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Abstract. Persistent_BNDC (P_-BNDC, for short) is an information-
flow security property for processes in dynamic contexts, i.e., contexts
that can be reconfigured at runtime. Intuitively, P.BNDC requires that
high level interactions never interfere with the low level behavior of the
system, in every possible state. P.BNDC is verified by checking whether
the system interacting with a high level component is bisimilar or not
to the system in isolation. In this work we contribute to the verification
of information-flow security in two respects: (i) we give an unwinding
condition that allows us to express P_.BNDC( in terms of a local property
on high level actions and (i7) we exploit this local property in order to
define a proof system which provides a very efficient technique for the
development and the verification of P_.BNDC' processes.

1 Introduction

Systems are becoming more and more complex, and the security community
has to face this by taking into account new threats and potentially dangerous
situations. A significant example is the introduction of process mobility among
different architectures and systems, where an application running in a “secure
way” inside one environment could enter an “insecure state” while moving to a
different environment. In this setting, security properties should correctly deal
with such a dynamic nature of executions.

A number of formal definitions of security properties (see, for instance, [1, 8,
10,15,18,19,23,26-28]) has been proposed in the literature. Persistent_ BNDC
(P_BNDC, for short), proposed in [11], is a security property which is suitable to
analyze processes in completely dynamic hostile environments, i.e., environments
which can be dynamically reconfigured at run-time, changing in unpredictable
ways. The notion of P_.BNDC is based on the idea of Non-Interference [12, 25,
28] (formalized as BNDC [10]) and requires that every state which is reachable
by the system still satisfies a basic Non-Interference property. If this holds, one
is assured that even if the environment changes during the execution no mali-
cious attacker will be able to compromise the system, as every possible reachable
state is guaranteed to be secure. In [11] it has been proved that P.BNDC may
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be verified by checking whether the system interacting with a high level compo-
nent is behaviorally equivalent or not to the system in isolation, where behavioral
equivalence is defined in terms of a suitable notion of weak bisimulation *. More-
over, in [3] it has been shown that P_.BNDC may also be verified by checking
whether the system is weakly bisimilar to a rectification of the system itself,
which makes it P_.BNDC. Both of these techniques can be fully automatized if
the labelled transition system, i.e., the automata representing the operational
behavior of the considered system, is composed of a finite number of states.
In particular, there exist efficient algorithms for checking bisimulation equiva-
lences (see, e.g., [4,14,22,7]) which are polynomial with respect to the number
of states and transitions of the underlying transition system. However this kind
of behavioral verification often suffers of the so-called state-explosion problem,
i.e., the number of states increases exponentially with respect to the degree of
parallelism inside the considered system. The reason is that every interleaving
among parallel processes needs to be represented.

In this work we contribute to the verification of information-flow security
in two respects: (i) we give an unwinding condition that allows us to express
P_BNDC in terms of a local property of high level actions and (ii) we exploit
this local property in order to define a proof system which provides a very
efficient technique for the development and verification of P_.BNDC' processes.

The unwinding condition, similar to other already proposed in different set-
tings (see, e.g., [16, 18,20, 24]), requires that every high level event is “simulable”
by a sequence of internal moves, i.e, that every time a high level event is per-
formed moving the system to a state E’, a state E” is also reachable (through
internal computation) which is equivalent to E’ from a low level point of view,
written E' \ H =~ E" \ H. Intuitively, if this holds no high level event h should
be observable by a low level user, as there always exists a low-level equivalent
state that the system may reach without performing h. We prove that this local
property is a necessary and sufficient condition for P_.BNDC.

As noticed in [16], unwinding conditions are useful for giving efficient proof
techniques. Indeed, we use our local characterization to define a proof system
which allows us to statically prove that a process is P.BNDC, i.e., by just in-
specting its syntax. State-explosion is avoided by exploiting the compositionality
of P_.BNDC' with respect to the parallel operator which is the source of the ex-
ponential growing of the number of states in a system. Moreover, the system
offers a mean to build processes which are P_.BNDC by construction in an incre-
mental way. Our proof system extends the one given in [17] for finite processes,
i.e., processes that may only perform finite sequences of actions. In particular,
we are able to deal also with recursive processes which may perform unbounded
sequences of actions. To illustrate the effectiveness of the new technique, we ap-
ply the proof system to the small, but non-trivial, example of an access monitor
also considered in [10].

! Tn [10], it is shown that bisimulation-based properties are able to detect potential
flows due to deadlocks caused by high level activity. Such flows are not revealed by
simply observing traces, i.e., execution sequences.



The paper is organized as follows. In Section 2 we present some basic notions
on the SPA language. In Section 3 we recall the P_.BNDC property and we give
the new wnwinding condition. In Sections 4 and 5 we introduce our new proof
system and in 6 we illustrate the usefulness of it on a simple example. Finally,
in Section 7 we draw some conclusions. All proofs are collected in the Appendix.

2 Basic Notions: the SPA Language

In this section we report from [10] the syntax and semantics of the Security
Process Algebra. The Security Process Algebra (SPA, for short) [10] is a variation
of Milner’s CCS [21], where the set of visible actions is partitioned into high level
actions and low level ones in order to specify multilevel systems. SPA syntax is
based on the same elements as CCS that is: a set £ of wvisible actions such that
L =1UO where I = {a,b,...} is a set of input actions and O = {a,b,...} is
a set of output actions; a special action 7 which models internal computations,
i.e., not visible outside the system; a complementation function = : £ — £, such
that @ = a, for all a € £, and T = 7; Act = L U {7} is the set of all actions.
The set of visible actions is partitioned into two sets, H and L, of high and low
actions such that H = H and L = L. The syntax of SPA processes is defined by

E:=0|a.E|E+E|EE|E\v|E[f]|Z

where a € Act, v C L, f: Act = Act is such that f(L) CLU{r}, f(H) CHU
{7}, f(@) = f(a) and f(7) = 7, and Z is a constant which must be associated

to a definition Z % E. Constants are useful to define recursive systems.

Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; E; + E5 represents the nonde-
terministic choice between the two processes Ey and Es; Ej|E, is the parallel
composition of £; and E», where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing an internal action 7;
E\ vis a process E prevented from performing actions in v; E[f] is the process
E whose actions are renamed via the relabelling function f.

Given a fixed language £ we denote by £ the set of all SPA processes, by g
the set of all high level processes, i.e., those constructed over H U {7}, and by
&y, the set of all low level processes, i.e., those constructed over L U {7},

The operational semantics of SPA processes is given in terms of Labelled
Transition Systems (LTS). A LTS is a triple (S, A, —) where S is a set of states,
A is a set of labels (actions), =C S x A x S is a set of labelled transitions. The
notation (S1,a,S2) €— (or equivalently S; = So) means that the system can
move from the state S; to the state Su through the action a. The operational
semantics of SPA is the LTS (€, Act, —), where the states are the terms of the
algebra and the transition relation —C & x Act x £ is defined by structural
induction as the least relation generated by the inference rules reported in Fig-
ure 1. The operational semantics for a process F is the subpart of the SPA LTS
reachable from the initial state and we refer to it as LTS(E) = (Sg, Act, —).




Prefix

aES E
E\ % E} E» % Ej)
Sum
E\+E, % E} E,+E, % E)
E % E, B, % B E\ % E, B; % B
Parallel a €L
E\|E> % E}|E» E\|Ey % Ey|E E\|E> 5 E}|E)
ESE
Restriction ifadv
E\v% E\v
ESFE
Relabelling
f(a)
E[f] = E'[f]
ESFE
Definition ifz%E
Z5E

Fig. 1. The operational rules for SPA

In the paper we use the following notations. If ¢ = ay---a, € Act™ and
E% ...% E' then we say that E' is reachable from E and write E - E', or

T

simply E ~ E'. We also write E == E' if E(5)* B (D) (D) B (D) E
where (5)* denotes a (possibly empty) sequence of 7 labelled transitions. If
t € Act*, then { € £* is the sequence gained by deleting all occurrences of 7
from t. As a consequence, F =Ly E' stands for E =% E'if a € L, and for
E(5)*E' if a = 7 (note that == requires at least one 7 labelled transition while

== means zero or more 7 labelled transitions). Moreover, we say that a process
E is closed if it does not contain constants. Given two processes E, F' we write
E = F when E and F are syntactically equal.

The concept of observation equivalence between two processes is based on
the idea that two systems have the same semantics if and only if they cannot be
distinguished by an external observer. This is obtained by defining an equivalence
relation over €. We report here the definition of two observational equivalences:
strong bisimulation and weak bisimulation [21]. Intuitively, strong bisimulation
equates two processes if they mutually simulate their behavior step by step.

Definition 1 (Strong Bisimulation). A binary relation R C £ x & over pro-
cesses is a strong bisimulation if (E, F) € R implies, for all a € Act,

o if E% E', then there exists F' such that F % F' and (E',F') € R;
o if F % F', then there exists E' such that E % E' and (E',F') € R.



Two processes E,F € £ are strong bisimilar, denoted by E ~ F, if there exists
a strong bisimulation R containing the pair (E, F).

Relation ~ is the largest strong bisimulation and is an equivalence relation [21].

Weak bisimulation is similar to strong bisimulation but it does not care about
internal 7 actions. So, when P simulates an action of @, it can also execute some
T actions before or after that action.

Definition 2 (Weak Bisimulation). A binary relation R C € x € over pro-
cesses is a weak bisimulation if (E, F') € R implies, for all a € Act,

o if E% E', then there exists F' such that F =% F' and (P',F')eR;

o if F % F', then there exists E' such that E =% E' and (E',F') € R.

Two processes E, F € £ are weakly bisimilar, denoted by E ~ F, if there exists
a weak bisimulation R containing the pair (E, F).

Relation = is the largest weak bisimulation and is an equivalence relation.
Moreover, ~C=s [21].

We use the notation E[Y := X] to denote the process obtained by replacing in
the process E the constant Y with the constant X . The following lemma provides
us a syntactic way to determine when two constants are strong bisimilar.

def

Lemma 1. Let XY be two constants defined by X Y Eamdy © F If

ElY :=X]|=F[Y :=X] then E~ F.

3 The P_BNDC Security Property

We first recall from [11] the Persistent Bisimulation-based Non Deducibility on
Compositions (P-BNDC, for short) security property and its characterization in
terms of weak bisimulation up to high level actions. We start by recalling the
definition of Bisimulation-based Non Deducibility on Compositions (BNDC, for
short) [10]. The BNDC security property aims at guaranteeing that no infor-
mation flow from the high to the low level is possible, even in the presence of
malicious processes. The main motivation is to protect a system also from inter-
nal attacks, which could be performed by the so called Trojan Horse programs,
i.e., programs that are apparently honest but hide inside some malicious code.
Property BNDC' is based on the idea of checking a system against all high
level potential interactions, representing all possible high malicious programs. A
system E is BNDC if for every high process II a low user cannot distinguish F
from (E|II), i.e., if IT cannot interfere [12] with the low level execution of E.

Definition 3 (BNDC). Let E € £ be a process.
E € BNDC iff VIT € &y, E\ H ~ (E|IT) \ H.

In [11] it is shown that BNDC is not strong enough for systems in dynamic
execution environments. To deal with these situations, the property P_.BNDC is
introduced. Intuitively, a system E is P.BNDC if it never reaches insecure states.



Definition 4 (Persistent_ BNDC). Let E € £ be a process.
E € P_.BNDC' iff E ~+ E' implies E' € BNDC.

Ezample 1. Consider the process E; = [.h.j.0 + [.(7.5.0 + 7.0) where [,j € L
and h € H. E; can be proved to be BNDC(C'. Indeed, the causality between
h and j in the first branch of the process is “hidden” by the second branch
1.(1.7.0 + 7.0), which may simulate all the possible interactions with a high
level process. Suppose now that F; is moved in the middle of a computation.
This might happen when it find itself in the state h.j.0 (after the first [ is
executed). Now it is clear that this process is not secure, as a direct causality
between h and j is present. In particular h.j.0 is not BNDC and this gives
evidence that FE; is not P_.BNDC. The process may be “repaired” as follows:
Ey =1.(h.j.0+7.j.04+7.0)+1.(7.j.04+7.0). It may be proved that E, is P.BNDC.
Note that, from this example it follows that P_.BNDC C BNDC.

In [11] it has been proven that the property P_.BNDC is equivalent to the
security property SBSNNI [9,10] which is automatically checkable over finite-
state processes. However, this property still requires a universal quantification
over all the possible reachable states from the initial process E. In [11] it has
been shown that this can be avoided, by including the idea of “being secure in
every state” inside the bisimulation equivalence notion. This is done by defining
an equivalence notion which just focus on observable actions not belonging to H.

In the following we propose another characterization of P_BNDC processes
which allows us to express P_.BNDC in terms of a local property of high level
actions. This characterization recalls the unwinding conditions proposed in other
settings (e.g., [16, 18,20, 24]). In [16] it is shown how unwinding conditions can be
used for the verification of security properties. Here we use our characterization
to prove the correctness of the proof system defined in the next sections.

Theorem 1. Let E € £ be a process.

E € P.BNDC
iff
if E~ E; % B}, then E; = Ey, and E; \ H ~ E \ H.

The class of P_.BNDC(' processes enjoys the compositional properties below.

Lemma 2 (Compositionality). The following properties hold:

if E is a closed process in £, then E € P_BNDC;

if E is a closed process in g, then E € P_.BNDC;

if E € P_.BNDC, then E\v € P_.BNDC;

if E € P_LBNDC, then E[f] € P_.BNDC;

if E,F € P_.BNDC, then E|F € P_.BNDC;

if Ei,Fj € P.BNDC, i €I and j € J, then Zie[ ai-BE; + EjeJ(hj'Fj +
T.F;) € P.BNDC, where a; € L and h; € H;

7. if E € P_.BNDC and X ¥ E, then X € P_.BNDC.

S T Lo v~



4 Hypothetical P_BNDC Processes

In this section we develop a proof system which allows us to build P_BNDC
processes in an incremental way. It is composed by a set of rules whose conclusion
is in the form E € HP[A], where A is a set of constants. The intended meaning
of the judgment is that E is a P_.BNDC process provided that all the constants
in A are P.BNDC. The set A plays the role of a set of assumptions: if it is
empty then E is P_.BNDC otherwise we are still working on our construction
under open hypothesis.

Definition 5 (HP[A]). Let A be a set of constants and E be a SPA process
where some of the constants in A may occur. We say that E is P_BNDC under
the hypothesis in A, denoted by E € HP[A], if E € P_.BNDC provided that all
the constants in A are P_BNDC'.

Ezample 2. Let a,b € L and let E = a.X +b.Y. It holds that E € HP[{X,Y}],
since if X and Y are P_.BNDC, then so is a.X + .Y

The rules in our proof system are suggested by the compositional properties
of P.BNDC (see Lemma 2).

Definition 6 (Core). Core is the proof system containing the following rules.

Peé&r, P isclosed (Low)

P € HP[0)
———— P €&y, Pisclosed (High)
P e HP[D]
—— X is a constant (Const)
X e HP{X}]

E € HP[A]
———  (Rest)
E\ v e HP[A]

E € HP[A]
——  (Label)
E[f] € HP[A]
E € HP[A] F € HP[B]

(Par)
E|F € HP[AU B]
E; e HP[A:] F; € HP[B;] wi € LU{r}h; € H

Ziel a;. F; + ZjeJ(hj'Fj + T.Fj) S 'H'P[Uie]Ai @] Uje]Bj] (Chmce)
E € HP[A]
——— XY E (Dey)
X € HP[A]



Theorem 2 (Correctness). The system Core is correct, i.e., if there ezists a
proof in Core which ends with E € HP[A], then E is P_.BNDC provided that all
the constants in A are P_.BNDC.

Corollary 1. If there exists a proof of E € HP[0] in Core, then E is P_.BNDC.

Notice that the system Core is not complete. One reason is that the rule
(Choice) treats only some specific situations suggested by our characterization
of Theorem 1 which can be detrmined by simple syntactic tests: for instance,

the case that E 5 F} holds whenever E LN F}; holds. We could strengthen the
rule by adding more complex tests based on bisimulation, but our purpose is
to have a proof system whose rules are completely syntactic. Note that this is
not so restrictive in the synthesis of P_.BND(C processes, while in the case of
verification it is not difficult to perform ad hoc modifications of rule (Choice).
A second source of incompleteness comes from the lack of rules for systems of
definitions which are necessary to define recursive processes. We will treat this
case in the next section.

In order to derive that a process is P_.BNDC by using Core we have to use
processes for which we are able to prove that they are in HP[A] and then provide
P_BNDC definitions for the constants in A.

Example 3. Let a,b € L and h € H. The following derivation in Core

——— (Low)
b.0 € HP[0]
(Choice)
h.b.0 + 7.b.0 € HP[]]
(Choice) ——— (Low)
a.(h.b.0 + 7.b.0) € HP[D] a.0 € HPI)) (Par)
Par

a.(h.b.0 + 7.b.0)|a.0 € HP[0]

proves that a.(h.b.0 + 7.0.0)|a.0 is P_BNDC'. While the derivation below

— (Var)
X e HP{X}]
(Choice) —— (Low)

a.X € HP{X}] b.0 € HP[0]
a.X|b.0 € HP[{X}]

proves that E = a.X [b.0 is in HP[{X }], which means that whenever we provide
a proof of the fact that X is P_.BND(C we obtain that F is P_.BNDC.

In Core there is no way to eliminate the hypothesis in the recursive defini-

tions. If X is a constant which has a definition X E, and X occurs in FE,
then we are only able to prove that X € HP[X], i.e., X is P.BNDC if X is
P_BNDC'. We will provide a more powerful system in the next section.



5 Systems of Definitions

It is possible to associate to a constant X a definition X ' £ where E may
possibly contain X as well as other constants. When we have a set of definitions

(2 @ Ey | ke K}

which mutually depend on each other we call this set system of definitions. We
consider only systems of definitions in which there is at most one definition for
each constant occurring in the system. A system of definitions is weakly guarded
if all the constants Zj,, k € K, occur only within some subexpression of the form
a.F. As an example, Z = Z is not weakly guarded. In this paper we restrict to
this class of systems of definitions since a weakly guarded system of definitions
uniquely defines, up to strong bisimulation, a process (see [21]). Given a system
of definitions S = {Z, ef Ei} ek we denote by Const(S) the set {Z | k € K}.

We have to pay attention to the transformations we apply to a system of
definitions, in order to avoid indesiderable effects. For instance, if we substitute
a subexpression of Ej with a weakly bisimilar one we may not obtain a weakly
bisimilar constant. Consider the system {X CaX + T.Y;Y Ly + ¢.Y'} and
replace 7.Y with Y obtaining the transformed system {X L X + Y;Y def
b.Y 4+ c.Y'}. In the first system X can reach, by a 7 move, a state which does not
allows a moves. This cannot be simulated (even weakly) by the constant X in the
second system. Hence the constants defined by the two systems are not bisimilar.
Nevertheless, there are transformations which preserve weak bisimulation.

def

Lemma 3. Let X = ), ;a;.E; be a definition and F' ~ Ej, for some j € I.
def

Let Y = ), ;a;. B} be a new definition where E; = E; for all i € 1,i # j and
E/=F fori=j. Then X =Y.

Next we introduce a transformation on processes which is at the basis of the
syntactic conditions in the rule we are going to define on systems of definitions.
In practice given a process E our transformation maps F into FE\,, which is a
sort of canonical form of E \ v, i.e., a process strong bisimilar to E \ v.

Definition 7 (E\,). Let v C L and E € £. We define the process E\, by
induction on the structure of E.

- E=X:E,=X\v

— E=a.E': Ifa€v then E\, =0 else B\, = a.Eiv,'

-~ E=FE+E":If E(v =0 then E\, = E{’v else if E{’v = 0 then E\, = E
else B\, = E(v + E{’v ;

E=E|E": E\, = (E'|E") \ v;

- E=E'\w: B\, = (E,) \w;

E=E[f]: By, = (B[/]) \v.

Lemma 4. Let v C L and E € £. It holds that E\, ~ E \ v.

v



Ezample 4. Consider the expression £ = a.X + h.b.Y +7.Y. Let v be such that
a,b ¢ vand h € v. We obtain E\, = a.(X \ v) +7.(Y \ v).

Ezample 5. Consider the system

def

XYh(hX+7X)+aY
Y ¥Ry + 1Y

where H = {h}. The constant X reaches with a high action £ = h.X + 7.X.
Moreover E\py = 7.(X \ H), which implies E\ H ~ 7.X ~ X. Since X reaches X
with zero 7 moves, the high transition which leads to X cannot cause problems,
hence we would like to prove that this system defines P_BNDC processes.

The following lemma allows us to syntactically determine when two constants
are such that X \ H ~ Y \ H. In this case, if X reaches Y with a high transition,
we do not have security problems since X reaches with zero 7 transition X.

def

Lemma 5. Let X,Y be two constants defined by X ' Eamdy ¥ F If

(B\o)[Y = X] = (F\,)[Y := X] then X\v ~Y\v.

The novel characterization of P.BNDC stated in Theorem 1 together with
Lemma 5 indicate to us some cases in which a high level transition out-coming
from a variable X does not compromise the security of the system. This cases
are captured by the notion of safe(X,S) introduced in the definition below. The
intuitive meaning of the set safe(X,S) is that if F' € safe(X,S), then F' can be
safely reached by X with a high transition.

Definition 8 (safe(Zy,S)). Let S = {Z, def Ei} ek be a system of definitions.
For each k € K we define the set safe(Zy,S) = UL, safe;(Zy, S) where

safe,(Zy,S) = {F | Zy = F}

safes(Zy,S) ={F | F\g = Zj\u}

safes(Zk,S) ={F | \y = 7.Zp\n}

safey(Zk, S) ={Z; | Ej\nlZx := Z;] = Ep\ulZk := Zj]}.

Example 6. Let a,b € L and h € H. Consider the system S:

X=hY +712

Y =aY

Z=1Y

W =a(hb.X+7bX)+0bY +hW
V=aV+hY

We have that YV € safe, (X, S), W € safe,(W,S) (and also W € safe, (W, S)),
and Y € safe (V,S).

Consider now the system S’ of Example 5, in this case we have that (h.X +
7.X) € safes(X,S").

10



The following lemma is useful to prove the main result of this section, i.e.,
to characterize syntactically safe systems.

Lemma 6. Let E € HP[(] be derived in Core. If E ~~ E' Y B, then B' =
E" and E"\ H ~ E" \ H.
Let E € HP[A] be derived in Core without applying the rule (Par). If E ~~

7

E' % B without using the definitions of the constants in A, then E' = E'"
and E'\ H ~ E" \ H.

Definition 9 (Safe system). Let S = {Z;, def Ei}rex be a system of defini-

tions of the form
E, = Z azkElk + Z hjk‘ij‘
(IR Jk€Jk
The system S is said to be safe if and only if for each ji, € Jy, it holds that F}, €
safe(Zy,S) and for each G in SubEx(S) = Urerx (Uiper, {Ei, } U Ujeen {Fi })
one of the following properties holds:

— Core proves G € HP[0], or
— Core proves G € HP[Ag] without applying the rule (Par), for some set Ag.

We call the set A = Ugesupe(s)Aa safety set of S (notation: Safety(S)).
Ezample 7. The system S

{ XX +7.(rY +aY) +hY

Y YhY +7.2+a(r.Z +h.2)

is safe and its safety set is {X,Y, Z}. In fact:

XAy and X = Y, hence Y € safe(X,5);

VEYandye safe(Y, S);

X and (1.Y + a.Y) and Y can be derived to be HP[{X}] and HP[{Y'}]
respectively without applying (Par);

Z and (17.Z + h.Z) can be derived to be HP[{Z}] without applying (Par).

Theorem 3. Let S = {Z; def Ey} ek be a safe system of definitions with safety

set A. Then for all k € K the constant Zy, is in HP[A\ {Zy | k' € K}].

Ezxample 8. Consider again the system of Example 7. By Theorem 3, both X
and Y belongs to HP[{Z}].

Suppose now that we want to extend the system of definitions of example

above by adding the definition Z - X +a.Y +b.7. Since we already discarded
the assumptions X and Y, we would like to be able to deduce Z € HP[(]. We
can do it if we extend the notion of safe system by relaxing the request that all
the proofs are performed in Core and allow them to be carried on in any correct
proof system for the judgenment E € HP[A] which extends Core and satisfies
Lemma 6.

11



Definition 10 (SafeSys). Let SafeSys be the system of rules obtained by adding
to Core the following rule (Sys):

GLeHP[Ag,] - GrneHP[Ag,]

S safe, Z € Const(S),{G1...Gp} = SubEx(S)
Z € HP[Safety(S)\ Const(S)]

where a system S is safe if and only if it satisfies all the conditions of Definition 9
with Core replaced by SafeSys in the two items.

Theorem 4. If there exists a proof in SafeSys which ends with E € HP[A],
then E is P_BNDC provided that the constants in A are P_BNDC.

Ezample 9. In this example we illustrate a simple derivation in the full system
SafeSys. Let a,b € L and h € H. Consider the systems

Sx = {X ¥ a.x}

Sy ={Y ¥ ny}

Sy ={Z2 % hzZ+b(X|V)}

In order to prove that Z is P_.BNDC we have to use three times the rule (Sys).

—— (Const) —— (Const)
X € HP{X}] Y e HP{Y}]
—  Sx(Sys) — Sy (Sys)
X € HP[0] Y € HP[0]
—— (Const) (Par)
Z € HP{Z}] XY € HP[0]
Sz (Sys)

Z € HP[0]

6 Example: a Process Monitor

We consider the process Access_Monitor which has been widely discussed in [10].
It is defined as a process which handles read and write requests from high and
low level users on two binary objects: a high level variable and a low level one. To
avoid information flows from high to low, two access control rules are imposed:
(1) no read up: low level users cannot read from high level object; (i7) no write
down: high level users cannot write into low level object. As a consequence, low
level users are allowed to write into both objects and read only from the low one;
conversely, high level users can read from both objects and write only into the
high one. As the objects are binary, there are only two values to read or write:
0 and 1. When an object receives a read request it returns its actual value and
resets itself in the same state; when it processes a write request it moves into
the corresponding state.

In [10], the authors develop different definitions for the process Monitor. The
aim is finding a process which is BNDC and for which this property is easy to
check. Here we show how it is easy to synthesize a P_.BNDC Monitor in SafeSys.
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Let access-read(u,x) and access_write(u,x,y) be the access requests of the
user v (v = 0 low, u = 1 high) for the object z (x = 0 low, = 1 high)
and the value y, and val(u,y) defines the values returned to the user u, where
y € {0,1,err}. All the actions that involve high level users, i.e., the ones with
u = 1 are considered high level ones.

In order to develop Access_Monitor we associate to each object x a private
monitor Monitor(z) which handles the requests to the object z in a secure way.
As it is shown in [10], if we are able to build two P_BNDC processes realizing
the two private monitors, we can then easily construct (by (Par) and (Rest)
rules) a P_BNDC process realizing Access_Monitor.

Since each object has two possible values we have to define four processes:
MO0 and M01 defining Monitor(0), M10 and M11 defining Monitor(1). For sake
of simplicity we indicate them by Mzy. To develop their (recursive) definitions,
we first assume that all of them are P_.BNDC and then we construct a safe
system of definitions whose safety set contains exactly these assumptions.

We start by considering Monitor(0) which handles the accesses to the low
level object. For both of its components, there are six different possible re-
quests, two access_read: access_read(u,0), v € {0,1}, and four access_write:
access_write(u,0,y), u,y € {0,1}.

First we consider the requests from the low level users (v = 0). Since both
read and write on the same level are allowed, the reaction of M0y are the natural
ones: on a read request it returns the correct value (y) and on a write request it
moves into the right state. In Core there are the derivations:

(Const)
MOy € HP[{M0y}]

(Const) (Choice)

Mzy € HP[{ Mzy}] val(0,y).M0y € HP[{M0y}]

The requests from the high level user (high actions), need more care. Since
high users cannot write down, the only possible reaction to the high requests
access_write(1,0,2), z € {0,1} is a reset of the actual state. As regards the
request access_read(1,0), a problem arises since the action (val(1,y)) returning
the value y to the high level user is a high action and we cannot derive in Core the

judgement access_read(1,0).val(1,y).M0y € HP[{M0y}], y € {0,1}. Note that
process access_read(1,0).val(1,y). M0y is potentially dangerous as a deadlock
could be caused since no high level user is accepting the output action val(1,y)
(see [10] for more detail on how this could be exploited to obtain an information
flow from high to low). A possible solution is suggested in [3] where a lossy
channel is introduced. Intuitively, the low level object sends the right value but
its answer might be lost. This is represented by process val(1,y). M0y + 7.M0y.
Note that now no deadlock may be caused by high activity as it is always possible

to reach M0y through an internal action. Now, in Core we can derive:

(Const)
M0y € HP[{M0y}]

(Choice)
(val(1,y).M0Oy + 7.M0y) € HP[{M0y}]

13



Summing up, to define Monitor(0) we can introduce the system of definitions:

M00 < access. read(0,0).val(0 ) Moo

+access_read(1,0). (va (1,0).M00 + 7.M00)
+access_write(0,0,0).M00
+access_write(0,0,1).M01
+access_write(1,0,0).M00
+access_write(1,0,1).M00

Mo1 access_read(0,0).val(0 ) Mo1
+access_read(1,0).(val(1,1) ( 1).M01 + 7.M01)
+access_write(0,0,0).
+access_write(0,0,1).M01
+access_write(1,0,0).
+access_write(1,0,1).

?

?

where each G € SubEx(Monitor(0)) is derivable in Core without using (Par).
In order to apply the rule (Sys) we have to prove also that the system
Monitor(0) is safe. To this aim, we have to prove that safe(M0y, Monitor(0))

contains M0y and (val(1,0). MOy+7.M0y). Both statements holds since M0y ==
Moy (safe,) and (val(1,0).M0Oy + 7.M0Oy)\g = 7.M0y (safes). Hence, we can
apply the rule (Sys) to derive that both M00 and M0I are P_BNDC.

The construction of the monitor for the high level object is similar to the
one used to derive the system of definitions for Monitor(0). It is easy to see that
each subexpression in the right sides of the following system defining Monitor(1)
is derivable in Core without using (Par).

M10 < access_read(1,1).(val(1,0).M10 + 7.M10)
+access_read(0,1).val(0, err).M10
+access-write(0, 1,0).M10
+access_write(0,1,1).M11
+access_write(1,1,0).M10
+access_write(1,1,1).M11

M11 access_read(1,1).(val(1,1).M11 + 7.M11)
+access_read(0,1).val(0, err).M11
+access_write(0,1,0).M10
+access_write(0,1,1).M11
+access_write(1,1,0).M10
+access_write(1,1,1).M11

As in the previous case we have to prove that the system is safe. To this aim
we have to prove that: safe( M1y, Monitor(1)) contains (val(1,0).M1y+7.M1y),
M1y and M1z, where z = 1 — y. The first two conditions can be treated exactly
as in the previous case. To prove the third one we need to observe that if we
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substitute M11 by M10 in both right sides of the two definitions and apply the
\# transformation we obtain in both sides the same term:

access_read(0,1).val(0, err). M10
+access_write(0,1,0).M10
+access_write(0,1,1).M10.

Hence M1z € safe,(Ml1y, Monitor(1)), thus by (Sys) we can derive that both
M10 and M11 are P_BNDC.

7 Related Works and Conclusion

In this paper we have proposed a new local characterization of P_.BNDC and a
proof system that allows us to efficiently construct and verify P_.BNDC processes.
We have shown the effectiveness of the new technique through the example of
the Access Monitor.

It is worthwhile noticing that there are many other approaches to the verifica-
tion of information flow properties. For instance, there are verification techniques
for information flow security which are based on types (see, e.g., [28,25,13,5])
and control flow analysis (see, e.g., [2,6]). However, most of them are concerned
with different models, e.g., trace semantics [15,16, 18, 19].

In this paper we follow the approach of Focardi and Gorrieri [10] and focus
on bisimulation based information flow properties. To the best of our knowl-
edge, there is only another example of a proof system for security proposed by
Martinelli in [17]. However, Martinelli’s system deals only with finite processes.
Our proof system extends [17] to the case of recursively defined processes. We
avoid the state explosion problem by exploiting the compositionality results of
P_BNDC. Indeed, if a property is preserved when secure systems are composed,
then the analysis may be performed on subsystems and, in case of success, the
system as a whole can be proved to be secure (see also [8,9,19]).
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Appendix
This Appendix contains all proofs of the results presented in the paper.

Proof of Lemma 1. The proof of this lemma is done by transition induction,
i.e., by induction on the length of the derivation of E % E' using the rules in
Figure 1 (see [21]). Let
S={(E',F")|E'Y :=X] = F'[Y = X],
where X ' £,V % F and E[Y := X] = F[Y = X]}.

We prove that S is a strong bisimulation.

Let (E',F') € S and E' % E" we have to prove that there exists F' such
that F' % F" and (E",F") € S. The proof follows by transition induction on
the inference E' % E".

— E' =a.E".Since a.E"]Y := X] = F'[Y := X], also F' admits an a transition
F' 3 F" where E"[Y := X] = F"[Y := X]. Then, (E",F") € S.

— E' = E| + E}. Assume E| = E". Since (E| + E})[Y == X] = F'lY = X],
there exists F| and Fj such that F' = F{+Fj and E{[Y = X] = F1' [Y := X].
Then, by inductive hypothesis, there exists F" such that F{ — F" and
(E",F") € S.

— E' = E{|E}. As in the previous case, there exist F] and Fj such that F' =
Fl|F;, Ej[Y = X] = F][Y := X] and E}[Y := X| = Fj|Y := X]. We
consider the case of synchronization, the other cases are similar and simpler.
Assume a = 7, Ef EA E, E} EA EY and E" = E{|EY,. Then, by inductive
hypothesis, there exist F}’, Fy' such that F} 2 F/', F, LN F), (BEY,F]") €S,
(EY,F3') € S. Hence there exists F” = FJ'|Fy', such that F' 5 F" and
(E",F") € S.

— E' = Eq\v. Similar to the previous cases.

— E' = Eq[f]. Similar to the previous cases.

— E' = Z where Z is a constant. There are only two symmetric non trivial
cases: E'=Z=Xand FF=Y or E'=Z =Y and F' = X. In both cases,
E % E" by a shorter inference, and since E[Y := X] = F[Y := X], by
inductive hypothesis, there exists F”' such that F' % F" and (E",F") € S.

a

Proof of Theorem 1. <=) Let E be a process such that for all E; reachable from
1fE1 —)EQ then F; :>E3 and EQ\H E3\H Let

S={(E;\H,(E;|II)\ H) | Il € &y is a process and E ~ E;}.

We prove that S is a weak bisimulation up to ~. We have to consider the following
cases:

— (BJII)\ H 5 (E;|II,) \ H. Since E; \ H == E; \ H, by definition of S we
have (El\H, (E,|H1) \H) €S.
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— (E;JI)\ H % (E;|IT) \ H, with | € L U {r}. Hence E; \ H 5 E; \ H and,
by definition of S, (E; \ H, (E;|II)\ H) € S.

— (E|II)\H % (E,|IT,)\ H where E; 5 E;. By hypothesis E;\ H == E; \ H
and E; \ H =~ E \ H. Hence, Ex, \ H = E; \ H S (E;|II) \ H).

— E\H % E;\H. Then, (E;|II)\H <% (E;|II)\H and (E;\H, (E;|II)\H) € S.

=) Let E be P.BNDC'. Then, for all E; reachable from E, E; € P_.BNDC'. In
particular, for all F; reachable from E and for all IT € £y, E; \ H = (E;|IT)\ H.

Suppose that E; LN E;. Let II = h. Then (E;|II)\ H 5 E; \ H. Since E; \ H ~

Proof of Lemma 2. (1) is an immediate consequence of Theorem 1.

(2) follows from Theorem 1, since if E ~» E' and E' Y E" then E' = E'
and B'\H~ 0= E"\ H.

In order to prove (3) and (4) it is sufficient to observe that if E is P.BNDC,
then so are E \ v and E[f], since the first operation does not add high level
transitions, while the second does not exchange low and high actions.

As far as (5) is concerned, it is known that if E,F € P_.BNDC, then E|F is
P_BNDC (see [10]).

We now prove (6) by using Theorem 1. Let E;,F; € P_.BNDC, with i €
I,j € J. Consider R = (3, ai-Ei + 3 ;¢ ;(hj.Fj + 7.Fj)). If R reaches R' with
at least one transition, then either there exists i € I such that E; reaches R’ or
there exists j € J such that Fj reaches R', hence R' is P_BNDC. If R reaches

E'’ with no transitions, then R’ = R, hence if R’ LN R, then there exists j € J
such that R" = F;, and R' 5 F}, so we have the thesis.
(7) immediately follows from the operational semantics of SPA terms. O

Proof of Theorem 2. We prove that all the rules in Core are correct.

The correctness of rules (Low) and (High) directly follows from Lemma 2.

Rule (Const) is trivially correct.

From Lemma 2 we have the correctness of rules (Rest), (Label), (Par),
(Choice), and (Def) in the case in which A = @. The general case follows
immediately by the definition of HP[A]. O

Proof of Lemma 3. Immediate since if X =% E; with i # j, then Y % E; and if
X B Ej then Y & F with F = E;. O

Proof of Lemma 4. By induction on the structure of E.

— E = X is a constant. It is immediate, since by definition E\, is X \ v.

— E = a.E'. By inductive hypothesis on E’ we have the thesis.

— E=E'+E'".Wehave E\v~E\v+E"\v~ E{U +E{’U. IfE{U = 0, then
E'{U + E'{’U ~ E<’v, hence we have the thesis. Similarly we obtain the thesis if

E'{’U ~ 0. In the third case we already have the thesis.
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— E=FE'|E". It is trivial.
— E=E'\w Wehave E\v~E \w\v~E\v\w~E, \w.
— E = E'[f]. It is trivial.

a
Proof of Lemma 5.
X\v ~ E\v since X & E;
~ E\, by Lemma 4;
~ F\, by Lemma 1;
~ F\v by Lemma 4;
~Y\v since ¥ & F;
a

Proof of Lemma 6. The first part of the lemma immediately follows from The-
orem 1, since if F has been proved to be HP[l] in Core, then it is P_.BNDC.

The second part follows by induction on the length of the proof E € HP[A]
in Core.

If E = P and P is a closed process and P € &£, then, since P is P_.BNDC,
by Theorem 1 we have the thesis.

If E = P and P is a closed process and P € £y then, since P is P_.BNDC,
by Theorem 1 we have the thesis.

If E= X and X € A, then we immediately get the thesis, since X reaches
only X and X does not perform high actions without using its definition.

IFE=Xand X ¢ A, then X 4 ) and Core proves that E; € HP[A], with

a shorter proof. Since X ~ E' X B if and only if Ey ~ E' Ny 5 by inductive
hypothesis on F; we have the thesis.

If E=E) \v, thenif £y \v ~ E"\v KN ol \ v by inductive hypothesis
E' = E" with E"\H ~ E"'\H , hence E' = E"'\v with E"\v\H ~ E""\v\H

If E = E;[f], as in the previous case we obtain the thesis by inductive
hypothesis.

WE=3craibi+3) ;c;(hjFj+7.F)), then if E' = E we immediately get
the thesis, otherwise we obtain it by inductive hypothesis. O

Proof of Theorem 3. By using Theorem 1 we have to prove that if Z; ~» P’ 2 pr
without applying the definitions of the constants in A\ {Z;, | k' € K}, then

7

P' = P'"" without applying the definitions of the constants in A\ {Z; |k’ € K},
with P\ H ~ P" \ H.

We proceed by induction of the number of applications of the (Definition)
rule in the semantic derivation of Z; ~ P’.

If the rule has never been applied, then P’ = Z;. If Z N P then there
exists ji such that P"" = F}, and Fj, € safe(Zy, S). Hence four cases are possible:
(1) Z = Fj,; 2) Fjou = Zings 3) Fjouw = 7-Zpm; (4) Fj, = Z; and
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EpnulZy == Zj] = EpulZr = Z;]. In case (1) we obtain the thesis since Fj, \
H =~ Fj, \ H no matter which is the definition for the constants which occur in
it. In case (2) we have that Z; reaches with zero 7 actions Z and Z \ H =~
Zig = Fj\u ~ Fj, \ H. Similarly we obtain the thesis in case (3). In case (4)
we obtain the thesis since Zj, reaches with zero 7 actions Z; and from Lemma 5
Z\H ~ Z; \ H.

If the rule has been applied exactly once, then the rule has been applied

a; hj .

to Zj in the first step, i.e. Z — E; ~ P’ b opr (or Zy =% Fj, ...) and in
the derivation of E;, ~» P’ 2 P the (Definition) rule has never been applied.
This means that E;, ~» P’ Xy p without using the definitions of the Z’s. From
Lemma 6 we have that P’ == P'" without using the definition of the Z’s and
P"\ H ~ P"\ H. This implies that P’ = P"" with P""\ H ~ P" \ H no
matter which is the definition of the Z’s. .

Let us assume that we have proved that for each k € K if Z ~ P’ — P" with

7

n applications of the (Definition) rule, then P’ = P"' with P"\ H = P""\ H.

Let Z; ~ P' % P with n + 1 applications of the (Definition) rule. This means
iy h;

that Z -8 E;, ~ Zp ~ P' 25 P"or Zj, & Fj, ~ Z, ~ P' % P" and

since the (Definition) rule has been applied once in the first step we have that

in Z, ~ P’ M P the (Definition) rule is applied at most n times. Hence by
inductive hypothesis we have the thesis. O

Proof of Theorem 4. By Theorem 3 we have that if the rule (Sys) is applied
once, then the proof is correct.

If the rule (Sys) is applied more than once, then we obtain the thesis since
Lemma 6 holds also if G has been proved to be in HP[A] by applying the rule
(Sys). This last can be proved by induction on the number of application of the
rule (Sys). |
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