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t. Persistent BNDC (P BNDC, for short) is an information-
ow se
urity property for pro
esses in dynami
 
ontexts, i.e., 
ontextsthat 
an be re
on�gured at runtime. Intuitively, P BNDC requires thathigh level intera
tions never interfere with the low level behavior of thesystem, in every possible state. P BNDC is veri�ed by 
he
king whetherthe system intera
ting with a high level 
omponent is bisimilar or notto the system in isolation. In this work we 
ontribute to the veri�
ationof information-
ow se
urity in two respe
ts: (i) we give an unwinding
ondition that allows us to express P BNDC in terms of a lo
al propertyon high level a
tions and (ii) we exploit this lo
al property in order tode�ne a proof system whi
h provides a very eÆ
ient te
hnique for thedevelopment and the veri�
ation of P BNDC pro
esses.1 Introdu
tionSystems are be
oming more and more 
omplex, and the se
urity 
ommunityhas to fa
e this by taking into a

ount new threats and potentially dangeroussituations. A signi�
ant example is the introdu
tion of pro
ess mobility amongdi�erent ar
hite
tures and systems, where an appli
ation running in a \se
ureway" inside one environment 
ould enter an \inse
ure state" while moving to adi�erent environment. In this setting, se
urity properties should 
orre
tly dealwith su
h a dynami
 nature of exe
utions.A number of formal de�nitions of se
urity properties (see, for instan
e, [1, 8,10, 15, 18, 19, 23, 26{28℄) has been proposed in the literature. Persistent BNDC(P BNDC, for short), proposed in [11℄, is a se
urity property whi
h is suitable toanalyze pro
esses in 
ompletely dynami
 hostile environments, i.e., environmentswhi
h 
an be dynami
ally re
on�gured at run-time, 
hanging in unpredi
tableways. The notion of P BNDC is based on the idea of Non-Interferen
e [12, 25,28℄ (formalized as BNDC [10℄) and requires that every state whi
h is rea
hableby the system still satis�es a basi
 Non-Interferen
e property. If this holds, oneis assured that even if the environment 
hanges during the exe
ution no mali-
ious atta
ker will be able to 
ompromise the system, as every possible rea
hablestate is guaranteed to be se
ure. In [11℄ it has been proved that P BNDC may? This work has been partially supported by the MURST proje
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be veri�ed by 
he
king whether the system intera
ting with a high level 
ompo-nent is behaviorally equivalent or not to the system in isolation, where behavioralequivalen
e is de�ned in terms of a suitable notion of weak bisimulation 1. More-over, in [3℄ it has been shown that P BNDC may also be veri�ed by 
he
kingwhether the system is weakly bisimilar to a re
ti�
ation of the system itself,whi
h makes it P BNDC. Both of these te
hniques 
an be fully automatized ifthe labelled transition system, i.e., the automata representing the operationalbehavior of the 
onsidered system, is 
omposed of a �nite number of states.In parti
ular, there exist eÆ
ient algorithms for 
he
king bisimulation equiva-len
es (see, e.g., [4, 14, 22, 7℄) whi
h are polynomial with respe
t to the numberof states and transitions of the underlying transition system. However this kindof behavioral veri�
ation often su�ers of the so-
alled state-explosion problem,i.e., the number of states in
reases exponentially with respe
t to the degree ofparallelism inside the 
onsidered system. The reason is that every interleavingamong parallel pro
esses needs to be represented.In this work we 
ontribute to the veri�
ation of information-
ow se
urityin two respe
ts: (i) we give an unwinding 
ondition that allows us to expressP BNDC in terms of a lo
al property of high level a
tions and (ii) we exploitthis lo
al property in order to de�ne a proof system whi
h provides a veryeÆ
ient te
hnique for the development and veri�
ation of P BNDC pro
esses.The unwinding 
ondition, similar to other already proposed in di�erent set-tings (see, e.g., [16, 18, 20, 24℄), requires that every high level event is \simulable"by a sequen
e of internal moves, i.e, that every time a high level event is per-formed moving the system to a state E0, a state E00 is also rea
hable (throughinternal 
omputation) whi
h is equivalent to E0 from a low level point of view,written E0 nH � E00 nH . Intuitively, if this holds no high level event h shouldbe observable by a low level user, as there always exists a low-level equivalentstate that the system may rea
h without performing h. We prove that this lo
alproperty is a ne
essary and suÆ
ient 
ondition for P BNDC.As noti
ed in [16℄, unwinding 
onditions are useful for giving eÆ
ient proofte
hniques. Indeed, we use our lo
al 
hara
terization to de�ne a proof systemwhi
h allows us to stati
ally prove that a pro
ess is P BNDC, i.e., by just in-spe
ting its syntax. State-explosion is avoided by exploiting the 
ompositionalityof P BNDC with respe
t to the parallel operator whi
h is the sour
e of the ex-ponential growing of the number of states in a system. Moreover, the systemo�ers a mean to build pro
esses whi
h are P BNDC by 
onstru
tion in an in
re-mental way. Our proof system extends the one given in [17℄ for �nite pro
esses,i.e., pro
esses that may only perform �nite sequen
es of a
tions. In parti
ular,we are able to deal also with re
ursive pro
esses whi
h may perform unboundedsequen
es of a
tions. To illustrate the e�e
tiveness of the new te
hnique, we ap-ply the proof system to the small, but non-trivial, example of an a

ess monitoralso 
onsidered in [10℄.1 In [10℄, it is shown that bisimulation-based properties are able to dete
t potential
ows due to deadlo
ks 
aused by high level a
tivity. Su
h 
ows are not revealed bysimply observing tra
es, i.e., exe
ution sequen
es.2



The paper is organized as follows. In Se
tion 2 we present some basi
 notionson the SPA language. In Se
tion 3 we re
all the P BNDC property and we givethe new unwinding 
ondition. In Se
tions 4 and 5 we introdu
e our new proofsystem and in 6 we illustrate the usefulness of it on a simple example. Finally,in Se
tion 7 we draw some 
on
lusions. All proofs are 
olle
ted in the Appendix.2 Basi
 Notions: the SPA LanguageIn this se
tion we report from [10℄ the syntax and semanti
s of the Se
urityPro
ess Algebra. The Se
urity Pro
ess Algebra (SPA, for short) [10℄ is a variationof Milner's CCS [21℄, where the set of visible a
tions is partitioned into high levela
tions and low level ones in order to spe
ify multilevel systems. SPA syntax isbased on the same elements as CCS that is: a set L of visible a
tions su
h thatL = I [ O where I = fa; b; : : :g is a set of input a
tions and O = f�a;�b; : : :g isa set of output a
tions; a spe
ial a
tion � whi
h models internal 
omputations,i.e., not visible outside the system; a 
omplementation fun
tion �� : L ! L, su
hthat ��a = a, for all a 2 L, and �� = � ; A
t = L [ f�g is the set of all a
tions.The set of visible a
tions is partitioned into two sets, H and L, of high and lowa
tions su
h that H = H and L = L. The syntax of SPA pro
esses is de�ned byE ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(L) � L [ f�g, f(H) � H [f�g, f(��) = f(�) and f(�) = � , and Z is a 
onstant whi
h must be asso
iatedto a de�nition Z def= E. Constants are useful to de�ne re
ursive systems.Intuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
ess that
an perform an a
tion a and then behaves as E; E1 +E2 represents the nonde-terministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is the parallel
omposition of E1 and E2, where exe
utions are interleaved, possibly syn
hro-nized on 
omplementary input/output a
tions, produ
ing an internal a
tion � ;E n v is a pro
ess E prevented from performing a
tions in v; E[f ℄ is the pro
essE whose a
tions are renamed via the relabelling fun
tion f .Given a �xed language L we denote by E the set of all SPA pro
esses, by EHthe set of all high level pro
esses, i.e., those 
onstru
ted over H [ f�g, and byEL the set of all low level pro
esses, i.e., those 
onstru
ted over L [ f�g,The operational semanti
s of SPA pro
esses is given in terms of LabelledTransition Systems (LTS). A LTS is a triple (S;A;!) where S is a set of states,A is a set of labels (a
tions), !� S �A� S is a set of labelled transitions. Thenotation (S1; a; S2) 2! (or equivalently S1 a! S2) means that the system 
anmove from the state S1 to the state S2 through the a
tion a. The operationalsemanti
s of SPA is the LTS (E ;A
t ;!), where the states are the terms of thealgebra and the transition relation !� E � A
t � E is de�ned by stru
turalindu
tion as the least relation generated by the inferen
e rules reported in Fig-ure 1. The operational semanti
s for a pro
ess E is the subpart of the SPA LTSrea
hable from the initial state and we refer to it as LTS (E) = (SE ;A
t ;!).3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restri
tion if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0De�nition if Z def= EZ a! E0Fig. 1. The operational rules for SPAIn the paper we use the following notations. If t = a1 � � � an 2 A
t� andE a1! � � � an! E0, then we say that E0 is rea
hable from E and write E t! E0, orsimply E  E0. We also write E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0where ( �!)� denotes a (possibly empty) sequen
e of � labelled transitions. Ift 2 A
t�, then t̂ 2 L� is the sequen
e gained by deleting all o

urren
es of �from t. As a 
onsequen
e, E â=) E0 stands for E a=) E0 if a 2 L, and forE( �!)�E0 if a = � (note that �=) requires at least one � labelled transition while�̂=) means zero or more � labelled transitions). Moreover, we say that a pro
essE is 
losed if it does not 
ontain 
onstants. Given two pro
esses E;F we writeE � F when E and F are synta
ti
ally equal.The 
on
ept of observation equivalen
e between two pro
esses is based onthe idea that two systems have the same semanti
s if and only if they 
annot bedistinguished by an external observer. This is obtained by de�ning an equivalen
erelation over E . We report here the de�nition of two observational equivalen
es:strong bisimulation and weak bisimulation [21℄. Intuitively, strong bisimulationequates two pro
esses if they mutually simulate their behavior step by step.De�nition 1 (Strong Bisimulation). A binary relation R � E �E over pro-
esses is a strong bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F a! F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E a! E0 and (E0; F 0) 2 R.4



Two pro
esses E;F 2 E are strong bisimilar, denoted by E � F , if there existsa strong bisimulation R 
ontaining the pair (E;F ).Relation � is the largest strong bisimulation and is an equivalen
e relation [21℄.Weak bisimulation is similar to strong bisimulation but it does not 
are aboutinternal � a
tions. So, when P simulates an a
tion of Q, it 
an also exe
ute some� a
tions before or after that a
tion.De�nition 2 (Weak Bisimulation). A binary relation R � E � E over pro-
esses is a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (P 0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=) E0 and (E0; F 0) 2 R.Two pro
esses E;F 2 E are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R 
ontaining the pair (E;F ).Relation � is the largest weak bisimulation and is an equivalen
e relation.Moreover, ��� [21℄.We use the notation E[Y := X ℄ to denote the pro
ess obtained by repla
ing inthe pro
ess E the 
onstant Y with the 
onstantX . The following lemma providesus a synta
ti
 way to determine when two 
onstants are strong bisimilar.Lemma 1. Let X;Y be two 
onstants de�ned by X def= E and Y def= F . IfE[Y := X ℄ � F [Y := X ℄ then E � F .3 The P BNDC Se
urity PropertyWe �rst re
all from [11℄ the Persistent Bisimulation-based Non Dedu
ibility onCompositions (P BNDC, for short) se
urity property and its 
hara
terization interms of weak bisimulation up to high level a
tions. We start by re
alling thede�nition of Bisimulation-based Non Dedu
ibility on Compositions (BNDC, forshort) [10℄. The BNDC se
urity property aims at guaranteeing that no infor-mation 
ow from the high to the low level is possible, even in the presen
e ofmali
ious pro
esses. The main motivation is to prote
t a system also from inter-nal atta
ks, whi
h 
ould be performed by the so 
alled Trojan Horse programs,i.e., programs that are apparently honest but hide inside some mali
ious 
ode.Property BNDC is based on the idea of 
he
king a system against all highlevel potential intera
tions, representing all possible high mali
ious programs. Asystem E is BNDC if for every high pro
ess � a low user 
annot distinguish Efrom (Ej�), i.e., if � 
annot interfere [12℄ with the low level exe
ution of E.De�nition 3 (BNDC). Let E 2 E be a pro
ess.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:In [11℄ it is shown that BNDC is not strong enough for systems in dynami
exe
ution environments. To deal with these situations, the property P BNDC isintrodu
ed. Intuitively, a system E is P BNDC if it never rea
hes inse
ure states.5



De�nition 4 (Persistent BNDC). Let E 2 E be a pro
ess.E 2 P BNDC i� E  E0 implies E0 2 BNDC :Example 1. Consider the pro
ess E1 � l:h:j:0 + l:(�:j:0 + �:0) where l; j 2 Land h 2 H . E1 
an be proved to be BNDC . Indeed, the 
ausality betweenh and j in the �rst bran
h of the pro
ess is \hidden" by the se
ond bran
hl:(�:j:0 + �:0), whi
h may simulate all the possible intera
tions with a highlevel pro
ess. Suppose now that E1 is moved in the middle of a 
omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexe
uted). Now it is 
lear that this pro
ess is not se
ure, as a dire
t 
ausalitybetween h and j is present. In parti
ular h:j:0 is not BNDC and this giveseviden
e that E1 is not P BNDC. The pro
ess may be \repaired" as follows:E2 � l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [11℄ it has been proven that the property P BNDC is equivalent to these
urity property SBSNNI [9, 10℄ whi
h is automati
ally 
he
kable over �nite-state pro
esses. However, this property still requires a universal quanti�
ationover all the possible rea
hable states from the initial pro
ess E. In [11℄ it hasbeen shown that this 
an be avoided, by in
luding the idea of \being se
ure inevery state" inside the bisimulation equivalen
e notion. This is done by de�ningan equivalen
e notion whi
h just fo
us on observable a
tions not belonging to H .In the following we propose another 
hara
terization of P BNDC pro
esseswhi
h allows us to express P BNDC in terms of a lo
al property of high levela
tions. This 
hara
terization re
alls the unwinding 
onditions proposed in othersettings (e.g., [16, 18, 20, 24℄). In [16℄ it is shown how unwinding 
onditions 
an beused for the veri�
ation of se
urity properties. Here we use our 
hara
terizationto prove the 
orre
tness of the proof system de�ned in the next se
tions.Theorem 1. Let E 2 E be a pro
ess.E 2 P BNDCi�if E  Ei h! Ej , then Ei �̂=) Ek and Ej nH � Ek nH.The 
lass of P BNDC pro
esses enjoys the 
ompositional properties below.Lemma 2 (Compositionality). The following properties hold:1. if E is a 
losed pro
ess in EL, then E 2 P BNDC;2. if E is a 
losed pro
ess in EH , then E 2 P BNDC;3. if E 2 P BNDC, then E n v 2 P BNDC ;4. if E 2 P BNDC, then E[f ℄ 2 P BNDC ;5. if E;F 2 P BNDC, then EjF 2 P BNDC ;6. if Ei; Fj 2 P BNDC , i 2 I and j 2 J , then Pi2I ai:Ei +Pj2J(hj :Fj +�:Fj) 2 P BNDC, where ai 2 L and hj 2 H;7. if E 2 P BNDC and X def= E, then X 2 P BNDC.6



4 Hypotheti
al P BNDC Pro
essesIn this se
tion we develop a proof system whi
h allows us to build P BNDCpro
esses in an in
remental way. It is 
omposed by a set of rules whose 
on
lusionis in the form E 2 HP[A℄, where A is a set of 
onstants. The intended meaningof the judgment is that E is a P BNDC pro
ess provided that all the 
onstantsin A are P BNDC . The set A plays the role of a set of assumptions: if it isempty then E is P BNDC otherwise we are still working on our 
onstru
tionunder open hypothesis.De�nition 5 (HP [A℄). Let A be a set of 
onstants and E be a SPA pro
esswhere some of the 
onstants in A may o

ur. We say that E is P BNDC underthe hypothesis in A, denoted by E 2 HP[A℄, if E 2 P BNDC provided that allthe 
onstants in A are P BNDC.Example 2. Let a; b 2 L and let E � a:X + b:Y . It holds that E 2 HP[fX;Y g℄,sin
e if X and Y are P BNDC , then so is a:X + b:Y .The rules in our proof system are suggested by the 
ompositional propertiesof P BNDC (see Lemma 2).De�nition 6 (Core). Core is the proof system 
ontaining the following rules.P 2 HP[;℄ P 2 EL; P is 
losed (Low)P 2 HP[;℄ P 2 EH ; P is 
losed (High)X 2 HP[fXg℄ X is a 
onstant (Const)E 2 HP[A℄E n v 2 HP[A℄ (Rest)E 2 HP[A℄E[f ℄ 2 HP[A℄ (Label)E 2 HP[A℄ F 2 HP[B℄EjF 2 HP [A [B℄ (Par)Ei 2 HP[Ai℄ Fj 2 HP[Bj ℄Pi2I ai:Ei +Pj2J (hj :Fj + �:Fj) 2 HP[[i2IAi [ [j2JBj ℄ ai 2 L [ f�g; hj 2 H(Choi
e)E 2 HP[A℄X 2 HP[A℄ X def= E (Def) 7



Theorem 2 (Corre
tness). The system Core is 
orre
t, i.e., if there exists aproof in Core whi
h ends with E 2 HP [A℄, then E is P BNDC provided that allthe 
onstants in A are P BNDC.Corollary 1. If there exists a proof of E 2 HP [;℄ in Core, then E is P BNDC.Noti
e that the system Core is not 
omplete. One reason is that the rule(Choi
e) treats only some spe
i�
 situations suggested by our 
hara
terizationof Theorem 1 whi
h 
an be detrmined by simple synta
ti
 tests: for instan
e,the 
ase that E �! Fj holds whenever E h! Fj holds. We 
ould strengthen therule by adding more 
omplex tests based on bisimulation, but our purpose isto have a proof system whose rules are 
ompletely synta
ti
. Note that this isnot so restri
tive in the synthesis of P BNDC pro
esses, while in the 
ase ofveri�
ation it is not diÆ
ult to perform ad ho
 modi�
ations of rule (Choi
e).A se
ond sour
e of in
ompleteness 
omes from the la
k of rules for systems ofde�nitions whi
h are ne
essary to de�ne re
ursive pro
esses. We will treat this
ase in the next se
tion.In order to derive that a pro
ess is P BNDC by using Core we have to usepro
esses for whi
h we are able to prove that they are inHP [A℄ and then provideP BNDC de�nitions for the 
onstants in A.Example 3. Let a; b 2 L and h 2 H . The following derivation in Coreb:0 2 HP[;℄ (Low)h:b:0+ �:b:0 2 HP [;℄ (Choi
e)a:(h:b:0+ �:b:0) 2 HP[;℄ (Choi
e) a:0 2 HP [;℄ (Low)a:(h:b:0+ �:b:0)ja:0 2 HP [;℄ (Par)proves that a:(h:b:0+ �:b:0)ja:0 is P BNDC . While the derivation belowX 2 HP[fXg℄ (V ar)a:X 2 HP [fXg℄ (Choi
e) b:0 2 HP [;℄ (Low)a:X jb:0 2 HP[fXg℄ (Par)proves that E � a:X jb:0 is in HP [fXg℄, whi
h means that whenever we providea proof of the fa
t that X is P BNDC we obtain that E is P BNDC .In Core there is no way to eliminate the hypothesis in the re
ursive de�ni-tions. If X is a 
onstant whi
h has a de�nition X def= E, and X o

urs in E,then we are only able to prove that X 2 HP[X ℄, i.e., X is P BNDC if X isP BNDC . We will provide a more powerful system in the next se
tion.8



5 Systems of De�nitionsIt is possible to asso
iate to a 
onstant X a de�nition X def= E where E maypossibly 
ontain X as well as other 
onstants. When we have a set of de�nitionsfZk def= Ek j k 2 Kgwhi
h mutually depend on ea
h other we 
all this set system of de�nitions. We
onsider only systems of de�nitions in whi
h there is at most one de�nition forea
h 
onstant o

urring in the system. A system of de�nitions is weakly guardedif all the 
onstants Zk, k 2 K, o

ur only within some subexpression of the forma:F . As an example, Z = Z is not weakly guarded. In this paper we restri
t tothis 
lass of systems of de�nitions sin
e a weakly guarded system of de�nitionsuniquely de�nes, up to strong bisimulation, a pro
ess (see [21℄). Given a systemof de�nitions S = fZk def= Ekgk2K we denote by Const(S) the set fZk j k 2 Kg.We have to pay attention to the transformations we apply to a system ofde�nitions, in order to avoid indesiderable e�e
ts. For instan
e, if we substitutea subexpression of Ek with a weakly bisimilar one we may not obtain a weaklybisimilar 
onstant. Consider the system fX def= a:X + �:Y ;Y def= b:Y + 
:Y g andrepla
e �:Y with Y obtaining the transformed system fX def= a:X + Y ;Y def=b:Y + 
:Y g. In the �rst system X 
an rea
h, by a � move, a state whi
h does notallows amoves. This 
annot be simulated (even weakly) by the 
onstantX in these
ond system. Hen
e the 
onstants de�ned by the two systems are not bisimilar.Nevertheless, there are transformations whi
h preserve weak bisimulation.Lemma 3. Let X def= Pi2I ai:Ei be a de�nition and F � Ej , for some j 2 I.Let Y def= Pi2I ai:E0i be a new de�nition where E0i � Ei for all i 2 I; i 6= j andE0i � F for i = j. Then X � Y .Next we introdu
e a transformation on pro
esses whi
h is at the basis of thesynta
ti
 
onditions in the rule we are going to de�ne on systems of de�nitions.In pra
ti
e given a pro
ess E our transformation maps E into Env , whi
h is asort of 
anoni
al form of E n v, i.e., a pro
ess strong bisimilar to E n v.De�nition 7 (Env). Let v � L and E 2 E. We de�ne the pro
ess Env byindu
tion on the stru
ture of E.{ E � X: Env � X n v;{ E � a:E0: If a 2 v then Env � 0 else Env � a:E0nv;{ E � E0 + E00: If E0nv � 0 then Env � E00nv else if E00nv � 0 then Env � E0nvelse Env � E0nv +E00nv;{ E � E0jE00: Env � (E0jE00) n v;{ E � E0 n w: Env � (E0nv) n w;{ E � E0[f ℄: Env � (E0[f ℄) n v.Lemma 4. Let v � L and E 2 E. It holds that Env � E n v.9



Example 4. Consider the expression E � a:X + h:b:Y + �:Y . Let v be su
h thata; b 62 v and h 2 v. We obtain Env � a:(X n v) + �:(Y n v).Example 5. Consider the system(X def= h:(h:X + �:X) + a:YY def= h:Y + �:Ywhere H = fhg. The 
onstant X rea
hes with a high a
tion E � h:X + �:X .Moreover EnH � �:(X nH), whi
h implies E nH � �:X � X . Sin
e X rea
hes Xwith zero � moves, the high transition whi
h leads to X 
annot 
ause problems,hen
e we would like to prove that this system de�nes P BNDC pro
esses.The following lemma allows us to synta
ti
ally determine when two 
onstantsare su
h that X nH � Y nH . In this 
ase, if X rea
hes Y with a high transition,we do not have se
urity problems sin
e X rea
hes with zero � transition X .Lemma 5. Let X;Y be two 
onstants de�ned by X def= E and Y def= F . If(Env)[Y := X ℄ � (Fnv)[Y := X ℄ then Xnv � Y nv.The novel 
hara
terization of P BNDC stated in Theorem 1 together withLemma 5 indi
ate to us some 
ases in whi
h a high level transition out-
omingfrom a variable X does not 
ompromise the se
urity of the system. This 
asesare 
aptured by the notion of safe(X;S) introdu
ed in the de�nition below. Theintuitive meaning of the set safe(X;S) is that if F 2 safe(X;S), then F 
an besafely rea
hed by X with a high transition.De�nition 8 (safe(Zk; S)). Let S = fZk def= Ekgk2K be a system of de�nitions.For ea
h k 2 K we de�ne the set safe(Zk; S) = [4i=1safe i(Zk; S) wheresafe1(Zk; S) = fF j Zk �̂=) Fgsafe2(Zk; S) = fF j FnH � ZknHgsafe3(Zk; S) = fF j FnH � �:ZknHgsafe4(Zk; S) = fZj jEjnH [Zk := Zj ℄ � EknH [Zk := Zj ℄g:Example 6. Let a; b 2 L and h 2 H . Consider the system S:8>>>><>>>>: X = h:Y + �:ZY = a:YZ = �:YW = a:(h:b:X + �:b:X) + b:Y + h:WV = a:V + h:YWe have that Y 2 safe1(X;S), W 2 safe2(W;S) (and also W 2 safe1(W;S)),and Y 2 safe4(V; S).Consider now the system S0 of Example 5, in this 
ase we have that (h:X +�:X) 2 safe3(X;S0). 10



The following lemma is useful to prove the main result of this se
tion, i.e.,to 
hara
terize synta
ti
ally safe systems.Lemma 6. Let E 2 HP[;℄ be derived in Core. If E  E0 h! E00, then E0 �̂=)E000 and E00 nH � E000 nH.Let E 2 HP [A℄ be derived in Core without applying the rule (Par). If E  E0 h! E00 without using the de�nitions of the 
onstants in A, then E0 �̂=) E000and E00 nH � E000 nH.De�nition 9 (Safe system). Let S = fZk def= Ekgk2K be a system of de�ni-tions of the form Ek � Xik2Ik aik :Eik + Xjk2Jk hjk :Fjk :The system S is said to be safe if and only if for ea
h jk 2 Jk it holds that Fjk 2safe(Zk; S) and for ea
h G in SubEx(S) = [k2K([ik2IkfEikg [ [jk2JkfFjkg)one of the following properties holds:{ Core proves G 2 HP [;℄, or{ Core proves G 2 HP[AG℄ without applying the rule (Par), for some set AG.We 
all the set A = [G2SubEx(S)AG safety set of S (notation: Safety(S)).Example 7. The system S(X def= a:X + �:(�:Y + a:Y ) + h:YY def= h:Y + �:Z + a:(�:Z + h:Z)is safe and its safety set is fX;Y; Zg. In fa
t:{ X h! Y and X �̂=) Y , hen
e Y 2 safe(X;S);{ Y h! Y and Y 2 safe(Y; S);{ X and (�:Y + a:Y ) and Y 
an be derived to be HP[fXg℄ and HP[fY g℄respe
tively without applying (Par);{ Z and (�:Z + h:Z) 
an be derived to be HP [fZg℄ without applying (Par).Theorem 3. Let S = fZk def= Ekgk2K be a safe system of de�nitions with safetyset A. Then for all k 2 K the 
onstant Zk is in HP [A n fZk0 j k0 2 Kg℄.Example 8. Consider again the system of Example 7. By Theorem 3, both Xand Y belongs to HP [fZg℄.Suppose now that we want to extend the system of de�nitions of exampleabove by adding the de�nition Z def= �:X+a:Y +b:Z. Sin
e we already dis
ardedthe assumptions X and Y , we would like to be able to dedu
e Z 2 HP [;℄. We
an do it if we extend the notion of safe system by relaxing the request that allthe proofs are performed in Core and allow them to be 
arried on in any 
orre
tproof system for the judgenment E 2 HP [A℄ whi
h extends Core and satis�esLemma 6. 11



De�nition 10 (SafeSys). Let SafeSys be the system of rules obtained by addingto Core the following rule (Sys):G12HP [AG1 ℄ � � �Gn2HP [AGn ℄Z 2 HP[Safety(S) n Const(S)℄ S safe; Z 2 Const(S); fG1 : : :Gng = SubEx(S)where a system S is safe if and only if it satis�es all the 
onditions of De�nition 9with Core repla
ed by SafeSys in the two items.Theorem 4. If there exists a proof in SafeSys whi
h ends with E 2 HP[A℄,then E is P BNDC provided that the 
onstants in A are P BNDC.Example 9. In this example we illustrate a simple derivation in the full systemSafeSys. Let a; b 2 L and h 2 H . Consider the systemsSX = fX def= a:XgSY = fY def= h:Y gSZ = fZ def= h:Z + b:(X jY )gIn order to prove that Z is P BNDC we have to use three times the rule (Sys).
Z 2 HP[fZg℄ (Const) X 2 HP[fXg℄ (Const)X 2 HP[;℄ SX(Sys) Y 2 HP[fY g℄ (Const)Y 2 HP[;℄ SY (Sys)XjY 2 HP[;℄ (Par)Z 2 HP[;℄ SZ(Sys)6 Example: a Pro
ess MonitorWe 
onsider the pro
ess A

ess Monitor whi
h has been widely dis
ussed in [10℄.It is de�ned as a pro
ess whi
h handles read and write requests from high andlow level users on two binary obje
ts: a high level variable and a low level one. Toavoid information 
ows from high to low, two a

ess 
ontrol rules are imposed:(i) no read up: low level users 
annot read from high level obje
t; (ii) no writedown: high level users 
annot write into low level obje
t. As a 
onsequen
e, lowlevel users are allowed to write into both obje
ts and read only from the low one;
onversely, high level users 
an read from both obje
ts and write only into thehigh one. As the obje
ts are binary, there are only two values to read or write:0 and 1. When an obje
t re
eives a read request it returns its a
tual value andresets itself in the same state; when it pro
esses a write request it moves intothe 
orresponding state.In [10℄, the authors develop di�erent de�nitions for the pro
ess Monitor. Theaim is �nding a pro
ess whi
h is BNDC and for whi
h this property is easy to
he
k. Here we show how it is easy to synthesize a P BNDC Monitor in SafeSys.12



Let a

ess read(u; x) and a

ess write(u; x; y) be the a

ess requests of theuser u (u = 0 low, u = 1 high) for the obje
t x (x = 0 low, x = 1 high)and the value y, and val(u; y) de�nes the values returned to the user u, wherey 2 f0; 1; errg. All the a
tions that involve high level users, i.e., the ones withu = 1 are 
onsidered high level ones.In order to develop A

ess Monitor we asso
iate to ea
h obje
t x a privatemonitor Monitor (x) whi
h handles the requests to the obje
t x in a se
ure way.As it is shown in [10℄, if we are able to build two P BNDC pro
esses realizingthe two private monitors, we 
an then easily 
onstru
t (by (Par) and (Rest)rules) a P BNDC pro
ess realizing A

ess Monitor .Sin
e ea
h obje
t has two possible values we have to de�ne four pro
esses:M00 andM01 de�ningMonitor (0),M10 andM11 de�ningMonitor (1). For sakeof simpli
ity we indi
ate them by Mxy . To develop their (re
ursive) de�nitions,we �rst assume that all of them are P BNDC and then we 
onstru
t a safesystem of de�nitions whose safety set 
ontains exa
tly these assumptions.We start by 
onsidering Monitor (0) whi
h handles the a

esses to the lowlevel obje
t. For both of its 
omponents, there are six di�erent possible re-quests, two a

ess read : a

ess read(u; 0), u 2 f0; 1g, and four a

ess write :a

ess write(u; 0; y), u; y 2 f0; 1g.First we 
onsider the requests from the low level users (u = 0). Sin
e bothread and write on the same level are allowed, the rea
tion of M0y are the naturalones: on a read request it returns the 
orre
t value (y) and on a write request itmoves into the right state. In Core there are the derivations:Mxy 2 HP[fMxyg℄ (Const) M0y 2 HP [fM0yg℄ (Const)val(0 ; y):M0y 2 HP [fM0yg℄ (Choi
e)The requests from the high level user (high a
tions), need more 
are. Sin
ehigh users 
annot write down, the only possible rea
tion to the high requestsa

ess write(1; 0; z), z 2 f0; 1g is a reset of the a
tual state. As regards therequest a

ess read(1; 0), a problem arises sin
e the a
tion (val (1; y)) returningthe value y to the high level user is a high a
tion and we 
annot derive in Core thejudgement a

ess read(1; 0):val(1; y):M0y 2 HP[fM0yg℄, y 2 f0; 1g. Note thatpro
ess a

ess read(1; 0):val(1; y):M0y is potentially dangerous as a deadlo
k
ould be 
aused sin
e no high level user is a

epting the output a
tion val(1; y)(see [10℄ for more detail on how this 
ould be exploited to obtain an information
ow from high to low). A possible solution is suggested in [3℄ where a lossy
hannel is introdu
ed. Intuitively, the low level obje
t sends the right value butits answer might be lost. This is represented by pro
ess val(1; y):M0y + �:M0y .Note that now no deadlo
k may be 
aused by high a
tivity as it is always possibleto rea
h M0y through an internal a
tion. Now, in Core we 
an derive:M0y 2 HP[fM0yg℄ (Const)(val(1 ; y):M0y + �:M0y) 2 HP [fM0yg℄ (Choi
e)13



Summing up, to de�neMonitor (0) we 
an introdu
e the system of de�nitions:M00 def= a

ess read(0; 0):val(0; 0):M00+a

ess read(1; 0):(val(1; 0):M00 + �:M00 )+a

ess write(0; 0; 0):M00+a

ess write(0; 0; 1):M01+a

ess write(1; 0; 0):M00+a

ess write(1; 0; 1):M00M01 def= a

ess read(0; 0):val(0; 1):M01+a

ess read(1; 0):(val(1; 1):M01 + �:M01 )+a

ess write(0; 0; 0):M00+a

ess write(0; 0; 1):M01+a

ess write(1; 0; 0):M01+a

ess write(1; 0; 1):M01where ea
h G 2 SubEx(Monitor(0)) is derivable in Core without using (Par).In order to apply the rule (Sys) we have to prove also that the systemMonitor (0) is safe. To this aim, we have to prove that safe(M0y ;Monitor (0))
ontainsM0y and (val (1; 0):M0y+�:M0y). Both statements holds sin
eM0y �̂=)M0y (safe1) and (val (1; 0):M0y + �:M0y)nH � �:M0y (safe3). Hen
e, we 
anapply the rule (Sys) to derive that both M00 and M01 are P BNDC .The 
onstru
tion of the monitor for the high level obje
t is similar to theone used to derive the system of de�nitions for Monitor (0). It is easy to see thatea
h subexpression in the right sides of the following system de�ning Monitor (1)is derivable in Core without using (Par).M10 def= a

ess read(1; 1):(val (1; 0):M10 + �:M10 )+a

ess read(0; 1):val(0; err):M10+a

ess write(0; 1; 0):M10+a

ess write(0; 1; 1):M11+a

ess write(1; 1; 0):M10+a

ess write(1; 1; 1):M11M11 def= a

ess read(1; 1):(val (1; 1):M11 + �:M11 )+a

ess read(0; 1):val(0; err):M11+a

ess write(0; 1; 0):M10+a

ess write(0; 1; 1):M11+a

ess write(1; 1; 0):M10+a

ess write(1; 1; 1):M11As in the previous 
ase we have to prove that the system is safe. To this aimwe have to prove that: safe(M1y ;Monitor (1)) 
ontains (val (1; 0):M1y + �:M1y),M1y and M1z , where z = 1� y. The �rst two 
onditions 
an be treated exa
tlyas in the previous 
ase. To prove the third one we need to observe that if we14



substitute M11 by M10 in both right sides of the two de�nitions and apply thenH transformation we obtain in both sides the same term:a

ess read(0; 1):val(0; err):M10+a

ess write(0; 1; 0):M10+a

ess write(0; 1; 1):M10 :Hen
e M1z 2 safe4(M1y ;Monitor(1 )), thus by (Sys) we 
an derive that bothM10 and M11 are P BNDC .7 Related Works and Con
lusionIn this paper we have proposed a new lo
al 
hara
terization of P BNDC and aproof system that allows us to eÆ
iently 
onstru
t and verify P BNDC pro
esses.We have shown the e�e
tiveness of the new te
hnique through the example ofthe A

ess Monitor.It is worthwhile noti
ing that there are many other approa
hes to the veri�
a-tion of information 
ow properties. For instan
e, there are veri�
ation te
hniquesfor information 
ow se
urity whi
h are based on types (see, e.g., [28, 25, 13, 5℄)and 
ontrol 
ow analysis (see, e.g., [2, 6℄). However, most of them are 
on
ernedwith di�erent models, e.g., tra
e semanti
s [15, 16, 18, 19℄.In this paper we follow the approa
h of Fo
ardi and Gorrieri [10℄ and fo
uson bisimulation based information 
ow properties. To the best of our knowl-edge, there is only another example of a proof system for se
urity proposed byMartinelli in [17℄. However, Martinelli's system deals only with �nite pro
esses.Our proof system extends [17℄ to the 
ase of re
ursively de�ned pro
esses. Weavoid the state explosion problem by exploiting the 
ompositionality results ofP BNDC. Indeed, if a property is preserved when se
ure systems are 
omposed,then the analysis may be performed on subsystems and, in 
ase of su

ess, thesystem as a whole 
an be proved to be se
ure (see also [8, 9, 19℄).Referen
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AppendixThis Appendix 
ontains all proofs of the results presented in the paper.Proof of Lemma 1. The proof of this lemma is done by transition indu
tion,i.e., by indu
tion on the length of the derivation of E a! E0 using the rules inFigure 1 (see [21℄). LetS = f(E0; F 0) j E0[Y := X ℄ � F 0[Y := X ℄;where X def= E; Y def= F and E[Y := X ℄ � F [Y := X ℄g:We prove that S is a strong bisimulation.Let (E0; F 0) 2 S and E0 a! E00 we have to prove that there exists F 00 su
hthat F 0 a! F 00 and (E00; F 00) 2 S. The proof follows by transition indu
tion onthe inferen
e E0 a! E00.{ E0 � a:E00. Sin
e a:E00[Y := X ℄ � F 0[Y := X ℄, also F 0 admits an a transitionF 0 a! F 00 where E00[Y := X ℄ � F 00[Y := X ℄. Then, (E00; F 00) 2 S.{ E0 � E01 + E02. Assume E01 a! E00. Sin
e (E01 + E02)[Y := X ℄ � F 0[Y := X ℄,there exists F 01 and F 02 su
h that F 0 = F 01+F 02 and E01[Y := X ℄ � F 01[Y := X ℄.Then, by indu
tive hypothesis, there exists F 00 su
h that F 01 a! F 00 and(E00; F 00) 2 S.{ E0 � E01jE02. As in the previous 
ase, there exist F 01 and F 02 su
h that F 0 =F 01jF 02, E01[Y := X ℄ � F 01[Y := X ℄ and E02[Y := X ℄ � F 02[Y := X ℄. We
onsider the 
ase of syn
hronization, the other 
ases are similar and simpler.Assume a = � , E01 b! E001 , E02 �b! E002 and E00 � E001 jE002 ,. Then, by indu
tivehypothesis, there exist F 001 ; F 002 su
h that F 01 b! F 001 , F 02 �b! F 002 , (E001 ; F 001 ) 2 S,(E002 ; F 002 ) 2 S. Hen
e there exists F 00 � F 001 jF 002 , su
h that F 0 �! F 00 and(E00; F 00) 2 S.{ E0 � E1nv. Similar to the previous 
ases.{ E0 � E1[f ℄. Similar to the previous 
ases.{ E0 � Z where Z is a 
onstant. There are only two symmetri
 non trivial
ases: E0 � Z � X and F 0 � Y or E0 � Z � Y and F 0 � X . In both 
ases,E a! E00 by a shorter inferen
e, and sin
e E[Y := X ℄ � F [Y := X ℄, byindu
tive hypothesis, there exists F 00 su
h that F a! F 00 and (E00; F 00) 2 S.utProof of Theorem 1. () Let E be a pro
ess su
h that for all E1 rea
hable fromE, if E1 h! E2 then E1 �̂=) E3 and E2 nH � E3 nH . LetS = f(Ei nH; (Eij�) nH) j� 2 EH is a pro
ess and E  Eig:We prove that S is a weak bisimulation up to�. We have to 
onsider the following
ases:{ (Eij�) nH �! (Eij�1) nH . Sin
e Ei nH �̂=) Ei nH , by de�nition of S wehave (Ei nH; (Eij�1) nH) 2 S. 17



{ (Eij�) nH l! (Ej j�) nH , with l 2 L [ f�g. Hen
e Ei nH l! Ej nH and,by de�nition of S, (Ej nH; (Ej j�) nH) 2 S.{ (Eij�)nH �! (Ej j�1)nH where Ei h! Ej . By hypothesis Ei nH �̂=) Ek nHand Ej nH � Ek nH . Hen
e, Ek nH � Ej nH S (Ej j�1) nH).{ EinH a! EjnH . Then, (Eij�)nH a! (Ej j�)nH and (EjnH; (Ej j�)nH) 2 S.)) Let E be P BNDC . Then, for all Ei rea
hable from E, Ei 2 P BNDC . Inparti
ular, for all Ei rea
hable from E and for all � 2 EH , Ei nH � (Eij�)nH .Suppose that Ei h! Ej . Let � � �h. Then (Eij�) nH �! Ej nH . Sin
e Ei nH �(Eij�) nH , Ei nH �̂=) Ek nH and Ej nH � Ek nH . utProof of Lemma 2. (1) is an immediate 
onsequen
e of Theorem 1.(2) follows from Theorem 1, sin
e if E  E0 and E0 h! E00, then E0 �̂=) E0and E0 nH � 0 � E00 nH .In order to prove (3) and (4) it is suÆ
ient to observe that if E is P BNDC ,then so are E n v and E[f ℄, sin
e the �rst operation does not add high leveltransitions, while the se
ond does not ex
hange low and high a
tions.As far as (5) is 
on
erned, it is known that if E;F 2 P BNDC , then EjF isP BNDC (see [10℄).We now prove (6) by using Theorem 1. Let Ei; Fj 2 P BNDC , with i 2I; j 2 J . Consider R � (Pi2I ai:Ei+Pj2J (hj :Fj + �:Fj)). If R rea
hes R0 withat least one transition, then either there exists i 2 I su
h that Ei rea
hes R0 orthere exists j 2 J su
h that Fj rea
hes R0, hen
e R0 is P BNDC . If R rea
hesE0 with no transitions, then R0 � R, hen
e if R0 h! R00, then there exists j 2 Jsu
h that R00 � Fj , and R0 �! Fj , so we have the thesis.(7) immediately follows from the operational semanti
s of SPA terms. utProof of Theorem 2. We prove that all the rules in Core are 
orre
t.The 
orre
tness of rules (Low) and (High) dire
tly follows from Lemma 2.Rule (Const) is trivially 
orre
t.From Lemma 2 we have the 
orre
tness of rules (Rest), (Label), (Par),(Choi
e), and (Def) in the 
ase in whi
h A = ;. The general 
ase followsimmediately by the de�nition of HP[A℄. utProof of Lemma 3. Immediate sin
e if X ai! Ei with i 6= j, then Y ai! Ei and ifX aj! Ej then Y aj! F with F � Ej . utProof of Lemma 4. By indu
tion on the stru
ture of E.{ E � X is a 
onstant. It is immediate, sin
e by de�nition Env is X n v.{ E � a:E0. By indu
tive hypothesis on E0 we have the thesis.{ E � E0+E00. We have E n v � E0 n v+E00 n v � E0nv +E00nv. If E0nv � 0, thenE0nv +E00nv � E00nv , hen
e we have the thesis. Similarly we obtain the thesis ifE00nv � 0. In the third 
ase we already have the thesis.18



{ E � E0jE00. It is trivial.{ E � E0 n w. We have E n v � E0 n w n v � E0 n v n w � E0nv n w.{ E � E0[f ℄. It is trivial. utProof of Lemma 5. Xnv � Env sin
e X def= E;� Env by Lemma 4;� Fnv by Lemma 1;� Fnv by Lemma 4;� Y nv sin
e Y def= F ; utProof of Lemma 6. The �rst part of the lemma immediately follows from The-orem 1, sin
e if E has been proved to be HP[;℄ in Core, then it is P BNDC .The se
ond part follows by indu
tion on the length of the proof E 2 HP [A℄in Core.If E � P and P is a 
losed pro
ess and P 2 EL then, sin
e P is P BNDC ,by Theorem 1 we have the thesis.If E � P and P is a 
losed pro
ess and P 2 EH then, sin
e P is P BNDC ,by Theorem 1 we have the thesis.If E � X and X 2 A, then we immediately get the thesis, sin
e X rea
hesonly X and X does not perform high a
tions without using its de�nition.If E � X and X 62 A, then X def= E1 and Core proves that E1 2 HP [A℄, witha shorter proof. Sin
e X  E0 h! E00 if and only if E1  E0 h! E00 by indu
tivehypothesis on E1 we have the thesis.If E � E1 n v, then if E1 n v  E0 n v h! E00 n v by indu
tive hypothesisE0 �̂=) E000 with E00nH � E000nH , hen
e E0 �̂=) E000nv with E00nvnH � E000nvnHIf E � E1[f ℄, as in the previous 
ase we obtain the thesis by indu
tivehypothesis.If E �Pi2I ai:Ei +Pj2J (hj :Fj + �:Fj), then if E0 � E we immediately getthe thesis, otherwise we obtain it by indu
tive hypothesis. utProof of Theorem 3. By using Theorem 1 we have to prove that if Zk  P 0 h! P 00without applying the de�nitions of the 
onstants in A n fZk0 j k0 2 Kg, thenP 0 �̂=) P 000 without applying the de�nitions of the 
onstants in AnfZk0 jk0 2 Kg,with P 00 nH � P 000 nH .We pro
eed by indu
tion of the number of appli
ations of the (De�nition)rule in the semanti
 derivation of Zk  P 0.If the rule has never been applied, then P 0 � Zk. If Zk h! P 00, then thereexists jk su
h that P 00 � Fjk and Fjk 2 safe(Zk; S). Hen
e four 
ases are possible:(1) Zk �=) Fjk ; (2) FjknH � ZknH ; (3) FjknH � �:ZknH ; (4) Fjk � Zj and19



EjnH [Zk := Zj ℄ � EknH [Zk := Zj ℄. In 
ase (1) we obtain the thesis sin
e Fjk nH � Fjk nH no matter whi
h is the de�nition for the 
onstants whi
h o

ur init. In 
ase (2) we have that Zk rea
hes with zero � a
tions Zk and Zk n H �ZknH � FjknH � Fjk nH . Similarly we obtain the thesis in 
ase (3). In 
ase (4)we obtain the thesis sin
e Zk rea
hes with zero � a
tions Zk and from Lemma 5Zk nH � Zj nH .If the rule has been applied exa
tly on
e, then the rule has been appliedto Zk in the �rst step, i.e. Zk aik! Eik  P 0 h! P 00 (or Zk hjk! Fjk : : :) and inthe derivation of Eik  P 0 h! P 00 the (De�nition) rule has never been applied.This means that Eik  P 0 h! P 00 without using the de�nitions of the Z's. FromLemma 6 we have that P 0 �̂=) P 000 without using the de�nition of the Z's andP 000 n H � P 00 n H . This implies that P 0 �̂=) P 000 with P 000 n H � P 00 n H nomatter whi
h is the de�nition of the Z's.Let us assume that we have proved that for ea
h k 2 K if Zk  P 0 h! P 00 withn appli
ations of the (De�nition) rule, then P 0 �̂=) P 000 with P 00 nH � P 000 nH .Let Zk  P 0 h! P 00 with n+ 1 appli
ations of the (De�nition) rule. This meansthat Zk aik! Eik  Zr  P 0 h! P 00 or Zk hjk! Fjk  Zr  P 0 h! P 00, andsin
e the (De�nition) rule has been applied on
e in the �rst step we have thatin Zr  P 0 h! P 00 the (De�nition) rule is applied at most n times. Hen
e byindu
tive hypothesis we have the thesis. utProof of Theorem 4. By Theorem 3 we have that if the rule (Sys) is appliedon
e, then the proof is 
orre
t.If the rule (Sys) is applied more than on
e, then we obtain the thesis sin
eLemma 6 holds also if G has been proved to be in HP[A℄ by applying the rule(Sys). This last 
an be proved by indu
tion on the number of appli
ation of therule (Sys). ut
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