
Unwinding Conditions for Se
urity inImperative Languages?Annalisa Bossi1, Carla Piazza1;2, and Sabina Rossi11 Dipartimento di Informati
a, Universit�a Ca' Fos
ari di Veneziavia Torino 155, 30172 Venezia, Italy2 Dipartimento di Matemati
a ed Informati
a, Universit�a degli Studi di Udinevia Le S
ienze 206, 33100 Udine, Italyfbossi,piazza,srossig�dsi.unive.itAbstra
t. We study unwinding
onditions for the de�nition of non-interferen
e properties of a simple imperative language, admitting par-allel exe
utions on a shared memory. We present di�erent
lasses ofprograms obtained by instantiating a general unwinding framework andshow that all the programs in these
lasses satisfy the non-interferen
eprin
iple. Moreover, we introdu
e a sub
lass of se
ure programs whi
h is
ompositional with respe
t to the language
onstru
tors and we dis
ussveri�
ation te
hniques.1 Introdu
tionThe problem of ensuring that a given program respe
ts the se
urity level of itsvariables has been deeply investigated for a variety of programming languagesand by many authors. We refer the reader to [15℄ for a
lear and wide overviewof the various proposals. All of these proposals a

omplish the non-interferen
eprin
iple introdu
ed by Goguen and Meseguer [8℄ whi
h asserts that se
ret inputdata
annot be inferred through the observation of non
on�dential outputs.Beside the approa
hes based on formal methods for
ontrolling information
owwe �nd formalizations of non-interferen
e in terms of behavioural equivalen
es,e.g., [6, 14℄, type-systems, e.g., [15, 17, 18℄, and logi
al formulations, e.g., [2, 3℄.In the
ontext of pro
ess algebra, se
urity properties are often expressed interms of unwinding
onditions [9℄ whi
h demand properties of individual a
tionsand are easier to handle with respe
t to global
onditions. Intuitively, an un-winding
ondition requires that ea
h high level transition is simulated in su
h away that a low level observer
annot infer whether a high level a
tion has beenperformed or not. Thus the low level observation of the pro
ess is not in
uen
edin any way by its high behaviour.? This work has been partially supported by the EU Contra
t IST-2001-32617 \Modelsand Types for Se
urity in Mobile Distributed Systems" (MyThS) and the FIRBproje
t RBAU018RCZ \Interpretazione astratta e model
he
king per la veri�
a disistemi embedded".

In our previous works (see [4℄ for an overview) we studied many information
ow se
urity properties for the Se
urity Pro
ess Algebra (SPA) [6℄ and
har-a
terized them in terms of unwinding
onditions. In parti
ular, we introdu
eda generalized unwinding
ondition whi
h
an be instantiated to de�ne se
urityproperties and we identi�ed
lasses of se
ure pro
esses whi
h
an be
onstru
tedin a
ompositional way.In this paper we show how our framework
an be used also to de�ne non-interferen
e se
urity properties for a simple imperative language, admitting par-allel exe
utions on a shared memory. We extend the language IMP de�ned in[19℄ by partitioning the lo
ations (variables) into two levels: a publi
 level and a
on�dential one and by adding a parallel
omposition operator.We present a generalized unwinding
ondition for our language and studythree di�erent
lasses of programs obtained by instantiating the unwindingframework. These three instan
es are based on a notion of low level bisimu-lation and allow us to express timing-sensitive se
urity properties for imperativelanguages. In parti
ular, we show that all the programs in these
lasses satisfythe non-interferen
e prin
iple. Moreover, we introdu
e a sub
lass of se
ure pro-grams whi
h is
ompositional with respe
t to the language
onstru
tors. This
lass is useful to de�ne proof systems whi
h allow one both to verify and to buildprograms whi
h are se
ure by
onstru
tion.The paper is organized as follows. In Se
tion 2 we introdu
e the language to-gether with its syntax and semanti
s. In Se
tion 3 we de�ne a general unwindings
hema for our imperative language and study three di�erent instantiations of it.We also prove a soundness theorem with respe
t to the standard non-interferen
eproperty. In Se
tion 4 we de�ne a
ompositional
lass of se
ure programs anddis
uss its veri�
ation. Finally, in Se
tion 5 we draw some
on
lusions.2 The Language: Syntax and Semanti
sThe language we
onsider is an extension of the IMP language de�ned in [19℄where parallel exe
utions are admitted and the lo
ations (variables) are par-titioned into two levels: a publi
 level and a
on�dential one. Intuitively, thevalues
ontained in the
on�dential lo
ations are a

essible only to authorizedusers (high level users), while the values in the publi
 lo
ations are available toall the users. We present an operational semanti
s and a notion of behavioralequivalen
e for our language whi
h will be at the basis of our se
urity properties.The aim of our properties is to dete
t any
ow of information from high level tolow level lo
ations, i.e., at any point of the exe
ution the values in the low levello
ations have not to depend on high level inputs. In our operational semanti
sprograms are asso
iated to labelled transition systems, i.e., graphs with labels onthe edges and on the nodes. The labels on the nodes
orrespond to the statesof the lo
ations and are used in the de�nition of the behavioral equivalen
e.The labels on the edges denote the level (high or low) of transitions, i.e., theyindividuate the transitions whi
h depend on the values of high level lo
ations.2

Let R be the set of real numbers, T = ftrue; falseg be the set of booleanvalues, L be a set of low level lo
ations and H be a set of high level lo
ations,with L \ H = ;. The set Aexp of arithmeti
 expressions is de�ned by thegrammar: a ::= r jX j a0 + a1 j a0 � a1 j a0 � a1where r 2 R and X 2 L[H . The set Bexp of boolean expressions is de�ned by:b ::= true j false j (a0 = a1) j (a0 � a1) j :b j b0 ^ b1 j b0 _ b1where a0; a1 2 Aexp.We say that an arithmeti
 expression a is
on�dential, denoted by a 2 high, ifthere is a high level lo
ation whi
h o

urs in it. Otherwise we say that a is publi
,denoted by a 2 low. Similarly, we say that a boolean expression b is
on�dential,denoted by b 2 high, if there is a
on�dential arithmeti
 expression whi
h o

ursin it. Otherwise we say that b is publi
, denoted by b 2 low. This notion of
on�dentiality, both for arithmeti
 and boolean expressions, is purely synta
ti
.Noti
e that a high level expression
an
ontain low level lo
ations, i.e., its value
an depend on the values of low level lo
ations. This re
e
ts the idea that a highlevel user
an read both high and low level data.The set Prog of programs of our language is de�ned as follows:P ::= skip jX := a j P0;P1 j if b then P0 else P1 j while b do P j P0jjP1where a 2 Aexp, X 2 L [H , and b 2 Bexp.A high program is a program whi
h only uses high level lo
ations (i.e., itsynta
ti
ally
ontains only high level variables). We denote by ProgH the set ofall high programs.Example 1. Consider the program P � L := H , where H is a high level lo
ationand L is a low level lo
ation. P
onsists of a unique assignment instru
tion. Itse�e
t is to assign to the low level lo
ation L the value
ontained in the high levello
ation H . Hen
e, after the exe
ution of P the low level user
an read the highlevel data
ontained in H by reading L. utThe operational semanti
s of our language is based on the notion of state. Astate � is a fun
tion whi
h assigns to ea
h lo
ation a real, i.e., � : L [H �! R.Given a state �, we denote by �[X=r℄ the state �0 su
h that �0(X) = r and�0(Y) = �(Y) for all Y 6= X . Moreover, we denote by �L the restri
tion of � tothe low level lo
ations and we write � =L � for �L = �L.Given an arithmeti
 expression a 2 Aexp and a state �, the evaluation of ain �, denoted by ha; �i ! r with r 2 R, is de�ned as in [19℄. Similarly, hb; �i ! vwith b 2 Bexp and v 2 ftrue; falseg, denotes the evaluation of a booleanexpression b in a state � and is de�ned as in [19℄.The operational semanti
s of our programs is expressed in terms of statetransitions. A transition from a program P and a state � has the form hP; �i �!hP 0; �0i where P 0 is either a program or end (termination) and � 2 fhigh; lowgstating that the transition is either
on�dential or publi
. Let P = Prog[fendg3

hskip; �i low! hend; �i ha; �i ! rhX := a; �i �! hend; �[X=r℄i a 2 �hP0; �i �! hP 00; �0ihP0;P1; �i �! hP 00;P1; �0i P 00 6� end hP0; �i �! hend; �0ihP0;P1; �i �! hP1; �0ihb; �i! truehif b then P0 else P1; �i �! hP0; �i b 2 �hb; �i! falsehif b then P0 else P1; �i �! hP1; �i b 2 �hb; �i! falsehwhile b do P; �i �! hend; �i b 2 �hb; �i! truehwhile b do P; �i �! hP ; while b do P; �i b 2 �hP0; �i �! hP 00; �0ihP0jjP1; �i �! hP 00jjP1; �0i P 00 6� end hP0; �i �! hend; �0ihP0jjP1; �i �! hP1; �0ihP1; �i �! hP 01; �0ihP0jjP1; �i �! hP0jjP 01; �0i P 01 6� end hP1; �i �! hend; �0ihP0jjP1; �i �! hP0; �0iFig. 1. The operational semanti
s.and � be the set of all the possible states. In Fig. 1 we de�ne the operationalsemanti
s of hP; �i 2 P�� by stru
tural indu
tion on P .For ea
h pair hP; �i, where P is a program and � is a state, the semanti
 rulesde�ne a labelled transition system (LTS) whose nodes are elements of P�� andwhose edges are labelled with high or low. The notion of rea
hability does notdepend on the labels of the edges. We use hP; �i ! hP 0; �0i to denote hP; �i �!hP 0; �0i with � 2 flow; highg. We write hP0; �0i !n hPn; �ni for hP0; �0i !hP1; �1i ! � � � ! hPn�1; �n�1i ! hPn; �ni. Given hP; �i 2 Prog��, we denoteby Rea
h(hP; �i) the set of pairs hP 0; �0i su
h that there exists n � 0 and4

hP; �i !n hP 0; �0i. Moreover we denote by Rea
h(P) the set of programs P 0su
h that hP 0; �0i 2 Rea
h(hP; �i) for some states � and �0.Example 2. Assume L is a low level lo
ation and � is a state su
h that �(L) = 1.Consider the program P1 � while (L � 1) do L := L + 1; we obtain thefollowing LTS hP1; �ilow#hL := L+ 1; while (L � 1) do L := L+ 1; �ilow#hwhile (L � 1) do L := L+ 1; �[L=2℄ilow#hend; �[L=2℄iConsider now the program P2 � if (H � 3) then L := L+1 else L := L+2where H is a high level lo
ation. Let �1, �2 be states su
h that �1(H) � 3 and�2(H) > 3. The LTS's asso
iated to the pairs hP2; �1i and hP2; �2i arehP2; �1ihigh#hL := L+ 1; �1ilow#hend; �1[L=�1(L) + 1℄i hP2; �2ihigh#hL := L+ 2; �2ilow#hend; �2[L=�2(L) + 2℄iIn this
ase the �nal value of the low level lo
ation depends on the initial valueof the high level one. Hen
e a low level user
an infer whether H is less or equalthan 3 or not just by observing the initial and �nal values of L. utWe are interested in a notion of behavioural equivalen
e whi
h equates twoprograms if they are indistinguishable for a low level observer.Example 3. Consider the programs H := 1;L := 1 and H := 2;L := 1, where His a high level lo
ation while L is a low level lo
ation. Given a state � the LTS'sasso
iated to the two programs are respe
tivelyhH := 1;L := 1; �i hH := 2;L := 1; �ilow # low #hL := 1; �[H=1℄i hL := 1; �[H=2℄ilow # low #hend; �[H=1; L=1℄i hend; �[H=2; L=1℄iWe would like to
onsider this two programs equivalent for a low level observerwhi
h
an only read the values in the low level lo
ations. utWe
onsider two programs equivalent from the low level point of view if theyare low level bisimilar as de�ned below.5

De�nition 1 (Low Level Bisimulation). A binary symmetri
 relation B overP�� is a low level bisimulation if for ea
h (hP; �i; hQ; �i) 2 B it holds that:{ � =L �, i.e., the states
oin
ide on low level lo
ations;{ if hP; �i ! hP 0; �0i then there exists hQ0; �0i su
h that hQ; �i ! hQ0; �0i and(hP 0; �0i; hQ0; �0i) 2 B.Two pairs hP; �i and hQ; �i 2 P�� are low level bisimilar, denoted by hP; �i �lhQ; �i if there exists a low level bisimulation B su
h that (hP; �i; hQ; �i) 2 B.Two programs P and Q are said to be low level bisimilar, denoted by P 'l Q, iffor ea
h �; � 2 � it holds that if � =L � then hP; �i �l hQ; �i.A partial equivalen
e relation (per, for short) [16℄ is a symmetri
 and transi-tive relation.Lemma 1. The relation �l� (P��)2 is the largest low level bisimulation and itis an equivalen
e relation. The relation 'l� P2 is a partial equivalen
e relation.Proof. If hP; �i �l hQ; �i, then there exists a low level bisimulation B su
h thatit holds (hP; �i; hQ; �i) 2 B. Hen
e if hP; �i ! hP 0; �0i we have that hQ; �i !hQ0; �0i with (hP 0; �0i; hQ0; �0i) 2 B, i.e., hP 0; �0i �l hQ0; �0i. So we have that �lis a low level bisimulation. It is the largest sin
e by de�nition all the other lowlevel bisimulations are in
luded in it.It is easy to prove that �l is re
exive and symmetri
. The fa
t that �l istransitive follows from the fa
t that if B1;B2 are low level bisimulations thenthe relation B1 Æ B2, where Æ is the
omposition of relations, is still a low levelbisimulation.The relation 'l� P2 is symmetri
 and transitive sin
e �l is symmetri
 andtransitive. utThe relation 'l is not re
exive. For example, the program L := H is notlow level bisimilar to itself, as the low equality of states
an be broken by a
omputation step.Example 4. Consider the programs P � H := H + 1;L := L+ 1 and Q � H :=H +2;L := L+1, where H is a high level lo
ation and L is a low level lo
ation.It is easy to prove that P 'l Q. In fa
t, a low level user whi
h
an only observethe low level lo
ation L
annot distinguish the two programs. utThe notion of bisimulation as observation equivalen
e assumes that duringea
h
omputation step a user
an read the values in the lo
ations. If we areworking with a pure imperative language this assumption
ould seem too strong,sin
e usually the values are read only at the end of the
omputation. However, ifwe
onsider parallel exe
utions, during ea
h step of the
omputation one of theparallel
omponents
ould store the partial results of the other
omponents.Example 5. Let P � L := H ;L := 1 and Q � H := H ;L := 1, where H is ahigh level lo
ation and L is a low level lo
ation. The programs P and Q
ould be
onsidered equivalent if one assumes that the low level user
an observe the low6

level lo
ations only at the end of the
omputation. However, they are not lowlevel bisimilar. Indeed, if R � L1 := L with L1 being a low level lo
ation, thenthe programs P jjR and QjjR are not equivalent from the low level point view. Infa
t, there is one exe
ution of P jjR in whi
h the low level user
an dis
over thehigh level value of H by reading L1. This is never possible in QjjR. utThe relation �l equates programs whi
h exhibit the same timing behavior.This is stated by the following lemma.Lemma 2. Let P and Q be two programs and � and � be two states su
h thathP; �i �l hQ; �i. If hP; �i !n hP 0; �0i then there exists Q0 and �0 su
h thathQ; �i !n hQ0; �0i and hP 0; �0i �l hQ0; �0i, and vi
eversa.Proof. By indu
tion on n.{ Base: n = 1. We immediately have the thesis by de�nition of �l.{ Step: n = m + 1 and we proved the thesis for m. We have that hP; �i !mhP 00; �00i ! hP 0; �0i. By indu
tive hypothesis we get hQ; �i !m hQ00; �00i withhP 00; �00i �l hQ00; �00i. By de�nition of bisimulation we get the thesis. utExample 6. Consider the programs P � if (L = 0) then L := L+1 else L := 2and Q � if (L = 0) then fL := L + 1; skipg else L := 2. Although, for all� and � su
h that � =L �, P and Q exe
ute exa
tly the same assignment
ommands, P 6'l Q. In fa
t the two programs exhibit di�erent timing behavioursdue to the presen
e of the skip
ommand in the �rst bran
h of Q. ut3 Unwinding Conditions for Se
urity of IMPIn [4℄ we introdu
ed a general framework to de�ne
lasses of se
ure pro
esseswritten in the SPA language, an extension of Milner's CCS [12℄. The frame-work is based on a generalized unwinding
ondition whi
h is a lo
al persistentproperty parametri
 with respe
t to a low behavioral equivalen
e, a transitionrelation independent from the high level behavior and a rea
hability relation.We proved that many non-interferen
e properties
an be seen as instan
es ofthis framework. In all the
onsidered
ases, the three relations are de�ned onthe pro
esses LTS's and thus the
orresponding unwinding
lasses depend onlyon the operational semanti
s of pro
esses. Following a similar approa
h, we in-trodu
e a generalized unwinding
ondition to de�ne
lasses of programs whi
his parametri
 with respe
t to{ an observation equivalen
e relation + whi
h equates two pairs hP; �i andhQ; �i if they are indistinguishable for a low level observer,{ a binary relation ,! whi
h, from the low level point of view, is independentfrom the values of high lo
ations, and{ a rea
hability fun
tion R asso
iating to ea
h pair hP; �i the set of pairshF; i whi
h, in some sense, are rea
hable from hP; �i.7

De�nition 2 (Generalized Unwinding). Let + be a binary equivalen
e rela-tion over Prog��, ,! be a binary relation over Prog�� and R be a fun
tionfrom Prog � � to }(Prog � �). We de�ne the unwinding
lass W(+; ,!;R)as follows:W(+; ,!;R) def= fhP; �i 2 Prog �� j 8 hF; i 2 R(hP; �i)if hF; i high! hG;'i then 9hM;�i su
h that hF; i ,! hM;�i andhG;'i + hM;�ig:The intuition behind the unwinding
ondition is that any high level transitionshould be simulated by a high independent transition guaranteeing that the highlevel transitions have no in
uen
e on the low level observation.We say that the fun
tion R is transitive if hF 00; 00i 2 R(hF 0; 0i) andhF 0; 0i 2 R(hF; i) imply hF 00; 00i 2 R(hF; i), i.e., it is a transitive rela-tion. If R is transitive, the generalized unwinding
ondition de�ned above allowsus to spe
ify properties whi
h are
losed under R. In this sense we say that ourproperties are persistent. The next lemma follows immediately by De�nition 2.Lemma 3. Let R be a transitive rea
hability fun
tion and hP; �i 2 Prog ��.If hP; �i 2 W(+; ,!;R) then hF; i 2 W(+; ,!;R) for all hF; i 2 R(hP; �i).Proof. Let R be transitive, hP; �i 2 W(+; ,!;R), and hF; i 2 R(hP; �i). IfhF 0; 0i 2 R(hF; i), then by transitivity we have that hF 0; 0i 2 R(hP; �i).Hen
e we get that if hF 0; 0i high! hG0; '0i then hF 0; 0i ,! hM 0; �0i with hG0; '0i +hM 0; �0i, i.e., the thesis. utBelow we instantiate our generalized unwinding
ondition by exploiting thenotion of low level bisimulation �l as behavioral equivalen
e and by introdu
inga suitable high independent transition relation 9 9 K.De�nition 3 (9 9 K). The relation 9 9 Kon Prog�� is de�ned as follows:hF; i 9 9 KhM;�i if for ea
h � su
h that � =L there exist R and � su
h thathF; �i ! hR; �i and hR; �i �l hM;�i.Example 7. Let F � if (H > 1) then M else R where M � H := 1;L :=L+ 1 and R � H := 2;L := L+ 1, and be su
h that (H) > 1. In this
asehF; i 9 9 KhM; i. Indeed, for ea
h � su
h that � =L either hF; �i ! hM;�ior hF; �i ! hR; �i and both hM;�i �l hM; i and hR; �i �l hM; i.Consider now the program F � L := 2;R and R � if (H > 1) then fH :=1;L := 2g else fH := 2;L := 1g. In this
ase does not exist any hM;�i su
hthat hF; i 9 9 K hM;�i. Indeed, if and � are two states su
h that =L �, (H) > 1 and �(H) � 1, then hF; i ! hR; [L=2℄i and hF; �i ! hR; �[L=2℄ibut hR; [L=2℄i 6�l hR; �[L=2℄i. utBy De�nition 3 and by transitivity of �l we get the following
hara
terizationof our unwinding
ondition. 8

Proposition 1. Let R be a rea
hability fun
tion, P be a program, and � be astate. hP; �i 2 W(�l; 9 9 K;R) if and only if for ea
h hF; i 2 R(hP; �i) it holdsthat if hF; i high! hG;'i then for ea
h � su
h that � =L there exist R and �su
h that hF; �i ! hR; �i and hR; �i �l hG;'i.As far as the fun
tion R is
on
erned, we
onsider three di�erent instan-tiations: Rlts whi
h
oin
ides with the re
hability relation Rea
h in the LTS,Rhpar whi
h intuitively represents rea
hability under the parallel
ompositionwith any high level program, and Rpar whi
h denotes rea
hability under theparallel
omposition with any program.The
lass of se
ure imperative programs SIMPlts de�ned below is based onthe fun
tion Rlts.De�nition 4 (SIMPlts). Let Rlts be the fun
tion Rea
h. A program P is inSIMPlts if for ea
h state �, hP; �i 2 W(�l; 9 9 K;Rlts).Example 8. Consider the program Q � H := L, where H is a high level lo
ationand L is a low level lo
ation. The program Q is in SIMPlts. In fa
t, the lowlevel exe
ution is not in
uen
ed by the values in the high level lo
ation.Consider again the program P � L := H ;L := 1 of Example 5, where H is ahigh level lo
ation and L is a low level lo
ation. It is easy to prove that for any� 2 �, hP; �i 62 W(�l; 9 9 K;Rlts). In fa
t, let for instan
e �(H) = 1, �(L) = 0,�(H) = 2, �(L) = 0. It holds that � =L �, but after the exe
ution of the �rsthigh level transition we rea
h the states �0 and �0, where �0(L) = 1 6= �0(L) = 2.Consider now R � H := 4;L := 1; if (L = 1) then skip else L := H .The program R belongs to SIMPlts. In fa
t, the �rst bran
h of the
onditionalis always exe
uted independently of the value in the high level lo
ation. utSin
e Rlts is transitive, by Lemma 3 we get that W(�l; 9 9 K;Rlts) is per-sistent, i.e., if a program P starting in a state � is se
ure then also ea
h pairhP 0; �0i rea
hable from hP; �i does. However, in general it does not hold that ifa program P is in SIMPlts then also ea
h program P 0 rea
hable from P is inSIMPlts. This is illustrated in the following example.Example 9. Let P � L := 0; if L := 1 then L := H else skip: It holdsthat P 2 SIMPlts sin
e, for ea
h state �, hP; �i will never perform any hightransition. Moreover, the program P 0 � if L := 1 then L := H else skipis rea
hable from P but it does not belong to SIMPlts. utWe now introdu
e a more restri
tive
lass of se
ure imperative programs,namely SIMPhpar, whi
h is based on the rea
hability fun
tion Rhpar de�nedbelow.De�nition 5. The fun
tion Rhpar from Prog�� to }(Prog��) is de�ned by:Rhpar(hP0; �0i) = fhPn; �ni j n � 0; 9P1; : : : ; Pn�1; 9�1; : : : ; �n; 9 �0; : : : ; �n�1su
h that �i =L �i and hPi; �ii ! hPi+1; �i+1i for i 2 [0 : : n�1℄ and �n =L �ng.Intuitively, hF; i 2 Rhpar(hP; �i) if hF; i is rea
hable from hP jjPH ; �i wherePH is a high level program. 9

Lemma 4. Let P be a program and � be a state. hF; i 2 Rhpar(hP; �i) if andonly if F is a subprogram of P and hF; i 2 Rea
h(hP jjPH ; �i) for some highprogram PH .Proof. (sket
h)() The parallel
omposition of two programs performs the inter-leaving of the a
tions of the two
omponents. Hen
e, when exe
uting hP jjPH ; �i,sin
e PH
an only modify high level variables, ea
h time an a
tion hP iH ; �ii !hP i+1H ; �ii of PH is performed, we have that �i =L �i. On the other hand, whenan a
tion hPi; �ii ! hPi+1; �i+1i of P is performed then we
an de�ne �i = �i.Hen
e, 9�1; : : : ; �n; �0; : : : ; �n�1 su
h that �i =L �i and hPi; �ii ! hPi+1; �i+1ifor i 2 [0 : : n� 1℄ where hP0; �0i � hP; �i and hPn; �ni � hF; i.)) In ea
h step of the
omputation PH
an only
hange the value of highlevel variables, hen
e we immediately get the thesis. utDe�nition 6 (SIMPhpar). A program P is in SIMPhpar if for ea
h state �,hP; �i 2 W(�l; 9 9 K;Rhpar).It is
lear that the
lass SIMPhpar is more restri
tive than SIMPlts.Lemma 5. SIMPhpar � SIMPltsExample 10. Consider the program P � H := 1; if (H = 1) then fskip;L :=1g else fH := 1;L := Hg, where H is a high level lo
ation and L is a low levello
ation. The program P belongs to the
lass SIMPlts but it does not belong tothe
lass SIMPhpar. In fa
t, given an initial state � there exists a state su
hthat the pair hL := H; i belongs to Rhpar(hP; �i). Moreover hL := H; i high!hend; 'i but
learly it does not hold that for ea
h � su
h that � =L there existR and � su
h that hL := H; �i ! hR; �i and hR; �i �l hend; 'i.Noti
e that if we
onsider the program Q � H := 3 then P jjQ is not inSIMPlts although both P and Q are in SIMPlts. utIt is easy to prove that the rea
hability fun
tion Rhpar is transitive. Hen
eby Lemma 3 the
lass W(�l; 9 9 K;Rhpar) is persistent. Indeed, we have that ifa program P starting in a state � is in W(�l; 9 9 K;Rhpar) then also ea
h pairhP 0; �0i 2 Rhpar(hP; �i) is in W(�l; 9 9 K;Rhpar). However, as for SIMPlts, ingeneral it does not hold that if a program P is in SIMPhpar then also ea
hprogram P 0 rea
hable from P is in SIMPhpar. In order to see this, it is suÆ
ientto
onsider again the program of Example 9.Finally, we introdu
e the
lass of se
ure imperative programs SIMPpar byusing the rea
hability fun
tion Rpar de�ned below.De�nition 7. The fun
tion Rpar from Prog�� to }(Prog��) is de�ned asfollows: Rpar(hP0; �0i) = fhPn; �ni j n � 0; �n 2 �; 9P1; : : : ; Pn�1; 9�1; : : : ; �n;9�0; : : : ; �n�1 su
h that hPi; �ii ! hPi+1; �i+1i for i 2 [0 : : n� 1℄g.Intuitively, a pair hF; i is inRpar(hP; �i) if hF; i is rea
hable from hP jjQ; �ifor some program Q. The following lemma is similar to Lemma 4.10

Lemma 6. Let P be a program and � be a state. hF; i 2 Rpar(hP; �i) if andonly if F is a subprogram of P and hF; i 2 Rea
h(hP jjQ; �i) for a program Q.De�nition 8 (SIMPpar). A program P is in SIMPpar if for ea
h state �,hP; �i 2 W(�l; 9 9 K;Rpar).The
lass SIMPpar is more restri
tive than SIMPhpar.Lemma 7. SIMPpar � SIMPhpar � SIMPlts.Example 11. Consider the program P � H := 4;L := 1; if (L = 1) then skipelse L := H . It belongs to SIMPlts and SIMPhpar but it does not belong toSIMPpar. In fa
t given an initial state � there exists a state su
h that thepair hL := H; i belongs to Rpar(hP; �i). Moreover hL := H; i high! hend; 'i but
learly it does not hold that for ea
h � su
h that � =L there exist R and �su
h that hL := H; �i ! hR; �i and hR; �i �l hend; 'i. utThe rea
hability fun
tion Rpar is transitive and then, by Lemma 3, the
lassW(�l; 9 9 K;Rpar) is persistent in the sense that if hP; �i is in W(�l; 9 9 K;Rpar)then also ea
h pair hP 0; �0i 2 Rpar(hP; �i) is in W(�l; 9 9 K;Rpar). Moreover,di�erently from SIMPlts and SIMPhpar, if a program P is in SIMPpar thenalso ea
h program P 0 rea
hable from P is in SIMPpar.Lemma 8. Let P be a program. If P 2 SIMPpar then for all P 0 2 Rea
h(P),P 0 2 SIMPpar.Proof. Let P 0 2 Rea
h(P), i.e., hP 0; �0i 2 Rea
h(hP; �i) for some � and �0. Byde�nition of Rpar, hP 0; �i 2 Rpar(hP; �i) for all state �. Hen
e, by persisten
e ofW(�l; 9 9 K;Rpar), hP 0; �i 2 W(�l; 9 9 K;Rpar), i.e., P 0 2 SIMPpar. utThe three instan
es of our generalized unwinding
ondition introdu
ed aboveallow us to express timing-sensitive notions of se
uirity for imperative programs.This is a
onsequen
e of the fa
t that �l equates programs whi
h exhibit thesame timing behavior (see Lemma 2).Example 12. Let P � if (H = 0) then fH := H + 1; skipg else H := 2. Theprogram P does not belong to any
lass SIMP� with � 2 flts; hpar; parg. Thisis due to the fa
t that if hP; �i high! hfH := H+1; skipg; �i for some state � thenit does not hold that for ea
h � su
h that � =L � there exist R and �0 su
h thathP; �i ! hR; �0i and hfH := H + 1; skipg; �i �l hR; �0i. In fa
t, if �(H) 6= 0,hP; �i ! hH := 2; �i but hfH := H +1; skipg; �i 6�l hH := 2; �i be
ause of theirdi�erent timing behaviour. utIn the previous se
tion we observed that the relation 'l is not re
exive.However, 'l is re
exive over the set of programs belonging to SIMPlts (andthen, by Lemma 7, to SIMPhpar and SIMPpar).Lemma 9. Let P be a program. If P 2 SIMPlts then P 'l P .11

Proof. First, the following
laim follows by stru
tural indu
tion on programs.Claim. For ea
h and � su
h that L = �L, if hF; i low! hF 0; 0i then hF; �i low!hF 0; �0i with �0L = 0L.Now assume that P 2 SIMPlts. Then for all states � and �, hP; �i; hP; �i 2W(�l; 9 9 K;Rlts). Hen
e, in order to prove that P 'l P , it is suÆ
ient to showthat for all � and � su
h that hP; �i; hP; �i 2 W(�l; 9 9 K;Rlts) and �L = �L, itholds hP; �i �l hP; �i. Consider the binary relationS = f(hP; �i; hP; �i) j hP; �i; hP; �i 2 W(�l; 9 9 K;Rlts); �L = �Lg[f(hP; �i; hQ; �i)j hP; �i �l hQ; �ig:We show that S is a low level bisimulation.If hP; �i high! hP 0; �0i, then sin
e hP; �i 2 W(�l; 9 9 K;Rlts), by Proposition 1,we have that hP; �i ! hP 00; �0i with hP 0; �0i �l hP 00; �0i. Hen
e, by de�nition ofS, (hP 0; �0i; hP 00; �0i) 2 S.If hP; �i low! hP 0; �0i, then by Claim 3 we have that hP; �i low! hP 0; �0i with�0L = �0L. By Lemma 3, sin
e Rlts is transitive, we have that W(�l; 9 9 K;Rlts) ispersistent, i.e., both hP 0; �0i 2 W(�l; 9 9 K;Rlts) and hP 0; �0i 2 W(�l; 9 9 K;Rlts).Hen
e we have that (hP 0; �0i; hP 0; �0i) 2 S, i.e., the thesis. utThe
onverse of Lemma 9 does not hold as illustrated below.Example 13. Consider the program P � if (H = 1) then P0 else P1 whereP0 � while (H > 1) do skip and P1 � skip. In this
ase P 'l P , i.e., for allstates � and � su
h that � =L �, hP; �i �l hP; �i. Indeed, if � and � are su
hthat both �(H) = 1 and �(H) = 1, the LTS's of hP; �i and hP; �i have the formhP; �i#hP0; �i#hend; �i hP; �i#hP0; �i#hend; �iand thus hP; �i �l hP; �i. The
ase in whi
h both �(H) 6= 1 and �(H) 6= 1 isanalogous. On the other hand, if �(H) = 1 and �(H) 6= 1 the LTS's of hP; �iand hP; �i have the form hP; �i#hP0; �i#hend; �i hP; �i#hP1; �i#hend; �iand again hP; �i �l hP; �i.However, the program P 62 SIMPlts. In fa
t hP0; �i 2 Rea
h(hP; �i) andhP0; �i high! hend; �i but it does not hold that for all � su
h that � =L � there12

exist R and �0 su
h that hP0; �i ! hR; �0i and hend; �i �l hR; �0i. Indeed, if�(H) > 1, hP0; �i ! hskip;P0; �i and hend; �i 6�l hskip;P0; �i. This is due tothe fa
t that the subprogram P0 of P is not in SIMPlts. utFinally, we show that our se
urity properties expressed in terms of unwinding
onditions imply the standard non-interferen
e prin
iple whi
h requires that highlevel values do not a�e
t the low level observation.Theorem 1 (Soundness). Let P be a program su
h that P 2 SIMP� with� 2 flts; hpar; parg. For ea
h state � and � su
h that � =L �,{ hP; �i !n hend; �0i if and only if hP; �i !n hend; �0i with �0L = �0L.Proof. By Lemma 9, sin
e � =L �, we have that hP; �i �l hP; �i. Then, byLemma 2, we get that hP; �i rea
hes a pair hP 0; �0i with hP 0; �0i �l hend; �0i.Hen
e we immediately have �0 =L �0. Moreover, sin
e end is not bisimilar to anyprogram, it must be P 0 � end. ut4 CompositionalityThe
lasses SIMPlts, SIMPhpar and SIMPpar introdu
ed above are, in general,not
ompositional with respe
t to the language
onstru
tors. In parti
ular, theyare not
ompositional with respe
t to the parallel
omposition
onstru
tor asillustrated by the following example.Example 14. Consider the program P � if (H = 1^L = 1) then P0 else P1where P0 � if (L = 1) then skip else L := 2 while P1 � if (L 6= 1) thenL := 3 else skip. The program P belongs to the
lass SIMPpar (and thenalso to the
lasses SIMPlts and SIMPhpar). In fa
t, given an initial state �,hP; �i high! hPi; �i for some i 2 f0; 1g and for ea
h � su
h that � =L � therealways exist R and � su
h that hP; �i ! hR; �i and hR; �i �l hPi; �i. Now
onsider the program Q � L := 4 whi
h
learly belongs to SIMPpar. Weshow that the program P jjQ does not belong to SIMPlts (and thus neither toSIMPhpar and SIMPpar). Indeed, let � be a state su
h that �(H) = �(L) = 1.Then hP jjQ; �i high! hP0jjQ; �i. Now let � be a state su
h that � =L � and inparti
ular �(L) = 1 but �(H) 6= 1. Hen
e hP jjQ; �i high! hP1jjQ; �i. However,hP0jjQ; �i 6�L hP1jjQ; �i: in fa
t if the assigment L := 4 of Q is performed at the�rst step, then hP0jjQ; �i ends in a state �0 su
h that �0(L) = 2 while hP1jjQ; �iends in a state �0 su
h that �0(L) = 3. utCompositionality is useful both for veri�
ation and synthesis: if a propertyis preserved when programs are
omposed, then the analysis may be performedon subprograms and, in
ase of su

ess, the program as a whole will satisfy thedesired property by
onstru
tion.In the next de�nition we introdu
e a
lass C of programs whi
h is
losedunder
omposition and it is a sub
lass of SIMPpar (and then also of SIMPltsand SIMPhpar). 13

De�nition 9. Let H be a high level lo
ation, L be a low level lo
ation, ah andbh be high level expressions, and al and bl be low level expressions. The
lass ofprograms C is re
ursively de�ned as follows.1. skip is in C;2. L := al is in C;3. H := ah is in C;4. H := al is in C;5. P0;P1 is in C if P0; P1 are in C;6. if bl then P0 else P1 is in C, if P0; P1 are in C;7. if bh then P0 else P1 is in C if P0; P1 are in C and P0 'l P1;8. while bl do P0 is in C, if P0 is in C;9. P0jjP1 is in C, if P0; P1 are in C.Theorem 2. The
lass of programs C of De�nition 9 is in
luded in SIMPpar.Proof. We �rst prove the following
laim.Claim. Let G;F;R 2 C. If ' =L � then hF; 'i �l hF; �i. Moreover, if hG;'i �lhR; �i, then hG;F; 'i �l hR;F; �i and hGjjF; 'i �l hRjjF; �i.Proof. It is suÆ
ient to show thatS = f(hG;F; 'i; hR;F; �i); (hGjjF; 'i; hRjjF; �i); jG;F;R 2 C; hG;'i �l hR; �ig[f(hF; 'i; hF; �i) j F 2 C; ' =L �g[fhF0; 'i; hF1; �i j F0; F1 2 C; ' =L �; F0 �l F1g[f(hF0; 'i; hF1; �i) j hF0; 'i �l hF1; �igis a low level bisimulation.In order to prove Theorem 2 we show that if P 2 C, then for ea
h F 2 Rea
h(P)and for ea
h it holds that if hF; i h! hG;'i, then for ea
h � su
h that � =L we have hF; �i ! hR; �i with hR; �i �l hG;'i. Indeed, from the fa
t that P 2 Cand F 2 Rea
h(P) we get that F 2 C. We prove the thesis for a generi
 F 2 Cand a generi
 state . We pro
eed by stru
tural indu
tion on F .The only interesting
ases are F � F0;F1 and F � F0jjF1. We
onsiderthe
ase F � F0;F1 sin
e the other one is similar. If hF; i h! hF 00;F1; 'i,then we have hF0; i h! hF 00; 'i. Hen
e by indu
tive hypothesis on F0 we havehF0; �i h! hF 000 ; �i with hF 00; 'i �l hF 000 ; �i. Then we get that hF; �i h! hF 000 ;F1; �iand by Claim 4 hF 000 ;F1; �i �l hF 00;F1; 'i. If hF; i h! hF1; 'i, then hF1; i h!hend; 'i. Hen
e by Claim 4 we get that hF1; �i h! hend; �i with � =L '. So,hF; �i h! hF1; �i, and again by Claim 4 we have hF1; �i �l hF1; 'i. utWe
on
lude this se
tion by observing that membership to the
lass C isnot de
idable due to the presen
e of the low level observation equivalen
e 'l inpoint 7 of De�nition 9. However, a sound but in
omplete method
ould be �ndto
ompute 'l by applying a suitable abstra
tion whi
h guarantees equivalen
eup to high level lo
ations as dis
ussed, e.g., in [1℄.14

5 Con
lusion and Related WorkIn this paper we introdu
ed a generalized unwinding s
hema for the de�nition ofnon-interferen
e properties of programs of a simple imperative language, admit-ting parallel exe
utions on a shared memory. We studied three di�erent instan
esof our unwinding
ondition and de�ned a sub
lass of programs whi
h is
ompo-sitional with respe
t to the language
onstru
tors.There is a widespread literature on se
ure information
ow in imperativelanguages (see [15℄ for a re
ent survey). A
ommon approa
h is based on typesin su
h a way that well-typed programs do not leak se
rets (see, e.g., [16, 17℄).Other approa
hes
onsider logi
al formulations of non-interferen
e, e.g., [2, 3,10℄, and abstra
t interpretation-based formalizations, e.g., [5, 7℄.As far as we know, this is the �rst attempt of de�ning se
urity properties ofimperative languages through unwinding
onditions. As observed by many au-thors (see, e.g., [11, 13℄) su
h
onditions are easier to handle and more amenableto automated proof with respe
t to global
onditions. Similarly to what we al-ready did in [4℄ for systems written in a pro
ess algebra language, we plan toexploit unwinding
onditions for de�ning proof systems both to verify whethera program is se
ure and to build programs whi
h are se
ure by
onstru
tion inan in
remental way.Finally, we observe that the properties we have de�ned in terms of unwind-ing
onditions
hara
terize the se
urity of programs againts so-
alled passiveatta
ks, i.e., a low level users whi
h try to infer the values of the high levelvariables just by observing the values of the low level ones. On the
ontrary, inde�ning non-interferen
e one usually expli
itly
hara
terize the
lass of a
tiveatta
ks, i.e., mali
ious users or programs whi
h try to dire
tly transmit
on�den-tial information to the low level observer. Some authors have proved that thereis a
onne
tion between properties
hara
terizing passive atta
ks and propertiesinvolving a
tive atta
ks [20℄. In our approa
h an a
tive atta
ker
an be seen as ahigh level program whi
h intentionally manipulates high level variables. We
anprove that if P is a se
ure program belonging to the
lass SIMPhpar (and hen
ealso to SIMPpar) then a low level user
annot distiguish P running in parallelwith di�erent (mali
ious) high programs PH and PK exhibiting the same timingbehaviour (i.e., PH 'l PK).Theorem 3. If P 2 SIMPhpar then P jjPH 'l P jjPK for all PH ; PK 2 ProgHsu
h that PH 'l PK .Proof. It follows from the fa
t thatS = f(hP jjPH ; �i; hQjjPK ; �i)j hP; �i �l hQ; �i; PH �l PK ; PH ; PK 2 ProgHhP; �i; hQ; �i 2 W(�l; 9 9 K;Rhpar)g [f(hP; �i; hQ; �i)j hP; �i �l hQ; �igis a low level bisimulation �l. utIntuitively, this theorem states that if a program P belongs to SIMPhpar theneven if the values of the high level variables are
hanged during the
omputation,a low level user will never observe any di�eren
e on the values of low levelvariables. 15

Referen
es1. J. Agat. Transforming out Timing Leaks. In Pro
. of ACM Symposium on Prin-
iples of Programming Languages (POPL'00), pages 40{53. ACM Press, 2000.2. T. Amtoft and A. Banerjee. Information Flow Analysis in Logi
al Form. In Pro-
eedings of the 11th Stati
 Analysis Symposium (SAS'04), volume 3148 of LNCS,pages 100{115. Springer-Verlag, 2004.3. G. Barthe, P. D'Argenio, and T. Rezk. Se
ure Information Flow by Self Com-position. In Pro
. of the 17th IEEE Computer Se
urity Foundations Workshop(CSFW'04), pages 100{114. IEEE Computer So
iety Press, 2004.4. A. Bossi, R. Fo
ardi, C. Piazza, and S. Rossi. Verifying Persistent Se
urity Prop-erties. Computer Languages, Systems and Stru
tures, 30(3-4):231{258, 2004.5. A. Di Pierro, C. Hankin, and H.Wikli
ky. Approximate Non-Interferen
e. In Pro
.of the IEEE Computer Se
urity Foundations Workshop (CSFW'02), pages 3{17.IEEE Computer So
iety Press, 2002.6. R. Fo
ardi and R. Gorrieri. Classi�
ation of Se
urity Properties (Part I: Infor-mation Flow). In R. Fo
ardi and R. Gorrieri, editors, Pro
. of Foundations ofSe
urity Analysis and Design (FOSAD'01), volume 2171 of LNCS, pages 331{396.Springer-Verlag, 2001.7. R. Gia
obazzi and I. Mastroeni. Abstra
t Non-Interferen
e: Parameterizing Non-Interferen
e by Abstra
t Interpretation. In Pro
. of ACM Symposium on Prin
iplesof Programming Languages (POPL'04), pages 186{197. ACM Press, 2004.8. J. A. Goguen and J. Meseguer. Se
urity Poli
ies and Se
urity Models. In Pro
.of the IEEE Symposium on Se
urity and Priva
y (SSP'82), pages 11{20. IEEEComputer So
iety Press, 1982.9. J. A. Goguen and J. Meseguer. Unwinding and Inferen
e Control. In Pro
. of theIEEE Symposium on Se
urity and Priva
y (SSP'84), pages 75{86. IEEE ComputerSo
iety Press, 1984.10. R. Joshi and K. R. M. Leino. A Semanti
 Approa
h to Se
ure Information Flow.S
ien
e of Computer Programming, 37(1{3):113{138, 2000.11. H. Mantel. Unwinding Possibilisti
 Se
urity Properties. In Pro
. of the Euro-pean Symposium on Resear
h in Computer Se
urity (ESoRiCS'00), volume 2895of LNCS, pages 238{254. Springer-Verlag, 2000.12. R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.13. P. Y. A. Ryan. A CSP Formulation of Non-Interferen
e and Unwinding. Cipher,pages 19{27, 1991.14. P.Y.A. Ryan and S. S
hneider. Pro
ess Algebra and Non-Interferen
e. Journal ofComputer Se
urity, 9(1/2):75{103, 2001.15. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Se
urity. IEEEJournal on Sele
ted Areas in Communi
ation, 21(1):5{19, 2003.16. A. Sabelfeld and D. Sands. A Per Model of Se
ure Information Flow in SequentialPrograms. Higher-Order and Symboli
 Computation, 14(1):59{91, 2001.17. D. M. Volpano and G. Smith. A Type-Based Approa
h to Program Se
urity. InTAPSOFT, pages 607{621, 1997.18. D. M. Volpano and G. Smith. Probabilisti
 Noninterferen
e in a Con
urrent Lan-guage. Journal of Computer Se
urity, 7(2-3):231 { 253, 1999.19. G. Winskel. The formal semanti
s of programming languages. The MIT Press,1993.20. S. Zdan
ewi
 and A. C. Myers. Robust De
lassi�
ation. In Pro
. of the IEEE Com-puter Se
urity Foundations Workshop (CSFW'01), pages 15{23. IEEE ComputerSo
iety Press, 2001. 16

