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Abstract. In the design process of distributed systems we may have to
replace abstract specifications of components by more concrete specifi-
cations, thus providing more detailed design information. In the context
of process algebra, this well-known approach is often referred to as ac-
tion refinement. We study the relationships between action refinement
and security properties within the Security Process Algebra (SPA). First
we formalize the concept of action refinement as a structural inductive
transformation. Then we prove several compositional results which can
be exploited in the stepwise development of processes. Finally, we con-
sider information flow security properties for SPA processes and define
a decidable class of secure processes which is closed under refinement.

1 Introduction

In the development of a complex system it is common practice first to describe
it succinctly as a simple abstract specification and then to stepwise refine it to-
wards a more concrete implementation. This hierarchical specification approach
has been successfully developed for sequential systems where abstract-level in-
structions are expanded until a concrete implementation is reached (e.g., [28]).

In the context of process algebra, the refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete terms.
We adopt the terminology action refinement [16] to refer to this stepwise de-
velopment of systems specified as terms of a process algebra. In the literature,
action refinement is also referred to as vertical refinement as opposed to horizon-

tal refinement indicating any transformation of a system making it more nearly
executable, for instance more deterministic, without adding new actions or ex-
panding sub-computations. The latter is usually expressed in terms of pre-orders
such as trace inclusion or simulation. We studied the relationships between this
second form of refinement and information flow security in [3]. However, we can-
not use the results obtained in [3] to deal with vertical refinement since the two
forms of refinement provide orthogonal mechanisms for program development.
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In process algebra, action refinement is usually defined in languages including
a sequential composition operator “;” that allows one to syntactically substitute
a process for an action. So, for instance, the refinement of r in the process
a; r; b;0 with the process F can be defined as the process a; F ; b;0. This is
the most followed approach (see, e.g., [1, 15]). However, many process algebras,
e.g., CCS, do not include the sequential composition operator. Thus in order
to support action refinement, action-prefixing is usually replaced by sequential
composition. As noticed in [1] this modification requires to introduce a suitable
notion of termination and to consequently adapt the semantic equivalences.

Here we follow a different approach and instead of modifying our language,
we define action refinement as a structural inductive transformation. We model
action refinement as a ternary function Ref taking as arguments an action r
to be refined, a system description E on a given level of abstraction and an
interpretation of the action r on this level by a more concrete process F on a
lower abstraction level. The refined process, denoted by Ref (r, E, F ), is intended
to be obtained from E by expanding each occurrence of r in E through F . We
assume that the process F indicates its termination by a distinguished label
done, i.e., following Milner’s terminology (see [20]), F is well-terminating. The
refined process is obtained by applying a structural inductive transformation
based on the Before operator defined in [20] as:

Before [F, E]
def
= (F [f̄/done]|f.E) \ {f}.

For instance, if E is the process r.a.0 where r is the action we intend to refine

by the process F
def
= b1.b2.done.0, the refined process, denoted by Ref (r, E, F ),

will be the process Before [F, E]
def
= (b1.b2.f̄ .0|f.a.0) \ {f} which corresponds

to the sequential composition of processes F and a.0, and hence it models the
substitution of the action r in E with F . In practice we follow the static syntactic
approach to action refinement (see, e.g., [22]).

The main motivation behind our approach is that of studying the relation-
ships between action refinement and security. Indeed, in system development, it
is important to consider security related issues from the very beginning. Conside-
ring security only at the final step could lead to a poor protection, or, even worse,
could make it necessary to restart the development from scratch. On the other
hand, taking into account security from the abstract specification level, better
integrates it in the whole development process, possibly driving some implemen-
tation choices. A security-aware stepwise development requires that the security
properties of interest are either preserved or gained during the development
steps, until a concrete (i.e., implementable) specification is obtained.

In this paper we consider information flow security properties [11, 14, 18,
23], i.e., properties that allow one to express constraints on how information
should flow among different groups of entities. These properties are formalized
by considering two groups of entities labelled with two security levels: high (H)
and low (L). The only constraint is that no information should flow from H
to L. In [2] we studied persistent information flow security properties for the
Security Process Algebra (SPA) introduced in [11]. These properties are obtained
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as instances of a generalized unwinding condition which requires that each high
level action is “simulated” in such a way that it is impossible for the low level user
to infer which high level actions have been performed. This general framework
allows us to uniformly deal with some decidable subclasses of the well-known
NDC and BNDC properties for SPA processes defined in [11]. The fact that we
do not modify our language to introduce action refinement allows us to reason
on the relationships between action refinement and the security properties of
SPA processes. In particular, we study the conditions under which our notions
of security are preserved under action refinement.

The paper is organized as follows. Section 2 introduces the SPA language.
In Section 3 we formalize the notion of action refinement and provide some
compositionality results. In Section 4 we introduce our information flow security
properties and define decidable classes of secure processes which are closed under
action refinement. Finally, in Section 5 we discuss some related work. The proofs
of the results presented in this paper are reported in [5].

2 The SPA Language

The Security Process Algebra (SPA) language [11] is a variation of Milner’s CCS
[20] where the set of visible actions is partitioned into two security levels, high
and low, in order to specify multilevel systems. The SPA syntax is based on: a
set L = I ∪O of visible actions where I = {a, b, . . .} is a set of input actions and
O = {ā, b̄, . . .} is a set of output actions; a special action τ which models internal
computations, not visible outside the system; a function ·̄ : L → L, such that
¯̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set of all actions. The set of visible
actions is partitioned into two sets, H and L, of high and low security actions
such that H = H and L = L. The syntax of SPA terms is as follows3:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f ] | recZ.T

where Z is a variable, a ∈ Act , v ⊆ L, f : Act → Act is such that f(l̄) = f(l)
for l ∈ L, f(τ) = τ , f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}. We apply the
standard notions of free and bound (occurrences of) variables in a SPA term.
More precisely, all the occurrences of the variable Z in recZ.T are bound ; while
an occurrence of Z is free in a term T if it is not bound. A SPA process is a
SPA term without free variables. We denote by E the set of all SPA processes,
ranged over by E, F, G, . . . We introduce also a notion of bound and free actions.
We say that an action a is bound in a term T if it belongs to a restriction, i.e.,
\v occurs in T and a ∈ v, or is used in a relabelling operator, i.e., f occurs in T
and f(a) 6= a or f(b) = a for b 6= a. We identify SPA terms up to α-conversion,
thus we can assume that a bound action can occur only in a restriction or a
relabelling operator or in their scopes. Hence, the set of actions occurring in a
term T can be split into two disjoint sets: the set bound(T ) of actions which are
bound in T and the set free(T ) of actions which are not bound in T .

3 Actually in [11] recursion is introduced through constant definitions instead of the
rec operator.
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Prefix
a.E

a
→ E

Sum
E1

a
→ E′

1

E1 + E2
a
→ E′

1

E2
a
→ E′

2

E1 + E2
a
→ E′

2

Parallel
E1

a
→ E′

1

E1|E2
a
→ E′

1|E2

E2
a
→ E′

2

E1|E2
a
→ E1|E

′

2

E1
l
→ E′

1 E2
l̄
→ E′

2

E1|E2
τ
→ E′

1|E
′

2

Restriction
E

a
→ E′

E \ v
a
→ E′ \ v

if a, ā 6∈ v

Relabelling
E

a
→ E′

E[f ]
f(a)
→ E′[f ]

Recursion
T [recZ.T [Z]]

a
→ E′

recZ.T [Z]
a
→ E′

with a ∈ Act and l ∈ L.

Fig. 1. The operational semantics of SPA terms.

The operational semantics of SPA processes is given in terms of Labelled

Transition Systems (LTS). In particular, the LTS (E ,Act ,→), whose states are
processes, is defined by structural induction as the least relation generated by
the axioms and inference rules reported in Figure 1. The operational semantics
for an agent E is the subpart of the SPA LTS reachable from the initial state E.
Intuitively, 0 is the empty process that does nothing; a.E is a process that can
perform an action a and then behaves as E; E1 + E2 represents the nonde-
terministic choice between the two processes E1 and E2; E1|E2 is the parallel
composition of E1 and E2, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing the silent action τ ;
E \ v is a process E prevented from performing actions in v; E[f ] is the process
E whose actions are renamed via the relabelling function f ; if Z is a free variable
in T , then recZ.T [Z] is the recursive process which can perform all the actions
of the process obtained by substituting recZ.T [Z] to the place-holder Z in T [Z].

We will use the following notations. If t = t1 · · · tn ∈ Act∗ and E
t1→ · · ·

tn→ E′,

then we write E
t
→ E′ and we say that E′ is reachable from E, also denoted by

E  E′. We denote by Reach(E) the set of all processes reachable from E. We

also write E
t

=⇒ E′ if E(
τ
→)∗

t1→ (
τ
→)∗ · · · (

τ
→)∗

tn→ (
τ
→)∗E′ where (

τ
→)∗ denotes

a (possibly empty) sequence of τ labelled transitions. If t ∈ Act∗, then t̂ ∈ L∗ is
the sequence gained by deleting all occurrences of τ from t. As a consequence,
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E
â

=⇒ E′ stands for E
a

=⇒ E′ if a ∈ L, and for E(
τ
→)∗E′ if a = τ (note that

τ
=⇒

requires at least one τ transition while
τ̂

=⇒ means zero or more τ transitions).
The concept of behavioral equivalence is used to establish equalities among

processes and it is based on the idea that two processes have the same semantics
if and only if their behavior cannot be distinguished by an external observer. We
recall here the definition of strong bisimulation [20], which equates two processes
when they are able to mutually simulate their behavior step by step.

Definition 1. (Strong Bisimulation) A symmetric binary relation R ⊆ E×E
over processes is a strong bisimulation if (E, F ) ∈ R implies, for all a ∈ Act, if

E
a
→ E′, then there exists F ′ such that F

a
→ F ′ and (E′, F ′) ∈ R.

Two processes E and F are strongly bisimilar, denoted by E ∼ F , if there

exists a strong bisimulation R containing the pair (E, F ).

A SPA term with free variables is called context4. If C[Y1, . . . , Yn] is a context
with free variables Y1, . . . , Yn, then we denote by C[T1, . . . , Tn] the term obtained
from C[Y1, . . . , Yn] by simultaneously replacing all the occurrences of Y1, . . . , Yn

with the terms T1, . . . , Tn, respectively. For instance, if C[X ]
def
= h.0|(l.X + τ.0)

and D[X, Y ]
def
= (l.X + τ.0)|Y are contexts, then the notation C[h̄.0] stands for

h.0|(l.h̄.0 + τ.0), while the notation D[h̄.0, l̄.0] stands for (l.h̄.0 + τ.0)|l̄.0.
Finally, observe that our calculus does not provide a sequential composition

operator. However, following Milner [20], we can define it by introducing the con-
vention that processes indicate their termination by a distinguished label done.

Definition 2. (Strongly Well-terminating process) Let F be a SPA pro-

cess. F is strongly well-terminating if for every F ′ ∈ Reach(F ) it holds:

(1) F ′ done

→ is impossible;

(2) if F ′
α
→ 0 then F ′ ∼ done.0;

(3) if F ′
done

→ then F ′ ∼ done.0.

Our definition is a slight variation of Milner’s notion of well-termination. The
latter simply consists of points (1) and (3) above (point (2) is omitted) and thus
it models the class of processes which may indicate their termination but they
may also not indicate it. Although the theory developed in this paper holds also
for Milner’s definition, we prefer to adopt the strong notion of well-termination
since it leads to a more meaningful notion of refinement.

When F is strongly well-terminating, the sequential composition of processes
F and E can be defined through the operator Before introduced by Milner in [20].

Definition 3. (Before operator) Let E be a SPA term and F be a SPA pro-

cess such that F is strongly well-terminating.

Before [F, E]
def
= (F [f̄/done]|f.E) \ {f}

where f̄/done denotes the relabelling function replacing done with a new name f̄ .

4 Notice that a SPA term denotes either a process or a context.
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3 Action Refinement

It is standard practice in software development to obtain the final program by
first defining an abstract, possibly not executable, specification and then refining
it until one arrives to a concrete specification that can directly be implemented.
Abstract operations are replaced by more detailed programs which can possibly
be further refined. In the context of process algebra, this stepwise development
amounts to interpreting actions on a higher level of abstraction by more complex
processes on a lower level. This is obtained by introducing a mechanism to trans-
form actions into processes. There are several ways to do this. Here we follow a
syntactic approach defining the refinement as a syntactic process transformation.

3.1 Action Refinement for SPA Processes

To define action refinement we need to specify (1) which are the processes F
that can be used to refine a process E and (2) which are the actions r refinable
in E. A process F can be used to refine a process E only if the free actions of
E do not occur bound in F , and vice-versa. Notice that this condition is not
restrictive since, by α-conversion, we can always assume that the two processes
do not share bound actions. Moreover, we require that F is different from 0 and
that it is strongly well terminating. In this case we say that F is pluggable in E.

Definition 4. (Pluggable terms) Let E be a SPA term and F be a SPA

process. F is pluggable in E if

(a) bound(E) ∩ free(F ) = bound(F ) ∩ free(E) = ∅;
(b) F is not the process 0;

(c) F is strongly well-terminating.

Notice that in the above definition E is a SPA term, i.e., it may have free
variables. This is necessary to allow us to define the notion of refinement by
structural induction on E.

If F is pluggable in E, then an abstract action r occurring in E is refinable
with F if r is not bound in E and it does not occur in F otherwise we would
enter into an infinite loop of refinements. All these requirements are formalized
in the following notion of refinability.

Definition 5. (Refinable actions) Let E be a SPA term, F be a SPA process,

and r ∈ L. The action r is said to be refinable in E with F if:

(a) F is pluggable in E;

(b) r 6∈ bound(E);
(c) r does not occur in F .

Example 1. Consider the processe E
def
= (r.a.0|ā.b.0) \ {a, ā} and the process

F
def
= c.d.done.0. In this case the action r is refinable in E with F .
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Consider now the process E as above and F1

def
= (b.done.0+c.d.done.0)\{b}.

In this case condition (a) of Definition 4 is not satisfied since bound(F1) ∩
free(E) = {b} 6= ∅. Hence r is not refinable in E with F1. However, it is im-

mediate to see that we can exploit α-conversion and transform F1 into F2

def
=

(e.done.0 + c.d.done.0) \ {e}. Now, r is refinable in E with F2. ut

The intended meaning of the refinement of an abstract action r in a process
E with a refining process F is that of expanding each occurrence of r in E by F .
In order to support action refinement, in the literature the prefixing operator is
usually replaced by sequential composition ”;” [1, 15]. Here we follow a different
approach and model sequential composition by using a construction based on
well-terminating processes and the Before operator as suggested in [20].

Let r be an action refinable in E with F . To define the refinement of E with
F we replace each occurrence of r in E through the Before operator having F
as first argument and the subprocess of E which follows r as second argument.

Thus, for instance the refinement of r in E
def
= a.r.b.0 with F

def
= c.d.done.0 is

obtained by replacing r.b.0 with Before [F, b.0], i.e., it is a.Before [c.d.done.0, b.0]
that is exactly a.(c.d.done.0[f̄/done]|f.b.0) \ {f}.

The notion of action refinement is defined by structural induction on the
term to be refined as follows:

Definition 6. (Action Refinement) Let E be a SPA term and F be a SPA

process such that r is an action refinable in E with F . The refinement of r in E
with F is the term Ref (r, E, F ) inductively defined as follows:

(1) Ref (r,0, F )
def
= 0

(2) Ref (r, Z, F )
def
= Z

(3) Ref (r, r.E1, F )
def
= Before [F,Ref (r, E1, F )]

(4) Ref (r, a.E1, F )
def
= a.Ref (r, E1, F ), if a 6= r

(5) Ref (r, E1[f ], F )
def
= Ref (r, E1, F )[f ]

(6) Ref (r, E1 \ v, F )
def
= Ref (r, E1, F ) \ v

(7) Ref (r, E1 + E2, F )
def
= Ref (r, E1, F ) + Ref (r, E2, F )

(8) Ref (r, E1|E2, F )
def
= Ref (r, E1, F )|Ref (r, E2, F )

(9) Ref (r, recZ.E1, F )
def
= recZ.Ref (r, E1, F )

Point (3) of the above definition deals with the basic case in which we replace

an occurrence of r with the refining process F . If E
def
= r.E1 and r is the only oc-

currence of r in E, then Ref (r, E, F )
def
= Before [F, E1]

def
= (F [f̄/done]|f.E1)\{f}

representing the process which first behaves as F and then, when the execution
of F is terminated, proceeds as E1. In all the other cases the refinement pro-
cess enters inside the components of E. This is correct also when restriction or
relabelling operators are involved: indeed, condition (a) of Definition 4 ensures
that undesired bindings of actions will never occur, while condition (b) of Def-
inition 5 guarantees that we never refine restricted or relabelled actions. Point
(c) of Definition 5 is useful to prevent infinite loops of refinements.
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Point (b) of Definition 4 requires that F is not the empty process. This choice
is motivated by the fact that in the literature there is no general agreement on
what an empty refinement, i.e., the refinement of an action into the empty pro-
cess, should be. In [25] actions refined into the empty process are simply erased
(forgetful refinements), while in [10] those actions are deadlocked since the empty
refinement is interpreted as an erroneous step in the top down development pro-
cedure. In many other works the empty refinement is simply ignored in order
to avoid technical problems (see [1]). Here we follow this approach and assume
that the refining process is always non empty.

Finally, point (c) of Definition 4 requires that the refining process F is
strongly well-terminating. This allows us to define the sequential composition
of SPA processes in the spirit of [20]. In the literature, the sequential composi-
tion operator ”;” is just added to the language in order to allow, for instance,

the refinement of E
def
= r.a.0 with F

def
= b.0|c.0 obtaining the refined process

(b.0|c.0); a.0. Using our definition, F is not pluggable in E since it is not well-
terminating. Notice that we cannot simply replace the 0’s of F with done.0, since
the resulting process would not be well-terminating. However, following Milner
[20], we can define the strongly well-terminating parallel composition operator:

P Par Q
def
= (P [f̄1/done] | Q[f̄2/done] | (f1.f2.done.0+ f2.f1.done.0)) \ {f1, f2}

The process P Par Q is strongly well-terminating and performs an action done

when and only when both component agents have terminated. Thus, in the above
example, we can use the well-terminating process b.done.0 Par c.done.0 to refine

the action r in E
def
= r.a.0.

Example 2. Let E
def
= r.a.0 + b.0 and F

def
= c.done.0 + d.done.0. It is immediate

to observe that r is refinable in E with F . By applying Definition 6 we get:

Ref (r, E, F )
def
= Ref (r, r.a.0, F ) + Ref (r, b.0, F )
def
= Before [F,Ref (r, a.0, F )] + b.0
def
= Before [F, a.0] + b.0
def
= (c.done.0 + d.done.0[f̄/done]|f.a.0) \ {f}+ b.0
∼ c.τ.a.0 + d.τ.a.0 + b.0.

ut

Example 3. Let E
def
= (a.r.b.0) \ {b} and F

def
= c.d.done.0. Since bound(E) = {b}

and b does not occur in F , we have that r is refinable in E with F . Indeed:

Ref (r, E, F )
def
= (Ref (r, a.r.b.0, F )) \ {b}
def
= (a.Ref (r, r.b.0, F )) \ {b}
def
= (a.Before [F,Ref (r, b.0, F )]) \ {b}
def
= (a.Before [F, b.0]) \ {b}
def
= (a.(c.d.done.0[f̄/done]|f.b.0) \ {f}) \ {b}
∼ (a.c.d.τ.b.0) \ {b}.
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Notice that, our notion of refinability does not allow us to directly refine r in E

with F1

def
= b.d.done.0. However, we can first apply an α-conversion transforming

E into the equivalent process E1

def
= (a.r.e.0)\{e} and then refine r in E1 with F1

getting, as expected, the refined process which behaves as (a.b.d.τ.e.0)\{e}. ut

Example 4. Let E
def
= a.r.b.0|r.c.0 and F

def
= c.d.done.0. By applying our defini-

tion and by the example above we get:

Ref (r, E, F )
def
= Ref (r, a.r.b.0, F )|Ref (r, r.c.0, F )
def
= (a.(c.d.done.0[f̄/done]|f.b.0) \ {f}) |

(c.d.done.0[f̄/done]|f.c.0) \ {f}
∼ a.c.d.τ.b.0|c.d.τ.c.0.

As expected, the two occurrences of r in E are replaced by two copies of F . ut

From now on when we write Ref (r, E, F ) we tacitly assume that r is refinable
in E with F . Notice that if r is refinable in E with F and E is strongly well-
terminating then also Ref (r, E, F ) is strongly well-terminating.

3.2 Compositionality

At any fixed level of abstraction during the top-down development of a program,
it is unrealistic to think that there is just one action to be refined at that level.
Compositional properties of the refinement operation allow us to do not care
about the ordering in which the refinements occur.

First we show that our refinement can locally be applied to the subcompo-
nents in which the actions to be refined occur.

Lemma 1. Let C[Z1, . . . , Zn] be a SPA context, E1, . . . , En be SPA terms, F be

a SPA process, and r ∈ L be refinable in C[E1, . . . , En] with F . Then

Ref (r, C[E1, . . . , En], F )
def
= Ref (r, C, F )[Ref (r, E1, F ), . . . ,Ref (r, En, F )].

In particular, if C is a context with no occurrences of r, the above lemma en-

sures that Ref (r, C[E1, . . . , En], F )
def
= C[Ref (r, E1, F ), . . . ,Ref (r, En, F )]. The-

refore, if we consider a process E of the form E1|E2| . . . |En and an action r
occurring only in Ei for some i, then it is sufficient to apply the refinement to

Ei to obtain Ref (r, E, F )
def
= E1| . . . |Ref (r, Ei, F )| . . . |En.

If we need to refine two actions in a term E, they can be swapped in the
following sense.

Lemma 2. Let E be a SPA term, F1, F2 be SPA processes, r1 and r2 be actions

refinable in E with F1 and F2, respectively. If r1 does not occur in F2, then

Ref (r2,Ref (r1, E, F1), F2)
def
= Ref (r1, Ref(r2, E, F2),Ref (r2, F1, F2)).

In particular, if also r2 does not occur in F1, then

Ref (r2,Ref (r1, E, F1), F2)
def
= Ref (r1,Ref (r2, E, F2), F1).
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4 Preserving Security Properties under Refinement

In this section we first present some information flow security properties for SPA
processes. Then we investigate conditions under which our notions of security
are preserved under action refinement.

4.1 Security Properties

Information flow security in a multilevel system aims at guaranteeing that no
high level (confidential) information is revealed to users running at low security
levels [13, 19], even in the presence of any possible malicious process (attacker).

In [11] Focardi and Gorrieri introduce the properties Non-Deducibility on

Compositions (NDC ) and Bisimulation-based Non-Deducibility on Compositions

(BNDC ) in order to capture every possible information flow from a classified

(high) level of confidentiality to an untrusted (low) one. The definitions of NDC

and BNDC are based on the basic idea of Non-Interference [14]: “No information
flow is possible from high to low if what is done at the high level cannot interfere

in any way with the low level”. More precisely, a system E is secure if what a
low level user sees of the system is not modified by composing any high process
Π to E. The concept of low observation is expressed in terms of an equivalence

relation on low level actions between processes. The idea is that two systems
cannot be distinguished by a low level observer if and only if they are equated
by an equivalence relation considering low level actions only. The two properties
NDC and BNDC differ only on the low level observation equivalence they con-
sider. NDC is based on trace equivalence on low actions, denoted by ≈l

T
, while

BNDC considers the notion of weak bisimilarity on low actions, denoted by ≈l

B
.

The definition of weak bisimilarity on low actions (trace equivalence on low

actions) is the same as the definition of weak bisimilarity [20] (trace equivalence)
except that low and silent actions only (belonging to the set L ∪ {τ}), instead
of all actions (belonging to the set Act), are considered.

Weak bisimilarity on low actions equates two processes if they are able to
mutually simulate their low level behavior step by step. Moreover, it does not
care about internal τ actions.

Definition 7. (Weak Bisimulation on Low Actions) A symmetric binary

relation R over processes is a weak bisimulation on low actions if (E, F ) ∈ R

implies, for all a ∈ L ∪ {τ}, if E
a
→ E′, then there exists F ′ such that F

â
=⇒ F ′

and (E′, F ′) ∈ R.

Two processes E, F ∈ E are weakly bisimilar on low actions, denoted by

E ≈l

B
F , if there exists a weak bisimulation on low actions R containing (E, F ).

Trace equivalence on low actions equates two processes if they have the same
sets of low traces, again, without considering the τ actions.

Definition 8. (Trace Equivalence on Low Actions) The set of traces T l(E)

associated with a process E is defined by: T l(E) = {t ∈ (L∪ {τ})∗ | ∃E′ : E
t

=⇒
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E′}. Two processes E, F are trace equivalent on low actions, denoted by E ≈l

T
F ,

if T l(E) = T l(F ).

Trace equivalence on low actions is less demanding than weak bisimilarity
on low actions, hence if two processes are weakly bisimilar on low actions, then
they are also trace equivalent on low actions.

Properties BNDC and NDC are thus formally defined as follows:

E ∈ BNDC if for all high processes Π, E ≈l

B
(E|Π)

E ∈ NDC if for all high processes Π, E ≈l

T
(E|Π).

Since weak bisimilarity on low actions is stronger than trace equivalence on
low actions, it holds that BNDC implies NDC.

Properties NDC and BNDC are difficult to use in practice: NDC is not
decidable in polynomial time, while the decidability of BNDC is still an open
problem. In [12], Focardi and Rossi introduce the property Persistent BNDC

(P BNDC ) which is a natural persistent extension of BNDC (i.e., a system E
is P BNDC if every state E ′ reachable from E is BNDC ) and it is a sufficient
condition for BNDC. They show the decidability of P BNDC by exploiting a
bisimulation based characterization. Other persistent security properties have
been later introduced, e.g., the properties Persistent NDC (P NDC ) in [4] and
Compositional P BNDC (CP BNDC ) in [2].

All the persistent properties mentioned above can be defined as instances of a
generalized unwinding condition [2] which requires that each high level action is
“simulated” in such a way that it is impossible for the low level user to infer which
high level actions have been performed. The generalized unwinding condition is
parametric with respect to two binary relations on processes: an equivalence
relation on low actions, vl, which represents the low level view, and a transition
relation, 99K, which characterizes a local connectivity.

Definition 9. (Generalized Unwinding) Let ∼l be an equivalence relation

on low actions and 99K be a binary relation on processes. The unwinding class
W(vl, 99K) is defined as

W(vl, 99K)
def
= {E ∈ E | ∀ F, G ∈ Reach(E)

if F
h
→ G then ∃G′ such that F 99K G′ and G vl G′}.

It holds that P NDC coincides with W(≈l

T
,

τ̂
=⇒) [4], P BNDC coincides

with W(≈l

B
,

τ̂
=⇒) and CP BNDC coincides with W(≈l

B
,

τ
=⇒) [2]. Moreover,

P NDC ⊆ NDC and P BNDC ,CP BNDC ⊆ BNDC .

Example 5. Let l ∈ L and h ∈ H . The process h.l.h.0 + τ.l.0 is P BNDC . The
process h.l.0 is not P BNDC . ut

Example 6. Let us consider a distributed data base (adapted from [16]) which
can take two values and which can be both queried and updated. In particular,
the high level user can query it through the high level actions qry1 and qry2,
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while the low level user can only update it through the low level actions upd1

and upd2. Hence qry1, qry2 ∈ H and upd1, upd2 ∈ L. We can model the data
base with the SPA process E defined as

E
def
= recZ.(qry1.Z + upd1.Z + τ.Z+

upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)).

The process E is P BNDC . Indeed, whenever a high level user queries the data
base with a high level action moving the system to a state X then a τ action
moving the system to the same state X may be performed, thus masking the
high level interactions with the system to low level users. ut

4.2 Classes of Secure Processes closed under action refinement

In this section we investigate conditions under which our notions of security
are preserved under action refinement. In particular, we are interested in the
definition of classes of processes satisfying an instance of W(∼l, 99K) and closed
under action refinement.

We first introduce the concept of (P , r)-refinable contexts, where P is a pro-
cess property and r is an action. Intuitively, a class of contexts is (P , r)-refinable
if all processes in it satisfy P and it is closed under refinement of the action r.

Definition 10 ((P , r)-refinable contexts). Let P be a class of processes and

r be an action. A class C of contexts is said to be (P , r)-refinable if:

– if E ∈ C and E is a process, then E ∈ P;

– if E, F ∈ C and r is refinable in E with F then Ref (r, E, F ) ∈ C.

We introduce a parametric definition of classes of contexts. Given a sequence
s = s1, s2, . . . , sn of actions, we denote by s.E the process s1.s2. . . . sn.E. More-
over, given a set v of actions we denote by s∩v the set of actions occurring both in
s and in v, while, given a relabelling f we denote by f [s] the set {si |f(si) 6= si}.
A relation ◦ over terms is a congruence if C1[Z] ◦ C2[Z] and E1 ◦ E2 imply
C1[E1] ◦ C2[E2].

Definition 11. (C(�, s)) Let � be a reflexive congruence over SPA terms and

s be a sequence of actions. C(�, s) is the class of contexts containing: the process

0; Z, where Z is a variable; l.C1, h.C1 + s.C ′

1, C1 \ v, C1[f ], C1 + C2, C1|C2,

and recZ.C1, with l ∈ L ∪ {τ}, h ∈ H, C1 � C ′

1, s ∩ v = ∅, f [s] = ∅, and

C1, C
′

1, C2 ∈ C(�, s).

Let 99K be a binary relation on processes, we say that s entails 99K if E
s
→ E′

implies E 99K E′. Let � be a binary relation on terms, we say that � is preserved

under refinement of action r if E � E ′ implies Ref (r, E, F ) � Ref (r, E ′, F ).
The following theorem provides sufficient conditions to ensure that all the

processes in the class C(�, s) are secure and the class itself is closed under re-
finement of r.
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Theorem 1. Let W(∼l, 99K) be an unwinding condition. If s ∈ (L ∪ {τ})∗ is a

sequence of low and silent actions which entails 99K, r is an action which does

not occur in s, � is a reflexive congruence preserved under refinement of r, and

� ∩(E × E) ⊆∼l, then the class C(�, s) is (W(∼l, 99K), r)-refinable.

Moreover, under the above conditions, if E and F are two processes such

that E, F ∈ C(�, s) and r is a refinable action in E with F , then Ref (r, E, F ) ∈
W(∼l, 99K) and Ref (r, E, F ) ∈ C(�, s).

Let ≡ denote the syntactic equality between SPA terms. It is immediate to
see that ≡ is a reflexive congruence preserved under refinement and it is included
in ∼l for each binary relation ∼l over SPA terms. We can then instantiate the
above theorem with ≡ as the relation �, obtaining the following corollary.

Corollary 1. Let W(∼l, 99K) be an unwinding condition. If s ∈ (L∪ {τ})∗ is a

sequence of low and silent actions which entails 99K, r is an action which does

not occur in s, then the class C(≡, s) is (W(∼l, 99K), r)-refinable.

Moreover, under the above conditions, if E and F are two processes such

that E, F ∈ C(≡, s) and r is a refinable action in E with F , then Ref (r, E, F ) ∈
W(∼l, 99K) and Ref (r, E, F ) ∈ C(≡, s).

Example 7. Consider again the abstract specification of the distributed data base
represented through the SPA process E of Example 6. The process E belongs

to the class C(≡, τ) of Definition 11. In fact, C1

def
= qry2.W + upd2.W + τ.W +

upd1.Z ∈ C(≡, τ), and then C2

def
= recW.C1 ∈ C(≡, τ). Hence, C3

def
= qry1.Z +

upd1.Z + τ.Z + upd2.C2 ∈ C(≡, τ). Therefore E
def
= recZ.C3 ∈ C(≡, τ).

We can refine the update actions by requiring that each update is requested

and confirmed, i.e., we refine upd1 with F1

def
= req1.cnf1.done.0 and upd2 with

F2

def
= req2.cnf2.done.0, where req1, cnf1, req2, cnf2 are low security level ac-

tions. We obtain:

Ref (upd2,Ref (upd1, E, F1), F2)
def
=

Ref (upd2,Ref (upd1, recZ.(qry1.Z + upd1.Z + τ.Z+

upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)), F1), F2)
def
=

recZ.(qry1.Z + (req1.cnf1.done.0[f̄/done]|f.Z) \ {f}+ τ.Z+
(req2.cnf2.done.0[f̄/done]|f.(recW.(qry2.W+
(req2.cnf2.done.0[f̄/done]|f.W ) \ {f}+
τ.W + (req1.cnf1.done.0[f̄/done]|f.Z) \ {f})) \ {f} ∼

recZ.(qry1.Z + req1.cnf1.τ.Z + τ.Z+
req2.cnf2.τ.recW.(qry2.W + req2.cnf2.τ.W + τ.W + req1.cnf1.τ.Z)).

Since F1 and F2 are in C(≡, τ) and τ entails
τ̂

=⇒, by applying Corollary 1 we

have that the process Ref (upd2,Ref (upd1, E, F1), F2) is in W(≈l

B
,

τ̂
=⇒), i.e., it

is P BNDC . ut

Another binary relation over SPA terms, which can be used to find sufficient
and decidable conditions for proving both P NDC and P BNDC is the relation
P defined as follows: E1 P E2 if and only if E1 ≡ E2 or E1 ∼ E2 and E1, E2
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are high level processes (i.e., they have neither variables nor low level actions)
or E1 ≡ D1[E

′

1] and E2 ≡ D2[E
′

2], with D1[Z] P D2[Z] and E′

1 P E′

2.
By instantiating � with P and s with τ we obtain the class C(P, τ) which

is decidable with the proof system presented in the Appendix. By exploiting
Theorem 1, we can prove that the class of secure processes C(P, τ) is closed
under refinement of low level actions, as stated by the following corollary.

Corollary 2. The class C(P, τ) is both (P NDC , r)-refinable and (P BNDC , r)-
refinable, for all low level actions r ∈ L.

The proof follows from the fact that P NDC coincides with W(≈l

T
,

τ̂
=⇒),

P BNDC coincides with W(≈l

B
,

τ̂
=⇒), and τ entails

τ̂
=⇒. In order to prove that

P is preserved under refinement we exploit Lemma 1.
Notice that we can obtain the same result by replacing ∼ (strong bisimula-

tion) in the definition of P with any congruence included in ≈l

B
. For instance

we can use the weak progressing bisimulation defined in [21].

5 Conclusions and Related Works

In this paper we study the relationships between action refinement and informa-
tion flow security within the Security Process Algebra (SPA).

Action refinement has been extensively studied in the literature. There are
essentially two interpretations of action refinement: semantic and syntactic (see
[15]). In the semantic interpretation an explicit refinement operator, written
E[r → F ], is introduced in the semantic domain used to interpret the terms of
the algebra. The semantics of E[r → F ] models the fact that r is an action of
E to be refined by the process F . In the syntactic approach, the same situation
is modelled by syntactically replacing r by F in E. The replacement can be
static, i.e., before execution, or dynamic, i.e., r is replaced as soon as it occurs
while executing E. In order to correctly formalize the replacement, the process
algebra is usually equipped with an operation of sequential composition (rather
than the more standard action prefix), as, e.g., in ACP, since otherwise it would
not be closed under the necessary syntactic substitution. Our approach to action
refinement follows the static, syntactic interpretation. The use of the Before

operator to realize the refinement allows us to keep the original SPA language
without introducing a sequential composition operator for processes.

In [1] Aceto and Hennessy introduce a static syntactic notion of action refine-
ment on a variation of CCS in which action-prefixing is replaced by sequential
composition and neither recursion nor relabellings are allowed. The semantics
of this language is expressed as a strong bisimilarity extended with a condition
on the termination of processes. Instead of extending the language, we follow
Milner’s approach and implement sequential composition by context operations.
This allows us to consider the full language with recursion and relabelling.

Action refinement is also classified as atomic or non-atomic. Atomic refine-
ment is based on the assumption that actions are atomic and their refinements
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should in some sense preserve this atomicity (see, e.g.,[9, 6]). As an example, con-

sider the processes E
def
= r.0|b.0 and F

def
= a1.a2.done.0. The atomic refinement

of r in E with F should be a process where r is replaced by F and the execu-
tion of a1.a2 is non-interruptible, i.e., action b cannot be executed in between
the execution of a1 and a2. On the other hand, non-atomic refinement is based
on the view that atomicity is always relative to the current level of abstraction
and may, in a sense, be destroyed by the refinement (see, e.g., [1, 10, 26]). Un-
fortunately, the standard behavioral equivalences of CCS, such as strong and
weak bisimulation and trace equivalence, are not preserved under non-atomic
refinements. In the literature different equivalences based on non-interleaving
semantics which are preserved under refinement have been studied (see, e.g., [7,
27]). In this paper we follow the non-atomic approach. Actually, this approach
is on the whole more popular than the former.

Recently in [24], Seehusen and Stølen addressed the problem of preserving
trace-based security properties under transformations from an abstract specifi-
cation to a concrete one. The particular transformations they deal with may be
understood as a special case of action refinement where the concrete specifica-
tion is generated automatically from the abstract specification. The information
flow security framework presented in the paper is inspired by [18] and is based
on the composition of basic security predicates. This approach is quite simple
and allows one to capture many trace-based properties expressed over event sys-
tems. Following Jacob’s observations [17], the authors notice that information
flow properties are in general not preserved by the standard notions of refine-
ment. As argued by Jacob, the problem originates from the inability of most
specification languages to distinguish between the two sources of nondetermin-
ism, named, underspecification and unpredictability. The authors then propose
to refine the notion of refinement and that of secure information flow such that
this distinction is taken into consideration. Based on this approach they propose
quite ad hoc conditions under which transformations maintain security.

In the literature the term refinement is also used to indicate any transforma-
tion of a system that can be justified because the transformed system implements
the original one on the same abstraction level, by being more nearly executable,
for instance more deterministic. The implementation relation is expressed in
terms of pre-orders such as trace inclusion or various kinds of simulation. Many
papers in this tradition can be found in [8]. The relations between this form
of refinement and information flow security have been studied in [3]. Although
both action refinement and the refinement considered in [3] aim at transforming
a system specification into a more executable one, the principles behind the two
kinds of transformations are completely different, and thus a comparison is not
meaningful.
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