
J. LOGIC PROGRAMMING 1994:19, 20:1{679 1AUTOMATED VERIFICATION OF PROLOGPROGRAMSBAUDOUIN LE CHARLIER, CHRISTOPHE LECL�ERE,SABINA ROSSI AND AGOSTINO CORTESI. Although Prolog is (still) the most widely used logic language, it su�ersfrom a number of drawbacks which prevent it from being truely declarative.The non declarative features such as the depth-�rst search rule are never-theless necessary to make Prolog reasonably e�cient. Several authors haveproposed methodologies to reconcile declarative programming with the al-gorithmic features of Prolog. The idea is to analyse the logic program withrespect to a set of properties such as modes, types, sharing, termination,and the like in order to ensure that the operational behaviour of the Pro-log program complies with its logic meaning. Such analyses are tedious toperform by hand and can be automated to some extent.This paper presents a state-of-the-art analyser which allows one to integratemany individual analyses previously proposed in the literature as well asnew ones. Conceptually, the analyser is based on the notion of abstractsequence which makes it possible to collect all kinds of desirable infor-mation, including relations between the input and output sizes of terms,multiplicity, and termination. /1. INTRODUCTIONDeclarative and logic languages allow the programmer to concentrate on the de-scription of the problem to be solved and to ignore low level implementation de-tails. Nevertheless, their implementation remains a delicate issue: since e�ciencyis a major concern for most applications, \real" declarative languages often devi-ate from the declarative paradigm and include additional \impure" features, whichare intended to improve the e�ciency of the language but often ruin its declar-ative nature. This is what happens in logic programming with Prolog, which isAddress correspondence to Baudouin Le Charlier, Institut d'Informatique, University of Na-mur, 21 rue Grandgagnage, B-5000 Namur, Belgium. E-mail: ble@info.fundp.ac.beTHE JOURNAL OF LOGIC PROGRAMMINGc
 Elsevier Science Inc., 1994655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

2 characterized by an incomplete (depth-�rst) search rule, a non logical negation (byfailure), and a number of non logical operations such as the test predicates (e.g.,var) and the cut. In order to improve on this situation di�erent approaches havebeen investigated in the recent years. In particular,� static analyses, mainlybased on abstract interpretation, have been developedaiming at optimizing Prolog programs, relieving the programmer from usingimpure control features [47, 56];� new languages have been de�ned, like Mercury [61], that improve on decla-rativeness; e�ciency is kept by asking the programmer to specialize its codewith mode and type declarations.In this paper, we look at the problem from a di�erent perspective. Instead ofbeen targeted towards optimizations, we follow the approach depicted in [54] andwe show how Prolog program veri�cation (a very demanding software engineeringtask) may bene�t from techniques of static analysis [19], as recently pointed out ina more abstract setting also by [36, 50].The aim of this work is to introduce a tool to verify that a non declarative imple-mentation of a program (a Prolog code) in fact behaves according to its declarativemeaning (a declarative speci�cation given by the user). This veri�cation processcan be used also to transform a �rst (declaratively but not operationally correct)version of a program into a both declaratively and operationally correct version.In order to de�ne such a veri�er, we greatly bene�t from works on static analy-sis of Prolog programs. The analyser presented here is general enough to integratemost automatable analyses previously described in the literature. The design of theanalyser is based on the methodology of abstract interpretation, where informationprovided by the user is used instead of performing a �xpoint computation. It couldbe integrated in a programming environment to check the correctness of Prolog pro-grams and/or to derive e�cient Prolog programs from purely logic descriptions [37].Moreover, since the information provided by the user is certi�ed by the system, itcan be also used by a compiler to optimize the object code. Even though the sameideas may be applied to any other declarative language, it is clear that the currentproposal speci�cally applies to Prolog, which is "de facto" the standard languageof the logic programming paradigm. This makes somehow incomparable our con-tribution with respect to works that follow a completely di�erent philosophy, likethe ones on Mercury [61].In order to put our contribution in perspective, we �rst discuss the main require-ments for a uni�ed (abstract) semantic framework.1.1. A Complex Analysis, Based on a Number of Abstract DomainsThe nature of the information useful for the various applications of logic and Prologprogram analyses is nowadays well identi�ed. Nevertheless, no previous frameworkwas able to incorporate all kinds of information in a single analysis. Althoughsome authors prefer to decompose a complex analysis into a series of simpler andindependent ones [3], we follow the spirit of [16] where the bene�ts of combining do-mains are properly discussed. Let us summarize the information the most relevantfor logic programs that is integrated in our analyser.

3� Determinacy and cardinality information models the number of solutions toa procedure and is useful for optimizations, like dead code elimination, andautomatic complexity analysis [29].� Mode information describes the instantiation level of program variables atsome program point. Groundness (\is a variable bound to a ground term?")and freeness (\is a variable either uninstantiated or an alias of other vari-ables?") are the most interesting situations to detect since they allow forvarious forms of uni�cation specialization. Groundness is also essential forensuring a safe use of negation by failure and is instrumental for determi-nacy analysis. Freeness is useful to detect sure success of uni�cation, whichis required by some optimizing transformations and improves the precisionof a cardinality analysis.� Sharing information expresses that the terms bound to di�erent programvariables may (or may not) contain occurrences of the same (free) variable.This kind of information is needed to ensure that uni�cation is occur-checkfree, and to improve the precision of mode analysis.� Term size information states relationships between the size of the termsbound to di�erent program variables. It is useful for termination analysis.� Type information de�nes an approximation to the set of terms that can bebound to a program variable. It allows one to re�ne most analyses andoptimizations based on modes. In a veri�cation context, type informationis inferred to ensure that procedures are correctly called and/or producewell-typed results. Type information is instrumental for term size analysis.Mode, sharing, term size, and type information can easily be expressed withinclassical abstract interpretation frameworks based on the abstract substitution no-tion such as [10, 47, 48]. Other kinds of information cannot be expressed withinclassical abstract interpretation frameworks because the latter ignore importantoperational aspects of Prolog such as the depth-�rst search rule and the di�erencebetween failure and non termination. Thus, for instance, information about de-terminacy and termination is in general derived within speci�c frameworks moredirectly based on the operational semantics of Prolog. Nevertheless, such analysesmay bene�t from mode, term size, and type information and thus often assumethat a preliminary analysis based on abstract interpretation has been performed.>From the previous discussion it should be clear that a complete analyser ofProlog programs should be based on an integrated framework. This is preciselywhat we propose in this paper.1.2. Contribution of this Paper.The main contributions of this paper can be summarized as follows.1. We introduce a novel notion of abstract sequence which models sets of pairsof the form h�; Si, where � and S denote an (input) substitution and thesequence of answer substitutions resulting from executing a clause, a goal,or a procedure with this input. Abstract sequences make it possible to relatethe number of solutions and the size of output terms to the size of input termsin full generality. For instance, we can relate the input and ouput sizes of thesame term (i.e., bound to the same program variable) without requiring any

4 invariance under instantiation. To the best of our knowledge, such generalitywas not available in previous frameworks for term size analysis.2. We provide a complete description of an analyser of Prolog procedures whichintegrates all previously mentioned analyses in a single, more powerful, one.The analyser does not perform a �xpoint computation but instead it veri�esthe correctness of the program with respect to a set of abstract descriptionsprovided by the user. Such descriptions are called behaviours and consist ofabstract sequences and size expressions which must strictly decrease throughrecursive calls (the analyser only accepts terminating procedures). For thesake of simplifying the presentation, we only consider a single built-in oper-ation, namely uni�cation, and we do not treat the cut nor the negation. Weexplain in the conclusion of the paper how to overcame these simpli�cations.3. We describe a generic domain of abstract sequences whose elements havethe form h�in ; �ref ; �out ; Eref out ; Esoli, where �in describes a set of inputsubstitutions, �ref is a re�nement of �in modelling the input substitutionsleading to a successful execution, �out describes the set of output substitu-tions, Eref out is a set of constraints between the size of the terms in �refand the size of the terms in �out , Esol is a set of constraints between the sizeof terms in �ref and the number of solution. The introduction of �ref allowsus to improve the accuracy of Eref out and Esol, as constraints have only todeal with successful executions. Note that abstract sequences can be seenas a way to abstract a trace-based semantics into relations, in the spirit of[22].4. We instantiate the generic domain by �xing a particular domain of abstractsubstitutions (for the �'s) and a particular domain of constraints (for theE's). The domain of abstract substitution is an improvement of the domainPattern [47, 55] extended with a type component. The domain of con-straints consists of sets of integer linear equalities and inequalities. Noticethat we only consider integer linear expressions for size expressions. Basedon this instantiation, we describe the (high level) implementation of the mainabstract operations.1.3. Plan of the Paper.The rest of the paper is organized as follows: Section 2 provides an overview of thefunctionalities of the analyser on a simple example. Section 3 contains a completedescription of our domain of abstract sequences. The analyser is described in Sec-tion 4. Section 5 details the implementation of two main operations of the analyserin the context of the chosen abstract domain. Section 6 discusses related works.Section 7 concludes.2. INFORMAL OVERVIEW: A SAMPLE ANALYSIS2.1. Speci�cation of Operational Properties of a ProcedureConsider the procedure select/3 of which both the usual Prolog code and itsnormalized version are depicted in Figure 2.1; the latter is the one to which theanalyser actually applies and is annotated by its program points for the sake of the

5presentation. Declaratively, the procedure select/3 de�nes a relation select(X, L,LS), between three terms, that holds if and only if the terms L and LS are listsand LS is obtained by removing one occurrence of X from L. Note that, declara-tively, the type checking literal list(T) is needed to express that the relation doesnot hold if L and LS are not lists. Our analyser checks a number of operationalproperties which ensure that Prolog actually computes the speci�ed relation, as-suming that the procedure is \declaratively" correct. In fact, it is not the case thatthe procedure is correct for all possible calls. So, we restrict our attention to oneparticular and reasonable class of calls, i.e., calls such that X and LS are distinctvariables and L is any ground term (not necessarily a list).1For this class of calls,the user has to provide a description of the expected behaviour of the procedureby means of the formal speci�cation depicted in Figure 2.2. In order to explain themeaning of such a speci�cation, we view the (concrete) semantics of the procedureselect/3 as a (total) function that maps every (input) substitution � such thatdom(�) = fX; L; LSg to a sequence S of (output) substitutions over the same domain.According to this viewpoint, the formal speci�cation describes 1) the set of all inputsubstitutions � considered acceptable (i.e., the class of calls to be analysed) and 2)(an over-approximation of) the set of all pairs h�; Si such that � is an acceptableinput substitution and S is the corresponding sequence of output substitutions.The in part of the formal speci�cation of select/3 states that the acceptableinput substitutions � are exactly those such that X� and LS�2are distinct variablesand L� is any ground term. The fact that X and LS are distinct is expressed bythe absence of any possible sharing information in the in part.The ref part of the speci�cation is a re�nement of the in part; it gives proper-ties shared by all acceptable input substitutions � that lead to at least one result,i.e., such that S has at least one element. In this case, the ref part indicates thatthe execution succeeds at least once only if L is a non empty list. The informationprovided by this part is essential both to simplify the analysis of a procedure andto improve its precision: we can treat separately executions that fails and thus givemore precise information between the input and output substitutions for execu-tions that succeed.3Occurrences of the symbol \ " in this part of the speci�cationmeans that the information about the corresponding argument cannot be re�nedwith respect to the in part. More generally, the user is allowed to omit from thespeci�cation all pieces of information which can be inferred from another part.The out part of the speci�cation provides information about output substitutions(i.e., the elements of S). In this case, it indicates that X will become a ground termand that LS will become a ground list.The srel and sexpr parts of the speci�cation are useful to prove termination andto predict the number of solution to a call. The meaning of these parts presupposesthe notion of size of a term. In this paper, we assume that it is given by the list-length norm, which is de�ned by jj[t1jt2]jj = 1 + jjt2jj and jjtjj = 0 if t is not of the1Operationally, the literal list(T) could be removed if we further restrict the class of callsby requiring that L is a ground list. This fact can be deduced automatically by our analyser.However, for the sake of demonstrating the functionalities of the analyser, it is interesting toconsider a more general class of calls where L is any ground term.2To simplify the notations, we abusively denote X�, L�, and LS� by X, L and LS.3In fact, the ref part does not always describe exactly the set of inputs that succeed, sincethis would require to solve an undecidable problem. But it does when the srel part ensures thatthere is at least one solution, which is the case for select/3.

6 form [t1jt2].4Based on this norm, the sexpr part of the speci�cation describes a positive inte-ger linear function of the input terms sizes, which must decrease through recursivecalls. In this case, it is just the size of L. This information is used to prove thatthe execution terminates for all calls described by the in part. Moreover, the srelpart of the speci�cation describes a relation between the sizes of input terms andthe sizes of output terms and a relation between the sizes of input terms and thenumber of solutions to the call. In this case, it says that the input size of L isalways equal to the output size of LS plus 1 and that the number of solutions (i.e.,the length of S) is equal to the input size of L. Two points are worth to be clari�edhere. First, we can see that the ref part allows us to state precise informationabout the number of solutions. (If L is a ground term but not a list, the numberof solution is 0. Thus without the re�ned information about successful inputs, wecould only state 0<=sol<=L in, since we only consider linear (in)equations betweenthe sizes of terms.) Second, let us stress that the srel part does not describe aso-called interargument relation (as, e.g., in [30]) but a relation between the sizes ofinput and output terms. In this example, both approaches are equivalent since L isinitially ground. In general however, our approach is more powerful because we donot need to restrict to rigid terms (i.e., whose size is invariant under instantiation)as we di�erentiate the input and output sizes of the terms. However our approachis also computationally more expensive since it potentially doubles the number ofvariables in the (in)equations.2.2. Abstract SequencesTechnically, the �rst �ve parts of a speci�cation de�ne a mathematical object calledan abstract sequence. The semantics of abstract sequences is de�ned in Section3.3.2. In order to give an informal overview of our analyser, we present the abstractsequences corresponding to the speci�cations of select/3 and list/1, as they areprinted out by the analyser, in Figure 2.3. Abstract sequences contain the sameinformation as the corresponding speci�cations but the information is expressedin a form better suited for de�ning and implementing abstract operations. We useabstract substitutions from the generic domain Pat(<) [16, 47] instantiated to mode,type, and possible sharing information. In this abstract domain, the informationis expressed on indices, not directly on the procedure variables. Indices representterms bound to the program variables or subterms of those terms. For instance,the abstract substitution beta ref of the abstract sequence B select characterizesa set of substitutions � as follows: the sv component binds the program variablesX, L, and LS to the indices 1,2, and 3, which represent the terms t1, t2, and t3respectively bound to X, L, and LS in �. The frm component states that the term t2is of the form [t4jt5]. The mo(de) component states that t1 and t3 are variables andthat t2, t4, and t5 are ground terms. The ty(pe) component provides informationabout the types of terms. In this paper, we treat types in a rather simpli�ed wayas we consider only three types, namely list (lists), anylist (all terms which canbe instantiated to a list), and any (all terms). This restricted \type system" is4This choice is rather restrictive and related to the fact that we concentrate on lists manipu-lating programs. Nevertheless, the presentation of the analyser in the rest of the paper is largelygeneric. Thus, it will become clear later on that more general size notions can be used.

7su�cient to deal with simple lists manipulating programs.The terms t1 and t3 havetype anylist because they are variables. The ps component consists of the pairs ofindices of terms that may share a variable. Since the pair (1,3) does not belong tops, t1 and t3 are distinct variables. Let us now turn to the components E ref outand E sol of the abstract sequence. The �rst one relates the sizes of terms in aninput substitution to the sizes of terms in the corresponding output substitutions.Terms are represented by indices, but as the same indices can be used in beta refand beta out, we express the relation on the \disjoint union" of the two sets.The functions in ref and in out maps the original indices to their image in thedisjoint union. Many equality constraints between terms can be derived from thecomponents mo and frm of beta ref and beta out and from the correspondencebetween the indices. Those constraints are not represented in E ref out. Only\essential" constraints are represented. In this case, it is su�cient to state thatsz(8)=sz(5) which means that the output size of LS is equal to the input size ofthe tail of L. Finally, the component E sol de�nes the constraints on the numberof solutions. As for the previous component we choose to express the constraintsin terms of the \elementary" indices, whose principal functor is unknown.2.3. Description of a Successful AnalysisThe analysis of the procedure select/3 according to the above speci�cation workson the normalized version of the procedure given in the second part of Figure 2.1.We have annotated the procedure with natural numbers identifying its \programpoints." The �rst work of the analyser precisely consists of attaching an abstractsequence B i to every program point i . We now provide a trace of the execution.5Tounderstand the trace, it is worth pointing out that every abstract sequence B idescribes (possibly an over-approximation of) the set of pairs h�; Si such that �is described by beta in and S is the set of output substitutions produced by theliterals of the clause before the program point i . The analysis ignores the nextliterals in the clause and is thus compositional (contrary to SLD-resolution). The�rst abstract sequence is the following:=============================== B_1 =================================beta_ref: sv = {X->1,L->2,LS->3}; frm = {}mo = {1->var,2->ground,3->var}ty = {1->anylist,2->any,3->anylist}ps = {(1,1),(3,3)}beta_out: sv= {X->1,L->2,LS->3,H->4,T->5}; frm = {}mo = {1->var,2->ground,3->var,4->var,5->var}ty = {1->anylist,2->any,3->anylist,4->anylist,5->anylist}ps = {(1,1),(3,3),(4,4),(5,5)}E_ref_out = {}E_sol = {sol=1}5For space reasons, only essential changes are depicted. The hidden parts of every abstractsequence are thus identical to those of the abstract sequence relative to the preceding programpoint. For instance, no abstract substitution beta in is depicted, since it is the same in all abstractsequences.

8 The abstract substitution beta ref is identical to beta in because the head ofthe clause is uni�able with any call since it contains distinct variables. Similarly,beta out is obtained by extending beta in with information about the local vari-ables H and T. Since they are brand-new, their mode, type, and sharing informationis obviously obtained. All size constraints between terms can be inferred by estab-lishing a correspondence between the indices of beta ref and those of beta out,thus the component E ref out is empty since we only depict \essential" constraints.Finally, the component E sol expresses that the uni�cation of the head of the clausesucceeds exactly once.The �rst three literals in the clause are uni�cations. They result in the followingabstract sequences:=============================== B_2 =================================beta_ref: frm = {2->[4|5]}mo = {...,4->ground,5->ground}ty = {...,4->any,5->any}beta_out: frm = {2->[4|5]}mo = {...,4->ground,5->ground}ty = {...,4->any,5->any}=============================== B_3 =================================beta_out: sv= {X->1,...,H->1,T->4}; frm = {2->[1|4]}mo = {1->ground,...,4->ground}ty = {1->any,...,4->any}ps = {(3,3)}=============================== B_4 =================================beta_out: sv= {...,LS->3,...,T->3}; frm = {2->[1|3]}mo = {...,3->ground}ty = {...,3->any}ps = {}The �rst uni�cation L=[H|T] succeeds if and only if L is a ground term of the form[tjt0] because H and T are distinct variables as speci�ed by the components mo andps of B 1. Thus, in B 2, the analyser updates the frm component of beta ref andbeta out with the structural information about L. Importantly, the componentE sol is not modi�ed because uni�cation succeeds for all terms L of the form [tjt0].The next two uni�cations H=X and LS=T both surely succeed because X and LS aredistinct variables as indicated by the components mo and ps of B 2. The result ofthe uni�cation is recorded by mapping corresponding variables to the same index,in the sv component.The literal list(T) is then analysed by means of the abstract sequence B list(see Figure 2.3). Since T is now a ground term, the call is compatible with thecomponent beta in of the abstract sequence. Thus, the analyser infers that thecall succeeds if and only if T is a list, and that it succeeds exactly once. Thisinformation is recorded in B 5 as follows:=============================== B_5 =================================beta_ref: ty = {...,2->list,...,5->list}beta_out: ty = {...,2->list,3->list}The �nal abstract sequence for the �rst clause is obtained by removing the localvariables from the sv component. The abstract sequence B 6 is thus:

9=============================== B_6 =================================beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4|5]}mo = {1->var,2->ground,3->var,4->ground,5->ground}ty = {1->anylist,2->list,3->anylist,4->any,5->list}ps = {(1,1),(3,3)}beta_out: sv= {X->1,L->2,LS->3}; frm = {2->[1|3]}mo = {1->ground,2->ground,3->ground}ty = {1->any,2->list,3->list}ps = {}E_ref_out = {}E_sol = {sol=1}We now consider the second clause. Since the treatment of the �rst two uni-�cations is similar to the treatment of uni�cations in the �rst clause, we directlyprovide the abstract sequence B 9 corresponding to the program point just beforethe recursive call:=============================== B_9 =================================beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4|5]}mo = {1->var,2->ground,3->var,4->ground,5->ground}ty = {1->anylist,2->any,3->anylist,4->any,5->any}ps = {(1,1),(3,3)}beta_out: sv= {X->1,L->2,LS->3,H->4,T->5,TS->6}frm = {2->[4|5],3->[4|6]}mo = {1->var,2->ground,3->ngv,4->ground,5->ground,6->var}ty = {1->anylist,2->any,3->anylist,4->any,5->any,6->anylist}ps = {(1,1),(3,3),(6,6)}E_ref_out = {}E_sol = {sol=1}Since we want to prove termination of the procedure, the analyser �rst checks thatthe size expression (provided by the sexpr part of the speci�cation) is smallerfor the recursive call than for the initial call, i.e., that the size of T is smallerthan the initial size of L. This can be deduced from the \implicit" constraints ofE ref out obtained by mapping the indices of beta ref to those of beta out and byreasoning on the structural information and the modes. Next, the analyser checksthat the information given by beta out about the actual parameters X, T, and TSis compatible with the component beta in of B select, which is the case, since Xand TS are distinct variables and T is a ground term. Thus, the analyser may usethe information from B select to update B 9. The following abstract sequence isobtained:=============================== B_10 ===============================beta_ref: frm = {...,5->[6|7]}mo = {...,6->ground,7->ground}ty = {...,2->list,...,5->list,6->any,7->list}beta_out: frm = {...,5->[7|8]}mo = {1->ground,...,3->ground,...,6->ground,7->ground,8->ground}ty = {1->any,2->list,3->list,...,5->list,6->list,7->any,

10 8->list}ps = {}in_ref = {1->1,2->2,3->3,4->4,5->5,6->6,7->7}in_out = {1->8,2->9,3->10,4->11,5->12,6->13,7->14,8->15}E_ref_out = {sz(13)=sz(7)}E_sol = {sol=sz(7)+1}It is intuitively clear that all the information contained in B 10 can be deduced bymapping the indices of the components of B 9 to those of B select and reexpressingthe information in B select on the indices of B 9. Technically, this is done by meansof operations called constraint mappings, which are described in Section 5.2.1. The�nal abstract sequence for the second clause is obtained by removing the localvariables from the component sv:=============================== B_11 ================================beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4|5],5->[6|7]}mo = {1->var,2->ground,3->var,4->ground,5->ground,6->ground,7->ground}ty = {1->anylist,2->list,3->anylist,4->any,5->list,6->any,7->list}ps = {(1,1),(3,3)}beta_out: sv= {X->1,L->2,LS->3}; frm = {2->[4|5],3->[4|6],5->[7|8]}mo = {1->ground,2->ground,3->ground,4->ground,5->ground,6->ground,7->ground,8->ground}ty = {1->any,2->list,3->list,4->any,5->list,6->list,7->any,8->list}ps = {}in_ref = {1->1,2->2,3->3,4->4,5->5,6->6,7->7}in_out = {1->8,2->9,3->10,4->11,5->12,6->13,7->14,8->15}E_ref_out = {sz(13)=sz(7)}E_sol = {sol=sz(7)+1}The next task of the analyser is to combine the abstract sequences B 6 and B 11to compute an abstract sequence B final describing the global behaviour of theprocedure.6Its components beta ref and beta out are computed from those ofB 6 and B 11 by a least upper bound operation (which is classical for this kind ofabstract substitutions, see [16, 47]).The �nal component E ref out is computed in two steps: �rst, the (in)equationsof the components E ref out of B 6 and B 11 are reexpressed in terms of the indicesof B final; second, the least upper bound (i.e., geometrically, the convex hull) ofthe two sets of (in)equations is computed. In the �rst step, both \implicit" and\essential" (in)equations of B 6 and B 11must be taken into account because part ofthe structural information contained in B 6 and B 11 is removed from B final. Asa consequence, previously \implicit" equations can become \essential" in B final.For instance, we obtain two \essential" equations from B 6: sz(4) = sz(6) andsz(5) = sz(8). These equations express that the �nal value of X (i.e., t6) and LS(i.e., t8) have the same size as the �rst element (i.e., t4) and the tail (i.e., t5) of L.6It happens that the abstract sequence B final is identical to B select in this case. Thus thereader should look at Figure 2.3 to understand the next steps of the discussion.

11The information that we actually have t4 = t6 and t5 = t8 is lost due to the weakerstructural information of B final. From the abstract sequence B 11, we obtain the\essential" (in)equations sz(5) = sz(8) and sz(5) >= 1. In the second step, itis more e�cient to compute the least upper bound on the \essential" (in)equationsonly, since the convex hull is a computationally expensive operation. In this case,we obtain a single equation: sz(5) = sz(8).The �nal component E sol is also an upper bound of two systems of linear(in)equations reexpressed on the indices of the component beta ref of B final.The �rst system corresponds to the case where both clauses succeed, i.e., the casewhere L contains at least two elements. Introducing two new symbols to denotethe number of solutions of the two clauses, we obtain the system:sol = sol1+sol2, sol1 = 1, sol2 = sz(5), sz(5) >= 1.Eliminating sol1 and sol2, the system reduces tosol = sz(5)+1, sz(5) >= 1.The second system corresponds to the case where only the �rst clause succeeds. Itcan be deduced by comparing the components beta ref of B 6 and B 11 that thisis possible only if L consists of a single element. The corresponding system is:sol = 1, sz(5) = 0.Obviously, the convex hull of the two systems is given by the single equation sol= sz(5)+1 (implicitly, all sizes are greater or equal to 0).The very last step of the analysis consists of verifying that the informationcontained in the abstract sequence B final implies (is at least as precise as) theinformation contained in the formal speci�cation (i.e., in B final). In this case,the veri�cation is immediate since the two are equal.2.4. An Unsuccessful AnalysisIt should be clear from the previous explanations that all the information givenin the speci�cations and recorded in the abstract sequences is essential and mustbe fully exploited to obtain a successful analysis. For instance, let us remove thecondition that X and LS initially are distinct variables. This should be expressedby adding the information ps:(X,LS) in the in part of the speci�cation. The com-ponent ps of beta in thus becomes f(1,1),(1,3),(3,3)g. In the �rst clause, theuni�cation H=X still surely succeeds but since the indices 1 and 3 \may share", itgives the mode gv (ground or variable) to the index 3. Now, since LS is possiblyground, the system is unable to prove that the uni�cation LS=T surely succeeds.The component E sol of B 4 is thus fsol <= 1g instead of fsol = 1g. As a con-sequence, the analyser is globally unable to prove that the number of solutionsis equal to the size of L. It is however possible to obtain a successful analysis byrelaxing the srel part of the speci�cation tosrel(L_ref = LS_out + 1, sol <= L_ref).3. ABSTRACT DOMAINSIn this section, we present a simpli�ed description of the abstract domains usedby our analyser (a more complete presentation can be found in [43]). Section 3.2describes our domain of abstract substitutions. This part is classical. Section 3.3 isnovel: it presents our domain of abstract sequences. Finally, Section 3.4 de�nes the

12 notion of behaviour, which formalizes the notion of formal speci�cation introducedin Section 2, i.e., the full package of information provided (for veri�cation) by theuser to the system.3.1. PreliminariesThe reader is assumed to be familiar with the basic concepts of logic programmingand abstract interpretation (see [21, 51]).Terms, Indices and Norms. We denote by T the set of all terms, and by I(possibly subscripted or superscripted) a set of indices; in particular, we assumethat I is a �nite subset of N. T I is the set of all tuples of terms htiii2I and T �I isthe set of all \frames" of the form f(i1; : : : ; in) where f is a functor of arity n andi1; : : : ; in 2 I. A size measure, or norm, is a function jj � jj : T !N, see [8, 26, 65].In this paper, we always refer to the list-length measure presented in Section 2.Substitutions. A program substitution � is a �nite set fXi1=t1; : : : ; Xin=tngwhere Xi1 ; : : : ; Xin are distinct program variables and the ti's are terms. Variablesoccurring in t1; : : : ; tn are taken from the set of standard variables which is disjointfrom the set of program variables. The domain of �, denoted by dom(�), is theset of variables fXi1 ; : : : ; Xing. A standard substitution � is a substitution in theusual sense which only uses standard variables. The application of a standardsubstitution � to a program substitution � = fXi1=t1; : : : ; Xin=tng is the programsubstitution �� = fXi1=t1�; : : : ; Xin=tn�g. We say that �1 is more general (or lessprecise) than �2, noted �2 � �1, i� there exists � such that �2 = �1�. We denotethe set of standard substitutions that are a most general uni�er of t1 and t2 bymgu(t1; t2). The restriction of � to a set of variables D � dom(�), denoted by �=D,is such that dom(�=D) = D and Xi� = Xi(�=D), for all Xi 2 D.Substitution Sequences. A program substitution sequence S is a �nite sequence< �1; : : : ; �n > (n � 0) where the �i are program substitutions with the samedomain D. D is also the domain of S, denoted by dom(S). We denote by < >the empty sequence. Subst (S) is the set of all substitutions which are elementsof S. SSeq is the set of all program substitution sequences. The restriction ofS to D � dom(S), denoted by S=D, is the sequence obtained by restricting each� 2 Subst(S) to D. The symbol :: denotes sequence concatenation.3.2. Abstract SubstitutionsThe domain of abstract substitutions we consider is a simple extension (with typeinformation) of the domain Pattern presented in [47]. It can be viewed as aninstantiation to modes, types and possible sharing of the generic abstract domainPat(<) described in [15, 16].3.2.1. Modes. We consider the set of modesModes = f?; ground ; var; ngv ; novar ;gv ; noground ; anyg, satisfying the ordering relationship implied by the diagram de-picted in Figure 3.1, where an arc between M1 and M2 with M1 above M2 meansthat M1 > M2. The semantics of modes can be given by the following concretiza-tion function:

13Cc(?) = ;;Cc(ground) = ftj t is a ground termg;Cc(var) = ftj t is a variableg;Cc(ngv) = ftj t is neither a variable nor a ground termg;Cc(lub(M1;M2)) = Cc(M1) [Cc(M2).For any set of indices I, we denote by ModesI the set of all functions from I toModes augmented with ?. The semantics of an element mo 2 ModesI is given bythe following concretization function Cc. If mo = ? then Cc(mo) = ;, otherwiseCc(mo) is the set fhtiii2I 2 T I j 8i 2 I : ti 2 Cc(mo(i))g:3.2.2. Types. A simple type domain for lists is considered: Types = f?; list; anylist;anyg, ordered by: ? � list � anylist � any . The semantics of types is as follows:Cc(?) = ;;Cc(list) = ftj t is a listg;Cc(anylist) = ftj t is a term that can be instantiated to a listg;Cc(any) = ftj t is any termg.For any set of indices I, we denote by TypesI the set of all functions from I toTypes augmented with ?. The semantics of an element ty 2 TypesI is given by thefollowing concretization function Cc. If ty = ? then Cc(ty) = ;, otherwise Cc(ty)is the set fhtiii2I 2 T I j 8i 2 I : ti 2 Cc(ty(i))g:3.2.3. PSharing. This domain [62] speci�es possible variable sharing betweenterms. For any set of indices I, we denote by PSharingI the set of all binary andsymmetrical relations ps � I � I augmented with ?. The semantics of an elementps 2 PSharingI is given by the following concretization function. If ps = ? thenCc(ps) = ;, otherwise Cc(ps) is the set fhtiii2I 2 T I j 8i; j 2 I : Var(ti) \Var(tj) 6= ;) (i; j) 2 psg:3.2.4. Abstract Tuples. The component of abstract substitutions that givesinformation about the modes, types and possible sharing of the terms is called theabstract tuple.De�nition 3.1. [Abstract Tuple] An abstract tuple � over a set of indices I iseither ? or a triplet of the form hmo; ty; psi where mo 2 ModesI , ty 2 TypesIand ps 2 PSharing I , with mo; ty; ps 6= ? and for all i 2 I, mo(i); ty(i) 6= ?.De�nition 3.2. [Semantics of an Abstract Tuple] The semantics of an abstracttuple � over I is given by the following concretization function. If � = ? thenCc(�) = ;, otherwise Cc(�) = Cc(mo) \ Cc(ty) \ Cc(ps):3.2.5. Abstract Substitutions. We are now in position to introduce the no-tion of abstract substitution in a formal way. We �rst introduce a pseudo-version ofthis abstract object which is simpler and easier to manipulate. The corresponding(strict) version is endowed with further conditions to prevent from incorrect and re-dundant representation. The distinction between pseudo-objects and strict-objects

14 is useful because in many cases it is more convenient to work with \imperfect"descriptions which are easier to compute. A normalization operation (preservingthe semantics) allows us to compute a strict object from a pseudo-object. Strictobjects can be seen as approximate implementations of the reduced product [20] oftheir components.An abstract substitution � over variables X1; : : : ; Xn is a triplet hsv ; frm; �iwhere sv is a function from fX1; : : : ; Xng to a set of indices I, frm is a partialfunction from I to T �I , and � describes properties concerning modes, types andpossible sharing of some terms. It represents a set of program substitutions of theform fX1=t1; : : : ; Xn=tng. The main idea behind this abstract domain is that anabstract substitution � can provide information not only about terms t1; : : : ; tn butalso about subterms of them. If ti is a term of the form f(ti1 ; : : : ; tim), then � isexpected to represent information relative to ti1 ; : : : ; tim . Each term described in� is denoted by the corresponding index.Let us describe the three components of � = hsv ; frm; �i. The same-value compo-nent sv is responsible for mapping each variable Xj to the index i correspondingto the term ti. In particular, it may express equality constraints between two vari-ables Xi and Xj , when sv(Xi) = sv (Xj). The frame (or pattern) component frmis a partial function that provides information relative to the structure of terms.The value of frm(i), when it is de�ned, is equal to a term of the form f(i1; : : : ; in),meaning that ti is of the form f(ti1 ; : : : ; tin). Finally, the abstract tuple � providesinformation about modes, types and possible sharing of the terms ti's. It is de�nedin terms of the elementary domains Modes, Types and PSharing described above.De�nition 3.3. [Pseudo-Abstract Substitution] A pseudo-abstract substitution �over a set of indices I is either ? or a triplet of the form hsv ; frm; �i wherethe same-value component sv is a function, sv : fX1; : : : ; Xng ! I; the framecomponent frm is a partial function, frm : I 6! T �I (we denote the fact that noframe is associated with i by frm(i) = undef); and � is an abstract tuple over I.The set of variables fX1; : : : ; Xng is called the domain of � and is denoted bydom(�).De�nition 3.4. [Semantics of a Pseudo-Abstract Substitution] The semantics ofa pseudo-abstract substitution � over I is given by the following concretizationfunction Cc. If � = ? then Cc(�) = ;, otherwiseCc(�) = f� j dom(�) = dom(�) and 9 htiii2I 2 T I :8X 2 dom(�); X� = tsv(X);8i 2 I; frm(i) = f(i1; : : : ; in)) ti = f(ti1 ; : : : ; tin);htiii2I 2 Cc(�)g.Some auxiliary notation is necessary for de�ning (strict-) abstract substitutions.De�nition 3.5. Let I be a set of indices, sv : fX1; : : : ; Xng ! I be a function andfrm : I 6! T �I be a partial function. Consider the following relation betweenthe indices of I: i �frm j holds i� frm(i) = f(i1; : : : ; im) and ik = j for somek 2 f1; : : : ;mg. We denote by ��frm the transitive closure of �frm and by ��frmthe re
exive and transitive closure of �frm . We say that frm is circuit-free i�there exists no index i 2 I such that i ��frm i. An index i 2 I is reachable by sv

15and frm i� there exists a variable Xk (1 � k � n) such that sv(Xk) ��frm i.De�nition 3.6. [(Strict-) Abstract Substitution] A (strict-) abstract substitution �over I is a pseudo-abstract substitution hsv ; frm; �i over I such that � 6= ?; frmis circuit-free; all i 2 I are reachable by sv and frm; and for all i; j 2 I such thatfrm(i) = f(i1; : : : ; in) and (j; ik) 2 ps for some k 2 f1; : : : ; ng, (j; i) 2 ps .Example 3.1. The abstract substitution �ref , which is part of the formal speci�ca-tion of select/3, given in Figure 2.3, is represented by �ref = hsv ref ; frmref ; �ref i,where �ref = hmoref ; tyref ; psref i withsv ref : X 7! 1 frmref : 1 7!? moref : 1 7! var tyref : 1 7! anylistL 7! 2 2 7! [4j5] 2 7! ground 2 7! listLS 7! 3 3 7!? 3 7! var 3 7! anylist4 7!? 4 7! ground 4 7! any5 7!? 5 7! ground 5 7! listpsref = f(1; 1); (3; 3)g.This substitution requires L to be a non-empty (ground) list. Therefore, the struc-ture of the term associated with the index 2 (representing L) is known: the mainfunctor of this term is [.|.]. Moreover, its �rst subterm (associated with 4), shouldbe ground and its second subterm (associated with 5), should be a ground list.Given one particular substitution � with domain fX1; : : : ; Xng and represented byan abstract substitution � over I, the correspondence between indices in I and(sub)terms in X1�; : : : ; Xn� is made explicit by the function DECOMP de�ned below.This operation computes a set S of term tuples. Each of them is a decompositionof � with respect to the (pseudo-) abstract substitution �.Operation 3.1. DECOMP(�; �) = SSpecification Let � be a substitution and � = hsv : fX1; : : : ; Xng ! I; frm; �ibe a (pseudo) abstract substitution over I such that � 2 Cc(�). DECOMP(�; �)returns the set S � T I of term tuples such that for all htiii2I 2 S the followingproperties hold:� � = fX1=tsv(X1); : : : ; Xn=tsv(Xn)g;� 8i 2 I; frm(i) = f(i1; : : : ; in)) ti = f(ti1 ; : : : ; tin);� htiii2I 2 Cc(�).Notice that if � is a strict abstract substitution, then the set DECOMP(�; �) is asingleton, i.e., it contains exactly one term tuple.3.3. Abstract SequencesWe now formalize the notion of abstract sequence introduced in Section 2.

16 3.3.1. Sizes. For any set of indices I, we denote by SizesI any set of elementsendowed with a concretization function Cc : SizesI ! }(NI). In this paper,7weassume SizesI to be the set of all systems of linear equations and inequations overExpI (the set of all linear expressions with integer coe�cients on the indices ofI), extended with the special symbol ?. An element se 2 ExpfX1 ;:::;Xmg can alsobe seen as a function from Nm to N, as size expressions are positive. The valueof se(hn1; : : : ; nmi) is obtained by evaluating the expression se where each Xi isreplaced by ni. Notice that any system of linear equations and inequations overExpI de�nes a polyhedron in a space whose dimension is the cardinality of I.In order to distinguish indices of I, considered as variables, from integer coe�-cient and constants when writing elements of ExpI , we wrap up each element i ofI into the symbol sz(i).The concretization function Cc is as follows. For all E 2 SizesI , if E = ? thenCc(E) = ;, otherwise, Cc(E) = fhniii2I 2NI j hniii2I is a solution of Eg:In the following, (in)equations will be written between double brackets [[� � �]],meaning that they are syntactic objects, not semantic relations. If f is a functionfrom one set of indices to another one, such that f(i) = i0 and f(j) = j0, theexpression [[sz(f(i)) = sz(f(j)) + 1]] has to be read as the syntactical equationsz(i0) = sz(j0) + 1. As indices from di�erent abstract substitutions can occur inthese (in)equations (e.g., we use indices from �ref and �out to compare the sizeof the terms before and after the execution of a procedure), we have to introducea notion allowing us to \merge" two sets of indices into one set, in such a waythat elements from both sets remain distinct (the indices that are present in bothabstract substitutions should remain distinct, as they refer to di�erent terms). LetA and B be two (possibly non disjoint) sets. The disjoint union of A and B is anarbitrarily chosen set, denoted by A + B, equipped with two injections functionsinA and inB satisfying the following property: for any set C and for any pair offunctions fA : A! C and fB : B ! C, there exists a unique function f : A+B ! Csuch that fA = f � inA and fB = f � inB (where the symbol � is the usual functioncomposition). Since the function f is uniquely de�ned, we can express it in termsof fA and fB . In the following, it is denoted by fA + fB.3.3.2. Abstract Sequences. We are now in a position to de�ne abstract se-quences in a formal way. As usual, we introduce the notion of pseudo-abstractsequence �rst. The symbol sol is used to denote a special index representing thenumber of substitutions belonging to the approximated sequences.De�nition 3.7. [Pseudo-Abstract Sequence] A pseudo-abstract sequence B is either? or a tuple of the form h�in ; �ref ; �out ; Eref out ; Esoli where �in is a pseudo-abstract substitution over Iin ; �ref is a pseudo-abstract substitution over Irefwith dom(�ref) = dom(�in); �out is a pseudo-abstract substitution over Iout withdom(�out) � dom(�in); Eref out 2 Sizes(Iref +Iout); and Esol 2 Sizes (Iref+fsolg).We will refer to �in and �out also as input(B) and output(B), respectively. More-over, we de�ne domin (B) = dom(�in) and domout(B) = dom(�out).7By the generality of the de�nition of SizesI , other domains representing tuples of naturalnumbers may also �t in the current framework (e.g., arbitrary arithmetic constraints).

17De�nition 3.8. [Semantics of a Pseudo-Abstract Sequence] The semantics of apseudo-abstract sequence B is given by the following concretization function: ifB = ? then Cc(B) = ;, otherwise8Cc(B) = fh�; Si j � 2 Cc(�in); S 2 SSeq ; Subst(S) � Cc(�out);(S 6=< >) � 2 Cc(�ref)),(�0 2 Subst(S); htiii2Iref 2DECOMP(�; �ref); hsiii2Iout 2DECOMP(�0; �out)) hjjtijjii2Iref + hjjsijjii2Iout 2 Cc(Eref out));(htiii2Iref 2 DECOMP(�; �ref)) hjjtijjii2Iref + fsol 7! jSjg 2 Cc(Esol))g:The �rst condition on h�; Si expresses that all the substitutions � that are notdescribed by �ref lead to unsuccessful calls; the second and third ones ensures thatthe relations expressed by Eref out (between the terms of the input substitutionand those of the output substitution) and by Esol (between the terms of the inputsubstitution and the number of solutions, i.e., the number of substitutions in S)are respected.Additional conditions are introduced to avoid (at least partially) multiple repre-sentations of the same set of substitution sequences. A (strict-) abstract sequenceis de�ned as follows.De�nition 3.9. [(Strict) Abstract Sequence] A (strict-) abstract sequence B is apseudo-abstract sequence h�in ; �ref ; �out ; Eref out ; Esoli such that �in ; �ref ; �outare abstract substitutions; �in 6= ?; �ref � �in9; for all �0 2 Cc(�out), 9� 2Cc(�ref) such that �0=dom(�ref) � �; and, if either �ref or �out or Eref out or Esolis equal to ?, then they are all equal to ?;Example 3.2. Consider once again the abstract sequence B for select/3 de-picted in Figure 2.3, where Iref = Iout = f1; 2; 3; 4; 5g. The component Eref out isexpressed on the disjoint union Iref + Iout = f1; 2; 3; 4; 5; 6;7;8;9; 10g; where theinjection functions are inref : Iref ! Iref + Iout and inout : Iout ! Iref + Iout , alsodepicted in Figure 2.3. According to the notations introduced above, it couldbe rewritten into Eref out = [[sz(5) = sz(8)]] and Esol could be rewritten intoEsol = [[sol = sz(5)+1]]:3.4. BehavioursA behaviour for a procedure is a formalization of the speci�cation of behaviouralproperties provided by the user.De�nition 3.10. [Behaviour] A behaviour Behp for a procedure name p 2 P of arityn is a �nite set of pairs fhB1; se1i; : : : ; hBm; semig where B1; : : : ; Bm are abstract8Notice that the + operator used below is the one that applies to functions, as de�ned inSection 3.3.1, since tuples hjjtijjii2I actually are functions.9For the sake of brevity, we omit the de�nition of this ordering. A formal de�nition may befound in [47].

18 sequences such that domin (Bk) = domout(Bk) = fX1; : : : ; Xng (1 � k � m);and se1; : : : ; sem are positive linear expressions10from ExpfX1;:::;Xng.Each pair of the form hBk; seki will be called a behavioural pair (or, if no confu-sion is possible, a behaviour). The positive linear expression se is required to strictlydecrease in recursive calls of the described procedure to ensure termination.Example 3.3. Let B be the abstract sequence of Example 3.2. The behaviour forselect=3 described in Section 2 can be represented by fhB;Lig:4. DESCRIPTION OF THE ANALYSERIn this section, we describe the analyser, and we discuss how it executes a programat the abstract level. If the analyser succeeds, the given behaviours correctly de-scribe the execution of the analysed program. In particular, every procedure call(allowed by these behaviours) terminates. If the analyser does not succeed, then,either the program does not terminate or is not consistent with the behavioursgiven by the user, or the information given in the behaviours is not su�cent for theanalyser to deduce that the program is consistent and terminates.To simplify the presentation, we assume that the program we want to analysecontains no mutually recursive procedures. Moreover, we assume that each recursivesubcall occurring in the execution of a call described by some behaviour hBq ; seqican also be described by this behaviour. We explain how these simpli�cations canbe removed in Section 4.3. For space reasons, we omit the correctness proof of theanalyser; it can be found in [43].4.1. Concrete SemanticsThe reasoning underlying the design of our analyser is based on the intuition thata Prolog procedure is a function mapping every input substitution to a sequenceof (answer) substitutions. Proving the correctness of our analyser thus requires a(concrete) semantics which formalizes this intuition (and yet is equivalent to Prologoperational semantics). In practice, we use the concrete semantics presented in [46].It has been proven equivalent to Prolog operational semantics in [44]. Actually, thecorrectness proof of the analyser uses a simpli�ed semantic characterization forterminating executions, also given in [43]. This characterization is simpler becauseit has only to deal with �nite sequences of substitutions while the semantics in [46]has also to consider in�nite and (so-called) incomplete sequences. Observe thatthere is no vicious circle created by assuming that the program terminates becausethe correctness proof of our analyser uses an induction on a well-founded relationover procedure calls; so we can always assume that the sub-calls terminate, i.e.,that our simpli�ed characterization applies.10In fact, it is possible to use more general linear expressions, possibly involving negative coef-�cient, and to prove that such expressions actually are positive at each procedure call. However,for simplicity, we only consider positive linear expressions in the rest of the paper.

19Programs are assumed to be normalized as follows. A normalized program P isa non empty set of procedures pr . A procedure is a non empty sequence of clausesc. Each clause has the form h: �g where the head h is of the form p(X1; : : : ; Xn)and p is a predicate symbol of arity n, whereas the body g is a possibly emptysequence of literals. A literal l is either a built-in of the form Xi1 = Xi2 , or abuilt-in of the form Xi1 = f(Xi2 ; : : : ; Xin) where f is a functor of arity n � 1,or a procedure call p(Xi1 ; : : : ; Xin).11The variables occurring in a literal are alldistinct; all clauses of a procedure have exactly the same head; if a clause uses mdi�erent variables, these variables are X1, : : : , Xm. We denote by P the set ofall predicate symbols occurring in the program P . Variables used in the clausesare called program variables and are denoted by X1; : : : ; Xi; : : :. Observe that allprograms can be rewritten into equivalent normalized programs.The concrete semantics associates with every program P a total function fromthe set of pairs h�; pi, where p is a predicate symbol occurring in P and dom(�) =fX1; : : : ; Xng, where n is the arity of p, to the set of substitution sequences. Inthe rest of this section, we only consider input pairs h�; pi such that the executionof the call p(X1; : : : ; Xn)� terminates and produces the (�nite) sequence of answersubstitutions S. This fact is denoted by h�; pi 7�! S in our concrete semantics. Weuse similar notations for describing the execution of a procedure pr , a clause c anda pre�x of the body of a clause, denoted by hg; ci.4.2. Abstract Execution of a Prolog ProgramOur analyser is based on a standard veri�cation technique: for a given program, itanalyses each procedure; for a given procedure, it analyses each clause; for a givenclause, it analyses each atom. If an atom in the body of a clause is a procedure call,the analyser looks at the given behaviours to infer information about its execution.The analyser succeeds if, for each procedure and each behaviour describing thisprocedure, the analysis of the procedure yields results that are covered by theconsidered behaviour.In this section, we describe how our analyser executes at the abstract level theclauses and the procedures of a given Prolog program. In the following, SBeh is afamily of behaviours SBeh = hBehpip2P containing exactly one behaviour Behp foreach procedure name p 2 P (where P is the set of all procedure names occurringin the analysed program).4.2.1. Specification of the Abstract Operations. This section containsthe speci�cations of the operations used for the abstract execution of a procedure.We suggest the reader to skip it at a �rst reading, and to refer to it whenever one ofthese operations occurs in the next (sub)sections. In Section 5, the interested readermay �nd a detailed description of two main abstract operations in the context ofthe abstract domain of Section 3, namely UNIF VAR and CONC.� EXTC(c; �) = B is an operation that extends the domain of � to the set ofall variables occurring in the clause c. The result is an abstract sequence B11For the sake of simplicity, once again, we do not explicitly consider other built-ins such asvar or is, nor negated literals, nor the cut. It is relatively straightforward to incorporate suchoperations to our analyser (see the conclusion).

20 such that 8� 2 Cc(�) : h�; Si 2 Cc(B), where S is the sequence whose onlyelement is the extension of the substitution � to the set of all variables of c.� RESTRC(c; B) = B0 is an operation that restricts the output domain of B(which is assumed to be the set of all variables occurring in the clause c)to the variables occurring in the head of c. The abstract sequence B0 mustsatisfy 8h�; Si 2 Cc(B) : h�; S0i 2 Cc(B0), where S0 is the sequence obtainedby restricting the substitutions of S to the variables of the head of c.� RESTRG(l; B) = � is an operation that restricts the output domain of B to (arenaming of) the variables occurring in the literal l. The result is an abstractsubstitution � satisfying 8h�; Si 2 Cc(B); 8�0 2 Subst(S) : �00 2 Cc(�),where �00 is a substitution obtained from �0 in two steps: by �rst restricting�0 to the variables Xi1 ; :::; Xin of the litteral l and then by renaming thosevariables to the standard ones (X1; :::; Xn) in order to allow the executionof the procedure the litteral is a call of.� EXTG(l; B1; B2) = B is an operation computing the e�ect of the executionof the literal l (which is given by the abstract sequence B2) on the abstractsequence B1. Intuitively, the e�ect of the execution of the litteral l on B1can be computed as an instantiation by some substitution, which yields B2(when applied on RESTRG(l; B1)). The operation EXTG extends the e�ect ofthe instanciation on the whole sequence B1 (taking into account necessaryrenaming to avoid name clashes).� LOOKUP(�; p; SBeh) = (success ; Bout) is an operation searching Behp for anabstract sequence B 2 Behp whose input substitution is at least as general as�. If such an abstract sequence exists, this operation returns success = trueand this abstract sequence. Otherwise, it returns success = false, and thevalue of Bout is unde�ned. The speci�cation of LOOKUP can be written assuccess) 9se j hB; sei 2 Behp ^ � � input (B).� CHECK TERM(l; B; se) = term is an operation checking if the size (accordingto se) of the arguments of a recursive call given by the output substitutionof B is smaller than the size of the arguments of the head call. If the valueterm is true and the literal l is p(Xi1 ; : : : ; Xin), then 8h�; Si 2 Cc(B); 8�0 2Subst(S); se(hkXi1�0k; : : : ; kXin�0ki) < se(hkX1�k; : : : ; kXn�ki).� UNIF VAR(�) = B executes the uni�cation X1 = X2 on the abstract substi-tution �. The abstract sequence B is such that, for all � 2 Cc(�); and for all� 2 mgu(X1�;X2�), the tuple h�;< �� >i belongs to Cc(B); moreover, thetuple h�;<>i belongs to Cc(B) whenever X1� and X2� are not uni�able.An implementation of this operation will be described in Section 5.� UNIF FUNC(�; f) = B executes the uni�cation X1 = f(X2; : : : ; Xn) on theabstract substitution �, where n � 1 is the arity of f . Its speci�cation issimilar to the previous one.� CONC(B1; B2) = B concatenates the abstract sequences B1 and B2 whichmust have the same input abstract substitution and the same output do-main. The abstract sequence B must satisfy 8h�; S1i 2 Cc(B1); 8h�; S2i 2Cc(B2); h�; S1 :: S2i 2 Cc(B). An implementation of this operation is givenin Section 5.4.2.2. Abstract Execution of a Clause. Letc � p(X1; : : : ; Xn) : � l1; : : : ; ls:

21be a clause of the program P and hB; sei be an element of Behp. Let also �in =input (B) be the input abstract substitution of B. The execution of the clause c forthe input abstract substitution �in may be computed as depicted below.(�in) p(X1; : : : ;Xn) : � (B0) l1; (B1) : : : ; (Bk�1) lk ; (Bk) : : : ; (Bs�1) ls (Bs) : (Bout)AAAA �����EXTC CCCC �����RESTRC����	 @@@@IRESTRG EXTG�kinter Bkaux�� @@RUNIF VAR -UNIF FUNC@@ ���LOOKUPR1 : g ::= < >B0 = EXTC(c; �in)h�in ; g; ci 7�! B0 R2 : c ::=h:�gh�in ; g; ci 7�! B0B00 = RESTRC(c; B0)h�in ; ci 7�! B00R3 : g ::=g0; ll ::=Xi1 = Xi2h�in ; g0; ci 7�! B0�inter = RESTRG(l; B0)Baux = UNIF VAR(�inter)B00 = EXTG(l; B0; Baux)h�in ; g; ci 7�! B00 R4 : g ::=g0; ll ::=Xi1 = f(Xi2 ; : : : ; Xin)h�in ; g0; ci 7�! B0�inter = RESTRG(l; B0)Baux = UNIF FUNC(�inter ; f)B00 = EXTG(l; B0; Baux)h�in ; g; ci 7�! B00
R5 : g ::=g0; ll ::=q(Xi1 ; : : : ; Xin)q 6= p; where p is the predicate of ch�in ; g0; ci 7�! B0�inter = RESTRG(l; B0)(true; Baux) = LOOKUP(�inter ; q; SBeh)B00 = EXTG(l; B0; Baux)h�in ; g; ci 7�! B00 R50 : g ::=g0; ll ::=p(Xi1 ; : : : ; Xin)p is the predicate of ch�in ; g0; ci 7�! B0�inter = RESTRG(l; B0)�inter � �inCHECK TERM(l; B0; se) = trueB00 = EXTG(l; B0; B)h�in ; g; ci 7�! B00Let us now brie
y describe the rules depicted above.Rule R1 initiates the abstract execution of the clause by extending the inputsubstitution �in to the set of all variables in c. Rules R3, R4, R5 and R50 are usedfor executing the litterals of the clause. Observe that, for each litteral, only onerule amongst those may apply.First, Rule R3 takes care of the uni�cations of the type \Xi1 = Xi2". In orderto obtain the abstract sequence B00, associated to the program point just after the

22 uni�cation, from B0, associated to the program point just before it, we use threeabstract operations: RESTRG to obtain an abstract substitution �inter whose domainis fX1; X2g (computed from the abstract sequence B0); UNIF VAR to compute theuni�cation on �inter ; and EXTG to extend the e�ect of the uni�cation on the wholeabstract sequence B0. This last step guarantees that all the variables (in the sub-stitution of B0) whose instanciation shares a variable with the instanciation of Xi1or Xi2 will be correctly treated. Rule R4 follows a very similar process to executefunction uni�cation.Rule R5 and R50 execute procedure calls (either non-recursive or recursive). Inthe case of R5 (non-recursive call), the e�ect of the procedure call is obtainedby searching SBeh for a description of the procedure q. In the case of recursivecalls, we impose that two conditions are satis�ed: �rst, we only allow recursivecalls that can be described by the behaviour currently analysed (�inter � �in) andsecond, we require the recursive call to be strictly \smaller" (according to the sizeexpression given in the behaviour) than the initial call (this condition is veri�edby CHECK TERM). If those two assumptions hold, we simulate the execution of therecursive call by the information given in the behaviour currently analysed. If anyof those tests fails, we give up the analysis as we do not possess enough informationto go on safely.Finally, Rule R2 completes the execution of the clause c by restricting the outputsubstitutions described by B0 to the variables occurring in the head of c.4.2.3. Abstract Execution of a Procedure. Let pr � c1; : : : ; cr be a pro-cedure whose name is p. Its abstract execution can be summarized by the followinggraph and rules.(�in) c1 (B1)(�in) ck (Bk)(�in) cr (Br)...... BoutQQQQQs�����3-CONC R6 : pr ::=ch�in ; ci 7�! B0h�in ; pri 7�! B0R7 : pr ::=c; pr 0h�in ; ci 7�! B0h�in ; pr 0i 7�! B00CONC(B0; B00) = B000h�in ; pri 7�! B000Rules R6 and R7 simply assert that, in order to compute the abstract executionof a whole procedure, it su�ces to compute the abstract sequences given by eachof its clauses and to (abstractly) concatenate those results.In order to check that the given set of behaviours SBeh correctly describes theexecution of a program P , the analyser simply verify that, for each behaviouralpair hB; sei attached to a procedure p, it is possible to deduce from Rules R1 toR7 that h�in ; pri 7�! B0, where �in is the input substitution of B and pr is thetext consisting of all the clauses describing the procedure p, and that the abstractsequence B0 is more precise than B.4.3. Removing the Restrictions of the AnalyserWe conclude this section by explaining how the simplifying hypotheses about theform of the program can be removed. We do not discuss the treatment of additional

23built-ins, such as test predicates and the cut, nor the treatment of negation, sincethese issues are addressed in the conclusion. Here, we concentrate on how to dealwith mutual recursion and with recursive calls using other behaviours than the onethat is currently analysed.Procedures with recursive subcalls that may not be described by the abstractsequence used for the input call are in fact very similar (at the abstract level) tomutually recursive procedures. Indeed, when such procedures p are decomposedinto several procedures p1; : : : ; ps (with di�erent names but - nearly - the samede�nition as p), each of them associated with one of the abstract sequences ofBehp, these procedures p1; : : : ; ps are mutually recursive.Therefore, we �rst explain how to treat mutual recursion and, afterwards, weexplicit how to replace procedures with subcalls that cannot be described by theabstract sequence of the input call by mutually recursive procedures.Mutual Recursion. If mutual recursion is allowed, we have to add a ter-mination test based on the size expressions of all procedures concerned by mu-tual recursion (above, we only used such a test for recursive procedures). So,if p and q are mutually recursive procedures, if hBp; sepi 2 Behp and if the ex-ecution of h�; pi, where � 2 Cc(input(Bp)), uses a subcall h�0; qi, where �0 canbe described by hBq ; seqi 2 Behq, we have to check (at the abstract level) thatseq (hk�0X1k; : : : ; k�0Xmki) < sep(hk�X1k; : : : ; k�Xnki), where n and m are respec-tively the arities of p and q. This test ensures that the mutually recursive procedureswill not loop in�nitely.In order to use this method, we must analyse the program to �nd out all mutuallyrecursive procedures or, more precisely, all pairs of triplets hhp;Bp; sepi; hq; Bq; seqii(with hBp; sepi 2 Behp and hBq ; seqi 2 Behq) describing procedure calls that mayuse subcalls described by the other one. The termination test should be realizedonly when the triplets associated with the subcall and the head call are \mutuallyrecursive".Procedures with Subcalls that Cannot Be Described by the Abstract Sequenceof the Input Call. Once the restriction about mutual recursivity has been removed,it is quite easy to allow recursive calls that cannot be described by the abstractsequence used for the head call by creating several copies of the procedure withdi�erent names (one copy for each abstract sequence given in SBeh) and replacingthe recursive calls by calls to one of these new procedures.More precisely, let p be the name of a procedure and hB1; se1i; : : : ; hBs; sesi bethe elements of Behp. In order to simplify the presentation, we assume that thede�nition of p contains only one recursive call. We �rst compute (using the abstractexecution process described previously), for each (input) abstract sequence Bk,which abstract sequence Bjk can be used to solve the recursive call. Afterwards, wecreate s procedures named p1; : : : ; ps (we assume that these names are not used),one for each abstract sequence in Behp. Each procedure pk is de�ned by the sametext as p but the recursive call p(Xi1 ; : : : ; Xin), found in the de�nition of p, isreplaced by pjk(Xi1 ; : : : ; Xin) in the de�nition of pk. Then, we remove Behp fromSBeh and add Behp1 ; : : : ;Behps , where Behpk = hBk; seki.So, instead of analysing a single procedure where recursive calls are describedby abstract sequences di�erent from the one used as input, we analyse several(possibly mutually recursive) procedures. Once all \mutually recursive" tripletshave been listed, we may be able to remove some termination tests for the (simply)recursive procedure that has been replaced and, thereby, extend the applicability

24 of the analyser. For example, if the execution of all calls described by the triplett = hp;B; sei leads to subcalls that may be described by t0 = hp;B0; se0i and ifthe execution of calls described by t0 never uses subcalls of t, we may remove thetermination test for t.5. ABSTRACT OPERATIONSThe last step to achieve in order to obtain an implementable analyser is to providea practical de�nition of all abstract operations used by the analyser. In this sectionwe explain how we deal with a couple of operations. The same methodology canbe applied to construct the whole operation set systematically. More speci�cally,we describe in details two main abstract operations, namely UNIF VAR and CONC.Correctness of their implementation has been proved in [43]. Note that these im-plementations reuse (old) abstract operations from GAIA (see mainly [46, 47]). Werecall the speci�cations of these operations but we omit their implementation.5.1. Uni�cation of Two VariablesThe operation UNIF VAR executes the built-ins Xi = Xj at the abstract level. Theimplementation is as follows: �rst, we (re)use the old version of the operation, herecalled UNIF VARold , to compute an abstract substitution �0out describing the resultof Xi = Xj called with an abstract input substitution �. Then, in order to re�ne �to the set of � 2 Cc(�) for which the uni�cation succeeds, we establish a mapping(called structural mapping since it respects the structure of the frame component)between the indices of � and the indices of �0out representing the correspondingterms. This allows us to re�ne the information on modes, types, and patternsprovided by �, producing �0ref . This is realized by operation REFref . Finally, wederive constraints between the size of terms in �0ref and �0out as well as constraintson the number of solutions.5.1.1. Structural Mapping. A structural mapping between two abstract sub-stitutions is a mapping on the corresponding indices preserving same-value andframe.De�nition 5.1. [Structural Mapping] Let � = hsv ; frm; �i and �0 = hsv 0; frm0; �0ibe two abstract substitutions over I and I0, respectively. A structural mappingbetween � and �0 (if it exists) is a function tr : I ! I 0 such that� 8X 2 dom(�), tr(sv (X)) = sv 0(X);� 8i 2 I, frm(i) = f(i1; : : : ; in)) frm0(tr(i)) = f(tr (i1); : : : ; tr(in)).5.1.2. Old Operations. The operation UNIF VAR is de�ned in terms of theoperation UNIF VARold which is a slight generalization of the operation UNIF VARde�ned in [47]. Hereafter, we recall the speci�cation of UNIF VARold .Operation 5.2. UNIF VARold(�) = h�0; ss; sf ; tr; U iThis operation uni�es X1� and X2� for all � 2 Cc(�). We do not provide animplementation for it since it is similar to [47] whose extension is discussed in[46]. The only novelty is that we explicitly return the structural mapping tr

25and the set of indices U . More precisely this operation returns an abstractsubstitution �0, two boolean values ss and sf specifying whether sure success orsure failure can be inferred at the abstract level, a structural mapping tr between� and �0, and a set of indices U representing the set of terms in � whose normis not a�ected by the instantiation. The latter will allow us to establish preciseconstraints between the size of terms in �0ref and �0out .Specification Let � be an abstract substitution over I with dom(�) = fX1; X2g.UNIF VARold(�) returns a pseudo abstract substitution �0 over I 0, two booleanvalues ss and sf , a structural mapping tr : I ! I 0 and U � I such that:� 2 Cc(�)� 2 mgu(X1�;X2�)htiii2I 2 DECOMP(�; �)hsiii2I0 2 DECOMP(��; �0)9>>=>>;) 8<: �� 2 Cc(�0)8i 2 U; jjtijj = jjti�jj8i 2 I; ti� = str(i);ss = true) (8� 2 Cc(�) : X1� and X2� are uni�able);sf = true) (8� 2 Cc(�) : X1� and X2� are not uni�able):5.1.3. Refinement Operations. The operation REFref re�nes the input ab-stract substitution � into �0ref . It is de�ned in terms of operations REFfrm (whichfocuses on the frame component) and REF� (which re�nes the � component). Thethree operations respect the same speci�cation given below for REFref .Operation 5.3. REFref (�1; �2; tr1;2) = h�0; tr0iThis operation re�nes the abstract substitution �1 by keeping substitutions inCc(�1) that have at least an instance in Cc(�2).Specification Let �1 and �2 be two abstract substitutions over I1 and I2, re-spectively, with dom(�1) = dom(�2) and tr1;2 : I1 ! I2 be a structural mappingbetween �1 and �2. REFref (�1; �2; tr1;2) produces an abstract substitution �0over I 0 and a structural mapping tr0 : I 0 ! I2 between �0 and �2 such thatdom(�0) = dom(�k) (k = 1; 2), �0 � �1 and�k 2 Cc(�k) (k = 1; 2)�2 � �1 �) �1 2 Cc(�0):The implementation of the three REF operations uses four simpler operations onmodes and types that we present �rst. The implementation of the �rst one hasbeen described in [47].Operation 5.4. EXTRM(f;M) = hM1; : : : ;MniThis operation computes the most precise modes of terms t1; : : : ; tn when weknow that the mode of f(t1; : : : ; tn) is M .Specification Let f be a function symbol of arity n and M 2Modes .f(t1; : : : ; tn) 2 Cc(M)) ti 2 Cc(Mi) (1 � i � n):

26 Operation 5.5. EXTRT(f; T) = hT1; : : : ; TniIt is analogous to the previous one; it computes types instead of modes.Operation 5.6. UNISTmo(M) = M 0It approximates the set of terms that can be instantiated to a term t 2 Cc(M).Specification Let M;M 0 2Modes . The following relation holds:t 2 Cc(M)t = t0� �) t0 2 Cc(M 0):ImplementationM 0 = var if M = varnoground if M 2 fngv ; nogroundg? if M = ?any otherwise.Operation 5.7. UNISTty(T) = T 0It as the same speci�cation as the previous operation where T; T 0 2 Types .ImplementationT 0 = anylist if T 2 flist; anylistg? if T = ?any otherwise.Operation 5.8. REFfrm(�1; �2; tr1;2) = h�0; tr0iIt re�nes the abstract substitution �1 only using the frame component of �2.Implementation Construct the sequence of intermediate abstract substitutions�0; : : :�i : : : and structural mappings tr0; : : : ; tri; : : : as follows.1. �0 = �1 and tr0 = tr1;2.2. Assume given �i and the structural mapping tr i : Ii ! I2.Suppose that there exists j 2 Ii such that moi(j) � novar , frmi(j) = undefand frm2(tr i(j)) = f(k1; : : : ; kn). Then �i+1 and tr i+1 are de�ned by:� Ii+1 = Ii [fj1; : : : ; jng where j1; : : : ; jn are distinct new indices;� sv i+1 = sv i;� frmi+1 = frmi [fj 7! f(j1; : : : ; jn)g;� tr i+1 = tr i [fj1 7! k1; : : : ; jn 7! kng;� moi+1(j) = moi(j) for all j 2 Ii andhmoi+1(j1); : : : ;moi+1(jn)i = EXTRM(f;moi(j));� ty i+1(j) = tyi(j) for all j 2 Ii andhty i+1(j1); : : : ; tyi+1(jn)i = EXTRT(f; tyi(j));� ps i+1 = psi [f(jl; k)j l 2 f1; : : : ; ng;moi+1(jl) 6= ground ; (j; k) 2 ps ig.3. Otherwise, �0 = �i and tr 0 = tr i.

27Operation 5.9. REF�(�1; �2; tr1;2) = h�0; tr0iIt re�nes �1 only considering the � component of �2.Implementation The implementation is as follows:I0 = I1sv 0 = sv1frm0 = frm1mo0(i) = mo1(i) u UNIST(mo2(tr1;2(i))) for all i 2 I0ty 0(i) = ty1(i) u UNIST(ty2(tr1;2(i))) for all i 2 I0ps 0 = ps1tr 0 = tr1;2.Operation 5.10. REFref (�1; �2; tr1;2) = h�0; tr 0iIt combines the two re�nement operations de�ned above.Implementationh�3; tr3;2i = REFfrm(�1; �2; tr1;2)h�0; tr0i = REF�(�3; �2; tr3;2).
5.1.4. Unification of Two Variables. We are now in position to de�neUNIF VAR.Operation 5.11. UNIF VAR(�) = B0Specification Let � be an abstract substitution such that dom(�) = fX1; X2g.UNIF VAR(�) computes a pseudo abstract sequence B0 such that:� 2 Cc(�)� 2 mgu(X1�;X2�)�) h�;< �� >i 2 Cc(B0)� 2 Cc(�)mgu(X1�;X2�) = ;�) h�;< >i 2 Cc(B0):Implementation Let h�out ; tr; ss; sf ; U i = UNIF VARold(�). The pseudo abstractsequence B0 = h�0in ; �0ref ; �0out ; E0ref out ; E0soli is de�ned by

28 �0in = ��0out = �outh�0ref ; trref outi = h�0in ; tri if ssh?; undef i if sfREFref (�0in ; �0out ; tr) if :ss and :sfE0ref out = ? if sff[[sz(inref (i)) = sz(inout(trref out(i)))]] :i 2 tr in ref (U)g otherwiseE0sol = f[[sol = 1]]g if ss? if sff[[0 � sol]]; [[sol � 1]]g if :ss and :sf .where the structural mapping tr in ref is a canonical inclusion. The following com-mutative diagram is satis�ed by tr in ref , trref out and the injections inref and inout .U � I = I0in I 0ref I0outI0ref + I 0out- -@@@@@R �����	tr in ref trref outinref inoutRemark 5.1. The precision of operation UNIF VAR can be improved with a reexecu-tion strategy (see, e.g., [48]): in the case where ss and sf are both false, we canreapply the uni�cation operation to the abstract substitution �0ref computed byREFref . It may happen that the new abstract uni�cation surely succeeds, allowingus to derive better information on the number of solutions. This improvementis needed to obtain optimal precision on the example of Section 2.5.2. Concatenation of two Abstract SequencesThe second operation we present is the concatenation operation CONC. It is thecounterpart for abstract sequences of the operation UNION, used in [47], which simplycollects the information provided by two abstract substitutions into a single one. Infact, the operation CONC is similar to UNION for all but one component, namelyEsol ;this is because the number of solutions of a procedure is the sum of the numbers ofsolutions of its clauses, not an \upper bound" of them. To obtain a good precision inthe computation ofEsol , it is important to detect mutual exclusion of clauses [9, 46].In our implementation, we generalize this idea. First, we compute the greatest lowerbound of the �ref component of the two abstract sequences. Then, we compute thesum of the numbers of solutions for this greatest lower bound only. In particular,when the greatest lower bound is equal to ?, the clauses are exclusive, and no sumis computed: we only collect the numbers of solutions of the two clauses.The implementation of CONC is complex but can be explained in a concise waythrough the use of special operations called constrained mappings that we present

29�rst. Some auxiliary operations are also described.5.2.1. Constrained Mappings. Constrained mappings have been introducedin [49] as a formalism to manipulate indices. We give below a general de�nitionof constrained mappings. This is a relaxation of the notion proposed in [49]. Thereader can �nd the implementation for the size domain in [43].De�nition 5.2. [Constrained Mappings] Let I and I0 be two �nite sets of indicesand tr : I ! I0 be a function. The concrete constrained mapping of tr is thepair of dual functions, tr>� : }(T I)! }(T I0) and tr<� : }(T I0)! }(T I) de�nedbelow. For all �I 2 }(T I) and �I0 2 }(T I0),tr>� (�I) = fhsiii2I0 2 T I0 j 9htiii2I 2 �I : 8i 2 I; str(i) = tigtr<� (�I0) = fhtiii2I 2 T I j 9hsiii2I0 2 �I0 : 8i 2 I; ti = str(i)g:Let AI and AI0 be two abstract domains approximating }(T I) and }(T I0), re-spectively, with concretization functions Cc. An (abstract) constrained mappingis any sound approximation tr> : AI ! AI0 and tr< : AI0 ! AI of a concreteone, i.e., 8�I 2 AI ; tr>� (Cc(�I)) � Cc(tr>(�I))8�I0 2 AI0 ; tr<� (Cc(�I0) � Cc(tr<(�I0)):5.2.2. Auxiliary operations. Let us introduce some auxiliary operations.Operation 5.12. LUB(�1; �2) = h�0; tr1; tr2iThis operations returns a pseudo-abstract substitution �0 = �1 t �2 and twostructural mappings trk between �0 and �k, i.e., trk : I 0 ! Ik (k = 1; 2).Operation 5.13. EXT LUB(�1; �2) = h�0; tr1; tr2; stiIt returns �0; tr1; tr2 as above and a boolean value, st, such that st = true impliesthat �0 is a strict union, i.e., Cc(�0) = Cc(�1) [Cc(�2).Operation 5.14. GLB(�1; �2) = h�0; tr1; tr2iThis operations returns a pseudo-abstract substitution �0 = �1 u �2 and twostructural functions trk between �k and �0, i.e., trk : Ik ! I 0 (k = 1; 2).Operation 5.15. SUMsol(E1; E2) = E0This operation is used to express the length of a sequence obtained by concate-nating two other sequences.Specification Let I be a set of indices and Ek 2 SizesI+fsolg (k = 1; 2).

30 SUMsol(E1; E2) returns E0 2 SizesI+fsolg such that(nki)i2I+fsolg 2 Cc(Ek) (k = 1; 2)n1i = n2i = ni (i 2 I)nsol = n1sol + n2sol 9=;) (ni)i2I+fsolg 2 Cc(E0):Implementation Let sol1 and sol2 be two new variables.E0 = tr<sol(E1[sol 7! sol1] [E2[sol 7! sol2] [f[[sol = sol1 + sol2]]g)where trsol : I + fsolg ! I + fsol ; sol1 ; sol2g is the canonical injection, andEi[sol 7! sol i] is the set of (in)equations obtained by syntactically replacingevery occurrence of sol by sol i in Ei.5.2.3. Concatenation of two abstract sequences. We are now in posi-tion to describe in details the concatenation operation CONC.Operation 5.16. CONC(B1; B2) = B0This operation is used to concatenate the (abstract) results obtained from theexecution of a procedure and a clause.Specification Let Bk = h�in ; �kref ; �kout ; Ekref out ; Eksoli (k = 1; 2) be two ab-stract sequences with domout(B1) = domout(B2). CONC(B1; B2) returns a pseudoabstract sequence B0 = h�0in ; �0ref ; �0out ; E0ref out ; E0soli such that domin (B0) =dom in(Bk), domout (B0) = domout(Bk) (k = 1; 2) andh�; S1i 2 Cc(B1)h�; S2i 2 Cc(B2)�) h�; S1 :: S2i 2 Cc(B0):Implementation The implementation is de�ned as follows:�0in = �inh�0ref ; tr1ref ; tr2ref ; sti = EXT LUB(�1ref ; �2ref)h�0out ; tr1out ; tr2outi = LUB(�1out ; �2out)E0ref out = (tr1ref + tr1out)<(E1ref out) t (tr2ref + tr2out)<(E2ref out)E0sol = 8>>>>>>>>>>><>>>>>>>>>>>: (tr1ref + fsol 7! solg)<(E1sol)t(tr2ref + fsol 7! solg)<(E2sol)t(tr int + fsol 7! solg)<(SUMsol (E1sol ; E2sol)) if st(tr1ref + fsol 7! solg)<(E1sol)t(tr2ref + fsol 7! solg)<(E2sol)t(tr int + fsol 7! solg)<(SUMsol (E1sol ; E2sol))ttr>sol ([[sol = 0]]) if :st:whereh�int ; tr1int ; tr2inti = GLB(�1ref ; �2ref)

31E1sol = (tr1int + fsol 7! solg)>(E1sol)E2sol = (tr2int + fsol 7! solg)>(E2sol)and trsol : fsolg ! I 0ref + fsolg is the canonical injection. The structural map-pings trkref , trkint (k = 1; 2) and tr int satisfy the following commutative diagram:I 0ref I2refI1ref IintQQQQs����3 QQQQs����3-tr2reftr1ref tr2inttr1inttr intThe least upper bound operator t between (in)equation systems is implemented asconvex union (see [69]).6. RELATED WORKSLogic program analysis has attracted so many researchers in the last decade thatit is not possible to give a comprehensive account of all interesting works relatedto ours. We focus on some of them, which can be integrated (at least partially) inan implementation of our analyser.6.1. Logic Program Construction and Veri�cation With PrologA methodology to verify the correctness of Prolog programs based on the theoryof logic programming and a number of additional arguments has been proposedby K.R. Apt in [3]. The emphasis is on elegant methods which are not fully au-tomatable but can be applied straightforwardly \by hand". Termination proofs forlogic programs executing using the Prolog search rule is a prerequisite for the otheraspects of the methodology but we delay the discussion of this topic to the nextsection entirely devoted to termination. Assuming termination, other desirableproperties such as (partial) correctness, occur-check freedom, absence of run-timeerrors (for arithmetic predicates), and absence of
oundering (for negated atoms)are established: occur-check freedom and absence of
oundering can be veri�ed bya syntactic analysis establishing that the program is well moded (or alternatively,but for occur-check only, nicely moded). Occur-check freedom and absence of
oun-dering can be veri�ed by our analyser thanks mainly to the mode and possiblesharing components.12However, still better results could be obtained by enhancingthe domain with a linearity component. Generally speaking, our approach is morepowerful than the syntactic characterizations given by well moded and nicely modedprograms because we can reason \inside" the terms bound to program variables.Absence of run-time errors is veri�ed in Apt's approach by resorting to (a limited12Other components may improve the precision of mode and sharing information.

32 form of) directional types [1]. The same information can be derived by our analyserif the type component of the abstract domain is extended with information aboutnumbers and ground arithmetic expressions.Another methodology for Prolog program construction based on the logic pro-gramming paradigm has been proposed by Y. Deville in [32]. This methodologyconsists of three main steps: elaboration of a speci�cation, construction of a logicdescription, and derivation of a Prolog procedure. The third step of the methodol-ogy involves a number of checks relative to the modes and the types of the argu-ments, the number of solutions to the procedure, and termination. Our analyseris strongly connected to Deville's proposal since our notion of abstract sequenceis able to express the mode and multiplicity information of Deville's speci�cationscheme. Our proposal even improves on Deville's by allowing us to specify struc-tural and sharing information. Our treatment of types and termination is howevernot able to support the methodology in full generality because, in Deville's ap-proach, types are arbitrary sets of terms and termination proofs may use arbitrarywell-founded relations. Previous attempts to partially automate Deville's method-ology have been made in the project FOLON [37]. The analyser described herecan be viewed as an improvement of the FOLON analysers presented in [23, 24],which are only based on the abstract substitution notion and are unable to dealwith termination, multiplicity, and term size relations. A more re�ned analyser,which includes multiplicity and termination analysis, has �nally been presented in[14]. It can be seen as a preliminary version of the analyser proposed in this paper.6.2. Termination Analysis of Logic ProgramsTermination analysis of logic programs has received a lot of attention in the lastfew years (see [25] for a detailed survey). So, once again, we restrict our discussionto a few selected works.The most general approach to proving termination of Prolog programs is proba-bly the one of Y. Deville [32]. It basically consists of proving that recursive calls toa procedure are strictly decreasing with respect to some well-founded relation. Adrawback of this approach is that it can be cumbersome to apply it \by hand," be-cause it requires to explicitly reason about the execution of the procedure, accordingto Prolog operational semantics.Thus, simpler methods have been investigated, the most fundamental of whichare due to K.R. Apt, M. Bezem, and D. Pedreschi [2, 4, 5, 6]. They noticeablyintroduce the classes of acceptable and semi-acceptable programs which are guar-anteed to terminate according to Prolog search rule, for a large class of queries(i.e., bounded queries). Such programs are characterized through the existence ofa level mapping, which maps literals to natural numbers, and of a model I suchthat (roughly speaking) the level mapping of literals respecting the model decreasesthrough embedded procedure calls. The simplicity of the method comes from theconsideration of a model which relieves us of reasoning about Prolog operationalsemantics. The limitation to bounded queries (i.e., queries whose level mapping isbounded under ground instantiation) has been relaxed by A. Bossi, N. Cocco, andM. Fabris, who reason on terms that are rigid, i.e., whose norm is invariant underany instantiation [7, 8].The previous methods cannot be fully automated since they involve �nding amodel and a level mapping for the program. Nevertheless, several (incomplete)

33automatic methods have been shown able to prove the termination of interestingclasses of programs. The methods proposed by J.D. Ullman and A. Van Gelder[63], L. Pl�umer [58, 59, 60],and D. Schreye and K. Verschaetse [65, 66, 67] amountsto derive an interargument relation on the sizes of the arguments of a procedureand to using it to prove that the size of some argument decreases through recursivecalls. In these methods, the interargument relation can be seen as a model of theprocedure and can be inferred by means of bottom-up abstract interpretation. Thesize of arguments is however �xed by an a priori given norm. Further works byS. Decorte, D. De Schreye, and M. Fabris have addressed the issue of inferringnorms automatically [31, 30].The analyser that we presented in this paper can be seen as a partial imple-mentation of Deville's approach because we use size relations between input andoutput terms without requiring term rigidity or similar conditions. For instance,our analyser can prove the termination of the following \impure" Prolog procedure,for any possible input:close(X):- var(X), X=[].close(X):- novar(X), X=[H|T], close(T).Nevertheless, our use of norms is less general than Deville's use of arbitrary well-founded relations.6.3. Abstract Interpretation and Logic Program AnalysisThe design of our analyser is based on the methodology of abstract interpretation[10, 18, 20]. More speci�cally, we reuse the approach (and actually part of thecode) of the system GAIA [47]. There are however two major di�erences betweenour analyser andGAIA. First, an analysis with GAIA (or with other similar systems(e.g., PLAI [56]) based on abstract interpretation frameworks such as [10, 41, 52,53, 57]) operates on a complete program P and an (abstract) description of a toplevel goal. The system then explores the whole code of P and performs �xpointcomputations to handle recursive calls. To the contrary, our analyser deals witheach procedure of the program separately and exploits user-provided informationto \solve" the literals of a clause (except uni�cation and other built-in predicates).Second, the notion of abstract sequence that we use is more elaborated than theabstract substitution notion used in the various applications of GAIA (e.g., [16, 17,47, 48, 64]). A simpler notion of abstract sequence has been introduced in GAIArecently [9, 45, 46] but it is less convenient than ours to express relations betweeninput terms, output terms, and the number of solutions to a goal as well as todetect mutual exclusion of clauses.The abstract domain for substitutions that we use in this paper is related to theabstract equation system (AES) introduced in [40] by G. Janssens, M. Bruynooghe,and A. Mulkers.13The structural description of the terms associated with the pro-gram variables is equivalent in both domains: in Pat(<), it is expressed by thesame-value and frame components while, in the domain AES, abstract equationsassociating every program variable with an \abstract" term are used. A noticeableconceptual di�erence between the two domains lies in the interaction between thestructural description and the information given by the other components: in thedomain AES, such information is given only for the \leaves" (i.e., the abstract vari-13Note however that the �rst de�nition of Pattern [55] is anterior to the de�nition of AES.

34 ables, representing the subterms whose structure is not known), while, in Pat(<),the particular component describes all indices (i.e., all subterms of the terms ofthe substitutions). Keeping information about all indices eases the constructionof abstract operations [16] and, for some domains, increases the precision of theabstraction.14Moreover, if all indices are described, the \Generalise" operation ofthe domain AES reduces to an inverse constraint mapping (as it is no longer nec-essary to propagate this information to all indices). The generic domain Pat(<)is thus based on a representation that is closer to the implementation (of the ab-stract domain): operations on this domain can be easily translated to algorithms,thereby simplifying the correctness proof of an implemented system. Finally, if thecost is too high to keep information about all indices, or if it does not improve theprecision of the information, it is possible to work only with leaves and to computedescriptions for all indices only when it is needed (e.g., before applying constraintmappings).A similarity can also be seen between our work and the type, mode, and deter-minism system encapsulated in the programming language Mercury [61]. In fact, asalready mentioned in the introduction, information like modes and types is crucialin every logic program analysis and a language aiming at incorporating optimiza-tion needs to deal with them. In practice, our pattern and type components are lessexpressive than Mercury type system but, conversely, determinism in Mercury doesnot bene�t from size relations which results in an a priori less precise multiplicityanalysis. Thus an analyser similar to ours could be integrated to Mercury condi-tional to a (substantial) improvement of the type component. (Techniques similarto [17] could be applied.) Such an analyser should then outperform the currentMercury analyser both for determinacy analysis and termination. Furthermore,our analyser could alternatively be used to transform pure untyped logic programsinto Mercury programs (not into Prolog).Another interesting relation can be seen with papers on declarative debug-ging [13] and even more with recent proposals on integrating veri�cation and ab-stract interpretation techniques in a uniform, more general setting [36, 50]. Allthese proposals are mainly based on the assertion (precondition-postcondition) ap-proach by Drabent and Maluszinsky [33]. The novelty of our approach is that thenotion of abstract sequences allows us to characterize \success" input substitutions(by means of �ref) and to deal with global information relating input and outputsubstitutions (e.g., size relations) explicitly.6.4. Automatic Complexity Analysis of Logic ProgramsAutomatic complexity analysis [27] is useful for automatically tuning the task gran-ularity in parallel executions of logic programs [28]. It can be used also to select themost e�cient Prolog version of a logic procedure [14]. Our analyser is able to verifyprecise relations between the sizes of the arguments and the number of solutionsto a Prolog procedure. Thus it can be used as a basis for an automatic complexityanalysis similar to [27]. The work in [27] is not based on abstract interpretationbut instead it exploits general knowledge about logic programs; di�erent size no-tions are used corresponding to di�erent types (e.g., lists, integers) and the relation14e.g., it is not possible to deduce information about the linearity of terms of the form f(t1; t2)from the sole assertion that t1 and t2 are linear terms.

35between the number of solutions and the size of terms is expressed by means ofdi�erence equations; �nally, this work assumes a number of preliminary analyses.In our approach, all analyses are performed at the same time and may interact,which theoretically allows more precise analyses. However, in order to competewith [27], our abstract domain needs to be improved further to deal with multiplenorms and di�erence equations.7. CONCLUSION AND FUTURE WORKSIn this paper, we have presented a generic analyser for pure Prolog, designed ac-cording to a veri�cation approach. A correctness proof of the analyser has also beengiven. The analyser is based on a notion of abstract sequence, which is expressiveenough to model most semantic properties of terminating Prolog programs. Addi-tionally to the description of the analyser, a complete domain of abstract sequenceshas been presented. This domain allows us to derive all kinds of information that areuseful for Prolog program veri�cation, in a single analysis: modes, types, sharing,sizes, determinacy, and multiplicity. The domain has nevertheless some limitations,mainly with respect to types. We also have described the implementation of twomain operations over the domain in order to demonstrate how such operationscan be designed and proven correct. Finally, we have compared our approach to anumber of other works relative to Prolog program veri�cation and construction, ter-mination analysis of logic programs, abstract interpretation and abstract domains,automatic complexity analysis, as well as to the analyser of the new logic languageMercury. Thus, in our opinion, this paper contains su�cient material to allowan implementor building a practical system in which state-of-the-art techniques ofProlog program veri�cation can be integrated.Although our analyser has been presented for pure Prolog, it can be readilyextended to deal with most non pure features of Prolog. We have incidentallymentioned how this can be done in the previous sections. Now, we summarize thisissue. Arithmetic built-ins, such as is and <, and test predicates, such as varand ground, can be handled without additional coding by providing behaviourscapturing their operational semantics. (Uni�cation could also be handled by meansof a set of behaviours but, due to the ubiquitous character of this operation, sucha treatment would be inaccurate.) The treatment of the cut requires to enhancethe concrete and abstract domains with so-called \cut information" in the style of[9, 45, 46]; such a treatment can be integrated in our analyser, since it is based onthe same concrete semantics. Furthermore, as negation by failure is easy modeledthrough the cut, it can also be handled simply. Some Prolog systems include a \non
oundering" test to ensure that negated atoms are executed safely. Such a test canbe performed statically in our analyser thanks to the mode and possible sharingcomponents. The occur-check can be treated by the same means. Nevertheless,other aspects of some Prolog systems such as the \dynamic predicates" assertand retract cannot be handled by our analyser; neither can other treatments ofnegation such as delaying non ground negated atoms. We are aware of no rigorousmethods to verify programs using these features, however.We are currently completing an implementation of the analyser based on thedomain presented in this paper. In fact, we have been able to reuse most of the codeof GAIA [47] but we still have to implement the operations on the size components

36 based on the polyhedron library of D.K. Wilde [69]. Our next task will be toapply the analyser to the veri�cation of a signi�cant number of Prolog programs.A further step will be to extend the analyser with more powerful abstract domainsfor types [17, 39], sharing [38], and linearity [62].In addition to the implementation of a complete analyser, various applicationsof it will be investigated. First, we will go back to the problem of deriving correctProlog implementations of purely declarative descriptions. More speci�cally, we willinvestigate various logic description (or program) classes which can be obtained byinductive [34] or deductive [11, 35, 42, 68] synthesis. Following the general idea of[32], we will investigate how our analyser can be used to prove that some Prologtranslation of such logic descriptions correctly implements the intended meaningof the descriptions according to the correctness criteria proposed by the authors of[34, 35], respectively. This will require to integrate the correctness criteria and ourbehaviour notion into a convenient speci�cation schema similar to [32]. Second, wewill extend our analyser to perform an automatic complexity analysis in the spiritof [27]. Such an analysis can be seen as a relatively straightforward by-product ofour analysis of the number of solution to a procedure. Best-case and worst-caseanalyses are both obtainable since our component Esol provides lower and upperbounds to the number of solutions. Finally, our ultimate goal will be to derive themost e�cient version of a Prolog procedure automatically thanks to the results ofthe complexity analysis.ACKNOWLEDGEMENTSWe wish to thank the referees for their much useful comments and suggestions forimprovements.REFERENCES1. A. Aiken and T.K. Lakshman. Directional Type Checking of Logic Programs. InB. Le Charlier, editor, First International Static Analysis Symposium, number 864in Lecture Notes in Computer Science, pages 43{60, Namur, Belgium, September1994. Springer-Verlag.2. K. R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J.W. Lloyd,editor, Proc. Symp. on Computational Logic, volume 1 of Basic Research Series,pages 150{176. Springer-Verlag, Berlin, 1990.3. K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.4. K.R. Apt and D. Pedreschi. Proving Termination of General Prolog Programs.In Proc. International Conference on Theoretical Aspects of Computer Science,Sendai, Japan, 1991.5. K.R. Apt and D. Pedreschi. Modular Termination Proofs for Logic and Pure PrologPrograms. Technical Report 6/93, Dipartimento di Informatica, Universit�a di Pisa,1993.6. M. Bezem. Characterizing Termination of Logic Programs with Level Mappings.Journal of Logic Programming, 15(1 & 2):79{98, 1992.7. A. Bossi, N. Cocco, and M. Fabris. Typed norms. In B. Krieg-Brueckner, editor,Proc. ESOP'92, pages 73{92. Springer-Verlag, LNCS 582, 1992.8. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and their Use in Prov-ing Universal Termination of a Logic Program. Theoretical Computer Science,124(2):297{328, 1994.

379. C. Braem, B. Le Charlier, S. Modard, and P. Van Hentenryck. Cardinality Anal-ysis of Prolog. In M. Bruynooghe, editor, Proceedings of the International LogicProgramming Symposium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.10. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of LogicPrograms. Journal of Logic Programming, 10(2):91{124, February 1991.11. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from in-ductive proofs. In J.W. Lloyd, editor, Computational Logic, Esprit Basic ResearchSeries, 1990.12. M. Codish, A. Mulkers, M. Bruynooghe, M. Garc��a de la Banda, andM. Hermenegildo. Improving abstract interpretations by combining domains.In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation andSemantics-Based Program Manipulation, pages 194{205. ACM Press, 1993.13. M. Comini, G. Levi, M.C. Meo, and G. Vitiello. Proving Properties of LogicPrograms by Abstract Diagnosis. In Mads Dam, editor, Proc. of the Fifth Workshopon Analysis and Veri�cation of Multiple-Agent Languages (LOMAPS'96), volume1192 of LNCS. Springer Verlag, June 1996.14. A. Cortesi, B. Le Charlier, and S. Rossi. Speci�cation-Based Automatic Veri�cationof Logic Programs. In Logic Program Synthesis and Transformation. Proceedingsof the 6th International Workshop, LOPSTR'96, volume 1207 of LNCS. SpringerVerlag, August 1996.15. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and Software Sup-port for Abstract Domain Design: Generic Structural Domain and Open Product.Technical report, Institute of Computer Science, University of Namur, Belgium,(also Brown University), Namur, Belgium, 1993.16. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combination of AbstractDomains for Logic Programming. In Proceedings of the 21th ACM SIGPLAN{SIGACT Symposium on Principles of Programming Languages (POPL'94), Port-land, Oregon, January 1994.17. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type Analysis of Prolog usingType Graphs. Journal of Logic Programming, 23(3):237{278, June 1995.18. P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Modelfor Static Analysis of Programs by Construction or Approximation of Fixpoints.In Conference Record of Fourth ACM Symposium on Programming Languages(POPL'77), pages 238{252, Los Angeles, California, January 1977.19. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:mathematical foundation. In Proc. ACM Symposium on Arti�cial Intelligence andProgramming Languages, pages 1{12. SIGPLAN Notices, 1977.20. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-grams. Journal of Logic Programming, 13(2{3), 1992.21. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logicand Computation, 2(4):511{547, 1992.22. P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract inter-pretation. In ACM Press, editor, Conference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming Languages, pages83{94, Aug 1992.23. P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures forEnsuring Correctness. In Proc. of Programming Language Implementation andLogic Programming PLILP'90, volume 456 of Lecture Notes in Computer Science,pages 222{237, Link�oping, Sweden, August 1990. Springer-Velag.24. P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic De�nitionsAugmented with Type Information into Prolog Procedures: Some Experiments.In Proceedings of LOPSTR'93, Workshops in Computer Science. Springer Verlag,July 1993.

38 25. D. De Schreye and S. Decorte. Termination of Logic Programs: the Never-EndingStory. Journal of Logic Programming, Special anniversary edition, 1994. Acceptedfor publication.26. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for Analysingthe Termination of De�nite Logic Programs with respect to Call Patterns. In Proc.FGCS'92, pages 481{488, ICOT Tokyo, 1992. ICOT.27. S.K. Debray and N.W. Lin. Cost Analysis of Logic Programs. ACM Transactionson Programming Languages and Systems, 15(5):826{875, 1993.28. S.K. Debray, N.W. Lin, and M. Hermenegildo. Task Granularity Analysis in LogicPrograms. In Proceedings ACM SIGPLAN'90 conference on programming languagedesign and implementation, pages 174{188, June 1990.29. S.K. Debray and D.S. Warren. Functional computations in logic programs. ACMTransactions on Programming Languages and Systems (TOPLAS), 11(3):451{481,July 1989.30. S. Decorte, D. De Schreye, and M. Fabris. Exploiting the Power of Typed Normsin Automatic Inference of Interargument Relations. Technical report, Departmentof Computer Science, K.U.Leuven, Belgium, 1994.31. S. Decorte, D. De Schreye, and M. Fabris. Automatic inference of norms : a missinglink in automatic termination analysis. In D. Miller, editor, Proceedings ILPS'93,pages 420{436, Vancouver, Canada, 1993.32. Y. Deville. Logic Programming: Systematic Program Development. MIT Press,1990.33. W. Drabent and J. Maluszy�nski. Inductive Assertion Method for Logic Programs.Theoretical Computer Science, 59:133{155, 1988.34. P. Flener and Y. Deville. Logic Program Synthesis from Incomplete Speci�cations.Journal of Symbolic Computation: Special Issue on Automatic Programming, 1993.35. P. Flener and K.-K. Lau. Program Schemas as Steadfast Programs. TechnicalReport BU-CEIS-97, Bilkent University, Department of Computer Science, 1997.36. M. Gallardo, P. Merino, and J.M. Troya. Relating Abstract Interpretation withLogic Program Veri�cation. In A. Bossi, editor, ILPS'97 Post-Conference Work-shop on Veri�cation, Model-Checking and Abstract Interpretation, Port Je�erson,USA, 1997.37. J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Con-struction of Logic Programs (Extended Abstract). In M. Bruynooghe and M. Wirs-ing, editors, Proceedings of the Fourth International Workshop on ProgrammingLanguage Implementation and Logic Programming (PLILP'92), Lecture Notes inComputer Science, Leuven, August 1992. Springer-Verlag.38. D. Jacobs and A. Langen. Accurate and E�cient Approximation of Variable Alias-ing in Logic Programs. In E.L. Lusk and R.A. Overbeek, editors, Proceedings of theNorth American Conference on Logic Programming (NACLP'89), pages 154{165,Cleveland, Ohio, October 1989. MIT Press.39. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-gram Variables by Means of Abstract Interpretation. Journal of Logic Program-ming, 13(2-3):205{258, 1992.40. G. Janssens, M. Bruynooghe, and A. Mulkers. Abstract equation systems: De-scription and insights. Report CW217, Department of Computing Science, K.U.Leuven, November 1995.41. N.D. Jones and H. S�ndergaard. A Semantic-Based Framework for the AbstractInterpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract In-terpretation of Declarative Languages, chapter 6, pages 123{142. Ellis HorwoodLimited, 1987.42. K.K. Lau and S.D. Prestwich. Top-down Synthesis of Recursive Logic Proceduresfrom First-order Logic Speci�cations. In D.H.D. Warren and P. Szeredi, editors,

39Proc. Seventh Int'l Conf. on Logic Programming, pages 667{684. The MIT Press,Cambridge, Mass., 1990.43. B. Le Charlier, C. Lecl�ere, S. Rossi, and A. Cortesi. Automated veri�cation ofprolog programs. Research Paper RP-98-002, Institute of Computer Science, Uni-versity of Namur, Belgium, 1998.44. B. Le Charlier and S. Rossi. Sequence-Based Abstract Semantics of Prolog. Tech-nical Report RR-96-001, Facult�es Universitaires Notre-Dame de la Paix, Institutd'Informatique, February 1996.45. B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpreta-tion Framework Which Accurately Handles Prolog Search-Rule and the Cut. InM. Bruynooghe, editor, Proceedings of the International Logic Programming Sym-posium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.46. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence-Based Abstract Inter-pretation of Prolog. Technical Report RR-97-001, Facult�es Universitaires Notre-Dame de la Paix, Institut d'Informatique, January 1997.47. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a GenericAbstract Interpretation Algorithm for Prolog. ACM Transactions on ProgrammingLanguages and Systems (TOPLAS), 16(1):35{101, January 1994.48. B. Le Charlier and P. Van Hentenryck. Reexecution in Abstract Interpretation ofProlog. Acta Informatica, 32:209{253, 1995.49. C. Lecl�ere and B. Le Charlier. Two Dual Abstract Operations to Duplicate, Elim-inate, Equalize, Introduce and Rename Place-Holders Occurring Inside AbstractDescriptions. Research Paper RP-96-028, University of Namur, Belgium, Septem-ber 1996.50. G Levi and Volpe P. A Reconstruction of Veri�cation Techniques by Abstract Inter-pretation. In A. Bossi, editor, ILPS'97 Post-ConferenceWorkshop on Veri�cation,Model-Checking and Abstract Interpretation, Port Je�erson, USA, 1997.51. J.W. Lloyd. Foundations of Logic Programming. Springer Series: SymbolicComputation{Arti�cial Intelligence. Springer-Verlag, second edition, 1987.52. K. Marriott and H. S�ndergaard. Semantics-based Data
ow Analysis of LogicPrograms. In G. Ritter, editor, Information Processing'89, pages 601{606, SanFransisco, California, 1989.53. C. S. Mellish. Abstract Interpretation of Prolog Programs. In S. Abramsky andC. Hankin, editors, Abstract Interpretation of Declarative Languages, chapter 8,pages 181{198. Ellis Horwood Limited, 1987.54. Daniel Le M�etayer. Program analysis for software engineering: new applications,new requirements, new tools. ACM Computing Surveys, 28(4es):167{167, Decem-ber 1996.55. K. Musumbu. Interpr�etationAbstraite de Programmes Prolog. PhD thesis, Instituteof Computer Science, University of Namur, Belgium, September 1990. In French.56. K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of Variable De-pendency Using Abstract Interpretation. Journal of Logic Programming, 13(2-3):315{347, August 1992.57. U. Nilsson. Systematic Semantic Approximations of Logic Programs. In P. Der-ansart and J. Ma luszy�nski, editors, Proc. of the International Workshop on Pro-gramming Language Implementation and Logic Programming (PLILP'90), volume456 of Lecture Notes in Computer Science, pages 293{306, Link�oping, Sweden,August 1990. Springer-Verlag.58. L. Pl�umer. Termination Proofs for Logic Programs based on Predicate Inequalities.In Proceedings ICLP'90, pages 634{648, Jerusalem, June 1990. MIT Press.59. L. Pl�umer. Automatic Termination Proofs for Prolog Programs Operating onNonground Terms. In Proc. ILPS'91, pages 503{517, San Diego, October 1991.MIT Press.

40 60. Pl�umer, L. Automatic Veri�cation of GHC-Programs: Termination. In ProceedingsFGCS'92, Tokyo, 1992.61. Somogyi, Z. and Henderson, F. and Conway, T. The Execution Algorithm ofMercury, an E�cient Purely Declarative Logic Programming Language. Journalof Logic Programming, 29(1{3):17{64, 1996.62. S�ndergaard, H. An Application of Abstract Interpretation of Logic Programs:Occur Check Reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of theEuropean Symposium on Programming (ESOP'86), volume 213 of Lecture Notes inComputer Science, pages 327{338, Sarrbruecken, Germany, March 1986. Springer-Verlag.63. J.D. Ullman and A. Van Gelder. E�cient tests for top-down termination of logicalrules. Journal ACM, 35(2):345{373, April 1988.64. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of Prop. Journalof Logic Programming, 23(3):237{278, June 1995.65. K. Verschaetse. Static Termination Analysis for De�nite Horn Clause Programs.PhD thesis, Dept. Computer Science, K.U.Leuven, 1992.66. K. Verschaetse and D. De Schreye. Deriving Termination Proofs for Logic Pro-grams, using Abstract Procedures. In Proc. ICLP'91, pages 301{315, Paris, June1991. MIT Press.67. K. Verschaetse, S. Decorte, and D. De Schreye. Automatic Termination Analysis.In Proc. LOPSTR'92, LNCS. Springer-Verlag, 1993.68. G.A. Wiggins. Synthesis and Transformation of Logic Programs in the WhelkProof Development System. In Proc. of the 1992 Joint International Conferenceand Symposium on Logic Programming. The MIT Press, Cambridge, Mass., 1992.69. D. K. Wilde. A Library for Doing Polyhedral Operations. Technical Report No.785, IRISA-Institut de Reserche en Informatique et Syst�emes Al�eatoires, RennesCedex-France, 1993.

41select(X, [X|T], T):- list(T).select(X, [H|T], [H|TS]):- select(X, T, TS).select(X, L, LS):-1 L=[H|T],2 H=X,3 LS=T,4 list(T)5 .6select(X, L, LS):-7 L=[H|T],8 LS=[H|TS],9 select(X, T, TS)10 .11FIGURE 2.1. The procedure select/3 and its (annotated) normalized versionselect(in(X:var, L:ground, LS:var),ref(_, [_|list],_),out(ground,_,ground list),srel(L_ref = LS_out + 1, sol = L_ref),sexpr(L))list(in(L: ground), ref(list), srel(sol = 1), sexpr(L))FIGURE 2.2. Speci�cations for select/3 and list/1============================= B_select =============================beta_in: sv = {X->1,L->2,LS->3}; frm = {}mo = {1->var,2->ground,3->var}ty = {1->anylist,2->any,3->anylist}ps = {(1,1),(3,3)}beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4|5]}mo = {1->var,2->ground,3->var,4->ground,5->ground}ty = {1->anylist,2->list,3->anylist,4->any,5->list}ps = {(1,1),(3,3)}beta_out: sv = {X->1,L->2,LS->3}; frm = {2->[4|5]}mo = {1->ground,2->ground,3->ground,4->ground,5->ground}ty = {1->any,2->list,3->list,4->any,5->list}ps = {}in_ref = {1->1,2->2,3->3,4->4,5->5}in_out = {1->6,2->7,3->8,4->9,5->10}E_ref_out = {sz(8)=sz(5)}E_sol = {sol=sz(5)+1}============================== B_list ==============================beta_in: beta_ref: beta_out:sv = {L->1} sv = {L->1} sv = {L->1}frm = {} frm = {} frm = {}mo = {1->ground} mo = {1->ground} mo = {1->ground}ty = {1->any} ty = {1->list} ty = {1->list}ps = {} ps = {} ps = {}E_ref_out = {}E_sol = {sol=1}FIGURE 2.3. Abstract sequences for select/3 and list/1

42

?ground ngv varnovar nogroundgvany�� �� � ���lll ,,,,,,lll ,,,lll,,, lllFIGURE 3.1. Modes

