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Abstract. In this paper we present a program specialisation method
which, given a call/post specification, transforms a logic program into a
weakly call-correct one satisfying the post-condition.

The specialisation is applied to specialised partially correct programs.
This notion is based on the definition of specialised derivation which is
intended to describe program behaviour whenever some properties on
procedure calls are assumed. Top-down and bottom-up semantics of spe-
cialised derivations are recalled.

1 Introduction

Specialisation methods allow to restrict a program to a narrower context of
application. The aim 1s that of obtaining a more efficient program which behaves
as the original one on the considered subdomain.

In the field of logic programming, the narrowed context is usually described
by means of a set of queries of interest. Specialisation methods are based on
the idea of partially evaluating program clauses [5,16,20,21] with respect to
this set of queries. The goal is to detect clauses which are redundant in the
restricted context, or to specialise them preventing costly failing derivations. If
the original program is correct with respect to a pre/post specification [4,9, 10,
2], and the considered queries satisfy the precondition, then the correctness of
the specialised program is ensured. Nothing is guaranteed on the queries which
are not in the set of interest. They may succeed with “wrong” answers, produce
a finite failure or an infinite computation. We simply do not care about them.

The specialisation that we propose in this paper restricts the search space of
a program to the set of derivations satisfying the property that, at each step, the
selected atom “respects” a given call-condition. The main feature of our special-
isation is that if the original program is “correct” (we say, specialised partially
correct) with respect to a call/post specification then the specialised program
is (partially) correct for all queries. The execution of a query which does not
satisfy the specification ends with a finite failure.

As an application, our approach allows us to support types without the need of
augmenting programs with any kind of type declaration.
To give an intuition, consider the program SUM defined by:



sum (X,0,X) —.
sum (X, s(Y),s(7)) — sum (X,Y, 7).

The intention is that of defining the sum between natural numbers which are re-
presented by the constants 0, s(0), s(s(0)) and so on. However, there are queries
like sum (@, s(0), s(a)) which succeed even if some arguments are not numerals.
In order to avoid such “wrong” solutions, one can make use of type checking
predicates defined by additional Prolog procedures [17-19].

Our specialisation can be used to solve this problem by restricting the program
to a suitable context of application that is expressed in the form of a call/post
specification. Similarly to classical pre/post specifications, a call/post specifi-
cation consists of two parts, a call-condition and a post-condition. While the
notion of post-condition is the standard one, the notion of call-condition used in
this paper is not standard. It represents an invariant property that is required
to be satisfied by atomic queries after the unification with the input clause.
Going back to the example above, consider the call-condition characterizing all
atoms of sum where the last argument is

e either the constant 0,
e or a term of the form s(_).

Consider also the post-condition denoting all atoms of sum whose arguments are
natural numbers with the third one being the sum of the first two. Hence,

Call = {sum (u,v,z) | u,v are terms and z is either 0 or a term of the form s(_)}
Post = {sum (u,v, z) | u, v, z are natural numbers and z = u + v}

By applying our specialisation transformation we obtain the specialised program:

sum (0,0,0) — .

sum (s(X),0,s(X)) —.

sum (X, s(Y),s(7)) — sum (X,Y, 7).

We do not enter into the details of the specialisation here. We just observe
that it is applied to the head of clauses. The specialised program called with the
query sum (a, s(0), s(a)) fails. Moreover, it produces correct answers for any non
failing input query.

Summarizing, in this paper we present a program specialisation which, given
a call/post specification, transforms a logic program into a weakly call-correct
one satisfying the post-condition. More precisely, the specialised program meets
the following requirements: for any execution,

e cach selected atom unified with the head of the input clause satisfies the
call-condition;
e and each computed instance of a query satisfies the post-condition.

The specialisation is applied to so-called specialised partially correct programs.
This notion is a generalization of the well-known concept of partially correct



program [11,4,9,10,2, 3]. Tt is based on the definition of specialised derivation
which 1s a derivation where all the selected atoms are instantiated in order to
satisfy a given call-condition. Thus, a specialised partially correct program sati-
sfies the property that all its successful specialised derivations produce answers
satisfying the post-condition. Specialised derivations has been introduced in [7]
where we show that they can be computed both by a top-down and a bottom-up
construction, in the style of the s-semantics [12, 13, 6]. We recall here such seman-
tics. The equivalence of these two semantics can be proven by using the standard
semantics of specialised programs as a link between them. The specialised se-
mantics 1s useful to reason on the notion of specialised partial correctness. In
particular it allows us to provide a sufficient condition to prove that a program
is specialised partially correct with respect to a given call/post specification. It
consists in one application of the specialised immediate consequence operator to
the post-condition.

The paper is organized as follows. Section 2 recalls some basic notations
and concepts. In Section 3 specialised derivations and their semantics are pre-
sented. In Section 4 our program specialisation is introduced. Section 5 discusses
the equivalence between the top-down and the fixpoint semantics of specialised
derivations. In Section 6 we provide a method for verifying specialised partial
correctness of programs. Finally, in Section 7 we discuss a meaningful example.

2 Preliminaries

The reader is assumed to be familiar with the terminology of and the basic
results in the semantics of logic programs [1,3, 15].

Let 7 be the set of terms built on a finite set of data constructors C and a
denumerable set of variable symbols V. Variable-free terms are called ground.
A substitution is a mapping 6 : V — T such that the set D(6) = {X| 0(X) # X}
(domain of 0) is finite. For any expression I/, we denote by 0| the restriction of
6 to the variables in Var(FE). ¢ denotes the empty substitution.
The composition 8o of the substitutions ¢ and o is defined as the functional
composition, i.e., o (X) = o(#(X)). The pre-ordering < (more general than) on
substitutions is such that # < ¢ iff there exists 6’ such that 86’ = o. We say that
6 and o are not comparable if neither # < ¢ nor o < 6.
The result of the application of a substitution 8 to a term ¢ is an instance of ¢
denoted by t0. We define ¢ < t' iff there exists § such that t0 = t’. We say that
t and t’ are not comparable if neither ¢t < ¢’ nor ¢’ < t. The relation < on terms
is a preorder. We denote by = the associated equivalence relation (variance). A
substitution @ is a unifier of ¢ and ¢’ if t6 = t'0. We denote by mgu(t1,t2) any
idempotent most general unifier (mgu, in short) of ¢; and t2. The definitions
above are extended to other syntactic objects in the obvious way.

2.1 Programs and Derivations

Atoms, queries, clauses and programs are defined as follows. Let P be a finite
set of predicate symbols. An atom is an object of the form p(t1,...,t,) where



p € P is an n-ary predicate symbol and ¢1,...,f, € 7. A query is a possibly
empty finite sequence of atoms Ay, ..., A,,. The empty query is denoted by O.
We use the convention adopted by Apt in [3] and use bold characters to denote
sequences of atoms. A clause 1s a formula H «— B where H is an atom, called
head, and B is a query, called body. When B is empty, H «— B is written H —
and 1s called a unit clause. A program is a finite set of clauses.

Computations are constructed as sequences of “basic” steps. Consider a non
empty query A, B,C and a clause ¢. Let H «— B be a variant of ¢ variable
disjoint with A, B, C. Let B and H unify with mgu 0. The query (A, B, C)# is
called an SLD-resolvent of A, B,C and ¢ w.r.t. B, with an mgu 6. The atoms B
and B are called the selected atom and the selected atom instance, respectively,
of A, B,C. We write then

A B,C=,.(A B,C)

and call it SLD-derivation step. H «— B is called its input clause. If P is clear
from the context or ¢ is irrelevant then we drop a reference to them. An SLD-
derivation is obtained by iterating SLD-derivation steps. A maximal sequence

[ [ 0nt
6= QO :1>P,cl Ql :2>P,02 c Qn :>1P,cn+1 Qn+1 co

of SLD-derivation steps is called an SLD-derivation of P U{Qq} provided that
for every step the standardization apart condition holds, i.e., the input clause
employed is variable disjoint from the initial query Q¢ and from the substitutions
and the input clauses used at earlier steps.

The length of an SLD-derivation &, denoted by len(8), is the number of
SLD-derivation steps in §. We denote by Sel(§) the set of all the selected atom
instances, one for each derivation step, of §. If P is clear from the context,
we speak of an SLD-derivation of (Jy. SLD-derivations can be finite or infinite.
Consider a finite SLD-derivation 6 := g %Rcl Q1 %ch @, of a query
Q := Qo, also denoted by é := Qg 'LP,cl,...,cn @y, (or simply § := Qo LN Qn)
with § = 01 ---0,. If (), = O then ¢ is called successful. The restriction of
to the variables of @), denoted by 0)q, is called a compuled answer substitution
(c.a.s., in short) of @ and Q@ is called a computed instance of Q. If Q, is non-

empty and there 1s no input clause whose head unifies with its selected atom,
then the SLD-derivation 8 1s called failed.

2.2 Interpretations

By the extended Herbrand base B we mean the quotient set of all the atoms
with respect to a2. The ordering induced by < on B¢ will still be denoted by <.
For the sake of simplicity, we will represent the equivalence class of an atom A
by A itself. An interpretation I is any subset of BS.

We recall from [14] some definitions of useful operators on interpretations.



Definition 1. (Operators on Interpretations) Let I be an interpretation.
The upward closure of I is the set

[I={AeB |34 €I, A <A}
The set of ground atoms of I s the set
[7I) ={A€T]|A isground}.
The set of minimal elements of I is the set
Min(I)={AeT|VA €I if A’ <A then A= A"}
Frample 1. Let I be the set {append(u, v, z) | u, v are terms and z is a list of at
most n elements}. Then
Min(I) = {append (X, Y5, []),

append (X, Ys, [Z1]),
append (X, Y;,[Z1, Z2]),

append (XSaYsa [Zla Z2a ey Zn])}
where X;,Ys, 71,75, ..., Z, are distinct variables.

Let us introduce the notation [I] as a shorthand for |[I]]. Note that [I] is the
set of all ground instances of atoms in I. Moreover (see [14]), [T| = [Min(I)]
and Min([I1) = Min(I).

The notion of truth extends the classical one to account for non-ground formulas
in the interpretations.

Definition 2. (|5) Let I be an interpretation and A be an atom . Then
ITEAWAe]].
Moreover, if Q := Ay,..., Ay 1s a query then
TEQifA €[l] forallie {1, ... n}.

The following properties hold [14]: I = A iff there exists A’ € I such that A" < A;
moreover, if T = A then for all A’ such that A < A’ I = A"

Definition 3. (Minimal Instances of an Atom Satisfying I) Let I be an inter-
pretation and A be an atom. The set of minimal instances of A satisfying I s

Ming(A) = Min({A" € [A] | I E A'}).
FEzample 2. Consider the interpretation I of the Example 1. Then

Min(append ([],Ys, Z,)) = {append ([ ], ¥s,[]),
append ([ ]a Ys, [Zl])’
append ([ ]a Ys, [Zla Zz]),

append ([, Yy, [Z1, Zos -+ Zn])}

where Y, Z1, 25, ..., Z, are distinct variables. Note that although I is infinite,
in this case both Min(I) and Miny(append ([],Y;, Z;)) are finite sets of atoms.



The notion of specialised unifier is introduced. It is the basic concept upon which
specialised derivations are defined.

Definition 4. (Specialised Unifiers) Let I be an interpretation and Ay and A
be atoms. A I-unifier of Ay and As is a substitution 6 such that A10 = As0 and
I |E A16. A most general I-unifier of A1 and As, denoted by

mgur(Ar, As),

s any idempotent I-unifier 6 such that for any other I-unifier 6, either 6 < ¢
or 0 and 0’ are not comparable.

For the sake of simplicity, we will write = mgu (A1, A2) even if mgu;(A;, As)
is not uniquely determined and can even denote an infinite set of substitutions.

Ezample 3. Consider again the interpretation I of the Example 1. Then
mguy(append (U, V, W), append ([ ], X, X))
denotes the following substitutions

O = {U/[]a V/Xsa W/XS,XS/H}
0 = {U/[ ]a V/Xsa W/XS,XS/[Zl]}
0y = {U/[ ]a V/Xsa W/XS,XS/[ZI, ZZ]}

b = U/ 1, V)Xo, W/ Xs, X, /[ 71, Zor - Zo]}.

Note that the substitutions g, 04, ..., #, are pairwise not comparable. Moreover,
they are idempotent but not relevant with respect to the variables occurring
in the two unifying atoms. In fact, they contain new variables, {Z1,... Z,},
which are introduced in order to satisfy 7. We call these variables place holders.
Note that the definition of specialised most general unifier imposes that they are
pairwise disjoint and distinct from the variables occurring in the unifying atoms.

It is well known that set inclusion does not adequately reflect the property
of non-ground atoms of being representatives of all their ground instances. So,
in this paper, we refer to the partial ordering C on interpretations defined by
Falaschi et al. in [14] as below.

Definition 5. Let I; and I be interpretation.

o 1 < ZﬁVAl S 11,3A2 € Iy such that A, < Ay
* Il E Iz Zﬁ (Il S Iz) and (Iz S Il implies Il g Iz)

Intuitively, I; < I, means that every atom verified by I is also verified by I
(I2 contains more positive information). Note that < has different meanings for
atoms and interpretations. Iy T [, means either that I5 strictly contains more
positive information than I; or that the amount of positive information is the
same and [; expresses it by fewer elements than I5. The relation < is a preorder,
whereas the relation C is an ordering. Moreover, if Iy C Is, then I} C I».



Frample 4. Consider the interpretation I of the Example 1. Then I < Min(I),
but also Min(I) C I. Moreover, Miny(append ([],Y;, Z5)) C Min(I).

The set of all the interpretations 7 under the relation C is a complete lattice.

Proposition 1. [1] The set of interpretations T with the ordering C is a com-
plete lattice, noted by (Z,C). BY is the top element and () is the bottom element.

3 Specialised Derivations and their Semantics

In this section we recall from [7] the notion of specialised derivation and show
some properties. Top-down and a fixpoint semantics are presented.

3.1 Specialised Derivations

Given an interpretation [/, a specialised derivation 1s an SLD-derivation where
all the selected atoms are instantiated in order to satisfy the call-condition I.
Specialised derivations are defined as SLD-derivations except that at each deriva-
tion step specialised most general unifiers are computed instead of usual mgus.
In the following we assume given a program P.

Definition 6. Let I be an interpretation. Let A, B, C be a non emply query,
¢ be a clause, H — B be a variant of ¢ variable disjoint with A, B,C. Let B
and H unify and 6 = mgu (B, H) where the place holders of 0 are disjoint from
A B,C. The query (A,B,C)@ is called an I-resolvent of A, B, C and ¢ w.r.t.
B, with specialised mgu 6. The atoms B and BO are called the I-selected atom
and I-selected atom instance, respectively, of A, B, C. We write then

A,B,C=p.; (A B,C)
and call 1t I-derivation step. H «— B is its I-input clause. A mazimal sequence

[ [ Ot
6= QO :1>P,01,I Ql :2>P,02,I Qn :>1P,cn+1,1 Qn-l—l c

of I-derivation steps is called an I-derivation of P U {Qo} where for every step
the I-standardization apart condition holds, v.e., the I-input clause ¢; employed
and the place holders of unifier 8; are variable disjoint from the wnitial query Qo
and from the substitutions and the input clauses used at earlier steps.
We denote by Sel(é) the set of all the I-selected atom instances of §.

. . . 9 fn
Consider a finite I-derivation 6 := Qg :1>p70171 Q1 ==pe,1 Qn of a query

Q := Qo also denoted by 6 = Qo ——po,,. c,.1 Qn (o7 simply = Qo =1 Q)
with @ = 0y ---0,. If Q, = O then 6 s called successful. The restriction of 0 to
the variables of Q) is called a I-computed answer substitution (I-c.a.s., in short)
of Q and Q0 s called a I-computed instance of Q). If (), is non-empty and there
1s no I-input clause H — B such that H unifies with the I-selected atom B of
Qn with @ = mgup(B, H), then 6 is called failed.



Whenever [ is omitted, we assume that I = B. It is easy to see that if [ is
the extended Herbrand base B¢, then I-derivations (resp. I-derivation steps)
are indeed SLD-derivations (resp. SLD-derivation steps).

FEzample 5. Consider the interpretation I of Example 1 and the program APPEND:
append ([ ], X5, X5) — .

append ([X|X;], Y5, [X]|Zs]) — append (X;,Y;, Z;).

Let 8y,61,...,0, be the substitutions defined in the Example 3. Then

append (U, V, W) e o
append (U, V, W) Lo

append (U, V, W) LN

are successful I-derivations of the query append (U,V,W). Note that any I-
derivation of the query append ([ ], foo, foo) fails.

Observe that, for any I-derivation §, Sel(§) < I, i.e., for all A € Sel(é), I = A.
Moreover, any SLD-derivation é satisfying Sel(§) < I is an I-derivation.

The following relation between successful I and SLD-derivations holds.

Lemma 1. [7] Let I be an interprelation and § := @ 'Lcl,...,cn,l O be a suc-
cessful I-derwvation of a query Q. Then, there exists a successful SLD-derivation

& =Q0 ., . O of Q8 with Qv = QI and Sel(§') < Sel(6).
The next result is useful to reason on I-derivations.

Lemma 2. Let I be an interpretation and 6 = @ biq O be a successful I-
derivation of a query @ := Ay, ..., A,. Then, for all j € {1,... n}, there exists
a successful I-derivation 6; := A;0 2 O where Aj;by; = Aj0.

Proof. Let 6 := Q@ biq 0. By Lemma 1, there exists a successful SLD-derivation
§ = Q6 —— O with Q0y = Q6 and Sel(8") < Sel(8). By properties of SLD-
derivations (see [1,8,15]), for all j € {1,...,n}, there exists a successful SLD-
derivation &; := A;6 2. O such that A;6y; = A;6 and Sel(6;) < Sel(é"). Then,
for all j € {1,...,n}, Sel(é;) < Sel(é). Moreover, since § is an I-derivation,
Sel(6) < I. Hence, for all j € {1,...,n}, Sel(§;) < I and then, by Definition 6,

6; 1s a successful I-derivation A;0 'lj 0.
We show that any /-computed instance is true in 7.

Lemma 3. Let I be an interpretation and 6 = @ biq O be a successful I-

derivation of a query Q. Then I |E Q6.



Proof. Let Q@ := Aq,..., A,. We prove that for all j € {1,...,n}, I = A;6.

By Lemma 2, for all j € {1,...,n}, there exists 6; := A;0 2., O where A;by; =
A;6. Let H; be the head of the I-input clause used in the first I-derivation step of
8;. Let also 'y} = mgu;(A;0, H;). By Definition 4, I = A]ﬂ'y]l and by Definition 6,
A]ﬂ'y]l < A;fv;. Hence, by Definition 2, I = A;0y;.

The Lifting Lemma for SLD-derivations [15,1] can be generalized to specialised
derivations as follows.

Lemma 4. (Specialised Lifting Lemma) Let I be an interpretation and é :=

Q0 = O be a successful I-derivation of a query QO. Then, there exists a

successful I-derivation §' == Q ——; O where ¢ < fo.

Proof. By induction on len(§).
Basis. Let len(8) = 1. In this case @ consists of only one atom B and

(SZIBH:U>ID

where H «— is the I-input clause and o = mgu (B0, H). Because of standardi-
zation apart, we can assume that |77 = ¢. Then, fo is a I-unifier of B and H.
Hence, there exists o' = mgu (B, H) such that ¢/ < fo and

(S/ =B é[ O
1s a successful I-derivation.
Induction step. Let len(8) > 1. Then @ := A, B, C and
§:=(A,B,C) = (A, B, C)loy 27 O

where B is the [-selected atom of ), ¢ := H «— B is the first [-input clause,
o1 = mgu;(B6, H) and ¢ = o109. Because of standardization apart, we can
assume that 0| = ¢. Then, 0oy is a [-unifier of B and H. Hence, there exists
o} = mgu;(B, ) such that ¢} < foy and

(A,B,C) = (A,B,C)7,

is an I-derivation step. Let v be a substitution such that ¢}y = fo;. By the
inductive hypothesis, there exists a successful [-derivation

i

(A,B,C)o, ~2; O
where of, < yo2. Therefore,
8 :=(A,B,C) =%/ (A,B,C)o} 2, O

is a successful I-derivation. Let ¢’ = o} c%. Then,

by definition of ¢’)

o = ol

< olyoa (since o < yoa)
(
(

=foy05 (since ofy = foq)
=fo by definition of ).



3.2 Specialised Top-down Semantics

We present below a top-down construction which computes the specialised se-
mantics of logic programs. It models the computed answer substitutions of the
specialised derivations.

Definition 7. (Specialised Computed Answer Substitution Semantics) Let P
be a program and I be an interpretation. The I-computed answer substitution
semantics of P is

O1(P)={Ae B |IpeP,3AXy,..., X, distinct variables in V', 30,
p(Xla .. aXn) 'LP,I Da
A=p(Xy,...,Xn)0}.
Observe that if I is the extended Herbrand base B¢, then Qe (P) is the original
s-semantics defined by Falaschi et al. in [13].

FEzample 6. Consider the interpretation I of Example 1. Then

Or(APPEND) = {append ([ ], [],[]),

append ([ ], [X1], [X4]),
append ([ ]a [Xla X2]a [Xla XZ])’

append ([ 3 [XlaXZa .. 'aXn]’ [XlaXZa .. 'aXn])a

append ([X1],[], [X1]),
append ([X1], [X3], [X1, X2]),

“append ([X1], [Xa, .., Xu], [X1, Xo, ..., X)),
append ([Xl,XZ]a []a [XlaXZ])a

}.
Let us consider now the success set and the non-ground success set semantics
formally defined in [13]. The corresponding specialised versions are defined below.

Definition 8. (Specialised Success Set Semantics) Let P be a program and I be
an interpretation. The I-success set semantics of P is defined by

O11(P) ={A € B¢ | A is ground and A ——; O where Ay = A}.

Note that if I is the extended Herbrand base B¢, then Ope 1 (P) is the standard
semantics, which is equivalent to the least Herbrand model [22].

Definition 9. (Specialised Non-ground Success Set Semantics) Let P be a pro-
gram and I be an wnterpretation. The I-non-ground success set semantics of P is

defined by
OI,Z(P) = {A S Bg | A ILI O where A"}/ - A}

If I is equal to B¢, then Ope o(P) is the set of atomic logical consequences [8] of P.

It is easy to prove that the following relations hold: Oy 1(P) = [Or(P)] and
O12(P) = [0:(P)].



3.3 Specialised Fixpoint Semantics

We define an immediate consequence operator Tp  on the set of interpretations
7. Its least fixpoint has been shown to be equivalent to the specialised computed
answer substitutions semantics Or(P).

Definition 10. (Tp; Transformation) Let P be a program and I and J be two
mterpretations.

Tpi(J)={A€BE|3H —By,..., B, € P,

B}, ..., B), variant of atoms in J and renamed apart,

30 = mgu,((By, ..., Bn), (B!,..., B.)),
A € Ming(HO)}.

Note that if I is the extended Herbrand base B¢, then Tp e coincides with the
S-transformation Ts defined in [13].

Proposition 2. (Monotonicity and Continuity of Tp ) For any interpretation
I, transformation Tp 1 is monotonic and continuous in the complete lattice (I,C ).

Definition 11. (Powers of Tp ;) As usual, we define powers of transformation
Tp1 as follows:

TP,I T 0 = wa
Tprin+1=Tp(Tpsr | n),
Tprlw  =U,so(Trr 1 n).

Proposition 3. For any interprelation I, Tpr | w is the least fizpoint of Tp
in the complete lattice (Z,C).

Proof. By Proposition 2, Tp; T w is the least fixpoint of Tp 5 with respect to
set inclusion. Moreover, for any fixpoint J of Tp;, Tpr T w C J. Hence, by
Definition 5, Tp; [ w C J.

The specialised fixpoint semantics is formally defined as follows.

Definition 12. (Specialised Fixpoint Semantics) Let P be a program and I be
an interpretation. The I-fixpoint semantics of P is defined as

f[(P) = prj T Ww.

4 Specialising Programs wrt Call/Post Specification

In this section we define a simple program transformation which given a call/post
specification transforms a program into a weakly call-correct one satisfying the
post-condition. The notion of weak call-correctness is formally defined as follows.

Definition 13. (Weak Call-correctness) Let P be a program and I be an inter-
pretation. We say that P is weakly call-correct with respect to the call-condition

I iff for any query Q and SLD-derivation 6 of PU{Q}, Sel(§) < 1.

Our specialisation 1s applied to so-called specialised partially correct programs
which are introduced below.



4.1 Specialised Partially Correct Programs

In this section we introduce the concept of specialised partially correct program
with respect to a given call/post specification. It provides a weaker notion of
partial correctness where specialised derivations only are observed. In Section 6,
a simple method for verifying specialised partial correctness will be presented.

Definition 14. Let P be a program and Call and Post be interpretations. We
say that P is specialised partially correct (s.p.c., in short) with respect to the
call-condition Call and the post-condition Post, noted

{Call}P{Post} pee,

of and only if for any query Q,

Q 'LP, can O implies Post = Q0.

Observe that, if Call = B then P is correct with respect to the post-condition
Post according to the standard correctness definition. In this case, P is s.p.c.
with respect to any call-condition Call and the post-condition Post.

FEzample 7. Consider the program APPEND and the interpretations

Call = {append (u,v, z) | u,v are terms and z is a list of at most n elements}
Post = {append (u, v, z) | u,v, z are lists, z has at most n elements and z = u * v}

where # is the list concatenation operator. The program APPEND is s.p.c. with
respect to the specification Call and Post, i.e., the following assertion holds:

{Call} APPEND { Post}pe..

We define the strongest post-condition of a program P with respect to a given
call-condition as follows.

Definition 15. (Strongest Post-condition) Let P be a program. The strongest
post-condition of P with respect to a call-condition I, noted sp(P,I), is the
smallest interpretation J with respect to T such that {I}P{J}pe..

The next Proposition characterizes the strongest post-condition of a program P
wrt a call-condition I in terms of the [-c.a.s. semantics of P.

Proposition 4. Let P be a program and I be an interpretation.

Then, Min(Or(P)) = sp(P,I).

Proof. We prove that {I}P{Min(Or(P))}spe. holds, ie., if 6§ := Q biq Ois a
successful I-derivation of a query @ then Min(Or(P)) = Q6.

Let @ := Ay, ..., A,. By Lemma 2, for all j € {1,... n} there exists a successful
I-derivation 6; := A;@ V2., O where A;0v; = A;6. For all j € {1,...,n}, let
p; € P and Xq,...,X, be distinct variables in V such that p; (X;,...,X,) <



A;6. By Lemma 4, there exists a successful I-derivation p; (X1,...,X,) biq a
where p;(X1,...,X5)8; < A;0. By Definition 7, p;(X1,...,X,)0; € Or(P).
This proves that for all j, Min(Or(P)) E A;68 and then Min(O;(P)) E Q9.
Further, for any interpretation J such that {I}P{J}spec, Min(Of(P)) C J.
We first prove that Min(Or(P)) < J, i.e., for all A € Min(Or(P)) there exi-
sts A € J such that A’ < A. Let A € Min(Or(P)). By Definition 7, there
exist p € P, Xy,..., X, distinct variables in V and a substitution 8 such that

p( X1, ..., Xp) biq O is a successful 7-derivation and A = p(X1,..., X,)f. By
the hypothesis {I}P{J}.pec, J E A. So, there exists A’ € J such that A’ < A.
Suppose now that J < Min(Or(P)). Then Min(Or(P)) C J. Indeed, from the
fact that both Min(Or(P)) < J and J < Min(Op(P)), for all A € Min(Or(P))
there exists A’ € J and A” € Min(Or(P)) such that A” < A’ < A. By Defini-
tion 1 of operator Min, A” = A and then A € J.

4.2 Specialised Programs

Any s.p.c. program P with respect to a given call /post specification I and J, i.e.,
such that {I}P{J}spe. holds, can be transformed into a specialised program Py
which is weakly call-correct with respect to the call-condition I and satisfies the
property {BE}Pr{J}spec. This means that for any query ) and SLD-derivation
§ of PrU{Q} with computed answer substitution 8, Sel(§) < T and J |= Q4.

Specialised programs are obtained from the following program transformation.

Definition 16. (Specialised Program) Let P be a program and I be an inter-
pretation. The I-program corresponding to P, denoted by Py, ts defined as:

Pr={(H—B)y|H—Be&cPand Hy € Min;(H)
where v 1s idempotent and

Var(y) N Var(H — B) C Dom(y) = Var(H)}.

The condition Var(y) N Var(H «— B) C Dom(y) = Var(H) allows us to avoid
undesired bindings on the variables in the bodies.

Note that Py may be an infinite program but it will be finite whenever Min(I)
is finite.

Ezample 8. Consider the program APPEND and the interpretations Call and Post
given in the Example 7. The specialised program APPEND; 1s defined by:

append ([ ],[],[]).
append ([ ], [X1], [X4]).
append ([]a [XlaX2]a [XlaXZ])'

append ([]’ [XlaX2a .. 'aXTl]’ [XlaX2a .. ,Xn])
append ([X1|X;], Y5, [X1]) < append (X, Yy, []).
append ([X1]X,], Y5, [ X1, X3]) < append (X, Y5, [X2]).

append ([X1]X,], Y5, [X1, Xa,..., X)) < append (X, Vs, [Xa, ..., Xa]).



It is easy to see that the assertion {B°} APPENDc.y {Post}spec holds, meaning
that for any query @ and successful SLD-derivation é of APPEND ¢,y U {Q} with
computed answer substitution 8, Post | Q8. Moreover, for any selected atom

instance A € Sel(8), Call = A. Hence, Sel($) < Call.

Proposition 5. Let P be a program and I be an interpretation with {I}P{J }speo.
Then, Pr is weakly call-correct with respect to I.

Proof. Let 6 be an SLD-derivation of P;. We prove that for all A € Sel(§),
I = A. Indeed, for all A € Sel(§) there exists and SLD-derivation step

A,B,C=%, s (A,By,C)f

of § where B is the selected atom, (H «— B)y is the input clause, ¢ = mgu(B, Hy)
and A = Bf. By Definition 16, H +— B is a variant of a clause of P such that
Hy € Ming(H). Hence, I = Hy# = B0 = A.

Proposition 6. Let P be a program and I be an interpretation.

Then, {IYP{J}spee implies {BEYPr{J }spec-

Proof. We need the following result.

Claim. [7] Let P be a program, ) := A, B, C and I be an interpretation. If
A,B,C=%, s (A,B,C)

is an SLD-derivation step then there exists a substitution v such that
A,B,C 250 (A, B, C)yo

is an [-derivation step where B = B'y, (A, B,C)0 = (A, B’,C)y0 and 7¢ = ¢.

Suppose that {I}P{J}spe. holds. We prove that for any query () and success-
ful SLD-derivation 6 := @ 'LPI,BS O, J | Q0. In order to obtain this result, we

prove that for any such 6, there exists a successful I-derivation ¢’ := Q0 pr[ a
where Qfc = Q8. The fact that J = Q8 follows by the hypothesis {I}P{J}pe..
This is done by induction on len(§).

Basis. Let len(8) = 1. In this case, @ consists of only one atom B and

6: =B :€>P1762 O.
By Claim 4.2, there exists a substitution ¥ such that
B gpy[ O
is an [-derivation step and yp = ¢. By Lemma 1, it follows that

8 .= B0 = B~f :U>P71 O



1s a successful /-derivation of B8 where Bfoc = B6.
Induction step. Let len(8) > 1. In this case Q := A, B, C and

5:=A,B,C=2p 5 (A,B,C)ly —2p e O
with 8 = #1605. By Claim 4.2 there exists a substitution v such that
A,B,C22p; (A,B C)l,

is an [-derivation step where B = B’y, (A, B, C)0; = (A, B’,C)y0; and | = ¢.
Let H — B’ be the input clause and v, = mgu(B, H). Then, by properties of
substitutions [1] there exists a substitution ¢y such that ¢1)gs = ¢, 01—’ = 70
and o1 = mgu (B0, H). So,

(A,B,C)y0 =%p; (A, B/, C)vlo,
is an [-derivation step. Since 7)o = ¢ and (A, B, C)f; = (A, B’, C)01, also
(A,B,C)0 =%p; (A,B,C)loy
is an I-derivation step. By the inductive hypothesis,
(A,B,C)d n&pyl a
is a successful I-derivation where (A, B, C)fcy = (A, B, C)f. Moreover,

(A,B,C)d = (A,B',C)y0 (since (A,B,C)f, = (A,B',C)v0;)
= A0,B'v0,C0  (since g =€)
= A0,B'y001,CO (since v0|g_p' = o1 and oy is idempotent)
= Af,Bboy,Cl (since B=B'y)
=(A,B,C)fo; (since o1gs = €).

Then,
8 = (A,B,C)0 =p; (A,B,C)loy “pr O

1s a successful I-derivation. Let ¢ = o105. Then

Qbo = (A, B,C)lo109

= Afloy, Bloy, Cloy (since 01)gp = ¢)

(by definition of @ and of )
(
= A6, Blo,, Cl (by inductive hypothesis)
(
(

= Ad,B0,CH because of standardization apart)
= Q0 by definition of @).

5 Equivalence of the Top-down and Fixpoint Semantics

In this section we discuss the equivalence between the specialised top-down se-
mantics Or(P) and the fixpoint semantics Fr(P). The reader is referred to [7]



for more details. The proof follows from the fact that for any program P and

interpretation I, both Or(P) = O(Pr) and Fr(P) = F(Pr) hold.

The equivalence between Op(P) and O(Py) follows from the following result.
Proposition 7. [7] Let P be a program and I be an interpretation. Then, there
exists a successful SLD-derwation § := Q) 'LPI,BS O of a query @ ioff there
exists a successful I-derivation &' := Q '€—I>P7[ O where QO = Q0'.

Theorem 1. For any program P and interpretation I, O(Pr) = O1(P).

Proof. Recall that O(Pr) = Oge(Pr). The result follows from Proposition 7.

The next Proposition relates powers of transformations Tp, ge and Tp . It allows
us to prove the equivalence between Fr(P) and F(Pr).

Proposition 8. Let P be a program, I be an interpretation and A be an atom.
Then for alln >0, A€Tp, ge Tniff A€ Tps 1 n.

Theorem 2. For any program P and interpretation I, F(Pr) = Fr(P).
Proof. Recall that F(Pr) = Fze(Pr). The result follows from Proposition 8.

We are now in position to prove the equivalence between the specialised top-
down and fixpoint semantics.

Theorem 3. (Equivalence of Specialised Top-Down and Fixpoint Semantics)
For any program P and interpretation I, Op(P) = Fr(P).

Proof. By [13], O(Pr) = F(Pr). The result follows from Theorems 1 and 2.

6 Verifying Specialised Partial Correctness

In this section, we show that the specialised partial correctness of a program with
respect to a given call/post specification can be verified just by one application of
the specialised immediate consequence operator 1p ; to the given post-condition.

Let us first prove the following sufficient condition.

Lemma 5. Let P be a program and I and J be two interpretations such that

sp(P,I) C J. Then, {I}P{J}spec holds.

Proof. We prove that for any query ) and successful /-derivation é := @} biq a,
JE Q0. Let Q := Aq, ..., A,. We show that for all j € {1,...,n}, J E 4;6.
By Lemma 2, for all j € {1, ..., n}, there exists a successful I-derivation é; :=
A;0 'lj O where A;fvy; = A;0. Let p; € P and Xy,..., X,, be distinct vari-
ables in V such that p;(X1,..., X,) < A;6. By Lemma 4, for all j, there exists
a successful I-derivation p; (X1, ..., X,) liq O where p; (X1,..., X5)0; < A;6.
By Definition 7, p; (X1, ..., X,)8; € Or(P). Hence, by Proposition 4, sp(P, I) E
A;6. The fact that J = A;60 follows from the hypothesis that sp(P,I) C J.



The next Proposition provides a method for verifying specialised partial correct-
ness with respect to a given call/post specification.

Proposition 9. Let P be a program and I and J be interpretations. Then,
Tpr(J) T J implies {1} P{J }spec-

Proof. We first establish the following Claims. The proofs are given in [7].

Claim. Let P be a program and [ and J be two interpretations.

Then Min(Tp(J)) = Min(Tp(Min(J))).

Claim. For any interpretation [, the transformation Min o Tp ;r is monotonic in
the complete lattice (Z,C).

By Lemma b, it is sufficient to prove that Tp ;(J) C J implies sp(P,I) C J.
We first prove that for all n > 0, Min(Tpr | n) C

By induction on n

Buasis. Let n = 0. Straightforward, since by Definition 11, Min(Tpr 1 0) = 0.
Induction step. Let n > 0. In this case,

C
J.

Min(Tpr 1 n) = Min(Tp(Tpr | n—1)) (by Definition 11)
= Min(Tp(Min(Tpr | n—1))) (by Claim 6)
C Min(Tp1(J)) (by induction hypothesis and
Claim 6)
CTpr(J) (by Definiton 1)
cCJ (by hypothesis).

It follows that Min(|J,,so(Tp,r T n)) C J.

In fact, Min(U,>o(Tpr 1 n)) < J, ie, for all A € Min({J,,o(Tpr T n)) there
exists A’ € J such that A’ < A. This property follows from the fact that for all
A€ Min(U,>o(Tpr 1 n)) there exists n > 0 such that A € Min(Tp; | n). As
proved above, Min(Tp; | n) C J. Hence, by Definition 5, Min(Tp; | n) < J,
i.e., there exists A’ € J such that A" < A.

Moreover, if J < Min(|J,,~o(Tp,r T n)) then Min(lJ,,~o(Tpr 1 7)) C J. In fact,
since both Min({J,>o(Tpr 1 n)) < J and J < Min({J,>o(Tpr T n)), for all
A€ Min(U,>o(Tpr 1 n)) there exists A’ € J and A” € Min(U,,»o(Tr,r 1 n))
such that A" < A’ < A. By Definition 1 of operator Min, A” = A and then
A € J. Therefore,

sp(P,I) = Min(O1(P)) (by Proposition 4)
= Min(Fi(P)) (by Theorem 3)
= Min(Tp; Tw) (by Definition 12)
= Min(J,,>o(Tpr 1 n)) (by Definition 11)
cCJ N (as proved above).



7 An Example

In this section we illustrate by means of an example the specialisation method
defined in Section 4.2. Consider the program FRONT [3] defined below,

front (void, []).

front (tree (X, void, void), [X]).

front (tree (X, L, R), X;) — nel tree (tree (X, L, R)),
front (L, L),
front (R, R;),
append (L, Rs, X;).

nel tree (tree (-, tree (., _, _), J)).

nel tree (tree (-, , tree (., _, _))).

augmented by the program APPEND. It computes the frontier of a binary tree,
1.e., it 18 correct with respect to the post-condition

Post = {front (¢,) | | is the frontier of the binary tree ¢} U {nel list (¢)|{is a
term} U {append (u,v, z) | u, v, z are lists and z = u * v}

where * is the list concatenation operator.

The auxiliary relation nel_tree is used to enforce that a tree 1s a non-empty,
non-leaf tree, i.e., that it is a term of the form tree (x,left, right) where either
left or right does not equal void.

Observe that the simpler program that is obtained by removing the first atom
nel tree (tree(X, L, R)) in the body of the third clause and by discarding
the relation nel tree is indeed incorrect. In fact, as shown in [3], the query
front(tree(X, void, void), X;) would yield two different answers: {X,/[X]} by
means of the second clause and {X;/[]} by means of the third clause.

Suppose that our application domain consists of the set of binary trees whose
left subtrees are all leaves. This information can be expressed by means of the
following call-condition:

Call = {front (¢,{) | t is either the empty tree or a leaf or a term of the form
tree(u,r, s) where r is a leaf and u, s and [ are terms}uU
{nellist (¢)|t is a term} U {append (u,v,z) | u,v, z are terms}

Note that, since the program is correct with respect to Post, then it is also s.p.c.
with respect to the call/post specification Call and Post, i.e.,

{Call}FRONT{ Post} spe..
That can be also proven by computing Trrour, can( Post). We obtain

Trrowt, cani( Post) = {front (void, []), front (tree (X, void, void), [X])}U
{front (¢,!) | ¢ is a binary tree whose left subtree is a
leaf and [ is the frontier of ¢ }U
{nel list (¢) | ¢ is a non-empty, non-leaf tree }U
{append (u,v, z) | u, v, z are lists and z = u * v}.



Then the program can be specialised into a weakly call-correct program FRONT ¢4
Consider the Definition 16. Observe that for all head H, different from the third
clause head, Mincqu(H) = H, whereas, Min cqu(front(tree (X, L, R), X)) =
{front(tree(X, void, void), X;), front(tree(X, tree(L,void, void), R), X;)}.
The specialisation results in the program FRONT ¢y;; defined by:

front (void, []).
front (tree (X, void, void), [X]).
front (tree (X, void, void), X;) «— nel_tree (tree (X, void, void)),

front (void, L
front (void, R;),
append (L;, Ry, X5).

),
)

front (tree (X, tree (L,void, void), R), X;) —

nel tree (tree (X, tree (L, void, void), R)),
front (tree (L, void, void), L;),

front (R, R;),

append (L;, Ry, X5).

augmented by definitions of the relations nel_tree and append.
Now by unfolding we obtain

front (void, []).
front (tree (X, void, void), [X]).
front (tree (., tree (L,void, void), R),[L|R;]) — front (R, R;).

where both the relation nel_tree and the relation append are not used.
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