Specification-based Automatic Verification of Prolog Programs!

Bauduin Le Charlier Sabina Rossi Agostino Cortesi
Institut d’Informatique Dip. di Matematica Dip. Mat. Appl. e Informatica
21 rue Grandgagnage via Belzoni 7 via Torino 155
B-5000 Namur (Belgium) 35131 Padova (Italy) 30170 Mestre-Venezia (Italy)
ble@info.fundp.ac.be sabina@hilbert.math.unipd.it cortesi@dsi.unive.it
Abstract

The paper presents an analyzer for verifying the correctness of a Prolog program relative to a specification which
provides a list of input/output annotations for the arguments and parameters that can be used to establish pro-
gram termination. The work stems from Deville’s methodology to derive Prolog programs that correctly implement
their declarative meaning. In this context, we propose an algorithm that combines, adapts, and sometimes improves
various existing static analyses in order to verify total correctness of Prolog programs with respect to formal speci-
fications. Using the information computed during the verification process, an automatic complexity analysis can be
also performed.

Introduction

Logic programming is an appealing programming paradigm since it allows one to solve complex problems in
a concise and understandable way, i.e., in declarative style. For efficiency reasons, however, practical imple-
mentations of logic programs (e.g., Prolog programs) are not always faithful to their declarative meaning.
In his book [10], Deville proposes a methodology for logic program construction that aims at reconciling
the declarative semantics with an efficient Prolog implementation. The methodology is based on four main
development steps:

e claboration of a specification, consisting of a description of the relation, type declarations, and a set
of behavioural assumptions,

e construction of a correct logic description, dealing with the declarative meaning only,
e derivation of a Prolog program,

e correctness verification of the Prolog code with respect to the specification.

The FOLON environment [7, 11] was designed with the main goal of supporting the automatable aspects
of this methodology. In this context, we propose a new analyzer for verifying total correctness of Prolog
programs with respect to specifications.

The new analyzer is an extension of the analyzers described in [6, 7, 11] which themselves automate part
of the methodology described in [10]. The novelty is that we deal with total correctness, while [6, 7, 11]
only deal with particular correctness aspects such as mode and type verification. At this aim, we extend the
generic abstract domain Pat(R) [4, 5] to deal with multiplicity and size relations.

We adapt the framework for termination analysis proposed by De Schreye, Verschaetse and Bruynooghe
in [9]: instead of proving termination based on the program code only, we use termination information given
in the formal specification; this requires more information from the programmer but allows for more general
termination proofs.

The analyzer computes information about the number of solutions using the notion of abstract sequence
introduced in [14]. This is related to the cardinality analysis described in [2]. However, we do not perform an

IPartly supported by European Community “HCM-Network —Logic Program Synthesis and Transformation— Contract Nr.
CHRX-CT93-00414”, and by “MURST NRP —Modelli della Computazione e dei Linguaggi di Programmazione”

abstract interpretation in the usual sense since we use the formal specification of the subproblems instead of
their code; moreover, we allow the number of solutions to be expressed as a function of the input argument
sizes. This enhances the expressiveness of cardinality analysis with respect to [2].

Based on the new analyzer, we get almost for free an automatic complexity analysis, in the spirit of the
framework proposed by Debray and Lin in [8]. In our context, this analysis is useful to choose the most
efficient version of a procedure.

The paper is organized as follows. In Section 1, we recall Deville’s methodology. In Section 2, we
introduce the abstract domains used by the analyzer. In Section 3, we describe the analyzer and give an
example to illustrate the main operations. In Section 4, we discuss the complexity analysis and describe an
example of cost analysis which uses information computed by the analyzer. Section 5 concludes the paper.

1 Program Synthesis Methodology Overview

Our work is based on and extends Deville’s methodology for logic program development presented in [10].
Let us illustrate it with the construction of the procedure select/3 which removes an occurrence of X from
the list L containing it and returns the list L.

Specification

The first step consists in specifying the procedure according to a standard specification format. Indeed,
we extend the general specification form proposed by Deville in [10] with extra information which will
be useful for proving termination of the derived procedures. Argument size relations are specified in the
form of a set of inequations (see [8]). They are used to prove termination of the recursive procedures
in the spirit of [9]. Moreover, the number of solutions is allowed to be expressed in terms of the input
argument sizes.

A specification for select/3 is depicted in Figure 1. First, the name and the formal parameters of
the procedure are specified. The relation and the size relation express properties on the formal para-
meters which are intended to be satisfied after any successful execution. The size measure (see [9])
|- |» associates to each term t a natural number |t|x by: |[t1]ta]|x =1+ |to|x and [t|y =0 if t is
not of the form [t|ts]. The size relation is a set of (in)equations on the formal parameters expressing
a relation between the corresponding sizes. In the example, after any successful execution, the size of
L is required to be equal to the size of Lg plus 1.

Procedure: select(X,L,L;)
Relation: X is an element of L and Lg is the list L without an occurrence of X

Size measure: |- |
Size relation: {L=1Ls+ 1}
Application conditions: in(any,gr,any) :: out(gr,grlist,grlist) {0 <sol <L} L

in(gr,any,gr) :: out(gr,grlist,grlist) {0<sol<Lg;+1} L
Figure 1: Specification for select/3

The application conditions consist of three components namely, directionality, multiplicity and size
expression. Each directionality specifies the allowed modes? of the parameters before the execution (in
part) and the corresponding modes after a successful execution (out part). In order to describe the
multiplicity and the size expression components, let us introduce some definitions.

For any set of program variables V, we denote Exps, the set of all expressions on variables in V. A

2Tn this example we restrict our attention to the domain Mode-Type [13] (gr denotes a ground term, any denotes any term,
var denotes a variable, grlist denotes a ground list, anylist denotes either a variable or any list). This can be generalized to
any information on procedure parameters.

multiplicity is a set E of inequations over Expy . x, . x,3 U {00} where Xi,...,X, are the formal
parameters of the procedure and sol is a new variable denoting the cardinality of the answer substitu-
tion set. For any call to the procedure satisfying the in part of the corresponding directionality and
producing the sequence S of answer substitutions, the following property is expected to hold: sol/|S]
satisfies the restriction to sol of the set of inequations obtained from E by replacing the formal param-
eters Xq,...,X, with the size of the corresponding input values. The size expression is an expression
from Exp {xi,...,xn}g associating to each possible call, respecting the corresponding in part, a weight
obtained by replacing the formal parameters with the size of the corresponding actual values. Such a
weight is assumed to be not affected by any further instantiation of the parameters. In order to prove
termination of a recursive call we need to prove that its weight is smaller than the weight for the initial
one?. In the example, the weight for the calls of select/3 respecting the first (resp. the last) in part
is given by the size of the actual value corresponding to L (resp. Lg). Since this value is required to be
ground, according to the specified directionality, such a weight is guaranteed to be invariant for any
further instantion of the parameters.

Logical Description

A correct logic description for select/3, noted LD(select/3), is
select(X,L,Ls) <= L=[HT] A (H=XALs =TALlist(T)) V (Ls = [Hs|Ts] A select(X,T,Ts))).

The correctness of a logic description LD(p/n) can be expressed as follows: for every ground n-tuple
term t, (1) p(t) is a logical consequence of LD(p/n) iff t belongs to the relation and respects the types;
(2) —p(t) is a logical consequence of LD(p/n) iff either t does not belong to the relation or it does not
respect the types.

Prolog Code Derivation

The next step consists in deriving a Prolog program from the logic description. The logic description
LD(p/n) is syntactically translated into a Prolog program LP(p/n) whose completion [16] is the logic
description again. In the example, the following Prolog program LP(select/3) is obtained.

select(X,L,Ls) :— L=H|T], H=X, Ls =T, list(T).
select(X,L,Ls) :— L =[H|T], Ls = [H|T;], select(X,T,Ts).

Correctness Verification

The last step is the verification of total correctness of the program with respect to the specification.
To be correct that procedure has to respect the following criteria: during any execution (based on
the SLDNF-resolution) called with arguments respecting at least one in part of the corresponding
specification and producing the sequence S of answer substitutions,

1. the computation rule is safe, i.e., when selected, the negative literals are ground;
2. any subcall is called with arguments respecting at least one in part of its specification;

3. the arguments of the procedure after the execution respect the types, the size relation and the
out part of each directionality whose in part is satisfied by the initial call;

4. S respects the multiplicity of each directionality whose in part is satisfied by the initial call;

5. completeness: every computed answer substitution in the SLDNF-tree belongs to S (i.e., it must
eventually be reached according to Prolog search rule);

6. termination: if S is finite then the execution terminates.

31t corresponds, in a sense, to the natural level mapping used by De Schreye et al. in [9].
4For more details about these concepts the reader is referred to [1, 9].

When S is finite, points 5 and 6 are satisfied if the execution of each clause terminates. Termination
of a clause is achieved when each literal in its body which is not a recursive call terminates and the
weights for the recursive calls are smaller than the weight for the initial call. When S can be infinite
then only completeness has to be verified. A sufficient criterion for completeness is the following: at
most one literal in a clause of the procedure produces an infinite sequence of answer substitutions and
either this literal is in the last clause or the following clauses are finitely failed (i.e., they terminate
without producing any result); moreover, if a clause contains a literal that produces an infinite sequence
of answer substitutions, then none of the preceeding literals in this clause produces more than one
solution.

The main advantage provided by the analyzer that we present in this paper is the fully automatization of
the last step of Deville’s methodology described so far, i.e. the verification of total correctness of synthetized
programs with respect to the formal specification. In section 3 we will illustrate the behaviour of the analyzer
by proving that the procedure LP(select/3) is correct wrt the specification depicted in Figure 1.

2 Basic Notions

In this section we briefly describe the abstract domains used by the analyzer. Based on the notion of abstract
substitution, the concept of abstract sequence is introduced to represent solution set cardinality. Finally, we
formalize the program specification through the notion of behaviour.

In the following we call I, set of indices {1, ...,p}, denoting terms ¢1,...,¢,. Next notions are parameterized
on p, and can be extended to the set of all I,, in the same way as in [15].

Definition 2.1 [abstract substitution]

An abstract substitution B is an element of the generic abstract domain Pat(R) described in [4, 5], i.e. a
tuple (frm,sv,a) where the pattern component frm associates with some of the indices in I, a pattern
f(i1,...,iq), where f a q-ary function symbol and {i1,...,i,} C Ip; the same-value component sv assigns a
subterm to each variable in the substitution; and « is an element of a domain ® that gives information on
term tuples (t1,...,tp) about mode, sharing, types, or whatever else.

Example 2.1 Let ® be the abstract domain Mode-Type described in [13], and consider the (concrete)
substitution
{X1— Y*xa,X2+ a,X3— []}.

This substitution is represented, for instance, by the following abstract substitution:

sv: X1 1 frm: 1+ 4x%2 a 1/ngv
X2+ 2 2 a 2/gr
X33 3] 3/grlist
47 4/var

At each execution point, the analyzer computes (so-called) abstract sequences (see [2, 14]) giving infor-
mation about variables in the form of an abstract substitution, and also information about the number of
solutions in terms of the input argument sizes. Thus, an abstract sequence can be seen as an extension
of the abstract substitution notion, where an additional same-value component maintains the parameter
assignements at clause entry, and a set of linear (in)equations represents size relations among terms and
solution set cardinality.

Definition 2.2 [abstract sequence]
An abstract sequence B is a tuple (frm, sv;,, sv,a, E) where

1. (frm,sv,,) and (frm, sv,a) are abstract substitutions.

2. the domain of the same-value function sv;, is contained in the domain of sv;

3. the size component E is a (possibly empty) set of (in)equations over EXpPy o oz(1).....s2(p)}-

Given a size measure |- |, an abstract sequence B= (frm, sv;,, sv,a,E) represents the pairs (o, S)
of concrete substitutions such that oy, € y((frm, svin,@)) and for all €S, o is an instance of o, 0 €
y({frm, sv,a)), and S respects the multiplicity relations expressed by E, i.e. for every (t1,...,t,) € v(a) :
(sz(1)/]t41], - -,s2(p)/|tpl, sol/|S|) satisfies the set of inequations E.

A behaviour for a procedure is a formalization of its specification (excluding the relation part).

Definition 2.3 [behaviour]

A behaviour for a procedure p/n is a 4-tuple of the form (p, [X1,...,Xn],S,Prepost) where
1. X4,...,X, are distinct variables representing the formal parameters of the procedure p/n;
2. Sis a set of (in)equations only using variables in X, ..., Xy, representing size relations;

3. Prepost is a set of pairs (B, Se) where B = (frm, svin, SUout, @, E) is an abstract sequence and Se is a
size expression from Expy,.. . x1-

Example 2.2 A behaviour for select/3 formalizing the specification depicted in Figure 1 has the form
(select, [X1,Xg,X3],S = {Xy = X3 + 1}, Prepost = {(B~,Xy), (B,X3)})

where BT (corresponding to the second application condition) is equal to

SV X1 1 Svp: X1—=4 frm: 1?7 a: 1/gr E: 0<sol<sz(3)+1
X2+ 2 X2+—5 27 2/any sz(5) = sz(6) + 1
X3+ 3 X3 6 37 3/gr
47 4/gr
57 5/grlist
6 —7? 6/grlist

and the abstract sequence B~ (corresponding to the first application condition) can be defined in a similar
way.

3 The Analyzer

In this section we first present a clause analyzer for verifying correctness of a clause. This is a refinement
and an extension of the analyzer proposed in [6]. Then, we describe a procedure analyzer, based on the
clause analyzer, for verifying correctness of a whole procedure.

3.1 The Clause Analyzer

The clause analyzer receives as inputs a Prolog clause CL of the form p(Xy,...,X,) < Ly,...,Ls wheren, £ > 0
and Xi,...,X, are distinct variables, a behaviour for each subprocedure in CL (except = /2 but including
p/n), an element ((frm, svin, SVout, @, E), Se) from the Prepost component of the behaviour for p/n, and an
abstract substitution 8 on Xi,...,X, smaller than or equal to the precondition (frm, sv;,, a), according to
the partial order defined on Pat(R). It checks the following:

1. for any subcall to a procedure q/m in the body of CL, let (q, [X1, ..., Xn], Sq, Prepost,) be the behaviour
for g/m. The procedure g/mis called with arguments respecting at least one precondition {frm’, sv},,,a')
in the Prepost, set;

2. the arguments of p after the execution of the clause CL respect the size relation and (frm, svoys,);

3. if sol/oo satisfies the restriction of E to sol, then at most one subcall in the body of CL can produce
infinite solutions and none of the preceeding literals in this clause produces more than one solution.
Otherwise, the execution of CL terminates.

If one of these properties can not be inferred then the clause analyzer fails. Otherwise, it returns an
(in)equation set Eqp. expressing information about the length of the sequence of answer substitutions and the
termination of the execution of the clause CL.

In order to compute its results, the clause analyzer computes a set, By, By, ..., Bs, of abstract sequences
on the variables in CL and an abstract sequence B,y expressing the same properties as Bs but restricted to
the variables Xi,...,X, in the head of CL. The following main operations are required to analyze a clause.

¢ Initial operation: it extends 3 to an abstract sequence By on all variables in CL.

e Derivation operation: it computes B; from B;_; and L; (1 < i < £). In fact, there are two kinds of
derivation operations: the deriv-unif (for the = /2 literals) and the deriv-normal (for the other literals).

¢ Reduction operation: it computes Byt from Be by restricting it to the variables Xy, ..., X,.
e Exit operation: it verifies whether By, respects the size relation in E and (frm, svgut, a).

Let us illustrate them with an example. Consider the second clause of the procedure select/3 and the
behaviour for select/3 described above. Let 8 = (frm*, sv*, a*,E*) be an abstract substitution with
frm* = {1 7,2 7,3 =7}, sv* = {X1 — 1,X2+ 2,X3 — 3}, a* = {1/gr,2/any, 3/gr}, E* = {sol = 0}.
The clause analyzer camputes By, By, ..., By as follows:

B
select (X1,X2,X3) <« By X2=[X4]X5],

By X3=[X4[X6],

B> select(X1,X5,X6) Bs.
Bs.

Initial Operation First, 3 is extended to an abstract substitution By on all the variables in the clause
stating that the new variables are not instantiated and used nowhere else. In the example,

s XKt 1 s0% Xie=1 frm® 1?7 o: 1/gr E°: s0l=0

X2~ 2 X2~ 2 27 2/any

X3+ 3 X3+—3 37 3/gr
X4 4 47?7 4/var
X5~ 5 57 5/var
X6 — 6 6 —7 6/var

Derivation operation: We compute B; from By and the literal X2 = [X4|X5]. In this case, the deriv-unif
operation is used. A new term (represented by the index 7) is introduced, representing the result of the
unification of X2 with [X41X5]. The sv;, component maintain the link with the term denoted by 2 while
the actual binding of X2 after unification is kept by sv. Since it is not sure that the unification succeeds, the
information that a failure could occur is expressed in the multiplicity component. Information on the size
relations holding after the unification is expressed by the equation sz(7)=sz(5)+1. Thus, B; is

svl X1e— 1 svlt X110 frm't 157 al: 1/gr E': 0<s0<1
X2 2 X207 27 2/any sz(7)=sz(5) + 1
X3+ 3 X3+—3 37 3/gr
X4 — 4 47 4/any
X5 —5 57 5/any
X6 — 6 6 —7 6/var
7 [4]5] 7/ngv

Another derivation operation applies to derive B, from B; and the literal X3 = [X4|X6]. Also in this case,
the deriv-unif operation is used. Observe that in this case, the groundness of term indexed by 3 propagates
to the terms that correspond (through sv) to X4,X6. Observe that no new term is created, because the term
indexed by 3 was ground already. The abstract sequence B, is

svl: X1e—1 s’ X1e 1 frm? 16?7 a®: 1l/gr E*: 0<s0l<1
X2 2 X207 27 2/any sz(7)=sz(5) + 1
X3+ 3 X3+ 3 3+ [4]6] 3/gr sz(3)=sz(6) + 1
X4 4 4 =7 4/gr
X5 5 57 5/any
X6 — 6 6 —? 6/gr
7 — [4]5] 7/ngv

The abstract sequence B3 is obtained through deriv-normal by combining By with the behaviour of select/3.
In particular, we need to find a pair (B, Se) in the Prepost component of the behaviour that matches with
By regarding directionality and termination. In our example, this is true when considering the prepost com-
ponent (BT, X3) defined at the end of Section 2.

Let BT = (frm, svin, Svouta, E) and let 7 = {X1 +— X1,X2 > X5,X3 > X6} be the renaming function that is
used to restrict By to the clause select (X1,X5,X6).

First, we need to verify directionality: that the abstract substitution obtained by applying 7 to (frm?, sv?, a?)
is at least as precise (i.e. smaller or equal in the ordering on Pat(R)) as (frm, sv,,). In particular, if we
look at modes, it is easy to verify that

in(a(sv?(r(X))),042(811 (1(X2))), o (sv*(7(X3)))) =
in(a?(sv?(X1)), a?(sv%(X5)), o (sv?(X6))) =
a?(1),02(5),0%(6))

in(a(sv(X1), a(sv(X2), a(sv(X3))

Second, since sol /oo is not a solution in E2, we have to prove termination: according to the size expression
Se = X3 in the Prepost component selected, we need to verify that the size of the third term of the new
activation call is strictly smaller than the size of the third parameter before the execution. Formally, we
need to verify that
sz(sv?(1(X3))) < sz(sv},(X3))

Indeed,
sz(sv?,(X3)) = sz(3) by definition of sv?,
= sz(6)+1 by multiplicity in Bsy
> sz(6)
= sz(sv?(7(X3))).

Thus, both directionality and termination of the application condition are satisfied. Therefore, we can
apply the out-conditions of B. In particular, we derive that the terms indexed by 5 and 6 are bound to
ground lists, and we get the multiplicity equations 0 < sol < sz(6) + 1 and sz(5) = sz(6) + 1. We obtain
the following abstract sequence Bs:

svi: X1 1 sv: Xie 1 frm? 17 a: 1/gr E3: 0<sol<sz(6)+1
X2+ 2 X2 7 2 7 2/any sz(7)=sz(5) + 1
X33 X33 3 — [4]6] 3/grlist sz(3)=sz(6)+1
X4+ 4 47 4/gr sz(5)=sz(6) + 1
X5+ 5 57 5/grlist
X6+ 6 6 —7 6/grlist
7 [4]5] 7/grlist

Reduction operation. The abstract sequence By is computed by rectricting Bs to the variables X1,X2,X3.
It results in

svi: X1 1l svd X1 1l frm? 197 a: 1/gr E3: 0<sol <sz(6)+1
X2+ 2 X217 27 2/any sz(7)=sz(5) + 1
X33 X33 3 — [4]6] 3/grlist sz(3)=sz(6) + 1
4 =7 4/gr sz(5)=sz(6) + 1
57 5/grlist
6 —7? 6/grlist
7+ [4]5] 7/grlist

Exit operation The last step in the clause analysis consists in verifying whether By satisfies the size
relation in E and the output abstract substitution {frm, sve.:, @) of the Prepost component (B1,X3) of the
behaviour applied so far. In our example, this is trivially true.

3.2 The Procedure Analyzer

Using the clause analyzer, we define a procedure analyzer which given a Prolog program P defining a predicate
p/n and a behaviour for each subprocedure in P, checks the following: for each abstract substitution respecting
at least one precondition in the behaviour for p/n with multiplicity (in)equation set E,

1. for each clause CL of P the clause analyzer does not fail;
2. the sequence of answer substitutions for the whole procedure respects the multiplicity (in)equation set;

3. if sol /oo is a solution for the restriction of E to sol, then at most one clause of P can produce an infinite
number of solutions and none of the preceeding literals in the clause produces more than one solution.
If this is not the last clause, then the executions of all the following clauses in P are finitely failed.

If one of these properties can not be inferred then the procedure analyzer fails meaning that the correctness
of P has not been proved.

4 Complexity Analysis

The analyzer provides a suitable basis for the complexity analysis of Prolog programs in the spirit of [8].
The complexity analysis is useful to choose the most efficient version of a procedure.

Indeed, using the information relative to the size relations and the number of solutions computed by the
analyzer at each program point, the time complexity of a procedure can be easily estimated. Clearly, it
depends on the complexity of each literal called in the body of its clauses. Because of nondeterminism, the
cost of such a literal depends on the number of solutions generated by the execution of previous literals in the
body. Moreover, the cost of a recursive call depends on the depth of the recursion during the computation,
which in turn depends on the size of its input arguments.

Callee predicates are analyzed before the corresponding callers. If two predicates call each other, then
they are analyzed together.

The time complexity function for recursive procedures is given in the form of difference equations which
are transformed into closed form functions (when possible) using difference equation solving techniques®.

Let CL be a clause of the form H < Ly,...,L¢ (f > 0), A represent the input size for CL and A; represent
the input size for L;. The time complexity of CL can be expressed as

te(A) = 7+ i, Max;(R;) t ()

5For the automatic resolution of general difference equations the reader is referred to [3, 12].

where 7 is the time needed to unify with the head H of CL, Max;(A;) is an upper bound to the number
of solutions generated by the literals preceeding L; and t;(A;) is the time complexity of L;.

There are a number of different metrics that can be used as the unit of time complexity, e.g., the number
of resolutions, the number of unifications, or the number of instructions executed. For simplicity, in what
follows, we assume that the time complexity metric used is the number of resolutions giving an upper bound
on the number of vertices in the search tree. In this case, both 7 and the time needed to solve a built-in is 1.

Example 4.1 Consider once more the program select/3 and the second directionality in the specification
depicted in Figure 1. The time complexity for select/3 in terms of the size of the input ground argument
Lg, noted tgeiect, can be estimated as follows. First, we compute the time complexity ti,;,..(0) for each
clause called with Lg being the empty list.

tlece(0) = 5 (in the first clause, both head unification and the body literals succeed)
t21...(0) = 2 (in the second clause, only head unification and the first body literal succeed).

i

Then, the time complexity tl ;... (Ls) for each clause called with a non empty list Lg is estimated. In
this case both the size relation and the multiplicity information computed by the analyzer are used.

tli.(Le) = 5 (in the first clause, both head unification and the body literals succeed)

tgelect (LS) = 3 + tselect (Ts)
= 3+ tgelect(Ls — 1) (since Tg = Lg — 1).

The time complexities tserect(0) and tgeiect(Ls) for the calls of select/3 with Lg being the empty list
and a non empty list, respectively, are obtained by summing the time complexity for the first two clauses.

tselect(o) = 7
tselect (Ls) = 8 + tselect (Ls - 1)

This system can be solved to obtain the time complexity

tselect = AX.8x+ 7 (x standing for the size of Lg).

5 Conclusion and Future Work

In this paper, an analyzer for Prolog procedures has been presented that verifies total correctness with respect
to Devilles’s formal specification. An automatic complexity analysis based on the information deduced by the
analyzer was also proposed. We are conscious that the effective impact of these ideas can be evaluated only
after the full implementation of the analyzer, which is in progress, now. The main goal of the implementation,
based on the generic abstract interpretation algorithm GAIA [15], is to investigate the practicality of the
automatic complexity analysis in the context of a logic procedure synthesizer that derives the most efficient
procedure among the set of all correct ones.

References

[1] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting Term Properties. In S. Abramsky
and T.S.E. Maibaum, editors, Proc. TAPSOFT’91, volume 494 of Lecture Notes in Computer Science, pages 153—180.
Springer-Verlag, Berlin, 1991.

[2] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality Analysis of Prolog. In Proc. Int’l Logic
Programming Symposium, (ILPS’94), Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.

[3] J. Cohen and J. Katcoff. Symbolic solution of finite-difference equations. ACM Transactions on Mathematical Software,
3(3):261-271, 1977.

(4]
(5]

(6]

(7]

g

9
[10]
[11]
[12]
[13]

(14]

[15]

[16]

A. Cortesi, B. Le Charlier and P. van Hentenryck, Conceptual and Software Support for Abstract Domain Design: Generic
Structural Domain and Open Product. Technical Report CS-93-13, Brown University, 1993.

A. Cortesi, B. Le Charlier and P. van Hentenryck, Combinations of Abstract Domains for Logic Programming, Proc. 21th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’9/), ACM-Press, New
York, pp.227-239, 1994.

P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures for Ensuring Correctness. In P. Deransart and
J. Maluszynski, editors, Proc. Second Int’l Symposium on Programming Language Implementation and Logic Programming,
(PLILP’90), volume 456 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1990.

P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic Definitions Augmented with Type Information
into Prolog Procedures: Some Experiments. In Proc. Int’l Workshop on Logic Program Synthesis and Transformation,
(LOPSTR’93). Springer Verlag, July 1993.

S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM Transactions on Programming Languages and Systems,
15(5):826-875, 1993.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for analysing the termination of definite logic programs
with respect to call patterns. In H. Tanaka, editor, FGCS’92, 1992.

Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.

J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Construction of Logic Programs (extended
abstract). In M. Bruynooghe and M. Wirsing, editors, Proc. Fourth Int’l Workshop on Programming Language Imple-
mentation and Logic Programming (PLILP ’92), Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

J. Ivie. Some MACSYMA programs for solving recurrence relations. ACM Transactions on Mathematical Software,
4(1):24-33, 1978.

B. Le Charlier, and S. Rossi. Automatic Derivation of Totally Correct Prolog Procedures from Logic Descriptions. Research
Report RP-95-009, University of Namur.

B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation Framework which Accurately Handles
Prolog Search-Rule and the Cut. In Proc. Int’l Logic Programming Symposium, (ILPS’94), Ithaca, NY. The MIT Press,
Cambridge, Mass., 1994.

B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic abstract interpretation algorithm for prolog.
ACM Transactions on Programming Languages and Systems, 1993.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

10

