([X1,X2℄,Zs,[ ℄) )reverse a

([X2℄,Zs,[X1℄) ) reverse a

([ ℄,Zs,[X2,X1℄) ) 2.Allowing only input 
onsuming derivations is a form of dynami
 s
heduling,sin
e whether or not an atom 
an be sele
ted depends on its degree of instantia-tion at runtime. Given a non-empty query, if no atom is resolvable via an input
onsuming derivation step and no failure arises, then we say that the querydeadlo
ks. Therefore, an i
-derivation 
an either be su

essful or �nitely failingor in�nite or deadlo
k. Ea
h i
-derivation whi
h is not a deadlo
k is also a SLDderivation.2.4 Classes of Moded ProgramsIn the sequel we are going to refer to 
lasses of programs that in some waybehave well with respe
t to the given mode. In parti
ular, we are going to usethe 
on
epts of well moded program (Dembinski and Maluszynski [20℄), of ni
elymoded program (Chadha and Plaisted [15℄) and of simply moded program (Aptand Etalle [4℄).De�nition 4 (Well, Ni
ely and Simply Moded Program).7



{ Well Moded. A 
lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 [1; n+ 1℄Var(si) � i�1[j=0Var(tj):If we 
all produ
ing positions the input positions of the head and the outputpositions of the body and 
onsuming positions the other ones, then we 
anintuitively say that a 
lause is well moded if every variable in a 
onsum-ing position o

urs also in an earlier produ
ing position (noti
e that the
onsuming positions in the head are the \last" ones in this parti
ular order).{ Ni
ely Moded. A 
lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is ni
elymoded if� t1; : : : ; tn is a linear sequen
e of terms� Var(t0) \ Var(t1; : : : ; tn) = ;.� and for all i 2 [1; n℄ Var(si) \ n[j=iVar(tj) = ;:Intuitively a 
lause is ni
ely moded if there are no 
on
i
ts among produ
ingpositions, (a variable may appear in at most one produ
ing position with oneex
eption: a variable may appear twi
e in a produ
ing position of the head),and a variable may not be 
onsumed before it is produ
ed.{ Simply Moded. A 
lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is simplymoded if it is ni
ely moded and t1; : : : ; tn is a linear sequen
e of variables.{ A query Q is well (resp. ni
ely, simply) moded, if the 
lause q  Q is well(resp. ni
ely, simply) moded, where q is a variable-free atom.Note that an atomi
 query p(s; t) is well moded if s is a sequen
e of groundterms and it is ni
ely moded if t is linear and Var(s) \ Var(t) = ;.{ A program is well (resp. ni
ely, simply) moded, if all of its 
lauses are well(resp. ni
ely, simply) moded.Hen
e the 
lass of simply moded programs is a sub
lass of ni
ely moded onesand it in
ludes both some well moded and some non-well moded programs.In [42℄ permutation well (ni
ely) moded programs and queries are also de-�ned, i.e., programs and queries whi
h would be well (ni
ely) moded after apermutation of the atoms respe
tively in the bodies and in the queries.Example 5.{ The program APPEND of the introdu
tion in the mode append(I ; I ;O) is wellni
ely and simply moded.{ REVERSE with a

umulator of Example 3 is well ni
ely and simply moded.{ Furthermore, 
onsider the following program PALINDROME in the mode palindrome(I )palindrome(Xs)  reverse(Xs,Xs).8



together with the program REVERSE with the modes reverse(I,O). Thisprogram is well moded but not ni
ely moded (sin
e Xs o

urs both in aninput and in an output position of the same body atom). However, sin
ethe program REVERSE is used here for 
he
king whether a list is a palin-drome, its natural modes are reverse(I,I) and reverse a

(I,I,I). Withthese modes, the program PALINDROME is both well moded, ni
ely and simplymoded.Most programs are simply moded (see the mini-survey at the end of [4℄)and often non simply moded programs 
an naturally be transformed into simplymoded ones (see [10℄).The above notions of well, ni
ely and simply moded are \persistent" with re-spe
t to input 
onsuming derivations. The following Lemma is a straightforwardextension of [5, Lemma 30℄.Lemma 6. In a input 
onsuming derivation, every resolvent of a well (resp.ni
ely, simply) moded query and a well (resp. ni
ely, simply) moded 
lause iswell (resp. ni
ely, simply) moded.Noti
e that in the 
ase of ni
ely and simply moded programs the aboveLemma depends on the fa
t that only input 
onsuming derivations are 
onsid-ered. Indeed, when \normal" SLD derivations are 
onsidered, it is easy to �ndan example in whi
h the SLD resolvent of a ni
ely moded query and a ni
elymoded 
lause is not ni
ely moded. On the other hand, for well moded programs,any SLD resolvent of a well moded query with a well moded 
lause is well moded([2℄).Finally, it is worth reminding that, when 
onsidering ni
ely (respe
tivelysimply) moded, input 
onsuming programs, half of the famous swit
hing Lemmastill applies. The following Left-Swit
hing Lemma that has been proven in [10℄.Lemma 7. (Left-Swit
hing) Let the program P and the query Q0 be ni
elymoded. Let Æ be a (partial) input 
onsuming derivation of P [ fQ0g of the formÆ : Q0 �1=)
1 Q1 � � �Qn �n+1=)
n+1 Qn+1 �n+2=)
n+2 Qn+2where{ Qn is a query of the form A; A;B; B;C,{ Qn+1 is a resolvent of Qn and 
n+1 wrt. B,{ Qn+2 is a resolvent of Qn+1 and 
n+2 wrt. A�n+1.Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 su
h that�n+1�n+2 = �0n+1�0n+2andÆ0 : Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where Æ0 is input 
onsuming and 9



{ Æ and Æ0 
oin
ide up to the resolvent Qn,{ Q0n+1 is a resolvent of Qn and 
n+2 wrt. A,{ Qn+2 is a resolvent of Q0n+1 and 
n+1 wrt. B�0n+1,{ Æ and Æ0 
oin
ide after the resolvent Qn+2.2.5 The S-semanti
sThe aim of the S-semanti
s approa
h (see [13℄) is modeling the observable beha-viors for a variety of logi
 languages. The observable we 
onsider here is the
omputed answer substitutions. The semanti
s is de�ned as follows:S(P ) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distin
t variables andp(x1; : : : ; xn) ��!P 2 is a SLD derivationg:This semanti
s enjoys all the valuable properties of the least Herbrand model.To present the main results on the S-semanti
s we need to introdu
e two further
on
epts: Let P be a program, and I be a set of atoms 
losed under varian
e.{ The immediate 
onsequen
e operator for the S-semanti
s is de�ned as:TSP (I) = f H� j 9 H  B variant of a 
lause of P9 C 2 I; renamed apart4 wrt. H;B� = mgu(B;C)g:{ I is 
alled an S-model of P if TSP (I) � I .Falas
hi et al. [25℄ showed that TSP is 
ontinuous on the latti
e of term inter-pretations, that is sets of possibly non-ground atoms, with the subset-ordering.They proved the following:{ S(P ) = least S-model of P = TSP " !.Therefore, the S-semanti
s enjoys a de
larative interpretation and a bottom-up 
onstru
tion, just like the Herbrand one. In addition, we have that the S-semanti
s re
e
ts the observable behavior in terms of 
omputed answer substi-tutions, as shown by the following well-known result.Theorem 8 ([25℄). Let P be a program, A be a query. The following statementsare equivalent.{ There exists an SLD derivation A #�!P2,{ There exists A0 2 S(P ) (renamed apart wrt. A), su
h that � = mgu(A;A0),4 Here and in the sequel, when we write \C 2 I, renamed apart wrt. some expressione", we naturally mean that I 
ontains a set of atoms C01; : : : ; C0n, and that C is arenaming of C01; : : : ; C0n su
h that C shares no variable with e and that two distin
tatoms of C share no variables with ea
h other.10



where A� � A#.Example 9. Let us see this semanti
s applied to the programs APPEND and REVERSEso far en
ountered.{ S(APPEND) = f append([℄,X,X),append([X1℄,X,[X1|X℄),append([X1,X2℄,X,[X1,X2|X℄), : : : g.{ S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a

([℄,X,X),reverse a

([X1℄,X,[X1|X℄),reverse a

([X1,X2℄,X,[X2,X1|X℄), : : : g.2.6 Semanti
s of Input Consuming ProgramsIn the following two Se
tions we present two semanti
s for input 
onsumingprograms whi
h are related to S-semanti
s. To de�ne su
h semanti
s, the ob-servables we fo
us on are the 
omputed answer substitutions. First, we 
onsider asemanti
s given by the 
omputed answer substitutions of su

essful derivations.This 
orresponds to the S-semanti
s of logi
 programming [13℄ when restri
tedto a parti
ular set of queries. Given a program P and a set of queries C, thissemanti
s 
an be de�ned formally asOi
s (P;C) = fA�j A 2 C and there exists an i
-derivation A ��!P 2g:While this semanti
s appears very natural, it 
an be unsuitable for modellingthe rea
tive nature of input 
onsuming programs. In fa
t, as we mentioned inthe introdu
tion, input 
onsuming derivations 
an be used to model dynami
s
heduling and parallelism, and in this 
ontext it is very important to model theresults of partial 
omputations. Indeed, standard semanti
s for 
on
urrent logi
languages su
h as 

p [39, 22℄ and GHC [44℄ often 
apture su
h intermediateresults, or in any 
ase, also the results of non-su

essful 
omputations [16℄. Infa
t, the (partial) result of a 
omputation may trigger another 
omputation byinstantiating suÆ
iently the input positions of another atom so that it be
omesresolvable. Be
ause of this, when one wants to 
hara
terize for instan
e termi-nation, the adoption of a semanti
s whi
h is able to model intermediate resultsbe
omes essential, as shown in Se
tion 5. Thus we also 
onsider a semanti
s
apturing the results of partial input 
onsuming derivations. Given a programP and a set of queries C, this semanti
s 
an be de�ned formally asOi
p (P;C) = fA�j A 2 C and there exists an i
-derivation A ��!P Bg:where B is any query. 11



3 Semanti
s of Well Moded Input Consuming ProgramsTo 
hara
terize our semanti
s for i
-programs, we start from the simplest 
ase:when one is interested only in the su

essful derivations. Then the observables(given by su

essful derivations) 
an be re
ondu
ted to the S-semanti
s of 
las-si
al logi
 programs.We show that the standard S-semanti
s is 
ompositional and 
orre
t also forinput 
onsuming programs, provided that the programs are well and ni
ely modedand that only ni
ely moded queries are 
onsidered. The results reported in thisSe
tion are proved in [9℄.Proposition 10. Let P be a well and ni
ely moded program, A be a ni
ely modedatomi
 query. The following statements are equivalent.(i) There exists an input 
onsuming derivation A #�!P2,(ii) There exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0) su
hthat In(A)� � In(A),where A� � A#.To extend Proposition 10 to arbitrary (non-atomi
) queries we need the fol-lowing de�nition.De�nition 11. Let Q = p1(s1; t1); : : : ; pn(sn; tn). We de�neVIn�(Q) := n[i=1fxj x 2 Var(si) and x 62 i�1[j=1Var(tj)g:VIn�(Q) denotes the set of variables o

urring in an input position of an atomof Q but not o

urring in an output position of an earlier atom. Note that if Qis well moded then VIn�(Q) = ;.Theorem 12. Let P be a well and ni
ely moded program, A be a ni
ely modedquery and NM be the 
lass of ni
ely moded queries. The following statementsare equivalent.(i) There exists A# 2 Oi
s (P;NM ),(ii) There exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0) su
hthat A�jVIn�(A) � A,where A� � A#.Condition A�jVIn�(A) � A above says that the substitution � just renames thevariables o

urring in an input position of A but not o

urring in an outputposition of an earlier atom. In 
ase of an atomi
 query A := A, we mightsubstitute this 
ondition with the somewhat more attra
tive 
ondition In(A)� �In(A) of Proposition 10.Hen
e S(P ) is 
ompositional and 
orre
t for input 
onsuming programs, pro-vided that programs are well and ni
ely moded and that queries are ni
ely12



moded. In other words, given the restri
tions on programs and queries, theS-semanti
s is 
orre
t with respe
t to the observables given by the 
omputedanswer substitutions of su

essful i
-derivations.Example 13. Consider the program APPEND of the Introdu
tion with the modingappend(I,I,O). S(APPEND), given in Example 9, allows us to draw a number of
on
lusions:{ append([X,b℄,Y,Z) has an input 
onsuming su

essful derivation.In parti
ular, it has an input 
onsuming derivation with 
.a.s. fZ=[X; bjY℄g.This 
an be derived by just looking at S(APPEND), from the fa
t that A =append([X1,X2℄,X3,[X1,X2|X3℄)2 S(P ) and that append([X,b℄,Y,Z) is- in its input positions - an instan
e of A.{ append(Y,[X,b℄,Z) has no input 
onsuming su

essful derivations.This is be
ause there is no A 2 S(P ) su
h that append(Y; [X; b℄; Z) is aninstan
e of A in the input positions.{ Observe that the query append(Y,[X,b℄,Z) has in�nite su

essful SLDderivations and no failures. Therefore it does not fail also when we 
on-sider i
-derivations. Sin
e, as noted above, the query has no input 
onsum-ing su

essful derivations, this implies that { in presen
e of input 
onsumingderivations { append(Y,[X,b℄,Z)will eventually either deadlo
k or run intoan in�nite derivation.The previous results hold also in 
ase the programs are permutation well andni
ely moded and queries are permutation ni
ely moded (see [42℄).While in the 
ontext of SLD (not input 
onsuming) derivations the S-semanti
sis also fully abstra
t, when 
onsidering input 
onsuming program this is not so.Consider the following two trivial programs:P1 = f 
1: p(X).
2: p(a). gP2 = f p(X). gIn both programs the mode is p(I). These two programs, despite being di�erent,yield exa
tly the same 
omputed answer substitutions for all queries when i
-derivations are 
onsidered. In fa
t the extra 
lause 
2 in P1 
an resolve an atomA only if A 
ontains the term a in its input position, but in this 
ase 
2 behavesexa
tly as 
1 does5. Nevertheless, the S(P1) = fp(X); p(a)g 6= fp(X)g = S(P2),demonstrating that the S-semanti
s is not fully abstra
t when 
onsidering i
-derivations. In the next Se
tion we present a more 
omplex semanti
s, whi
h isalso fully abstra
t for i
-derivations.5 The only observable di�eren
e between P1 and P2 lies in the multipli
ity of theanswers: the query q(a) su

eeds twi
e in P1 and only on
e in P2, but answer mul-tipli
ity is not an observable we 
onsider here.13



4 Semanti
s of Simply Moded Input ConsumingProgramsThe semanti
s presented in the previous Se
tion applies only when we are in-terested in the 
omputed answer substitutions of su

essful derivations. As wedis
ussed before, there are many situations in whi
h we also want to modelthe (intermediate) results of partial derivations. For instan
e, this will be the
ase when { in the next Se
tion { we study the termination of input 
onsumingprograms.In this Se
tion we de�ne a somewhat more 
omplex denotational semanti
swhi
h has the advantage to model the observables given by both su

essful andpartial derivations in a rather symmetri
 way. In addition, in ex
hange for amoderate synta
ti
 restri
tion (instead of ni
ely moded programs and querieswe have to 
onsider simply moded ones) it allows us to drop the requirementthat programs have to be well moded. The two semanti
s we are going to in-trodu
e are 
ompositional, 
orre
t and fully abstra
t with respe
t to the opera-tional semanti
s of input 
onsuming simply moded programs and queries, i.e.,Oi
s (P;SM ) and Oi
p (P;SM ), where SM is the 
lass of simply moded queries. Asin the standard S-semanti
s, we build a denotational semanti
s by means of abottom-up 
onstru
tion.4.1 Simply Lo
al Substitutions and Simply Lo
al ModelsWhen input 
onsuming derivations are applied to simply moded programs andqueries, important properties follow from the way 
lauses be
ome instantiatedalong the derivations. The notion of simply lo
al substitution is introdu
ed in[12℄ to re
e
t this instantiation me
hanism. A 
lause 
 = H  B1; : : : ; Bn be-
omes instantiated by its \
aller" (the atom that is resolved using 
) and its\
allees" (the 
lauses used to resolve the body atoms of 
). Thus, a simply lo
alsubstitution is de�ned as the 
omposition of several substitutions, �0; �1 : : : ; �n,one for ea
h atom in the given 
lause, su
h that �0 binds the input variables ofthe head of the 
lause, and ea
h �i (i > 0) 
reates a binding from the outputvariables to input terms of Bi�0; : : : ; �i�1.De�nition 14 (Simply Lo
al Substitution). Let � be a substitution. We saythat � is simply lo
al with respe
t to the 
lause H  B1; : : : ; Bn if there existsubstitutions �0; �1 : : : ; �n and disjoint sets of fresh (with respe
t to 
) variablesv0; v1; : : : ; vn su
h that � = �0�1 � � ��n where{ Dom(�0) � Var(In(H)) and Ran(�0) � v0,{ for i 2 [1::n℄,Dom(�i) � Var(Out(Bi)) and Ran(�i) � Var(In(Bi)�0�1 � � ��i�1) [ vi.The substitution � is simply lo
al with respe
t to a query B if � is simply lo
alwith respe
t to the 
lause q  B where q is any variable-free atom.14



Example 15. Consider the program APPEND together with the mode append(I,I,O)and its re
ursive 
lause
 : append([HjXs℄; Ys; [HjZs℄)  append(Xs; Ys; Zs):The substitution � = fXs=[℄; Ys=W; Zs=Wg is simply lo
al with respe
t to 
. Infa
t � = �0�1 where �0 = fXs=[℄; Ys=Wg and �1 = fZs=Wg. Consider now thequeryQ : append([a; X; 
℄; Ys; Zs); append(Zs; [b℄; Ls):The substitution � = fZs=[a,X,
|Ys℄g is simply lo
al with respe
t to Q. In fa
t� = �1�2 where �1 = fZs=[a,X,
|Ys℄g and �2 is the empty substitution.The denotational semanti
s de�ned in [12℄ is based on a restri
ted notion ofmodel. Here and in the sequel we 
onsider sets of moded atoms 
losed undervarian
e.De�nition 16 (Simply Lo
al Model). Let M be a set of moded atoms. Wesay that M is a simply lo
al model of a 
lause 
 : H  B1; : : : ; Bn if for everysubstitution � simply lo
al with respe
t to 
,if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply lo
al model of a program P if it is a simply lo
al model of ea
h
lause of it.Clearly a simply lo
al model is not ne
essarily a model in the 
lassi
al sense,sin
e the substitution � in (1) is required to be simply lo
al. For example, giventhe program fq(1):; p(X) q(X):g with modes q(I ); p(O), a model must 
ontainthe atom p(1), whereas a simply lo
al model does not ne
essarily 
ontain p(1),sin
e fX=1g is not simply lo
al with respe
t to p(X)  q(X):A minimal simply lo
al model exists and it is bottom-up 
omputable byapplying the following operator [12℄.De�nition 17. Given a program P and a set of moded atoms I, we de�neTSLP (I) = I [ fH� j 9 
 : H  B variant of a 
lause of P;� is simply lo
al with respe
t to 
;B� 2 IgTSLP is monotoni
 and 
ontinuous on the latti
e where set of moded atomsare ordered by set in
lusion. Powers of an operator T are de�ned in the standardway as follows: T " 0(I) = I , T " (i + 1)(I) = T (T " i(I)), and T " !(I) =S1i=0 T " i(I).In the following we denote by SM P the set of all simply moded atoms of theextended Herbrand universe of P . In [12℄ it is proven that if P is simply modedand I � SM P thenTSLP " !(I) is the least simply lo
al model of P 
ontaining I (2)This allows us to de�ne our models.15



De�nition 18. Let P be a program, we de�ne{ M SLP is the least simply lo
al model of P ,{ PM SLP is the least simply lo
al model of P 
ontaining SM P .The existen
e of these models is guaranteed by (2), in fa
t (2) also shows howto 
onstru
t them, as it implies thatM SLP = TSLP " !(;), and PM SLP = TSLP " !(SMP ) (3)4.2 Relation among Denotational and Operational Semanti
sTo relate the M SLP and PM SLP to Oi
s (P;SM ) and Oi
p (P;SM ) we need to re-late TSLP to the results of input 
onsuming derivations; this is a
hieved in thefollowing Lemma, proved in [12℄.Lemma 19. Let the program P and the query A be simply moded and I � SM Pbe a set of moded atoms. The following statements are equivalent.(i) There exists an input 
onsuming derivation A #�!P C with C � I,(ii) There exists a substitution � simply lo
al with respe
t to A, su
h that A� �TSLP " !(I),where A# � A�.We 
an now prove that M SLP and PM SLP fully 
hara
terize the semanti
s of i
-derivations for simply moded programs and queries, namely they are equal toOi
s (P;SM ) and Oi
p (P;SM ), respe
tively.Theorem 20. Let P be simply moded. Then(i) M SLP = Oi
s (P;SM ).(ii) PM SLP = Oi
p (P;SM ).Proof. Immediate by (3), Lemma 19 and the de�nitions of Oi
s (P;SM ) andOi
p (P;SM ).An example follows.Example 21. Let us 
onsider again the program APPEND.1. First let us 
onsider its su

essful i
-derivations. Hen
e we have to buildM SLAPPENDM SLAPPEND = fappend([t1; : : : ; tn℄; s; [t1; : : : ; tnjs℄) j n 2 [0::1℄;and t1; : : : ; tn; s are any termsg:Noti
e that this model is di�erent from S(APPEND), reported in Example 9.We are going to relate S(P ) and MSLP later in this Se
tion.16



2. Now let us 
onsider the results of partial derivations. Re
all that PM SLAPPENDis obtained by repeatedly applying TSLP to ea
h simply moded atom. Simplymoded atoms are append(s; t; x) where s and t are arbitrary terms but x isa variable not o

urring in s or in t. We obtainPM SLAPPEND = M SLAPPEND[ fappend(s; t; x) j x is a fresh variable g[ fappend([t1; : : : ; tmjs℄; t; [t1; : : : ; tmjx℄) j x is a fresh variablegwhere s; t; t1; : : : ; tm are arbitrary terms.Consider now the query append([a; b; 
jX℄; Y; Z). It is straightforward to
he
k that the substitution � = fZ=[a; bjZ0℄g is simply lo
al with respe
tto it, and that append([a; b; 
jX℄; Y; Z)� 2 PM SLAPPEND. Therefore, by usingTheorem 20, we 
an 
on
lude that there exists a partial derivation startingin append([a; b; 
jX℄; Y; Z), with 
omputed answer �. Following the same rea-soning, one 
an also 
on
lude that the query has a partial derivation with
omputed answer �0 = fZ=[ajZ0℄g.4.3 Relation among S-semanti
s and Denotational Semanti
s forIC-programsIn this se
tion we 
ompare the denotational semanti
sMSLP with the S-semanti
sS(P ) of simply moded programs.First, we need a new de�nition: let I be a set of moded atoms, the input
losure of I is de�ned as:InCl(I) = fA� j A 2 I and Var(A) \ Var(�) � Var(In(A))gSo the input 
losure of an atom is obtained by instantiating its input positionsin all possible ways, provided that no new links are 
reated between the inputand the output positions.Theorem 22. Let P be a well and simply moded program, thenMSLP = InCl(S(P ))Proof. First observe that the 
lass of simply moded programs is 
ontained in the
lass of ni
ely moded programs, hen
e Theorem 12 holds also when we 
onsiderwell and simply moded programs and simply moded queries.- MSLP � InCl(S(P )). Let A be simply moded and A# 2 MSLP then, byTheorem 20, A# 2 Oi
s (P;SM ). By Theorem 12 there exists A0 2 S(P ) (renamedapart wrt. A), and � = mgu(A;A0) su
h that In(A)� � In(A) and A� � A#.Sin
e A is simply moded, we 
an 
hoose � su
h that Dom(�) \ Var(A0) �Var(In(A0)). Therefore A# � A� = A0� 2 InCl(S(P )).- MSLP � InCl(S(P )). Let A0� 2 InCl(S(P )) and A0 = p(s; t) 2 S(P ).There exist a simply moded atom A = p(s0; z), renamed apart wrt. A0, and asubstitution � su
h that � = mgu(A;A0), In(A)� = In(A) and A� = A0� � A0�.By Theorem 12 there exists # su
h that A# 2 Oi
s (P;SM ) and A# � A� � A0�.Hen
e, by Theorem 20, A0� 2MSLP . 17



5 Semanti
-Based Veri�
ation of TerminationThere have been only few proposals whi
h ta
kled the spe
i�
 problem of ver-ifying the termination of logi
 programs with dynami
 s
heduling. Namely byApt and Luitjes [5℄, Mar
hiori and Teusink [30℄ and Smaus. Input 
onsumingderivations were indeed introdu
ed by Smaus in [40℄ to simplify the study ofprogram properties whi
h depend on sele
tion rules and in [41℄ he started tostudy in parti
ular the problem of termination of input 
onsuming derivations.In [10℄ and [12℄ we study two 
lasses of programs terminating with respe
tto input 
onsuming derivations and well-formed queries. The two 
lasses di�erin various aspe
ts. First of all, two di�erent 
lasses of well-formed queries are
onsidered: ni
ely moded queries in [10℄, simply moded queries in [12℄. To givean uniform presentation, in [12℄ we 
onsider a parametri
 
lass of programs inwhi
h all input 
onsuming derivations terminate. The parameter is a given 
lassC of queries.De�nition 23 (Input Termination wrt. a 
lass C of queries). Let C be a
lass of queries. A program is 
alled input terminating with respe
t to C if allits input 
onsuming derivations started in a query in C are �nite.The se
ond di�eren
e among the two 
lasses of terminating programs in [10℄and [12℄ is in the termination proof style. The �rst 
lass follows the style of [3,8℄ and it uses a simple (synta
ti
) termination 
ondition, but it is also a ratherrestri
tive 
lass. The se
ond 
lass follows the style of [6, 7℄, that is based on amore 
omplex model theoreti
 approa
h, and it uses the semanti
s introdu
edin Se
tion 4; this is a signi�
antly larger 
lass of programs.Let us 
onsider �rst the more restri
tive and simple 
lass introdu
ed in [10℄:The 
lass of ni
ely moded quasi re
urrent programs. Its de�nition is based onthe notion of well moded level mapping, �rst introdu
ed in [21℄. Here we useits extension ([10℄) to all the terms on BEP , the extended Herbrand base of P ,that is the set of equivalen
e 
lasses of all (possibly non-ground) atoms, modulorenaming, whose predi
ate symbols appear in P .De�nition 24 (Moded Level Mapping). Let P be a program and BEP be theextended Herbrand base for the language asso
iated with P . A fun
tion j j is amoded level mapping for P if:{ it is a fun
tion j j : BEP ! N from atoms to natural numbers;{ for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.De�nition 25 (Quasi Re
urren
y). Let P be a program.{ A 
lause of P is 
alled quasi re
urrent with respe
t to a moded level mappingj j if for every instan
e of it, H  A; B;Cif Rel(H) ' 6Rel(B) then jH j > jBj:6 Given two predi
ate symbols de�ned in a program P we denote by p ' q the fa
tthat the de�nitions of the two predi
ates are mutually re
ursive.18



{ P is 
alled quasi re
urrent with respe
t to j j if all its 
lauses are. P is
alled quasi re
urrent if it is quasi re
urrent with respe
t to some modedlevel mapping j j : BEP ! N.Theorem 26. Let P be a ni
ely moded program. If P is quasi re
urrent then Pis input terminating with respe
t to the 
lass of ni
ely moded queries.The proof of this Theorem 
an be found in [10℄.Thus, the quasi re
urrent 
ondition is a suÆ
ient 
ondition for input ter-mination of ni
ely moded programs and ni
ely moded queries. But it is not ane
essary 
ondition: there are ni
ely moded programs input terminating on allni
ely moded queries whi
h are not quasi re
urrent as shown by the followingsimple example taken from [10℄.Example 27. Consider the following program with moding p(I; O).p(X,a)  p(X,b).p(X,b).This program is 
learly input terminating, however it is not quasi re
urrent.If it was, we would have that jp(X; a)j > jp(X; b)j, for some moded level mappingj j (otherwise the �rst 
lause would not be quasi re
urrent). On the other hand,sin
e p(X; a) and p(X; b) di�er only for the terms �lling in their output positions,by de�nition of moded level mapping, jp(X; a)j = jp(X; b)j. Hen
e, we have a
ontradi
tion.A full 
hara
terization 
an be obtained only by further restri
ting the 
lassof programs, passing from ni
ely moded to simply moded and input-re
ursiveprograms.De�nition 28 (Input-Re
ursive Program). Let P be a program.{ A 
lause H  A; B;C of P is 
alled input-re
ursive ifif Rel(H) ' Rel(B) then Var(In(B)) � Var(In(H)):{ A program P is 
alled input-re
ursive if all its 
lauses are.Input-re
ursive is a synta
ti
 
ondition on a 
lause requiring that the setof variables o

urring in the arguments �lling in the input positions of ea
hre
ursive 
all in the 
lause body is a subset of the set of variables o

urringin the arguments �lling in the input positions of the 
lause head. The 
lassof input-re
ursive programs has strong similarities with the 
lass of primitivere
ursive fun
tions. It does not in
lude programs su
h that qui
ksort, permute,transpose and we 
an 
ompare it with the 
lass of re
urrent logi
 programs, thatis programs whose termination does not depend on the so-
alled inter-argumentrelations.Quasi re
urren
y fully 
hara
terizes input termination of simply moded andinput-re
ursive programs with respe
t to ni
ely moded queries.19



Theorem 29. Let P be a simply moded and input-re
ursive program. P is quasire
urrent if and only if P is input terminating with respe
t to the 
lass of ni
elymoded queries.The proof of this Theorem 
an be found in [10℄.To 
onsider a larger 
lass of input terminating programs we 
an follow thesame approa
h pursued by Apt and Pedres
hi in de�ning a

eptable programsand use a model to 
apture the inter-argument relations between the atoms ina query. Intuitively, the model represents all the possible 
ontexts in whi
h aspe
i�
 atom in a query 
an be 
alled. Standard models suÆ
e when standardleft-to-right derivations are 
onsidered, that is when the 
ontexts depends onlyon the 
omputed answers of the atoms o

urring on the left of the 
onsideredone. When input 
onsuming derivations are 
onsidered, the des
ription of all thepossible 
ontexts is mu
h more 
omplex sin
e there may be atoms in the querywhi
h are only partially 
omputed when the 
onsidered atom is sele
ted. Hen
ea 
omputed answer semanti
s does not provide enough information, that is whywe need to 
apture partial 
omputed answers of input 
onsuming derivations.The semanti
s de�ned in [12℄ and the 
on
ept of simply lo
al model give usthe right tools and allow us to identify a large 
lass of input terminating programswhi
h in
ludes also programs employing a non-trivial re
ursion s
heme su
h asqui
ksort, permute, transpose. In fa
t, based on the notion of simply lo
almodels, in [12℄ we introdu
ed the notion of simply a

eptable programs whi
h
orresponds to the notion of a

eptable programs introdu
ed in [6℄.De�nition 30 (Simply A

eptable Program). Let P be a program and Ma simply lo
al model of P 
ontaining SM P .{ A 
lause 
 of P is simply a

eptable with respe
t to a moded level mappingj j and M if for every variant H  A; B;C of 
 and every substitution �simply lo
al with respe
t to 
,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:{ P is simply a

eptable with respe
t to M if there exists a moded level map-ping j j su
h that ea
h 
lause of P is simply a

eptable with respe
t to j j andM . We also say that P is simply a

eptable if it is simply a

eptable withrespe
t to some M and moded level mapping j j.Simple a

eptability fully 
hara
terizes input termination of simply modedprograms with respe
t to simply moded queries.Theorem 31. Let P be a simply moded program. P is simply a

eptable if andonly if it is input terminating with respe
t to simply moded queries.The following example shows how we 
an use the above Theorem to reasonabout termination of a program.Example 32. Consider the following PERMUTE program20



permute([X|Xs℄,Ys)  insert(Zs,X,Ys), permute(Xs,Zs).permute([℄,[℄).insert([℄,X,[X℄).insert([U|Xs℄,X,[U|Zs℄)  insert(Xs,X,Zs).We 
onsider it with two di�erent modes.1. First, 
onsider the mode permute(O ; I ); insert(O ;O ; I ).Noti
e that the program is not input terminating in this mode: by repeat-edly sele
ting the rightmost atom, the query permute(Xs,Ys) generates anin�nite input 
onsuming derivation. By Theorem 31, we 
an prove it by show-ing that PERMUTE in this mode 
annot be simply a

eptable with respe
t toPM SLPERMUTE and a moded level mapping whi
h is invariant under renaming.First note that PM SLPERMUTE 
ontains every atom of the form insert(Us; U; t)where Us and U are disjoint from t, i.e., every simply moded atom whose pred-i
ate is insert. Therefore, in parti
ular, insert(Us; U; Vs) 2 PM SLPERMUTE. Thesubstitution � = fYs=Vs; Zs=Us; X=Ug is simply lo
al with respe
t to the �rst
lause. Therefore, for this 
lause to be simply a

eptable, by Theorem 31,there would have to be a moded level mapping, invariant under renaming,su
h that jpermute([UjXs℄; Vs)j > jpermute(Xs; Us)j. This is a 
ontradi
tionsin
e a moded level mapping depends only on the input arguments (the se
-ond argument of permute) and we are 
onsidering a level mapping invariantunder renaming.Thus Theorem 31 
an be used to diagnose a program, in that we 
an pinpointwhy it does not input terminate.2. Now 
onsider the program PERMUTE together with the mode permute(I ;O);insert(I ; I ;O).In this 
ase, in order to make the program simply moded we have to permutethe two body atoms of the �rst permute 
lause7. I.e., permute is rede�nedas permute([X|Xs℄,Ys)  permute(Xs,Zs), insert(Zs,X,Ys).permute([℄,[℄).Noti
e that the program is now input terminating with respe
t to simplymoded queries. This is in fa
t the natural mode of the PERMUTE program.To demonstrate the termination one 
an apply Theorem 31 using any sim-ply lo
al model 
ontaining SM P together with the following moded levelmapping:jpermute(l; )j = len(l);jinsert(l; ; )j = len(l):7 A
tually, everything we state applies to the 
lass of permutation simply modedprograms, i.e., those programs and queries that are simply moded possibly after apermutation of body atoms. For the sake of notation simpli
ity, we avoid to refer tothis in a stru
tural way. 21



6 Con
lusionIn this paper, we have illustrated two denotational semanti
s proposed in [9℄and in [12℄ for input 
onsuming derivation in logi
 programs and we have shownhow these semanti
s have been used for studying termination properties of su
hprograms.The two semanti
s are quite orthogonal to ea
h other: while the �rst one(introdu
ed in [9℄) models ex
lusively the results of su

essful derivations andrequires programs to be well moded and ni
ely moded, the se
ond one (introdu
edin [12℄) models also the results of in
omplete derivations and requires programsand queries to be simply moded.As mentioned in the Introdu
tion, in the 
ontext of parallel and 
on
ur-rent programs, one 
an have derivations that never su

eed, and yet 
omputesubstitutions [36℄. Thus we have provided a denotational semanti
s also for su
hprograms, whi
h goes beyond the usual su

ess-based SLD resolution me
hanismof logi
 programming.Input 
onsuming derivations bear a 
ertain resemblan
e with derivations inthe language ofModed (Flat) GHC [45℄. A
tually, input 
onsuming programs 
anbe seen as a simpli�ed version of moded (F)GHC. We want to note however thatModed (F)GHC is a full-
edged programming paradigm, while input 
onsumingprograms are meant for abstra
tion purposes.As a 
on
luding remark, we want to stress the relation between i
-programsand programs that use delay de
larations. A signi�
ant 
lass of programs withdelay de
larations whose derivations are input 
onsuming derivations has beenidenti�ed in [11℄.Referen
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