Unwinding Conditions for Security in
Imperative Languages*

Annalisa Bossi!, Carla Piazza! 2, and Sabina Rossi!
))

! Dipartimento di Informatica, Universita Ca’ Foscari di Venezia
via Torino 155, 30172 Venezia, Italy
? Dipartimento di Matematica ed Informatica, Universitd degli Studi di Udine
via Le Scienze 206, 33100 Udine, Italy

{bossi,piazza,srossi}@dsi.unive.it

Abstract. We study unwinding conditions for the definition of non-
interference properties of a simple imperative language, admitting par-
allel executions on a shared memory. We present different classes of
programs obtained by instantiating a general unwinding framework and
show that all the programs in these classes satisfy the non-interference
principle. Moreover, we introduce a subclass of secure programs which is
compositional with respect to the language constructors and we discuss
verification techniques.

1 Introduction

The problem of ensuring that a given program respects the security level of its
variables has been deeply investigated for a variety of programming languages
and by many authors. We refer the reader to [15] for a clear and wide overview
of the various proposals. All of these proposals accomplish the non-interference
principle introduced by Goguen and Meseguer [8] which asserts that secret input
data cannot be inferred through the observation of non confidential outputs.
Beside the approaches based on formal methods for controlling information flow
we find formalizations of non-interference in terms of behavioural equivalences,
e.g., [6,14], type-systems, e.g., [15,17,18], and logical formulations, e.g., [2, 3].

In the context of process algebra, security properties are often expressed in
terms of unwinding conditions [9] which demand properties of individual actions
and are easier to handle with respect to global conditions. Intuitively, an un-
winding condition requires that each high level transition is simulated in such a
way that a low level observer cannot infer whether a high level action has been
performed or not. Thus the low level observation of the process is not influenced
in any way by its high behaviour.

* This work has been partially supported by the EU Contract IST-2001-32617 “Models
and Types for Security in Mobile Distributed Systems” (MyThS) and the FIRB
project RBAUO18RCZ “Interpretazione astratta e model checking per la verifica di
sistemi embedded”.

In our previous works (see [4] for an overview) we studied many information
flow security properties for the Security Process Algebra (SPA) [6] and char-
acterized them in terms of unwinding conditions. In particular, we introduced
a generalized unwinding condition which can be instantiated to define security
properties and we identified classes of secure processes which can be constructed
in a compositional way.

In this paper we show how our framework can be used also to define non-
interference security properties for a simple imperative language, admitting par-
allel executions on a shared memory. We extend the language IMP defined in
[19] by partitioning the locations (variables) into two levels: a public level and a
confidential one and by adding a parallel composition operator.

We present a generalized unwinding condition for our language and study
three different classes of programs obtained by instantiating the unwinding
framework. These three instances are based on a notion of low level bisimu-
lation and allow us to express timing-sensitive security properties for imperative
languages. In particular, we show that all the programs in these classes satisfy
the non-interference principle. Moreover, we introduce a subclass of secure pro-
grams which is compositional with respect to the language constructors. This
class is useful to define proof systems which allow one both to verify and to build
programs which are secure by construction.

The paper is organized as follows. In Section 2 we introduce the language to-
gether with its syntax and semantics. In Section 3 we define a general unwinding
schema for our imperative language and study three different instantiations of it.
We also prove a soundness theorem with respect to the standard non-interference
property. In Section 4 we define a compositional class of secure programs and
discuss its verification. Finally, in Section 5 we draw some conclusions.

2 The Language: Syntax and Semantics

The language we consider is an extension of the IMP language defined in [19]
where parallel executions are admitted and the locations (variables) are par-
titioned into two levels: a public level and a confidential one. Intuitively, the
values contained in the confidential locations are accessible only to authorized
users (high level users), while the values in the public locations are available to
all the users. We present an operational semantics and a notion of behavioral
equivalence for our language which will be at the basis of our security properties.
The aim of our properties is to detect any flow of information from high level to
low level locations, i.e., at any point of the execution the values in the low level
locations have not to depend on high level inputs. In our operational semantics
programs are associated to labelled transition systems, i.e., graphs with labels on
the edges and on the nodes. The labels on the nodes correspond to the states
of the locations and are used in the definition of the behavioral equivalence.
The labels on the edges denote the level (high or low) of transitions, i.e., they
individuate the transitions which depend on the values of high level locations.

Let R be the set of real numbers, T = {true, false} be the set of boolean
values, I be a set of low level locations and H be a set of high level locations,
with LN H = (. The set Aexp of arithmetic expressions is defined by the
grammar:

az=r|X|a+a|ap—a|ag*a;

where r € R and X € LUH. The set Bexp of boolean expressions is defined by:
b::= true | false | (a() = al) | (a() < al) | —b | bo N by | bo V by

where ag,a; € Aexp.

We say that an arithmetic expression a is confidential, denoted by a € high, if
there is a high level location which occurs in it. Otherwise we say that a is public,
denoted by a € low. Similarly, we say that a boolean expression b is confidential,
denoted by b € high, if there is a confidential arithmetic expression which occurs
in it. Otherwise we say that b is public, denoted by b € low. This notion of
confidentiality, both for arithmetic and boolean expressions, is purely syntactic.
Notice that a high level expression can contain low level locations, i.e., its value
can depend on the values of low level locations. This reflects the idea that a high
level user can read both high and low level data.

The set Prog of programs of our language is defined as follows:

P ::=skip| X :=a| Py; P, | if b then Py else P, |while b do P | Fy|P;

where a € Aexp, X € LUH, and b € Bexp.

A high program is a program which only uses high level locations (i.e., it
syntactically contains only high level variables). We denote by Progy the set of
all high programs.

Ezample 1. Consider the program P = L := H, where H is a high level location
and L is a low level location. P consists of a unique assignment instruction. Its
effect is to assign to the low level location L the value contained in the high level
location H. Hence, after the execution of P the low level user can read the high
level data contained in H by reading L. O

The operational semantics of our language is based on the notion of state. A
state o is a function which assigns to each location a real, i.e., o : LUH — R.
Given a state o, we denote by o[X/r] the state ¢’ such that ¢'(X) = r and
o' (Y)=0(Y) for all Y # X. Moreover, we denote by oy, the restriction of o to
the low level locations and we write o =, 6 for o, = 0y,

Given an arithmetic expression a € Aexp and a state o, the evaluation of a
in o, denoted by (a,o) — r with r € R, is defined as in [19]. Similarly, (b, o) — v
with b € Bexp and v € {true,false}, denotes the evaluation of a boolean
expression b in a state o and is defined as in [19].

The operational semantics of our programs is expressed in terms of state
transitions. A transition from a program P and a state ¢ has the form (P, o) <
(P',0') where P’ is either a program or end (termination) and € € {high,low}
stating that the transition is either confidential or public. Let P = Prog U {end}

(a,o) =T

ac€e
(skip, o) ¥ (end, o) (X :=a,0) = (end, o[X/r])
<P07U> = <P6)OJ> (P07U> = <end7al>
P} # end
(Po; P1,0) = (Pg; P1,0") (Po; Pr,0) = (P1,0")
(b,0)— true
bee
(if b then Py else Pi,0) > (Po,0)
b,o0)— false
(o,
bee
(if b then Py else Pi,0) = (Pi,0)
(b,o)— false
bee
(while b do P,o) > (end,o)
(b,0)— true
bee
(while b do P o) > (P;while b do P, o)
<P07U> = <P6)0J> <P0)0> = (end) Ul)
P} # end
<P0||P17U)_E>(P6"P1:0J> (P0"P1:U>_E><P17OJ>
(P17U)_E> (PI,:OJ> (P1:U>_E> (endaoj>
P| # end
(PolPr,0) = (Po| P, ") (Pol Py, o) = (Po,0")

Fig. 1. The operational semantics.

and X be the set of all the possible states. In Fig. 1 we define the operational
semantics of (P, o) € P x X' by structural induction on P.

For each pair (P, o), where P is a program and o is a state, the semantic rules
define a labelled transition system (LTS) whose nodes are elements of P x X' and
whose edges are labelled with high or low. The notion of reachability does not
depend on the labels of the edges. We use (P, o) — (P',0') to denote (P,a) -
(P',0'y with € € {low,high}. We write (Py,00) =" (Pp,0,) for (Py,00) —
(Py,01) = -+ = (Py_1,0n-1) = (P,,0,). Given (P,0) € Prog x X, we denote
by Reach({P,c)) the set of pairs (P’,o') such that there exists n > 0 and

(P,o) =™ (P',0'). Moreover we denote by Reach(P) the set of programs P’
such that (P’ ¢') € Reach({P, o)) for some states ¢ and o’.

Ezample 2. Assume L is a low level location and o is a state such that o(L) = 1.
Consider the program P; = while (L < 1) do L := L + 1; we obtain the
following LTS

(Pr,0)
(L:=L+1; while (1L°wi 1) do L:=L+1,0)
(while (L < 1) dt“’i =L +1,0[L/2))
(onc ol /)

Consider now the program P, = if (H < 3) then L :=L+1 else L:= L+2
where H is a high level location. Let o1, o2 be states such that o1 (H) < 3 and
o2(H) > 3. The LTS’s associated to the pairs (P2, 01) and (P»,02) are

<P2701> <P2702>
nigh! nignl
(L:=L+1,01) (L:=L+2,05)
1OWJ, low*lf
(end, 01[L/o1 (L) + 1]) (end, 02[L/02(L) + 2])

In this case the final value of the low level location depends on the initial value
of the high level one. Hence a low level user can infer whether H is less or equal
than 3 or not just by observing the initial and final values of L. O

We are interested in a notion of behavioural equivalence which equates two
programs if they are indistinguishable for a low level observer.

Ezample 3. Consider the programs H :=1;L:=1and H :=2;L := 1, where H
is a high level location while L is a low level location. Given a state o the LTS’s
associated to the two programs are respectively

(H:=1;L:=1,0) (H:=2;L:=1,0)

Low ‘l’ low *L
(L= 1,0[H/1]) (L= 1,0lH/2))
low ~L low ~L

(end,o[H/1,L/1]) (end,o[H/2,L/1])

We would like to consider this two programs equivalent for a low level observer
which can only read the values in the low level locations. O

We consider two programs equivalent from the low level point of view if they
are low level bisimilar as defined below.

Definition 1 (Low Level Bisimulation). A binary symmetric relation B over
P x X is a low level bisimulation if for each ({(P,c),(Q,0)) € B it holds that:

— 0 =y, 0, i.e., the states coincide on low level locations;
— if (P,o) — (P',0") then there exists (Q',0') such that (Q,0) — (Q',0') and
(P, 0"),(Q",0)) € B.

Two pairs (P,o) and (Q,0) € P x X are low level bisimilar, denoted by (P, o) ~;
(Q,0) if there exists a low level bisimulation B such that ((P,0),(Q,0)) € B.
Two programs P and @) are said to be low level bisimilar, denoted by P ~; Q, if
for each 0,8 € X it holds that if o =f, 6 then (P,o) ~; (Q,0).

A partial equivalence relation (per, for short) [16] is a symmetric and transi-
tive relation.

Lemma 1. The relation ~;C (Px X)? is the largest low level bisimulation and it
is an equivalence relation. The relation ~;C P2 is a partial equivalence relation.

Proof. If (P,0) ~; (@, 0), then there exists a low level bisimulation B such that
it holds ((P,0),(Q,0)) € B. Hence if (P,0) — (P’,0') we have that (Q,0) —
(Q',8") with ((P',0"),(Q",8")) € B, i.e., (P',0') ~ (Q',8"). So we have that ~;
is a low level bisimulation. It is the largest since by definition all the other low
level bisimulations are included in it.

It is easy to prove that ~; is reflexive and symmetric. The fact that ~; is
transitive follows from the fact that if By, B> are low level bisimulations then
the relation By o By, where o is the composition of relations, is still a low level
bisimulation.

The relation ~;C P? is symmetric and transitive since ~; is symmetric and
transitive. O

The relation ~; is not reflexive. For example, the program L := H is not
low level bisimilar to itself, as the low equality of states can be broken by a
computation step.

Ezample 4. Consider the programs P=H :=H+ 1;L:=L+1and Q@ = H :=
H+2;L:=L+1, where H is a high level location and L is a low level location.
It is easy to prove that P ~; (. In fact, a low level user which can only observe
the low level location L cannot distinguish the two programs. O

The notion of bisimulation as observation equivalence assumes that during
each computation step a user can read the values in the locations. If we are
working with a pure imperative language this assumption could seem too strong,
since usually the values are read only at the end of the computation. However, if
we consider parallel executions, during each step of the computation one of the
parallel components could store the partial results of the other components.

Ezxample 5. Let P=L := H;L :=1and Q = H := H;L := 1, where H is a
high level location and L is a low level location. The programs P and @ could be
considered equivalent if one assumes that the low level user can observe the low

level locations only at the end of the computation. However, they are not low
level bisimilar. Indeed, if R = Ly := L with L; being a low level location, then
the programs P|R and Q| R are not equivalent from the low level point view. In
fact, there is one execution of P|R in which the low level user can discover the
high level value of H by reading L;. This is never possible in Q|R. O

The relation ~; equates programs which exhibit the same timing behavior.
This is stated by the following lemma.

Lemma 2. Let P and @ be two programs and o and 6 be two states such that
(P,o) ~; (Q,0). If (P,o) =™ (P',d') then there exists Q' and ' such that
(Q,0) =™ (Q',0") and (P',0")y ~; (Q',0"), and viceversa.

Proof. By induction on n.

— Base: n = 1. We immediately have the thesis by definition of ~j.

— Step: n = m + 1 and we proved the thesis for m. We have that (P,o) —™
(P",c"y = (P',¢'). By inductive hypothesis we get (@, 0) =™ (Q",6") with
(P",c")y ~1 {(Q",0"). By definition of bisimulation we get the thesis. O

Ezample 6. Consider the programs P = if (L = 0) then L := L+1 else L :=2
and @ = if (L = 0) then {L := L + 1;skip} else L := 2. Although, for all
o and @ such that o =p 6, P and @ execute exactly the same assignment
commands, P %; Q. In fact the two programs exhibit different timing behaviours
due to the presence of the skip command in the first branch of Q. O

3 Unwinding Conditions for Security of IMP

In [4] we introduced a general framework to define classes of secure processes
written in the SPA language, an extension of Milner’s CCS [12]. The frame-
work is based on a generalized unwinding condition which is a local persistent
property parametric with respect to a low behavioral equivalence, a transition
relation independent from the high level behavior and a reachability relation.
We proved that many non-interference properties can be seen as instances of
this framework. In all the considered cases, the three relations are defined on
the processes LTS’s and thus the corresponding unwinding classes depend only
on the operational semantics of processes. Following a similar approach, we in-
troduce a generalized unwinding condition to define classes of programs which
is parametric with respect to

— an observation equivalence relation = which equates two pairs (P, o) and
(@, 0) if they are indistinguishable for a low level observer,

— a binary relation < which, from the low level point of view, is independent
from the values of high locations, and

— a reachability function R associating to each pair (P,o) the set of pairs
(F, 1)) which, in some sense, are reachable from (P, o).

Definition 2 (Generalized Unwinding). Let = be a binary equivalence rela-
tion over Prog x X, < be a binary relation over Prog x X' and R be a function
from Prog x X to p(Prog x X). We define the unwinding class W(=,—,R)
as follows:

W(E, <, R) E {(P,0) € Prog x ¥ | ¥ (F,¢) € R((P,0))
if (F,v¢) nigh (G,) then (M, p) such that (F,v) — (M, p) and
(G, o) = (M)}

The intuition behind the unwinding condition is that any high level transition
should be simulated by a high independent transition guaranteeing that the high
level transitions have no influence on the low level observation.

We say that the function R is transitive if (F",¢") € R((F',¢')) and
(F',¢"y € R((F,v¢)) imply (F",¢") € R((F,¢)), i.e., it is a transitive rela-
tion. If R is transitive, the generalized unwinding condition defined above allows
us to specify properties which are closed under R. In this sense we say that our
properties are persistent. The next lemma follows immediately by Definition 2.

Lemma 3. Let R be a transitive reachability function and (P,c) € Prog x X.
If (P,o)y €e W(=,—,R) then (F,) € W(=,—,R) for all (F,v) € R({P,0)).

Proof. Let R be transitive, (P,0) € W(=,—=,R), and (F,¢) € R((P,0)). If
(F',¢') € R((F,v)), then by transitivity we have that (F',¢') € R((P,0)).
Hence we get that if (F”, ') g (G', "y then (F' 4"y — (M', u'y with (G', ') =
(M', '), i.e., the thesis. O

Below we instantiate our generalized unwinding condition by exploiting the
notion of low level bisimulation ~; as behavioral equivalence and by introducing
a suitable high independent transition relation --+.

Definition 3 (--+). The relation --+ on Prog x X is defined as follows:
(F,) -+ (M, u) if for each 7 such that © =g, ¢ there exist R and p such that
(F,m) = (R, p) and (R, p) ~i (M, p).

Ezample 7. Let F = if (H > 1) then M else R where M = H := 1;L :=
L+1and R=H :=2;L:=L+1, and ¢ be such that ¢»(H) > 1. In this case
(F,v) -—+ (M,). Indeed, for each 7 such that = =, ¢ either (F,n) — (M,)
or (F,7) = (R,n) and both (M, 7) ~; (M, and (R, 7) ~; (M,).

Consider now the program F = L := 2; R and R = if (H > 1) then {H :=
1;L := 2} else {H := 2; L := 1}. In this case does not exist any (M, u) such
that (F,v) --+ (M, u). Indeed, if ¢ and 7 are two states such that v = =,
Y(H) > 1 and n(H) < 1, then (F,¢) — (R,¢[L/2]) and (F,7) — (R, n[L/2])
but (R, ¥[L/2]) A1 (R, x[L/2]). 0

By Definition 3 and by transitivity of ~; we get the following characterization
of our unwinding condition.

Proposition 1. Let R be a reachability function, P be a program, and o be a
state. (P,o) € W(~,--+,R) if and only if for each (F,v)) € R({P, o)) it holds
that if (F, 1) =3 (G,) then for each m such that m =y, 1 there exist R and p
such that (F,m) = (R, p) and (R, p) ~; (G,).

As far as the function R is concerned, we consider three different instan-
tiations: Rys which coincides with the rechability relation Reach in the LTS,
Rhuper Which intuitively represents reachability under the parallel composition
with any high level program, and R,,, which denotes reachability under the
parallel composition with any program.

The class of secure imperative programs SIMP;; defined below is based on
the function Rys.

Definition 4 (SIMPy;s). Let Rys be the function Reach. A program P is in
SIMPy;; if for each state o, (P,c) € W(~, -+, Rys)-

Ezample 8. Consider the program () = H := L, where H is a high level location
and L is a low level location. The program @ is in SIMPy;. In fact, the low
level execution is not influenced by the values in the high level location.
Consider again the program P = L := H; L := 1 of Example 5, where H is a
high level location and L is a low level location. It is easy to prove that for any
o € X, (Poy & W(~,—+,Rys). In fact, let for instance o(H) = 1, (L) = 0,
6(H) = 2, (L) = 0. It holds that o =, €, but after the execution of the first
high level transition we reach the states o’ and ', where ¢'(L) =1 # 6'(L) = 2.
Consider now R = H := 4;L := 1;if (L = 1) then skip else L := H.
The program R belongs to SIMPy;,. In fact, the first branch of the conditional
is always executed independently of the value in the high level location. O

Since Rys is transitive, by Lemma 3 we get that W(~, -+, Rys) is per-
sistent, i.e., if a program P starting in a state o is secure then also each pair
(P',0') reachable from (P, o) does. However, in general it does not hold that if
a program P is in SIMP;; then also each program P’ reachable from P is in
SIMP;,. This is illustrated in the following example.

Example 9. Let P = L := 0; if L := 1 then L := H else skip. It holds
that P € SIMPy,, since, for each state o, (P,o) will never perform any high
transition. Moreover, the program P’ = if L := 1 then L := H else skip
is reachable from P but it does not belong to SIMP ;. ad

We now introduce a more restrictive class of secure imperative programs,
namely SIMPj,,-, which is based on the reachability function Rppe, defined
below.

Definition 5. The function Ryper from Progx X to p(ProgxX) is defined by:
thar(<P07UO>) = {(Pn79n> | n Z 07 ElPl; v 7Pn717 EiUl; v 70—n73907 v 70n71
such that o; = 0; and (P;,0;) = (Piy1,0i41) fori € [0..n—1] and o, =, 0, }.

Intuitively, (F,) € Rupar((P,0)) if (F, 1) is reachable from (P| Py, o) where
Py is a high level program.

Lemma 4. Let P be a program and o be a state. (F,1) € Rupar({P,0)) if and
only if F is a subprogram of P and (F,v) € Reach({P|Pg,0)) for some high
program Prr.

Proof. (sketch) <) The parallel composition of two programs performs the inter-
leaving of the actions of the two components. Hence, when executing (P| P, o),
since Py can only modify high level variables, each time an action (P}, 0;) —
(P}I"'l,ﬁi) of Py is performed, we have that 8; =, o;. On the other hand, when
an action (P;,0;) = (P;y1,0;41) of P is performed then we can define 6; = o;.
Hence, do01,...,04,00,...,08,—1 such that o; =1 6; and (P;,0;) = (Pit1,0i4+1)
fori € [0..n — 1] where (Py,00) = (P,0) and (Py,0,) = (F,).

=) In each step of the computation Py can only change the value of high
level variables, hence we immediately get the thesis. O

Definition 6 (SIMPy,.,). A program P is in SIMP ., if for each state o,
<P, U> € W(Nl, “",thar)-

It is clear that the class SIMP},,, is more restrictive than SIMP ;.

Lemma 5. SIMPy,,,, C SIMPy,,

Ezample 10. Consider the program P = H := 1;if (H =1) then {skip;L :=
1} else {H :=1;L:= H}, where H is a high level location and L is a low level
location. The program P belongs to the class SIMPy;, but it does not belong to
the class SIMPpp,,. In fact, given an initial state o there exists a state 1) such

that the pair (L := H,1) belongs to Rpper({(P,0)). Moreover (L := H, 1) =3
(end,) but clearly it does not hold that for each 7 such that 7 =g, 1 there exist
R and p such that (L := H,7) = (R, p) and (R, p) ~; (end, ¢).

Notice that if we consider the program @ = H := 3 then P|Q is not in
SIMP,;; although both P and @ are in SIMP ;. ad

It is easy to prove that the reachability function Rppe, is transitive. Hence
by Lemma 3 the class W(~y, --+, Rppar) is persistent. Indeed, we have that if
a program P starting in a state o is in W(~y, -+, Rupar) then also each pair
(P', 0"y € Ripar((P,0)) is in W(~y, =2, Rppar). However, as for SIMPy;, in
general it does not hold that if a program P is in SIMPy,,,, then also each
program P’ reachable from P is in SIMPpp,,. In order to see this, it is sufficient
to consider again the program of Example 9.

Finally, we introduce the class of secure imperative programs SIMP,,, by
using the reachability function R, defined below.

Definition 7. The function Rpqr from Prog x X to p(Prog x X) is defined as
follows: Rpar((Po,00)) = {(Pr,0n) |n >0, 0, € X, 3AP,...,Pp_q, Jo1,...,0,,
6o, ...,0,_1 such that <P,',0i) — <P,'+1,0'i+1> fOT‘ 1€ [0 ..n —].]}

Intuitively, a pair (F,) is in Rpqer((P, o)) if (F,) is reachable from (P|Q, o)
for some program @. The following lemma, is similar to Lemma 4.

10

Lemma 6. Let P be a program and o be a state. (F,1) € Rpor((P,0)) if and
only if F is a subprogram of P and (F,¢) € Reach({P|Q, o)) for a program Q.

Definition 8 (SIMP,,,.). A program P is in SIMP,,,. if for each state o,
<P7 U> € W(Nl: __'):Rpar)-

The class SIMP,,,, is more restrictive than SIMP .
Lemma 7. SIMP,,, C SIMP,;,, C SIMP,.

Ezample 11. Consider the program P = H :=4; L :=1;if (L =1) then skip
else L := H. It belongs to SIMP;; and SIMP},,,, but it does not belong to
SIMP,,,. In fact given an initial state o there exists a state 1) such that the
pair (L := H,1) belongs to Rper((P, o). Moreover (L := H, 1) nigh (end,) but
clearly it does not hold that for each 7 such that = = 9 there exist R and p
such that (L := H,7) = (R, p) and (R, p) ~; (end, p). o

The reachability function Rp,, is transitive and then, by Lemma 3, the class
W(~i, ==+, Rpqr) is persistent in the sense that if (P, o) is in W(~y, -+, Rpar)
then also each pair (P',0') € Rper({P,0)) is in W(~, -+, Rpar). Moreover,
differently from SIMP;; and SIMPy,,,, if a program P is in SIMP,,, then
also each program P’ reachable from P is in SIMP,,,.

Lemma 8. Let P be a program. If P € SIMP,,, then for all P' € Reach(P),
P' € SIMP,,,.

Proof. Let P' € Reach(P), i.e., (P',0') € Reach({P,o)) for some ¢ and o’. By
definition of Rpqer, (P',8) € Rpar((P,0)) for all state 6. Hence, by persistence of
W(~i, ==+, Rpar), (P',0) € W(~1, -+, Rpar), Le., P! € SIMP ;. a

The three instances of our generalized unwinding condition introduced above
allow us to express timing-sensitive notions of secuirity for imperative programs.
This is a consequence of the fact that ~; equates programs which exhibit the
same timing behavior (see Lemma 2).

Ezample 12. Let P = if (H = 0) then {H := H + 1;skip} else H := 2. The
program P does not belong to any class SIMP, with % € {lts, hpar, par}. This
is due to the fact that if (P, o) g ({H := H+1;skip}, o) for some state o then
it does not hold that for each 8 such that o =r, @ there exist R and 8’ such that
(P,0y — (R,0") and ({H := H + 1;skip},0) ~; (R,0"). In fact, if 6(H) # 0,
(P,0y — (H :=2,0) but ({H := H+1;skip},0) #; (H := 2,80) because of their
different timing behaviour. O

In the previous section we observed that the relation ~; is not reflexive.
However, ~; is reflexive over the set of programs belonging to SIMP;, (and
then, by Lemma 7, to SIMP,,q, and SIMP).

Lemma 9. Let P be a program. If P € SIMP;s then P ~; P.

11

Proof. First, the following claim follows by structural induction on programs.

Claim. For each ¢ and 7 such that ¢ = 7y, if (F, 1) =¥ (F', ') then (F,7) %
(F', 7"y with 7] = ¢} .

Now assume that P € SIMPy;,. Then for all states o and 6, (P,0),(P,0) €
W(~i, --+,Rus)- Hence, in order to prove that P ~; P, it is sufficient to show
that for all o and 6 such that (P,o),(P,8) € W(~, -+, Rys) and o, = 0y, it
holds (P, o) ~; (P,0). Consider the binary relation

S= {(<P7 U): <P79>) | <P70>7 <P70> € W(Nla__"aths); oL = 9L}
U {((P,0),(Q,0))| (P,o) ~(Q,0)}.

We show that S is a low level bisimulation.

If (P, o) high (P',0'), then since (P, o) € W(~y, -+, Rus), by Proposition 1,
we have that (P,0) — (P",0') with (P',¢') ~; (P",0"). Hence, by definition of
S, ((P',0"),(P",0") € S.

If (P,0) ¥ (P',0'), then by Claim 3 we have that (P,6) =¥ (P',#') with
op = 6}. By Lemma 3, since Ry, is transitive, we have that W(~y, --+, Ry5) is
persistent, i.e., both (P’, 0"y € W(~, --+, Ryss) and (P, 0"y € W(~y, —+, Ryzs)-
Hence we have that ((P',d'),(P’,6')) € S, i.e., the thesis. a

The converse of Lemma 9 does not hold as illustrated below.

Ezample 13. Consider the program P = if (H = 1) then P, else P; where
Py = while (H > 1) do skip and P; = skip. In this case P ~; P, i.e., for all
states o and 6 such that o =1, 8, (P,0) ~; (P,6). Indeed, if o and € are such
that both o(H) =1 and §(H) = 1, the LTS’s of (P, o) and (P, §) have the form

<P, O'> <P7 9)
1 {
<P07 U> <P0’ 6>
i \a
(end, o) (end, 0)

and thus (P,o) ~; (P,0). The case in which both o(H) # 1 and §(H) # 1 is
analogous. On the other hand, if o(H) = 1 and 8(H) # 1 the LTS’s of (P, o)
and (P, 6) have the form

<P7 U> <P’ 9>
1 4
<P0, O'> <P17 6)
i 3
(end, o) (end, 6)

and again (P, o) ~; (P,).
However, the program P ¢ SIMPy,. In fact (Py,0) € Reach((P,o)) and
(Py, o) g (end, o) but it does not hold that for all p such that o =1 p there

12

exist R and p’ such that (Pp,p) — (R,p') and (end,o) ~; (R,p'). Indeed, if
p(H) > 1, (Py, p) — (skip; Py, p) and (end, o) #; (skip; Py, p). This is due to
the fact that the subprogram Fy of P is not in SIMP ;. O

Finally, we show that our security properties expressed in terms of unwinding
conditions imply the standard non-interference principle which requires that high
level values do not affect the low level observation.

Theorem 1 (Soundness). Let P be a program such that P € SIMP, with
x € {lts, hpar,par}. For each state o and 0 such that o =y, 6,

— (P,o) =" (end,d') if and only if (P,8) =™ (end,0') with o = 67.

Proof. By Lemma 9, since o =, 6, we have that (P,o) ~; (P,6). Then, by
Lemma 2, we get that (P,#0) reaches a pair (P',8') with (P',0') ~; (end,o’).
Hence we immediately have o' =p, §'. Moreover, since end is not bisimilar to any
program, it must be P’ = end. O

4 Compositionality

The classes SIMP 5, SIMP, .o, and SIMP,,,,, introduced above are, in general,
not compositional with respect to the language constructors. In particular, they
are not compositional with respect to the parallel composition constructor as
illustrated by the following example.

Ezample 14. Consider the program P = if (H = 1AL =1) then Py else P,
where Py = if (L =1) then skip else L :=2 while P, = if (L # 1) then

L :=3 else skip. The program P belongs to the class SIMP,,, (and then
also to the classes SIMPy:s and SIMPy,,,). In fact, given an initial state o,

(P, o) =3 (P;,o0) for some ¢ € {0,1} and for each 7 such that # =1 o there
always exist R and p such that (P,) — (R,p) and (R,p) ~; (P;,0). Now
consider the program () = L := 4 which clearly belongs to SIMP,,.. We
show that the program P|Q does not belong to SIMP;, (and thus neither to
SIMP},,,, and SIMP,,,.). Indeed, let o be a state such that o(H) = (L) = 1.

Then (P|Q, o) nigh (Po|@,0). Now let 7 be a state such that 7 =, ¢ and in

particular (L) = 1 but 7(H) # 1. Hence (P|Q,x) 8" (P,|Q,). However,
(P]|Q,0) #1 (P1]|Q,n): in fact if the assigment L := 4 of @ is performed at the
first step, then (Py|Q, o) ends in a state o' such that o'(L) = 2 while (P, |Q, 7)
ends in a state 7' such that «'(L) = 3. a

Compositionality is useful both for verification and synthesis: if a property
is preserved when programs are composed, then the analysis may be performed
on subprograms and, in case of success, the program as a whole will satisfy the
desired property by construction.

In the next definition we introduce a class C of programs which is closed
under composition and it is a subclass of SIMP,, (and then also of SIMP;,
and SIMPyp,,).

13

Definition 9. Let H be a high level location, L be a low level location, ap and
by, be high level expressions, and a; and b; be low level expressions. The class of
programs C is recursively defined as follows.

skip is in C;

L:=aqa; isinC;

H:=ay isinC;

H:=a;isinC;

Py; Py is in C if Py, P, are in C;

if by then Py else Py isinC, if Py, P, are in C;

if by then Py else P is inC if Py, Py are in C and Py ~; P;;

while by do Py is in C, if Py is in C;

Py|Py is in C, if Py, Py are in C.

© 0 RS G o~

Theorem 2. The class of programs C of Definition 9 is included in SIMP ..

Proof. We first prove the following claim.

Claim. Let G,F,R € C. If ¢ =, p then (F,) ~; (F, p). Moreover, if (G, p) ~;
(R, p), then (G; F,0) ~i (B; F, p) and (G|F,) ~1 (R|F, p).

Proof. It is sufficient to show that

S= {(<G7F7 <P>; <R7F7 p>)7 ((G"F; @)7 <R||F7 p>)7 | GaFaR € C7 (G780> ~1 <R7 p>}
U{((F,), (F,p) | F € Cop =1 p}
U{(Fo, p), (F1,p) | Fo, F1 € C,p =1 p, Fo ~1 Fi}
U{({Fo, ¢), (F1,p)) | (Fo,) ~i (F1,p)}

is a low level bisimulation.

In order to prove Theorem 2 we show that if P € C, then for each F' € Reach(P)
and for each 1 it holds that if (F,) N (G, p), then for each 7 such that 7 =y, ¢
we have (F,7) — (R, p) with (R, p) ~; (G,). Indeed, from the fact that P € C
and F' € Reach(P) we get that F' € C. We prove the thesis for a generic F' € C
and a generic state 1». We proceed by structural induction on F'.

The only interesting cases are F' = Fy; Fy and F = Fy|Fi. We consider
the case F' = Fp; Fy since the other one is similar. If (F,) N (Es; Fi,y),
then we have (Fp, 1) LA (Fy,). Hence by inductive hypothesis on Fy we have

(Fo,m) 5 (FY', p) with (FY, @) ~; (FY, p). Then we get that (F,x) 2 (Fi'; F1, p)
and by Claim 4 (F\/; F1, p) ~ (Fi; Fy,). If (F,h) 5 (Fy,), then (Fy,) &
(end,). Hence by Claim 4 we get that (Fi,) N (end, p) with p =1 ¢. So,

(F,m) LN (F1, p), and again by Claim 4 we have (F, p) ~; (F1, ¢). a

We conclude this section by observing that membership to the class C is
not decidable due to the presence of the low level observation equivalence ~; in
point 7 of Definition 9. However, a sound but incomplete method could be find
to compute ~; by applying a suitable abstraction which guarantees equivalence
up to high level locations as discussed, e.g., in [1].

14

5 Conclusion and Related Work

In this paper we introduced a generalized unwinding schema for the definition of
non-interference properties of programs of a simple imperative language, admit-
ting parallel executions on a shared memory. We studied three different instances
of our unwinding condition and defined a subclass of programs which is compo-
sitional with respect to the language constructors.

There is a widespread literature on secure information flow in imperative
languages (see [15] for a recent survey). A common approach is based on types
in such a way that well-typed programs do not leak secrets (see, e.g., [16,17]).
Other approaches consider logical formulations of non-interference, e.g., [2,3,
10], and abstract interpretation-based formalizations, e.g., [5, 7].

As far as we know, this is the first attempt of defining security properties of
imperative languages through unwinding conditions. As observed by many au-
thors (see, e.g., [11,13]) such conditions are easier to handle and more amenable
to automated proof with respect to global conditions. Similarly to what we al-
ready did in [4] for systems written in a process algebra language, we plan to
exploit unwinding conditions for defining proof systems both to verify whether
a program is secure and to build programs which are secure by construction in
an incremental way.

Finally, we observe that the properties we have defined in terms of unwind-
ing conditions characterize the security of programs againts so-called passive
attacks, i.e., a low level users which try to infer the values of the high level
variables just by observing the values of the low level ones. On the contrary, in
defining non-interference one usually explicitly characterize the class of active
attacks, i.e., malicious users or programs which try to directly transmit confiden-
tial information to the low level observer. Some authors have proved that there
is a connection between properties characterizing passive attacks and properties
involving active attacks [20]. In our approach an active attacker can be seen as a
high level program which intentionally manipulates high level variables. We can
prove that if P is a secure program belonging to the class SIMP,,,, (and hence
also to SIMP,,,,) then a low level user cannot distiguish P running in parallel
with different (malicious) high programs Py and Pk exhibiting the same timing
behaviour (i.e., Py ~; Pk).

Theorem 3. If P € SIMPy,,q, then P|Py ~; P|Pk for all Py, Pk € Progu
such that Py ~; Pk.

Proof. It follows from the fact that

S ={((P|Pu,0), (Q|Pxk,0))| (P,o) ~ (Q,0), Pu ~ Px, Pu,Px € Progu
<P7 U): <Q70> € W(Nla __+7thm‘)} U {(<P7 U>7 <Q79>)| <P7 U> ~1 <Q79>}

is a low level bisimulation ~j. a
Intuitively, this theorem states that if a program P belongs to SIMP},,, then
even if the values of the high level variables are changed during the computation,

a low level user will never observe any difference on the values of low level
variables.

15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Agat. Transforming out Timing Leaks. In Proc. of ACM Symposium on Prin-
ciples of Programming Languages (POPL’00), pages 40-53. ACM Press, 2000.

T. Amtoft and A. Banerjee. Information Flow Analysis in Logical Form. In Pro-
ceedings of the 11th Static Analysis Symposium (SAS’04), volume 3148 of LNCS,
pages 100-115. Springer-Verlag, 2004.

G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self Com-
position. In Proc. of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 100-114. IEEE Computer Society Press, 2004.

A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Prop-
erties. Computer Languages, Systems and Structures, 30(3-4):231-258, 2004.

A. Di Pierro, C. Hankin, and H.Wiklicky. Approximate Non-Interference. In Proc.
of the IEEE Computer Security Foundations Workshop (CSFW’02), pages 3-17.
IEEE Computer Society Press, 2002.

R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Proc. of Foundations of
Security Analysis and Design (FOSAD’01), volume 2171 of LNCS, pages 331-396.
Springer-Verlag, 2001.

R. Giacobazzi and I. Mastroeni. Abstract Non-Interference: Parameterizing Non-
Interference by Abstract Interpretation. In Proc. of ACM Symposium on Principles
of Programming Languages (POPL’04), pages 186-197. ACM Press, 2004.

J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc.
of the IEEE Symposium on Security and Privacy (SSP’82), pages 11-20. IEEE
Computer Society Press, 1982.

J. A. Goguen and J. Meseguer. Unwinding and Inference Control. In Proc. of the
IEEE Symposium on Security and Privacy (SSP’84), pages 75-86. IEEE Computer
Society Press, 1984.

R. Joshi and K. R. M. Leino. A Semantic Approach to Secure Information Flow.
Science of Computer Programming, 37(1-3):113-138, 2000.

H. Mantel. Unwinding Possibilistic Security Properties. In Proc. of the Euro-
pean Symposium on Research in Computer Security (ESoRiCS’00), volume 2895
of LNCS, pages 238-254. Springer-Verlag, 2000.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

P. Y. A. Ryan. A CSP Formulation of Non-Interference and Unwinding. Cipher,
pages 19-27, 1991.

P.Y.A. Ryan and S. Schneider. Process Algebra and Non-Interference. Journal of
Computer Security, 9(1/2):75-103, 2001.

A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5-19, 2003.

A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59-91, 2001.

D. M. Volpano and G. Smith. A Type-Based Approach to Program Security. In
TAPSOFT, pages 607-621, 1997.

D. M. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Lan-
guage. Journal of Computer Security, 7(2-3):231 — 253, 1999.

G. Winskel. The formal semantics of programming languages. The MIT Press,
1993.

S. Zdancewic and A. C. Myers. Robust Declassification. In Proc. of the IEEE Com-
puter Security Foundations Workshop (CSFW’01), pages 15-23. IEEE Computer
Society Press, 2001.

16

