J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

AUTOMATED VERIFICATION OF PROLOG
PROGRAMS

BAUDOUIN LE CHARLIER, CHRISTOPHE LECLERE,
SABINA ROSSI AND AGOSTINO CORTESI

>

Although Prolog is (still) the most widely used logic language, it suffers
from a number of drawbacks which prevent it from being truely declarative.
The non declarative features such as the depth-first search rule are never-
theless necessary to make Prolog reasonably efficient. Several authors have
proposed methodologies to reconcile declarative programming with the al-
gorithmic features of Prolog. The idea is to analyse the logic program with
respect to a set of properties such as modes, types, sharing, termination,
and the like in order to ensure that the operational behaviour of the Pro-
log program complies with its logic meaning. Such analyses are tedious to
perform by hand and can be automated to some extent.

This paper presents a state-of-the-art analyser which allows one to integrate
many individual analyses previously proposed in the literature as well as
new ones. Conceptually, the analyser is based on the notion of abstract
sequence which makes it possible to collect all kinds of desirable infor-
mation, including relations between the input and output sizes of terms,
multiplicity, and termination. <

1. INTRODUCTION

Declarative and logic languages allow the programmer to concentrate on the de-
scription of the problem to be solved and to ignore low level implementation de-
tails. Nevertheless, their implementation remains a delicate issue: since efficiency
is a major concern for most applications, “real” declarative languages often devi-
ate from the declarative paradigm and include additional “impure” features, which
are intended to improve the efficiency of the language but often ruin its declar-
ative nature. This is what happens in logic programming with Prolog, which is

Address correspondence to Baudouin Le Charlier, Institut d’Informatique, University of Na-

%Ez55%]%%2%(1%%5%?}%’5]9%OOW&FJ]%H@&HH FE-mail: ble@info.fundp.ac.be

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

characterized by an incomplete (depth-first) search rule, a non logical negation (by
failure), and a number of non logical operations such as the test predicates (e.g.,
var) and the cut. In order to improve on this situation different approaches have
been investigated in the recent years. In particular,

e static analyses, mainly based on abstract interpretation, have been developed
aiming at optimizing Prolog programs, relieving the programmer from using
impure control features [47, 56];

e new languages have been defined, like Mercury [61], that improve on decla-
rativeness; efficiency is kept by asking the programmer to specialize its code
with mode and type declarations.

In this paper, we look at the problem from a different perspective. Instead of
been targeted towards optimizations, we follow the approach depicted in [54] and
we show how Prolog program verification (a very demanding software engineering
task) may benefit from techniques of static analysis [19], as recently pointed out in
a more abstract setting also by [36, 50].

The aim of this work is to introduce a tool to verify that a non declarative imple-
mentation of a program (a Prolog code) in fact behaves according to its declarative
meaning (a declarative specification given by the user). This verification process
can be used also to transform a first (declaratively but not operationally correct)
version of a program into a both declaratively and operationally correct version.

In order to define such a verifier, we greatly benefit from works on static analy-
sis of Prolog programs. The analyser presented here is general enough to integrate
most automatable analyses previously described in the literature. The design of the
analyser is based on the methodology of abstract interpretation, where information
provided by the user is used instead of performing a fixpoint computation. It could
be integrated in a programming environment to check the correctness of Prolog pro-
grams and/or to derive efficient Prolog programs from purely logic descriptions [37].
Moreover, since the information provided by the user is certified by the system, it
can be also used by a compiler to optimize the object code. Even though the same
ideas may be applied to any other declarative language, it is clear that the current
proposal specifically applies to Prolog, which is ”de facto” the standard language
of the logic programming paradigm. This makes somehow incomparable our con-
tribution with respect to works that follow a completely different philosophy, like
the ones on Mercury [61].

In order to put our contribution in perspective, we first discuss the main require-
ments for a unified (abstract) semantic framework.

1.1. A Complex Analysis, Based on a Number of Abstract Domains

The nature of the information useful for the various applications of logic and Prolog
program analyses is nowadays well identified. Nevertheless, no previous framework
was able to incorporate all kinds of information in a single analysis. Although
some authors prefer to decompose a complex analysis into a series of simpler and
independent ones [3], we follow the spirit of [16] where the benefits of combining do-
mains are properly discussed. Let us summarize the information the most relevant
for logic programs that is integrated in our analyser.

e Determinacy and cardinality information models the number of solutions to
a procedure and is useful for optimizations, like dead code elimination, and
automatic complexity analysis [29].

e Mode information describes the instantiation level of program variables at
some program point. Groundness (“is a variable bound to a ground term?”)
and freeness (“is a variable either uninstantiated or an alias of other vari-
ables?”) are the most interesting situations to detect since they allow for
various forms of unification specialization. Groundness is also essential for
ensuring a safe use of negation by failure and 1s instrumental for determi-
nacy analysis. Freeness is useful to detect sure success of unification, which
is required by some optimizing transformations and improves the precision
of a cardinality analysis.

e Sharing information expresses that the terms bound to different program
variables may (or may not) contain occurrences of the same (free) variable.
This kind of information is needed to ensure that unification is occur-check
free, and to improve the precision of mode analysis.

e Term size information states relationships between the size of the terms
bound to different program variables. It 1s useful for termination analysis.

e Type information defines an approximation to the set of terms that can be
bound to a program variable. It allows one to refine most analyses and
optimizations based on modes. In a verification context, type information
is inferred to ensure that procedures are correctly called and/or produce
well-typed results. Type information is instrumental for term size analysis.

Mode, sharing, term size, and type information can easily be expressed within
classical abstract interpretation frameworks based on the abstract substitution no-
tion such as [10, 47, 48]. Other kinds of information cannot be expressed within
classical abstract interpretation frameworks because the latter ignore important
operational aspects of Prolog such as the depth-first search rule and the difference
between failure and non termination. Thus, for instance, information about de-
terminacy and termination is in general derived within specific frameworks more
directly based on the operational semantics of Prolog. Nevertheless, such analyses
may benefit from mode, term size, and type information and thus often assume
that a preliminary analysis based on abstract interpretation has been performed.

i From the previous discussion it should be clear that a complete analyser of
Prolog programs should be based on an integrated framework. This is precisely
what we propose in this paper.

1.2. Contribution of this Paper.

The main contributions of this paper can be summarized as follows.

1. We introduce a novel notion of abstract sequence which models sets of pairs
of the form {6, S), where # and S denote an (input) substitution and the
sequence of answer substitutions resulting from executing a clause, a goal,
or a procedure with this input. Abstract sequences make it possible to relate
the number of solutions and the size of output terms to the size of input terms
in full generality. For instance, we can relate the input and ouput sizes of the
same term (i.e., bound to the same program variable) without requiring any

invariance under instantiation. To the best of our knowledge, such generality
was not available in previous frameworks for term size analysis.

2. We provide a complete description of an analyser of Prolog procedures which
integrates all previously mentioned analyses in a single, more powerful, one.
The analyser does not perform a fixpoint computation but instead it verifies
the correctness of the program with respect to a set of abstract descriptions
provided by the user. Such descriptions are called behaviours and consist of
abstract sequences and size expressions which must strictly decrease through
recursive calls (the analyser only accepts terminating procedures). For the
sake of simplifying the presentation, we only consider a single built-in oper-
ation, namely unification, and we do not treat the cut nor the negation. We
explain in the conclusion of the paper how to overcame these simplifications.

3. We describe a generic domain of abstract sequences whose elements have
the form (Bin, Bret, Bouts Eref_out; Esot), Where 3, describes a set of input
substitutions, B,c; is a refinement of 3;, modelling the input substitutions
leading to a successful execution, B,y describes the set of output substitu-
tions, Fref_ous 15 a set of constraints between the size of the terms in 3¢
and the size of the terms in 5,4:, Eso1 18 a set of constraints between the size
of terms in 3.y and the number of solution. The introduction of 3,.; allows
us to improve the accuracy of Erer_our and F,, as constraints have only to
deal with successful executions. Note that abstract sequences can be seen
as a way to abstract a trace-based semantics into relations, in the spirit of
[22].

4. We instantiate the generic domain by fixing a particular domain of abstract
substitutions (for the 3’s) and a particular domain of constraints (for the
E’s). The domain of abstract substitution is an improvement of the domain
Pattern [47, 5] extended with a type component. The domain of con-
straints consists of sets of integer linear equalities and inequalities. Notice
that we only consider integer linear expressions for size expressions. Based
on this instantiation, we describe the (high level) implementation of the main
abstract operations.

1.3. Plan of the Paper.

The rest of the paper is organized as follows: Section 2 provides an overview of the
functionalities of the analyser on a simple example. Section 3 contains a complete
description of our domain of abstract sequences. The analyser is described in Sec-
tion 4. Section b details the implementation of two main operations of the analyser
in the context of the chosen abstract domain. Section 6 discusses related works.
Section 7 concludes.

2. INFORMAL OVERVIEW: A SAMPLE ANALYSIS

2.1. Specification of Operational Properties of a Procedure

Consider the procedure select/3 of which both the usual Prolog code and its
normalized version are depicted in Figure 2.1; the latter is the one to which the
analyser actually applies and is annotated by its program points for the sake of the

presentation. Declaratively, the procedure select/3 defines a relation select(X, L,
LS), between three terms, that holds if and only if the terms L and LS are lists
and LS is obtained by removing one occurrence of X from L. Note that, declara-
tively, the type checking literal 1ist (T) is needed to express that the relation does
not hold if I and LS are not lists. Our analyser checks a number of operational
properties which ensure that Prolog actually computes the specified relation, as-
suming that the procedure is “declaratively” correct. In fact, it is not the case that
the procedure is correct for all possible calls. So, we restrict our attention to one
particular and reasonable class of calls, 1.e., calls such that X and LS are distinct
variables and L is any ground term (not necessarily a list).'For this class of calls,
the user has to provide a description of the expected behaviour of the procedure
by means of the formal specification depicted in Figure 2.2. In order to explain the
meaning of such a specification, we view the (concrete) semantics of the procedure
select/3 as a (total) function that maps every (input) substitution @ such that
dom(f) = {X,L,LS} to a sequence S of (output) substitutions over the same domain.
According to this viewpoint, the formal specification describes 1) the set of all input
substitutions # considered acceptable (i.e., the class of calls to be analysed) and 2)
(an over-approximation of) the set of all pairs (¢, S) such that 0 is an acceptable
input substitution and S is the corresponding sequence of output substitutions.

The in part of the formal specification of select/3 states that the acceptable
input substitutions ¢ are exactly those such that X0 and Ls6%are distinct variables
and L# is any ground term. The fact that X and LS are distinct is expressed by
the absence of any possible sharing information in the in part.

The ref part of the specification is a refinement of the in part; it gives proper-
ties shared by all acceptable input substitutions @ that lead to at least one result,
i.e., such that S has at least one element. In this case, the ref part indicates that
the execution succeeds at least once only if L 1s a non empty list. The information
provided by this part is essential both to simplify the analysis of a procedure and
to improve its precision: we can treat separately executions that fails and thus give
more precise information between the input and output substitutions for execu-
tions that succeed.®Qccurrences of the symbol “_” in this part of the specification
means that the information about the corresponding argument cannot be refined
with respect to the in part. More generally, the user is allowed to omit from the
specification all pieces of information which can be inferred from another part.

The out part of the specification provides information about output substitutions
(i.e., the elements of S). In this case, it indicates that X will become a ground term
and that LS will become a ground list.

The srel and sexpr parts of the specification are useful to prove termination and
to predict the number of solution to a call. The meaning of these parts presupposes
the notion of size of a term. In this paper, we assume that it is given by the list-
length norm, which is defined by |[#1]t2]] = 1 + |t2| and |¢] = 0 if ¢ is not of the

1Operationally, the literal 1ist(T) could be removed if we further restrict the class of calls
by requiring that L is a ground list. This fact can be deduced automatically by our analyser.
However, for the sake of demonstrating the functionalities of the analyser, it is interesting to
consider a more general class of calls where L is any ground term.

2To simplify the notations, we abusively denote X6, L, and LS# by X, L and LS.

3In fact, the ref part does not always describe exactly the set of inputs that succeed, since
this would require to solve an undecidable problem. But it does when the srel part ensures that
there is at least one solution, which is the case for select/3.

form [t [ts].

Based on this norm, the sexpr part of the specification describes a positive inte-
ger linear function of the input terms sizes, which must decrease through recursive
calls. In this case, it is just the size of L. This information is used to prove that
the execution terminates for all calls described by the in part. Moreover, the srel
part of the specification describes a relation between the sizes of input terms and
the sizes of output terms and a relation between the sizes of input terms and the
number of solutions to the call. In this case, it says that the input size of L is
always equal to the output size of LS plus 1 and that the number of solutions (i.e.,
the length of S) is equal to the input size of L. Two points are worth to be clarified
here. First, we can see that the ref part allows us to state precise information
about the number of solutions. (If L is a ground term but not a list, the number
of solution is 0. Thus without the refined information about successful inputs, we
could only state 0<=sol<=L_in, since we only consider linear (in)equations between
the sizes of terms.) Second, let us stress that the srel part does not describe a
so-called interargument relation (as, e.g., in [30]) but a relation between the sizes of
input and output terms. In this example, both approaches are equivalent since L is
initially ground. In general however, our approach is more powerful because we do
not need to restrict to rigid terms (i.e., whose size is invariant under instantiation)
as we differentiate the input and output sizes of the terms. However our approach
is also computationally more expensive since it potentially doubles the number of
variables in the (in)equations.

2.2. Abstract Sequences

Technically, the first five parts of a specification define a mathematical object called
an abstract sequence. The semantics of abstract sequences is defined in Section
3.3.2. In order to give an informal overview of our analyser, we present the abstract
sequences corresponding to the specifications of select/3 and 1ist/1, as they are
printed out by the analyser, in Figure 2.3. Abstract sequences contain the same
information as the corresponding specifications but the information is expressed
in a form better suited for defining and implementing abstract operations. We use
abstract substitutions from the generic domain Pat(R) [16, 47] instantiated to mode,
type, and possible sharing information. In this abstract domain, the information
1s expressed on indices, not directly on the procedure variables. Indices represent
terms bound to the program variables or subterms of those terms. For instance,
the abstract substitution beta_ref of the abstract sequence B_select characterizes
a set of substitutions # as follows: the sv component binds the program variables
X, L, and LS to the indices 1,2, and 3, which represent the terms %, t5, and #3
respectively bound to X, L, and LS in #. The frm component states that the term ¢,
is of the form [t4]t5]. The mo(de) component states that ¢; and {3 are variables and
that ¢, 14, and 5 are ground terms. The ty(pe) component provides information
about the types of terms. In this paper, we treat types in a rather simplified way
as we consider only three types, namely list (lists), anylist (all terms which can
be instantiated to a list), and any (all terms). This restricted “type system” is

4This choice is rather restrictive and related to the fact that we concentrate on lists manipu-
lating programs. Nevertheless, the presentation of the analyser in the rest of the paper is largely
generic. Thus, it will become clear later on that more general size notions can be used.

sufficient to deal with simple lists manipulating programs.The terms ¢; and ¢3 have
type anylist because they are variables. The ps component consists of the pairs of
indices of terms that may share a variable. Since the pair (1,3) does not belong to
ps, t1 and t3 are distinct variables. Let us now turn to the components E_ref_out
and E_sol of the abstract sequence. The first one relates the sizes of terms in an
input substitution to the sizes of terms in the corresponding output substitutions.
Terms are represented by indices, but as the same indices can be used in beta_ref
and beta_out, we express the relation on the “disjoint union” of the two sets.
The functions in_ref and in_out maps the original indices to their image in the
disjoint union. Many equality constraints between terms can be derived from the
components mo and frm of beta_ref and beta_out and from the correspondence
between the indices. Those constraints are not represented in E_ref out. Only
“essential” constraints are represented. In this case, it is sufficient to state that
sz(8)=sz(5) which means that the output size of LS is equal to the input size of
the tail of L. Finally, the component E_sol defines the constraints on the number
of solutions. As for the previous component we choose to express the constraints
in terms of the “elementary” indices, whose principal functor is unknown.

2.3. Description of a Successful Analysis

The analysis of the procedure select/3 according to the above specification works
on the normalized version of the procedure given in the second part of Figure 2.1.
We have annotated the procedure with natural numbers identifying its “program
points.” The first work of the analyser precisely consists of attaching an abstract
sequence B_i to every program point ; . We now provide a trace of the execution.’To
understand the trace, it is worth pointing out that every abstract sequence B_z
describes (possibly an over-approximation of) the set of pairs (#,5) such that ¢
is described by beta_in and S is the set of output substitutions produced by the
literals of the clause before the program point ;. The analysis ignores the next
literals in the clause and is thus compositional (contrary to SLD-resolution). The
first abstract sequence is the following:

beta_ref: sv = {X->1,L->2,LS->3}; frm = {}
mo = {1->var,2->ground,3->var}
{1->anylist,2->any,3->anylist}
{(1,1),(3,3)}
beta_out: sv= {X->1,L->2,LS->3,H->4,T->5}; frm = {}
mo = {1->var,2->ground,3->var,4->var,5->var}
ty = {1->anylist,2->any,3->anylist,4->anylist,5->anylist}
ps = {(1,1),(3,3),(4,4),(5,5)%
E_ref_out = {}
E_sol = {sol=1}

eI
n <
non

5For space reasons, only essential changes are depicted. The hidden parts of every abstract
sequence are thus identical to those of the abstract sequence relative to the preceding program
point. For instance, no abstract substitution beta_in is depicted, since it is the same in all abstract
sequences.

The abstract substitution beta_ref is identical to beta_in because the head of
the clause i1s unifiable with any call since 1t contains distinct variables. Similarly,
beta_out is obtained by extending beta_in with information about the local vari-
ables H and T. Since they are brand-new, their mode, type, and sharing information
is obviously obtained. All size constraints between terms can be inferred by estab-
lishing a correspondence between the indices of beta_ref and those of beta_out,
thus the component E_ref_out is empty since we only depict “essential” constraints.
Finally, the component E_sol expresses that the unification of the head of the clause
succeeds exactly once.

The first three literals in the clause are unifications. They result in the following
abstract sequences:

beta_ref: frm = {2->[4]5]%}
mo = {...,4->ground,b5->ground}
ty = {...,4->any,5->any}
beta_out: frm = {2->[4]5]%}
mo = {...,4->ground,b5->ground}
ty = {...,4->any,5->any}

beta_out: sv= {X->1,...,H—>1,T->4}; frm = {2->[114]%}
mo = {1->ground,...,4->ground}
ty = {i->any,...,4->any}
ps = {(3,3)}

beta_out: sv= {...,LS->3,...,T->3}; frm = {2->[1[3]%}
mo = {...,3->ground}
ty = {...,3—>any}
ps = {}

The first unification L=[H|T] succeeds if and only if L 1s a ground term of the form
[t|t'] because H and T are distinct variables as specified by the components mo and
ps of B_.1. Thus, in B_2, the analyser updates the frm component of beta_ref and
beta_out with the structural information about L. Importantly, the component
E_sol is not modified because unification succeeds for all terms L of the form [¢[¢'].
The next two unifications H=X and LS=T both surely succeed because X and LS are
distinct variables as indicated by the components mo and ps of B_.2. The result of

the unification is recorded by mapping corresponding variables to the same index,
in the sv component.

The literal 1ist(T) is then analysed by means of the abstract sequence B_1list
(see Figure 2.3). Since T is now a ground term, the call is compatible with the
component beta_in of the abstract sequence. Thus, the analyser infers that the
call succeeds if and only if T is a list, and that it succeeds exactly once. This
information is recorded in B_5 as follows:

beta_ref: ty = {...,2->1list,...,5->1list}
beta_out: ty = {...,2->1list,3->1list}

The final abstract sequence for the first clause 1s obtained by removing the local
variables from the sv component. The abstract sequence B_6 is thus:

beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4[5]}
mo = {1->var,2->ground,3->var,4->ground,5->ground}
ty = {1->anylist,2->1list,3->anylist,4->any,5->1ist}
ps = {(1,1),(3,3)}

beta_out: sv= {X->1,L->2,LS->3}; frm = {2->[1[3]}
mo = {1->ground,2->ground,3->ground}
ty = {1->any,2->list,3->list}
ps = {}

E_ref_out = {}

E_sol = {sol=1}

We now consider the second clause. Since the treatment of the first two uni-
fications is similar to the treatment of unifications in the first clause, we directly
provide the abstract sequence B_9 corresponding to the program point just before
the recursive call:

beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4[5]}
mo = {1->var,2->ground,3->var,4->ground,5->ground}
ty = {1->anylist,2->any,3->anylist,4->any,5->any}
ps = {(1,1),(3,3)}

beta_out: sv= {X->1,L->2,LS->3,H->4,T->5,TS->6}
frm = {2->[4]5],3->[416]}
mo = {1—>var,2—>ground,3—>ngv,4—>ground,5—>ground,6—>var}
ty = {1->anylist,2->any,3->anylist,4->any,5->any,

6->anylist}

ps = {(1,1),(3,3),(6,8)}

E_ref_out = {}

E_sol = {sol=1}

Since we want to prove termination of the procedure, the analyser first checks that
the size expression (provided by the sexpr part of the specification) is smaller
for the recursive call than for the initial call, 1.e., that the size of T is smaller
than the initial size of L. This can be deduced from the “implicit” constraints of
E_ref_out obtained by mapping the indices of beta_ref to those of beta_out and by
reasoning on the structural information and the modes. Next, the analyser checks
that the information given by beta_out about the actual parameters X, T, and TS
is compatible with the component beta_in of B_select, which is the case, since X
and TS are distinct variables and T is a ground term. Thus, the analyser may use
the information from B_select to update B_9. The following abstract sequence is
obtained:

beta_ref: frm = {...,5->[6]7]1%}
...,6->ground, 7->ground}
...,2->list,...,5->list,6->any,7->1list}
beta_out: frm = {...,5->[7]8]%}
mo = {1—>ground,...,3—>ground,...,6—>ground,7—>ground,
8->ground’}
ty = {1->any,2->1list,3->1ist,...,5->list,6->1ist,7->any,

10

8->list}
ps = {}
in_ref = {1->1,2->2,3->3,4->4,5->5,6->6,7->7}
in_out = {1->8,2->9,3->10,4->11,5->12,6->13,7->14,8->157}
E_ref_out = {sz(13)=sz(7)}
E_sol = {sol=sz(7)+1}

It is intuitively clear that all the information contained in B_10 can be deduced by
mapping the indices of the components of B_9 to those of B_select and reexpressing
the information in B_select on the indices of B_9. Technically, this is done by means
of operations called constraint mappings, which are described in Section 5.2.1. The
final abstract sequence for the second clause is obtained by removing the local
variables from the component sv:

beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4]5],5->[617]1}
mo = {1—>var,2—>ground,3—>var,4—>ground,5—>ground,
6->ground, 7->ground}

ty = {1->anylist,2->1list,3->anylist,4->any,5->1ist,6->any,
7->1ist}
ps = {(1,1),(3,3)}

beta_out: sv= {X->1,L->2,LS->3}; frm = {2->[4|5],3->[4(6],5->[7I8]}
mo = {1->ground,2->ground, 3->ground,4->ground,5->ground,
6->ground, 7->ground, 8->ground}

ty = {1->any,2->1list,3->1list,4->any,5->1ist,6->1list,7->any,
8->list}
ps = {}

in_ref = {1->1,2->2,3->3,4->4,5->5,6->6,7->7}

in_out = {1->8,2->9,3->10,4->11,5->12,6->13,7->14,8->157}
E_ref_out = {sz(13)=sz(7)}

E_sol = {sol=sz(7)+1}

The next task of the analyser is to combine the abstract sequences B_6 and B_11
to compute an abstract sequence B_final describing the global behaviour of the
procedure.®Its components beta_ref and beta_out are computed from those of
B_6 and B_11 by a least upper bound operation (which is classical for this kind of
abstract substitutions, see [16, 47])

The final component E_ref_out is computed in two steps: first, the (in)equations
of the components E_ref_out of B_6 and B_11 are reexpressed in terms of the indices
of B_final; second, the least upper bound (i.e., geometrically, the convex hull) of
the two sets of (in)equations is computed. In the first step, both “implicit” and
“essential” (in)equations of B_6 and B_11 must be taken into account because part of
the structural information contained in B_6 and B_11 is removed from B_final. As
a consequence, previously “implicit” equations can become “essential” in B_final.
For instance, we obtain two “essential” equations from B_6: sz(4) = sz(6) and
sz(5) = sz(8). These equations express that the final value of X (i.e., t¢) and LS
(i.e., tg) have the same size as the first element (i.e., ¢4) and the tail (i.e., ¢5) of L.

61t happens that the abstract sequence B_final is identical to B_select in this case. Thus the
reader should look at Figure 2.3 to understand the next steps of the discussion.

11

The information that we actually have t4 = ts and t5 = tg is lost due to the weaker
structural information of B_final. From the abstract sequence B_11, we obtain the
“essential” (in)equations sz(5) = sz(8) and sz(5) >= 1. In the second step, it
is more efficient to compute the least upper bound on the “essential” (in)equations
only, since the convex hull is a computationally expensive operation. In this case,
we obtain a single equation: sz(5) = sz(8).

The final component E_sol is also an upper bound of two systems of linear
(in)equations reexpressed on the indices of the component beta ref of B_final.
The first system corresponds to the case where both clauses succeed, 1.e., the case
where L contains at least two elements. Introducing two new symbols to denote
the number of solutions of the two clauses, we obtain the system:

sol = soll+sol2, soll =1, sol2 = sz(5), sz(5) >= 1.
Eliminating sol1l and sol2, the system reduces to

sol = sz(5)+1, sz(5) >= 1.
The second system corresponds to the case where only the first clause succeeds. It
can be deduced by comparing the components beta ref of B.6 and B_11 that this
is possible only if L. consists of a single element. The corresponding system is:

sol =1, sz(5) = 0.
Obviously, the convex hull of the two systems is given by the single equation sol
= sz(5)+1 (implicitly, all sizes are greater or equal to 0).

The very last step of the analysis consists of verifying that the information
contained in the abstract sequence B_final implies (is at least as precise as) the
information contained in the formal specification (i.e., in B_final). In this case,
the verification is immediate since the two are equal.

2.4. An Unsuccessful Analysis

It should be clear from the previous explanations that all the information given
in the specifications and recorded in the abstract sequences is essential and must
be fully exploited to obtain a successful analysis. For instance, let us remove the
condition that X and LS initially are distinct variables. This should be expressed
by adding the information ps: (X,LS) in the in part of the specification. The com-
ponent ps of beta_in thus becomes {(1,1),(1,3),(3,3)}. In the first clause, the
unification H=X still surely succeeds but since the indices 1 and 3 “may share”, it
gives the mode gv (ground or variable) to the index 3. Now, since LS is possibly
ground, the system is unable to prove that the unification LS=T surely succeeds.
The component E_sol of B_4 is thus {sol <= 1} instead of {sol = 1}. As a con-
sequence, the analyser is globally unable to prove that the number of solutions
is equal to the size of L. It is however possible to obtain a successful analysis by
relaxing the srel part of the specification to

srel(L_ref = LS_out + 1, sol <= L_ref).

3. ABSTRACT DOMAINS

In this section, we present a simplified description of the abstract domains used
by our analyser (a more complete presentation can be found in [43]). Section 3.2
describes our domain of abstract substitutions. This part is classical. Section 3.3 is
novel: it presents our domain of abstract sequences. Finally, Section 3.4 defines the

12

notion of behaviour, which formalizes the notion of formal specification introduced
in Section 2, i.e., the full package of information provided (for verification) by the
user to the system.

3.1. Preliminaries

The reader is assumed to be familiar with the basic concepts of logic programming
and abstract interpretation (see [21, 51]).

Terms, Indices and Norms. We denote by 7 the set of all terms, and by 7
(possibly subscripted or superscripted) a set of indices; in particular, we assume
that I is a finite subset of N. 77 is the set of all tuples of terms (ti)ier and 77 is
the set of all “frames” of the form f(i1,...,4,) where f is a functor of arity n and
i1,...,1n € I. A size measure, or norm, is a function |- | : 7 — N, see [8, 26, 65].
In this paper, we always refer to the list-length measure presented in Section 2.

Substitutions. A program substitution 6 is a finite set {X;, /t1,..., X, /tn}
where X ., X;. are distinct program variables and the ¢;’s are terms. Variables
occurring in t1, ..., t, are taken from the set of standard variables which is disjoint
from the set of program variables. The domain of 6, denoted by dom(#), is the
set of variables {X;,,..., X; }. A standard substilution o is a substitution in the
usual sense which only uses standard variables. The application of a standard
substitution o to a program substitution § = {X;, /t1,..., X; /t,} is the program
substitution fo = {X;, /t10, ..., X;, /tno}. We say that 6y is more general (or less
precise) than 05, noted 0y < 6y, iff there exists ¢ such that 62 = 6;0. We denote
the set of standard substitutions that are a most general unifier of ¢; and ts by
mgu(ty,t2). The restriction of 0 to a set of variables D C dom(0), denoted by 6,p,
is such that dom(0/p) = D and X;0 = X;(0,p), for all X; € D.

Substitution Sequences. A program substitution sequence S is a finite sequence
< 01,...,0, > (n > 0) where the 6; are program substitutions with the same
domain D. D is also the domain of S, denoted by dom(S). We denote by < >
the empty sequence. Subst(S) is the set of all substitutions which are elements
of S. SSeq is the set of all program substitution sequences. The restriction of
S to D C dom(S), denoted by S)p, is the sequence obtained by restricting each
0 € Subst(S) to D. The symbol :: denotes sequence concatenation.

(PRI in

3.2. Abstract Substitutions

The domain of abstract substitutions we consider is a simple extension (with type
information) of the domain Pattern presented in [47]. Tt can be viewed as an
instantiation to modes, types and possible sharing of the generic abstract domain

Pat(R) described in [15, 16].

3.2.1. MoDES. We consider the set of modes Modes = { L, ground, var, ngv, novar,
gv, noground, any }, satisfying the ordering relationship implied by the diagram de-
picted in Figure 3.1, where an arc between M; and M, with M; above My means
that My > Msy. The semantics of modes can be given by the following concretiza-
tion function:

13

Ce(L) = 0

Ce(ground) = {t|tis a ground term};

Ce(var) = {t| tis a variable};

Ce(ngv) = {t| t is neither a variable nor a ground term};
Cc(lub(Ml,Mz)) = CC(Ml)U CC(MQ)

For any set of indices I, we denote by Modes; the set of all functions from I to
Modes augmented with L. The semantics of an element mo € Modesy is given by
the following concretization function Ce. If mo = L then Cc(mo) = 0, otherwise

Cc(mo) is the set {(t;);er € TI| Vi€ I :t; € Ce(mo(i))}.

3.2.2. TypES. A simple type domain for lists is considered: Types = {L, list, anylist,
any }, ordered by: L < list < anylist < any. The semantics of types is as follows:

Ce(L) = 0

Ce(list) = {t|tisalist};

Ce(anylist) = {t|tis a term that can be instantiated to a list};
Ce(any) = {t|tis any term}.

For any set of indices I, we denote by Types; the set of all functions from I to
Types augmented with L. The semantics of an element {y € Types; is given by the
following concretization function Ce. If ty = L then Cc(iy) = 0, otherwise Cc(ty)
is the set {{t;)ic; € TI| Vi€ I :t; € Ce(ty(i))}.

3.2.3. PSHARING. This domain [62] specifies possible variable sharing between
terms. For any set of indices I, we denote by PSharing; the set of all binary and
symmetrical relations ps C I x I augmented with L. The semantics of an element
ps € PSharing; is given by the following concretization function. If ps = L then
Ce(ps) = 0, otherwise Cec(ps) is the set {{t;)ic; € TY| Vi,j € I : Var(t;) N
Var(t;) 0 = (i,7) € ps}.

3.2.4. ABSTRACT TUPLES. The component of abstract substitutions that gives
information about the modes, types and possible sharing of the terms is called the
abstract tuple.

Definition 3.1. [Abstract Tuple] An abstract tuple o over a set of indices T is
either L or a triplet of the form (mo, ty, ps) where mo € Modesy, ty € Types;
and ps € PSharing;, with mo, ty, ps # L and for all ¢ € I, mo(i), ty(i) # L.

Definition 3.2. [Semantics of an Abstract Tuple] The semantics of an abstract
tuple o over I is given by the following concretization function. If @« = L then

Ce(a) = 0, otherwise Cc(a) = Ce(mo) N Ce(ty) N Ce(ps).

3.2.5. ABSTRACT SUBSTITUTIONS. We are now in position to introduce the no-
tion of abstract substitution in a formal way. We first introduce a pseudo-version of
this abstract object which is simpler and easier to manipulate. The corresponding
(strict) version is endowed with further conditions to prevent from incorrect and re-
dundant representation. The distinction between pseudo-objects and strict-objects

14

i1s useful because in many cases it is more convenient to work with “imperfect”
descriptions which are easier to compute. A normalization operation (preserving
the semantics) allows us to compute a strict object from a pseudo-object. Strict
objects can be seen as approximate implementations of the reduced product [20] of
their components.

An abstract substitution 3 over variables Xi,..., X, is a triplet (sv, frm, &)

where sv is a function from {X;,..., X, } to a set of indices I, frm is a partial
function from I to 7/, and « describes properties concerning modes, types and
possible sharing of some terms. It represents a set of program substitutions of the
form {X1/ty,...,X,/tn}. The main idea behind this abstract domain is that an
abstract substitution 3 can provide information not only about terms ¢y, ...,, but
also about subterms of them. If ¢; is a term of the form f(¢;,,...,%;,), then 3 is
expected to represent information relative to ¢ .1, . Each term described in
(4 is denoted by the corresponding index.
Let us describe the three components of § = (sv, frm, o). The same-value compo-
nent sv is responsible for mapping each variable X; to the index ¢ corresponding
to the term ¢;. In particular, it may express equality constraints between two vari-
ables X; and X;, when sv(X;) = sv(X;). The frame (or pattern) component frm
is a partial function that provides information relative to the structure of terms.
The value of frm(i), when it is defined, is equal to a term of the form f(iy,...,4,),
meaning that ¢; is of the form f(¢;,,...,t;,). Finally, the abstract tuple o provides
information about modes, types and possible sharing of the terms ¢;’s. It 1s defined
in terms of the elementary domains Modes, Types and PSharing described above.

iy

Definition 3.3. [Pseudo-Abstract Substitution] A pseudo-abstract substitution
over a set of indices I is either L or a triplet of the form (sv, frm,«) where
the same-value component sv is a function, sv : {X1,..., X, } — I; the frame
component frm is a partial function, frm : I /& 7/ (we denote the fact that no

frame is associated with i by frm(¢) = undef); and « is an abstract tuple over I.
The set of variables {X;,..., X,,} is called the domain of 3 and is denoted by

dom ().

Definition 3.4. [Semantics of a Pseudo-Abstract Substitution] The semantics of
a pseudo-abstract substitution § over I 1s given by the following concretization

function Ce. If 2 = L then Cc¢(3) = 0, otherwise

Ce(B) = {0|dom(0) = dom(B) and 3 {t;);c; € T :
VX € dom(B), X0 = tsu(x);
Viel, frm(z) = f(il, . ,Zn) =1 = f(til, . ~~,tin);
(ti)ier € Ce(a)}.

Some auxiliary notation is necessary for defining (strict-) abstract substitutions.

Definition 3.5. Let I be a set of indices, sv : {Xy,..., X,} — I be a function and
frm I 4 77 be a partial function. Consider the following relation between
the indices of I: i < j holds iff frm(i) = f(i1,...,{n) and i = j for some
ke{l,...,m}. We denote by <« fm the transitive closure of <f-, and by <4
the reflexive and transitive closure of <p.,. We say that frm is circuet-free iff
there exists no index ¢ € I such that ¢ <« 2. An index ¢ € I is reachable by sv

15

and frm iff there exists a variable X (1 < k < n) such that sv(Xp) <, 1.

Definition 3.6. [(Strict-) Abstract Substitution] A (strict-) abstract substitution 3
over [is a pseudo-abstract substitution {sv, frm, «) over I such that o # L; frm
is circuit-free; all ¢ € I are reachable by sv and frm; and for all ¢, € I such that
frm (i) = f(i1,...,in) and (J, i) € ps for some k € {1,...,n}, (j, 1) € ps.

Erample 3.1. The abstract substitution 3,.f, which is part of the formal specifica-
tion of select/3, given in Figure 2.3, is represented by B,.f = (svref,frmref, Qref),
where ayef = (M0rer, 1Y ep, PS,ep) With

SUpep t K= 1 frm 0 17 MOy © 1 — var Wyep o 1— anylist
L—2 2 — [4]5] 2 +— ground 2+ list

LS+— 3 37 3 — var 3 — anylist
47 4 — ground 4 — any
57 5 +— ground 5 list

PSrep = {(1’ 1)’ (3’ 3)}

This substitution requires L to be a non-empty (ground) list. Therefore, the struc-
ture of the term associated with the index 2 (representing L) is known: the main
functor of this term is [. | .]. Moreover, its first subterm (associated with 4), should
be ground and its second subterm (associated with 5), should be a ground list.

Given one particular substitution 6 with domain {Xy,..., X} and represented by
an abstract substitution § over I, the correspondence between indices in I and
(sub)terms in X160, ..., X,,0 is made explicit by the function DECOMP defined below.
This operation computes a set & of term tuples. Each of them is a decomposition
of 6 with respect to the (pseudo-) abstract substitution (3.

Operation 3.1. DECOMP(0,8) =8

SPECIFICATION Let # be a substitution and g = (sv : {X1,..., X} — I, frm,a)
be a (pseudo) abstract substitution over I such that § € Cc¢(3). DECOMP(?, §)
returns the set § C 77 of term tuples such that for all (tiYier € S the following
properties hold:

o 0= {Xl/tsv(Xl)a .- 'aXn/tsv(Xn)};

o Vic I, frm(i) = f(ir, ... in) = t: = f(ti,, - 10,);

. <ti>iEI € CC(Q).
Notice that if 7 is a strict abstract substitution, then the set DECOMP(#, 5) is a
singleton, i.e., it contains exactly one term tuple.

3.3. Abstract Sequences

We now formalize the notion of abstract sequence introduced in Section 2.

16

3.3.1. Sizes. For any set of indices I, we denote by Sizes; any set of elements
endowed with a concretization function Cec : Sizes; — p(INY). In this paper,”we
assume Sizesy to be the set of all systems of linear equations and inequations over
Exp; (the set of all linear expressions with integer coefficients on the indices of
I), extended with the special symbol L. An element se € Exp;x, x, j can also
be seen as a function from N™ to N, as size expressions are positive. The value
of se({n1,...,nm)) is obtained by evaluating the expression se where each X; is
replaced by n;. Notice that any system of linear equations and inequations over
Exp; defines a polyhedron in a space whose dimension is the cardinality of I.

In order to distinguish indices of I, considered as variables, from integer coeffi-
cient and constants when writing elements of Exp;, we wrap up each element ¢ of
I into the symbol sz(7).

The concretization function Ce is as follows. For all E € Sizesy, if E = L then
Cec(E) = 0, otherwise, Cc(E) = {(n;)ier € NY| (n;)ier is a solution of E}.

In the following, (in)equations will be written between double brackets [--],
meaning that they are syntactic objects, not semantic relations. If f is a function
from one set of indices to another one, such that f(i) = ¢ and f(j) = j/, the
expression [sz(f(7)) = sz(f(j)) + 1] has to be read as the syntactical equation
sz(i) = sz(j') + 1. As indices from different abstract substitutions can occur in
these (in)equations (e.g., we use indices from f,; and f,u¢ to compare the size
of the terms before and after the execution of a procedure), we have to introduce
a notion allowing us to “merge” two sets of indices into one set, in such a way
that elements from both sets remain distinct (the indices that are present in both
abstract substitutions should remain distinct, as they refer to different terms). Let
A and B be two (possibly non disjoint) sets. The disjoint union of A and B is an
arbitrarily chosen set, denoted by A + B, equipped with two injections functions
my and inp satisfying the following property: for any set C and for any pair of
functions f4 : A — C'and fp : B — C, there exists a unique function f : A+ B — C
such that fq4 = foina and fp = foinp (where the symbol o is the usual function
composition). Since the function f is uniquely defined, we can express it in terms
of fa and fp. In the following, it 1s denoted by fa + f5.

3.3.2. ABSTRACT SEQUENCES. We are now in a position to define abstract se-
quences in a formal way. As usual, we introduce the notion of pseudo-abstract
sequence first. The symbol sol is used to denote a special index representing the
number of substitutions belonging to the approximated sequences.

Definition 3.7. [Pseudo-Abstract Sequence] A pseudo-abstract sequence B is either
L or a tuple of the form (Bin, Bref, Bout, Eref out, Esor) Where (i, is a pseudo-
abstract substitution over I;,; @r.; is a pseudo-abstract substitution over [, ¢
with dom(Brer) = dom(Bin); Bour is a pseudo-abstract substitution over I,y with

dom(ﬁout) 2 dom(ﬁm)a Eref_out S Sizes(IT€f+Iout); and Esol S Sizes(IT€f+{sol})~

We will refer to 8;, and Gy also as input(B) and outpui(B), respectively. More-
over, we define domg,(B) = dom(B4n) and dom ,u:(B) = dom(Bout).

"By the generality of the definition of Sizes;, other domains representing tuples of natural
numbers may also fit in the current framework (e.g., arbitrary arithmetic constraints).

17

Definition 3.8. [Semantics of a Pseudo-Abstract Sequence] The semantics of a
pseudo-abstract sequence B is given by the following concretization function: if
B = 1 then Ce¢(B) = 0, otherwise®

Ce(B) = {{(0,5) | 0 € Cc(Bin), S € SSeq, Subst(S) C Ce(Bour),
(S #£< >= 0 € Ce(Brer)),
(0" € Subst(S), (ti)iefref €DECOMP(0, Brer), (5:i)ie1,,; €DECOMP(E', Bout)
= (Fildier,.; + (Isil}icr,ue € C(Erep_our)),
(<ti>i61ref € DECOMP(G, Bref)
= (ltil)ier,.; + {sol—|S[} € Ce(Eo1))}-

The first condition on (@,S) expresses that all the substitutions # that are not
described by Frer lead to unsuccessful calls; the second and third ones ensures that
the relations expressed by Erer_ous (between the terms of the input substitution
and those of the output substitution) and by F,; (between the terms of the input
substitution and the number of solutions, i.e., the number of substitutions in)
are respected.

Additional conditions are introduced to avoid (at least partially) multiple repre-
sentations of the same set of substitution sequences. A (strict-) abstract sequence
is defined as follows.

Definition 3.9. [(Strict) Abstract Sequence] A (strict-) abstract sequence B is a
pseudo_abStraCt sequence <6ina6refa Bouta Eref_outa Esol> such that 6inaﬁrefa 6out
are abstract substitutions; By, # L; Brer < Bin”; for all ¢ € Ce(Bour), 30 €

Cc(fBrer) such that gl/dom(ﬁmf) < 8; and, if either Bref or Bout OF Eref_out OF Eor

is equal to L, then they are all equal to L;

FEzample 3.2. Consider once again the abstract sequence B for select/3 de-
picted in Figure 2.3, where Iof = Iour = {1,2,3,4,5}. The component Ercf _ous 18
expressed on the disjoint union Ief + Iowe = {1,2,3,4,5,6,7,8,9,10}, where the
injection functions are tnyer 1 Irep — Lref + Lour and nour @ Lout — Irep + Ious, also
depicted in Figure 2.3. According to the notations introduced above, it could
be rewritten into Eret oue = [s2(5) = s2(8)] and E., could be rewritten into
Fso1 = [s0l = s2(5)+1].

3.4. Behaviours

A behaviour for a procedure is a formalization of the specification of behavioural
properties provided by the user.

Definition 3.10. [Behaviour] A behaviour Beh, for a procedure name p € P of arity
n is a finite set of pairs {(B1, se1), ..., {Bm, sem)} where By, ..., By, are abstract

8Notice that the + operator used below is the one that applies to functions, as defined in
Section 3.3.1, since tuples (||¢;]|);c; actually are functions.

9For the sake of brevity, we omit the definition of this ordering. A formal definition may be
found in [47].

18

sequences such that domg,(By) = domoye(Br) = {X1,..., Xn} (1 <k < m);
and sey, ..., sey,, are positive linear expressions!®from Expx, . x.1-

Fach pair of the form (Bj, se;) will be called a behavioural pair (or, if no confu-
sion is possible, a behaviour). The positive linear expression se is required to strictly
decrease in recursive calls of the described procedure to ensure termination.

Ezample 3.3. Let B be the abstract sequence of Example 3.2. The behaviour for
select/3 described in Section 2 can be represented by {(B, L}}.

4. DESCRIPTION OF THE ANALYSER

In this section, we describe the analyser, and we discuss how it executes a program
at the abstract level. If the analyser succeeds, the given behaviours correctly de-
scribe the execution of the analysed program. In particular, every procedure call
(allowed by these behaviours) terminates. If the analyser does not succeed, then,
either the program does not terminate or is not consistent with the behaviours
given by the user; or the information given in the behaviours is not sufficent for the
analyser to deduce that the program is consistent and terminates.

To simplify the presentation, we assume that the program we want to analyse
contains no mutually recursive procedures. Moreover, we assume that each recursive
subcall occurring in the execution of a call described by some behaviour (B, se,)
can also be described by this behaviour. We explain how these simplifications can
be removed in Section 4.3. For space reasons, we omit the correctness proof of the
analyser; it can be found in [43].

4.1. Concrete Semantics

The reasoning underlying the design of our analyser is based on the intuition that
a Prolog procedure is a function mapping every input substitution to a sequence
of (answer) substitutions. Proving the correctness of our analyser thus requires a
(concrete) semantics which formalizes this intuition (and yet is equivalent to Prolog
operational semantics). In practice, we use the concrete semantics presented in [46].
It has been proven equivalent to Prolog operational semantics in [44]. Actually, the
correctness proof of the analyser uses a simplified semantic characterization for
terminating executions, also given in [43]. This characterization is simpler because
it has only to deal with finite sequences of substitutions while the semantics in [46]
has also to consider infinite and (so-called) incomplete sequences. Observe that
there 1s no vicious circle created by assuming that the program terminates because
the correctness proof of our analyser uses an induction on a well-founded relation
over procedure calls; so we can always assume that the sub-calls terminate, i.e.,
that our simplified characterization applies.

10Tn fact, it is possible to use more general linear expressions, possibly involving negative coef-
ficient, and to prove that such expressions actually are positive at each procedure call. However,
for simplicity, we only consider positive linear expressions in the rest of the paper.

19

Programs are assumed to be normalized as follows. A normalized program P is
a non empty set of procedures pr. A procedure is a non empty sequence of clauses
c. Each clause has the form h: —g where the head h is of the form p(Xy,..., X,)
and p is a predicate symbol of arity n, whereas the body ¢ is a possibly empty
sequence of literals. A literal ! is either a built-in of the form X;, = X;,, or a
built-in of the form X;, = f(X ., X5,) where f is a functor of arity n — 1,
or a procedure call p(X;,,...,X;,).''The variables occurring in a literal are all
distinct; all clauses of a procedure have exactly the same head; if a clause uses m

PR

different variables, these variables are X, ..., X,,. We denote by P the set of
all predicate symbols occurring in the program P. Variables used in the clauses
are called program variables and are denoted by Xi,..., X;,.... Observe that all

programs can be rewritten into equivalent normalized programs.

The concrete semantics associates with every program P a total function from
the set of pairs (@, p), where p is a predicate symbol occurring in P and dom(8) =
{Xy,...,X,}, where n is the arity of p, to the set of substitution sequences. In
the rest of this section, we only consider input pairs (f, p) such that the execution
of the call p(X1,..., X,)0 terminates and produces the (finite) sequence of answer
substitutions S. This fact is denoted by (6, p) — S in our concrete semantics. We
use similar notations for describing the execution of a procedure pr, a clause ¢ and
a prefix of the body of a clause, denoted by (g, c}.

4.2. Abstract Ezecution of a Prolog Program

Our analyser is based on a standard verification technique: for a given program, it
analyses each procedure; for a given procedure, it analyses each clause; for a given
clause, it analyses each atom. If an atom in the body of a clause is a procedure call,
the analyser looks at the given behaviours to infer information about its execution.
The analyser succeeds if, for each procedure and each behaviour describing this
procedure, the analysis of the procedure yields results that are covered by the
considered behaviour.

In this section, we describe how our analyser executes at the abstract level the
clauses and the procedures of a given Prolog program. In the following, SBeh is a
family of behaviours SBeh = (Behy),ep containing exactly one behaviour Beh,, for
each procedure name p € P (where P is the set of all procedure names occurring
in the analysed program).

4.2.1. SPECIFICATION OF THE ABSTRACT OPERATIONS. This section contains
the specifications of the operations used for the abstract execution of a procedure.
We suggest the reader to skip it at a first reading, and to refer to it whenever one of
these operations occurs in the next (sub)sections. In Section 5, the interested reader
may find a detailed description of two main abstract operations in the context of
the abstract domain of Section 3, namely UNIF_VAR and CONC.

e EXTC(c,f) = B is an operation that extends the domain of 8 to the set of
all variables occurring in the clause ¢. The result 1s an abstract sequence B

1 For the sake of simplicity, once again, we do not explicitly consider other built-ins such as
var or is, nor negated literals, nor the cut. It is relatively straightforward to incorporate such
operations to our analyser (see the conclusion).

such that V@ € Cec(f3) : (#,S) € Cc(B), where S is the sequence whose only
element is the extension of the substitution # to the set of all variables of ¢.

e RESTRC(c, B) = B’ is an operation that restricts the output domain of B
(which is assumed to be the set of all variables occurring in the clause ¢)
to the variables occurring in the head of ¢. The abstract sequence B’ must
satisfy V{6, S) € Ce(B) : (0,5") € Ce(B'), where S’ is the sequence obtained
by restricting the substitutions of S to the variables of the head of e.

e RESTRG(/, B) = (3 is an operation that restricts the output domain of B to (a
renaming of) the variables occurring in the literal [. The result is an abstract
substitution § satisfying V{(0,5) € Ce¢(B),¥0' € Subst(S) : 0" € Ce(P),
where 6" is a substitution obtained from 6’ in two steps: by first restricting
6" to the variables X , X;, of the litteral [and then by renaming those
variables to the standard ones (X71,..., X,,) in order to allow the execution
of the procedure the litteral is a call of.

e EXTG(/, B1, B2) = B is an operation computing the effect of the execution
of the literal ! (which is given by the abstract sequence Bs) on the abstract
sequence Bj. Intuitively, the effect of the execution of the litteral [on Bj
can be computed as an instantiation by some substitution, which yields B-
(when applied on RESTRG(/, By)). The operation EXTG extends the effect of
the instanciation on the whole sequence B; (taking into account necessary
renaming to avoid name clashes).

e LOOKUP(S3, p, SBeh) = (success, Byyt) is an operation searching Beh, for an
abstract sequence B € Beh, whose input substitution is at least as general as
3. If such an abstract sequence exists, this operation returns success = true
and this abstract sequence. Otherwise, it returns success = false, and the
value of By, 1s undefined. The specification of LOOKUP can be written as
success = dse | (B, se) € Beh, A 3 < input(B).

e CHECK_TERM(/, B, se) = term is an operation checking if the size (according
to se) of the arguments of a recursive call given by the output substitution
of B is smaller than the size of the arguments of the head call. If the value
term is true and the literal I is p(X;,,..., Xy,), then V(6,5) € Cc(B),V¥' €
Subst(), se({I1X, 0l -, X, 01) < se([IX20], ., X1}

e UNIF.VAR(S) = B executes the unification X; = X, on the abstract substi-
tution 5. The abstract sequence B is such that, for all # € Ce(3), and for all
o € mgu(X16, X26), the tuple (6, < do >) belongs to Cec(B); moreover, the
tuple (#,<>) belongs to Cc(B) whenever X;6 and X360 are not unifiable.
An implementation of this operation will be described in Section 5.

e UNIFFUNC(3, f) = B executes the unification X; = f(Xa,...,X,) on the
abstract substitution 3, where n — 1 1s the arity of f. Its specification 1s
similar to the previous one.

e CONC(Bj, B2) = B concatenates the abstract sequences B; and Bz which
must have the same input abstract substitution and the same output do-
main. The abstract sequence B must satisfy V{8, 51) € Cc(By),¥(6,52) €
Ce(Bs), (8,51 = S2) € Ce(B). An implementation of this operation is given
in Section b.

TR

4.2.2. ABSTRACT EXECUTION OF A CLAUSE. Let
c=p(X1,..., Xp) 1=l L.

21

be a clause of the program P and (B, se) be an element of Beh,. Let also 3;, =
input(B) be the input abstract substitution of B. The execution of the clause ¢ for
the input abstract substitution 3;, may be computed as depicted below.

(Bin) P(X1,- ., Xn) : = (Bo) h, (B1) «..y (Bre1) I, (Bk) .., (Bact) Ls (Be) . (Bowr)

RESTRG,” yyrr.yvap \EXTG

k ’ UNIF_FUNC)

EXTC K er Bt . RESTRC
\ LOOKUP /
ci=h:—g
gu=<> (Bin,g,¢) — B’
B' = EXTC(c, fin) B = RESTRC(c, B')
R1: : pR—T R2: ST
Z?’Laga)y
g:=g,l g:=g,l
lZZIXZ'I :Xi2 lZZIXZ'I :f(Xi2,~~~,Xin)
<6inaglac>'—>B/ <6inaglﬁc>'—>B/
Binter = RESTRG(I, B/) Binter = RESTRG(I, B/)
Bau:v = UNIF—VAR(Bmter) Bau:v = UNIFFUNC(ﬁmtw, f)
B = EXTG(I, B, Byus B'" = EXTG(I, B', Bous
R3: U5, -) R4 : (-)
<6in;g;c>'—>B <6in,g;c>'—>B
gu=g,l
g:=g,1 li=p(Xiy, ., X5,)
li=q(X5y, .., X)) p is the predicate of ¢
q # p, where p is the predicate of ¢ (Bin,g',c) — B’
(@‘n,gl, C> — B Bmter — RESTRG(la B/)
6mt67‘ = RESTRG(I, B/) Bmter S 6in
(true, Bgyy) = LOOKUP(Bipter, ¢, SBeh) CHECK_TERM(!, B’, se) = {rue
s B" = EXTG(I, B', Bauy) by B =EXTG(L B, B)
. <6inagac>'—>B// . <6in;gac>'—>B//

Let us now briefly describe the rules depicted above.

Rule R1 initiates the abstract execution of the clause by extending the input
substitution 3, to the set of all variables in ¢. Rules R3, R4, R5 and R5’ are used
for executing the litterals of the clause. Observe that, for each litteral, only one
rule amongst those may apply.

First, Rule R3 takes care of the unifications of the type “X;, = X;,”. In order
to obtain the abstract sequence B’ associated to the program point just after the

22

unification, from B’, associated to the program point just before it, we use three
abstract operations: RESTRG to obtain an abstract substitution 3;,¢. whose domain
is {X1, X2} (computed from the abstract sequence B’); UNIF_VAR to compute the
unification on Binter; and EXTG to extend the effect of the unification on the whole
abstract sequence B’. This last step guarantees that all the variables (in the sub-
stitution of B’) whose instanciation shares a variable with the instanciation of X,
or X;, will be correctly treated. Rule R4 follows a very similar process to execute
function unification.

Rule R5 and Rb5’ execute procedure calls (either non-recursive or recursive). In
the case of Rb (non-recursive call), the effect of the procedure call is obtained
by searching SBeh for a description of the procedure ¢. In the case of recursive
calls, we impose that two conditions are satisfied: first, we only allow recursive
calls that can be described by the behaviour currently analysed (Ginter < Bin) and
second, we require the recursive call to be strictly “smaller” (according to the size
expression given in the behaviour) than the initial call (this condition is verified
by CHECK.TERM). If those two assumptions hold, we simulate the execution of the
recursive call by the information given in the behaviour currently analysed. If any
of those tests fails, we give up the analysis as we do not possess enough information
to go on safely.

Finally, Rule R2 completes the execution of the clause ¢ by restricting the output
substitutions described by B’ to the variables occurring in the head of c.

4.2.3. ABSTRACT EXECUTION OF A PROCEDURE. Let pr =c¢1,...,¢, be a pro-
cedure whose name is p. Its abstract execution can be summarized by the following
graph and rules.

pri=c
(Bin) c1 (B1) - (Bin,c) — B’
: \ K6 : <6m,p7”> — B’
(Bin) cx (Br) Lo 2B pro=c, pr'
: / e =5
6“1’])7,/ _— B//
(Bin) cr (By) coNc(B', B") = B"

R7 :

(Bin, pr) — B"

Rules R6 and R7 simply assert that, in order to compute the abstract execution
of a whole procedure, it suffices to compute the abstract sequences given by each
of its clauses and to (abstractly) concatenate those results.

In order to check that the given set of behaviours SBel correctly describes the
execution of a program P, the analyser simply verify that, for each behavioural
pair (B, se) attached to a procedure p, it is possible to deduce from Rules R1 to
R7 that (8, pr) — B’, where (3, is the input substitution of B and pr is the
text consisting of all the clauses describing the procedure p, and that the abstract
sequence B’ is more precise than B.

4.3. Removing the Restrictions of the Analyser

We conclude this section by explaining how the simplifying hypotheses about the
form of the program can be removed. We do not discuss the treatment of additional

23

built-ins, such as test predicates and the cut, nor the treatment of negation, since
these issues are addressed in the conclusion. Here, we concentrate on how to deal
with mutual recursion and with recursive calls using other behaviours than the one
that is currently analysed.

Procedures with recursive subcalls that may not be described by the abstract
sequence used for the input call are in fact very similar (at the abstract level) to
mutually recursive procedures. Indeed, when such procedures p are decomposed

into several procedures pi,...,ps (with different names but - nearly - the same
definition as p), each of them associated with one of the abstract sequences of
Beh,, these procedures p1, ..., p, are mutually recursive.

Therefore, we first explain how to treat mutual recursion and, afterwards, we
explicit how to replace procedures with subcalls that cannot be described by the
abstract sequence of the input call by mutually recursive procedures.

Mutual Recursion. If mutual recursion is allowed, we have to add a ter-
mination test based on the size expressions of all procedures concerned by mu-
tual recursion (above, we only used such a test for recursive procedures). So,
if p and ¢ are mutually recursive procedures, if (B,,se,) € Beh, and if the ex-
ecution of (6, p), where § € Ce(input(B,)), uses a subcall (¢, q), where 6" can
be described by (B, se,) € Beh,, we have to check (at the abstract level) that
se ({16 Xall, -, 10/ X)) < sep({||6X1], - - -, ||6Xn]|}), where n and m are respec-
tively the arities of p and ¢. This test ensures that the mutually recursive procedures
will not loop infinitely.

In order to use this method, we must analyse the program to find out all mutually
recursive procedures or, more precisely, all pairs of triplets ({p, By, se;), (g, Bq, s€4))
(with (B, se,) € Beh, and (B, se,) € Beh,) describing procedure calls that may
use subcalls described by the other one. The termination test should be realized
only when the triplets associated with the subcall and the head call are “mutually
recursive”.

Procedures with Subcalls that Cannot Be Described by the Abstract Sequence
of the Input Call. Once the restriction about mutual recursivity has been removed,
it 1s quite easy to allow recursive calls that cannot be described by the abstract
sequence used for the head call by creating several copies of the procedure with
different names (one copy for each abstract sequence given in SBeh) and replacing
the recursive calls by calls to one of these new procedures.

More precisely, let p be the name of a procedure and (B, se1),..., (B;,ses) be
the elements of Behy,. In order to simplify the presentation, we assume that the
definition of p contains only one recursive call. We first compute (using the abstract
execution process described previously), for each (input) abstract sequence By,
which abstract sequence B;, can be used to solve the recursive call. Afterwards, we
create s procedures named py,...,ps (we assume that these names are not used),
one for each abstract sequence in Beh,. Each procedure p; is defined by the same
text as p but the recursive call p(X;,,..., X;,), found in the definition of p, is
replaced by p;, (X;,, ..., X;,) in the definition of py. Then, we remove Beh, from
SBeh and add Beh,,, ..., Behy, , where Beh,, = (B, sey).

So, instead of analysing a single procedure where recursive calls are described
by abstract sequences different from the one used as input, we analyse several
(possibly mutually recursive) procedures. Once all “mutually recursive” triplets
have been listed, we may be able to remove some termination tests for the (simply)
recursive procedure that has been replaced and, thereby, extend the applicability

24

of the analyser. For example, if the execution of all calls described by the triplet
t = {p, B, se) leads to subcalls that may be described by ¢’ = (p, B’, se’) and if
the execution of calls described by t' never uses subcalls of ¢, we may remove the
termination test for ¢.

5. ABSTRACT OPERATIONS

The last step to achieve in order to obtain an implementable analyser is to provide
a practical definition of all abstract operations used by the analyser. In this section
we explain how we deal with a couple of operations. The same methodology can
be applied to construct the whole operation set systematically. More specifically,
we describe in details two main abstract operations, namely UNIF_VAR and CONC.
Correctness of their implementation has been proved in [43]. Note that these im-
plementations reuse (old) abstract operations from GATA (see mainly [46, 47]). We
recall the specifications of these operations but we omit their implementation.

5.1. Unification of Two Variables

The operation UNIF_VAR executes the built-ins X; = X; at the abstract level. The
implementation is as follows: first, we (re)use the old version of the operation, here
called UNIF VAR,;4, to compute an abstract substitution 3, describing the result
of X; = X called with an abstract input substitution 3. Then, in order to refine g
to the set of § € Ce(B3) for which the unification succeeds, we establish a mapping
(called structural mapping since it respects the structure of the frame component)
between the indices of f and the indices of 8., representing the corresponding
terms. This allows us to refine the information on modes, types, and patterns
provided by 3, producing 6;€f. This is realized by operation REF,.;. Finally, we
derive constraints between the size of terms in ﬁ;ef and 2, . as well as constraints
on the number of solutions.

5.1.1. STRUCTURAL MAPPING. A structural mapping between two abstract sub-
stitutions is a mapping on the corresponding indices preserving same-value and
frame.

Definition 5.1. [Structural Mapping] Let 8 = (sv, frm,«) and 8’ = (sv’, frm’, o)
be two abstract substitutions over I and I, respectively. A structural mapping
between § and 4’ (if it exists) is a function ¢r : I — I’ such that

o VX € dom(f), tr(sv(X)) = sv/(X);
o Viel, frm(i) = f(i1,...,in) = frm'(tr(d)) = f(tr(ir),..., tr(in)).

5.1.2. OLD OPERATIONS. The operation UNIF_VAR is defined in terms of the
operation UNIF_VAR,;; which is a slight generalization of the operation UNIF_VAR
defined in [47]. Hereafter, we recall the specification of UNIF_VAR,4.

Operation 5.2. UNIF VAR4(3) = (7', ss, sf, tr,U)
This operation unifies X160 and Xof for all § € Ce(8). We do not provide an
implementation for it since it is similar to [47] whose extension is discussed in
[46]. The only novelty is that we explicitly return the structural mapping ir

25

and the set of indices U. More precisely this operation returns an abstract
substitution 3, two boolean values ss and sf specifying whether sure success or
sure failure can be inferred at the abstract level, a structural mapping ¢r between
3 and @', and a set of indices U representing the set of terms in 6 whose norm
is not affected by the instantiation. The latter will allow us to establish precise
constraints between the size of terms in 3], and 3.
SPECIFICATION Let 3 be an abstract substitution over I with dem(5) = {X1, X2}.
UNIF VAR,;4(3) returns a pseudo abstract substitution 8’ over I, two boolean
values ss and sf, a structural mapping ¢r : I — I’ and U C I such that:

0 e Ce(p)

o € mygu(X10, X20)
(ti)icr € DECOMP(0, 5)
(si)ier € DECOMP(fo, 3')

bo € Ce(f)
= Vel |t] = |to|
Viel, t;o = sy

ss = true = (V0 € Ce(P) : X160 and X420 are unifiable);
sf = true = (V0 € Ce(B) : X160 and X120 are not unifiable).

5.1.3. REFINEMENT OPERATIONS. The operation REF,. refines the input ab-
stract substitution G into B;ef. It is defined in terms of operations REFs, (which
focuses on the frame component) and REF, (which refines the o component). The
three operations respect the same specification given below for REF ;.

Operation 5.3. REF,of(01, o, tr1 2) = (3, 1)
This operation refines the abstract substitution 7 by keeping substitutions in
Cc(B1) that have at least an instance in Ce(8z).

SPECIFICATION Let 7 and (35 be two abstract substitutions over I; and Is, re-
spectively, with dom(31) = dom(32) and tri » : [1 — I be a structural mapping
between 1 and By. REF,.¢(51, 2, tr1 o) produces an abstract substitution 3’
over I’ and a structural mapping i’ : I’ — I between ' and 2 such that

dom(B3') = dom(B) (k =1,2), 8/ < 31 and

0 k=
6726 E gclc(ﬁk) (1a2)} =0, ¢ CC(ﬁ/).

The implementation of the three REF operations uses four simpler operations on
modes and types that we present first. The implementation of the first one has

been described in [47].

Operation 5.4. EXTRM(f, M) = (My,..., M,)
This operation computes the most precise modes of terms #y,...,%, when we
know that the mode of f(t1,...,t,) is M.

SPECIFICATION Let f be a function symbol of arity n and M € Modes.
ft, ... tn) € Ce(M) = t; € Ce(M;) (1 < i< n).

26

Operation 5.5. EXTRT(f,T) = {(T1,...,Ty)
It is analogous to the previous one; it computes types instead of modes.

Operation 5.6. UNIST,,(M)= M’
It approximates the set of terms that can be instantiated to a term ¢ € Ce(M).

SPECIFICATION Let M, M’ € Modes. The following relation holds:

te Ce(M
t:t’a()} =t e Cc(M').
IMPLEMENTATION
M = war if M = var
noground if M € {ngv, noground}
L ifM=1
any otherwise.

Operation 5.7. UNIST.,(T)="1T'
It as the same specification as the previous operation where T',7" € Types.

IMPLEMENTATION
T = anylist if T € {list, anylist}
L fT =1
any otherwise.

Operation 5.8. REFjm (01, B2, tr12) = (6, tr')
It refines the abstract substitution 3; only using the frame component of 5.

IMPLEMENTATION Construct the sequence of intermediate abstract substitutions
B89, ...p" ... and structural mappings tr%, ..., tr, ... as follows.

1. 8% =p and 0 = 1r1,2.

2. Assume given 3 and the structural mapping tr : I! — I.
Suppose that there exists j € I' such that mo®(j) < novar, meZ(_]) = undef
and frms(tr(5)) = f(k1,..., k,). Then B+ and ¢rit! are defined by:

It = 1"U{j1,...,jn} where ji, ..., j, are distinct new indices;
spitl = SUi;

meZ+1 — frml U {j — f(jl’ .. ,jn)}a

it = trt U {ji— kG k)

moz+1(j) = mo*(j) for all j € I' and

(mo*1(j), ..., mo*1(ju)) = EXTRM(, mo' (j));

. tyl'"l(]) = tyl(_]) 'for all j € I' and)

(ty™+ (1), 1y () = EXTRT(F, 1y (j));

o psitl = pst U{(Gi, k)| L€ {1,...,n}, moL(j) # ground, (j, k) € ps'}.

3. Otherwise, ' = 3 and tr' = tr'.

27

Operation 5.9. REF,(f1, o, tr12) = (&, tr')
It refines 81 only considering the « component of 3s.

IMPLEMENTATION The implementation is as follows:

I = I

sv’ = sv3

frm’ = frmy

mo’(i) = moq(d) QUNIST(moa(try 2(4))) forallie I’
ty'(i) = ty,(i) DUNIST(Zy,(tr1 (7)) forallie I’
ps’ = D3

t?”/ = t7”172.

Operation 5.10. REF,.t (51, B2, tr12) = (f, tr')
It combines the two refinement operations defined above.

IMPLEMENTATION

(03, trs) REFfrm (1, B2, tr12)
<6/, t?”/> = REFQ(BQ,, 62, t?”gyz).

5.1.4. UNIFICATION OF Two VARIABLES. We are now in position to define
UNIF_VAR.

Operation 5.11. UNIF.VAR(S) = B’

SPECIFICATION Let § be an abstract substitution such that dom(8) = {X1, X2}.
UNIF_VAR(S) computes a pseudo abstract sequence B’ such that:

6 € Ce(p)
o € mgu(X,0, X-0)

6 € Ce(p)
mgu(X16,X20) =0

} = (0, < o >) € Cc(B)
} = (0,<>) € Ce(B').

IMPLEMENTATION Let (Boys, tr, s, sf, U) = UNIF VAR,q(5). The pseudo abstract
sequence B’ = (/! ;ef, s B E’) is defined by

ino outr “ref_out?

28

in = p
ﬁ)ut = Bout
<6;~€fa trref_out> = < ;n, t?”) if ss
(L, undef) if sf
REFTef (Bgn ’ Bﬁ)uta t?”) lf —8s and —|5f
;“ef_out = 1 if Sf
{Isz(2nref (1) = sz(inoue(trres_oue(1)))] -
i€ trin_rer(U)} otherwise
‘ol = {[sol = 1]} if ss
L if sf
{10 < sol], [sol < 1]} if —ss and —sf.

where the structural mapping #r;,_rer is a canonical inclusion. The following com-
mutative diagram is satisfied by #r;n_rer, trref_ous and the injections in; and i ,us.

trin_ref

U g I= Ign I;‘ef Ii)ut

Nyef inout

I;‘ef + Ii)ut

Remark 5.1. The precision of operation UNIF_VAR can be improved with a reexecu-
tion strategy (see, e.g., [48]): in the case where ss and sf are both false, we can
reapply the unification operation to the abstract substitution ﬁ;ef computed by
REF,.s. It may happen that the new abstract unification surely succeeds, allowing
us to derive better information on the number of solutions. This improvement
is needed to obtain optimal precision on the example of Section 2.

5.2. Concatenation of two Abstract Sequences

The second operation we present is the concatenation operation CONC. It is the
counterpart for abstract sequences of the operation UNION, used in [47], which simply
collects the information provided by two abstract substitutions into a single one. In
fact, the operation CONC is similar to UNION for all but one component, namely F,;;
this is because the number of solutions of a procedure is the sum of the numbers of
solutions of its clauses, not an “upper bound” of them. To obtain a good precision in
the computation of Fj,y, it is important to detect mutual exclusion of clauses [9, 46].
In our implementation, we generalize this idea. First, we compute the greatest lower
bound of the 3, component of the two abstract sequences. Then, we compute the
sum of the numbers of solutions for this greatest lower bound only. In particular,
when the greatest lower bound is equal to L, the clauses are exclusive, and no sum
1s computed: we only collect the numbers of solutions of the two clauses.

The implementation of CONC is complex but can be explained in a concise way
through the use of special operations called constrained mappings that we present

29

first. Some auxiliary operations are also described.

5.2.1. CONSTRAINED MAPPINGS. Constrained mappings have been introduced
in [49] as a formalism to manipulate indices. We give below a general definition
of constrained mappings. This is a relaxation of the notion proposed in [49]. The
reader can find the implementation for the size domain in [43].

Definition 5.2. [Constrained Mappings] Let I and I’ be two finite sets of indices
and tr : I — I’ be a function. The concrete constrained mapping of tr is the
pair of dual functions, tr2 : p(71) — p(’TII) and {rZ : p(’TII) — o(71) defined
below. For all ; € p(77) and $p € p(T1'),

(1) = Usidier € TV Iti)ier € X1 Vi € 1,500y = i)

tre(Sp) = {{ti)ier € T'| Isi)ier € Sp 1 Vi € Liti = 5005}

Let A7 and A be two abstract domains approximating p(77) and p(77"), re-
spectively, with concretization functions Ce. An (abstract) constrained mapping
is any sound approximation {r> : A; — Ap and {r< : A;y — A; of a concrete
one, 1.e.,

Var € Ag, tr7 (Ce(ar)) C Ce(tr” (ar))
Yap € A[!, tTf(CC(Oq/) - CC(tT<(Oz11)).
5.2.2. AUXILIARY OPERATIONS. Let us introduce some auxiliary operations.

Operation 5.12. LUB(By, f2) = (f, try, tra)
This operations returns a pseudo-abstract substitution 8 = £; U 32 and two
structural mappings {ry between 3’ and 8y, e, try : I' = I, (k=1,2).

Operation 5.13. EXT_LUB(fy, B2) = (', tr1, tra, st)
It returns ', try, trs as above and a boolean value, st, such that st = true implies

that 5’ is a strict union, i.e., Ce(f") = Ce(B1) U Ce(B2).

Operation 5.14. GLB(81, f2) = (f, try1, tra)
This operations returns a pseudo-abstract substitution 3 = $; M Bs and two
structural functions ¢ry between 8y and /e, try : Iy — I' (k=1,2).

Operation 5.15. SUMo(Fy, B2) = E
This operation is used to express the length of a sequence obtained by concate-
nating two other sequences.

SPECIFICATION Let I be a set of indices and L} € Sizesriqon (K = 1,2).

30

SUMs,1(£, E'2) returns B/ € Sizesyy,orp such that

(n;)ZEI+{sol} S CC(Ek) (k‘ = 1’2)
77,1 - n2 =n; (l S I) = (ni)i61+{sol} c CC(E/),
Nsol = niol + n?ol

IMPLEMENTATION Let sol; and sols be two new variables.
E" = rS(Erlsol — soli] U Ea[sol — sols] U {[sol = soly + sols]})

where trs,; : I+ {sol} — I + {sol soly,soly} is the canonical injection, and
F;[sol — sol;] is the set of (in)equations obtained by syntactically replacing
every occurrence of sol by sol; in F;.

5.2.3. CONCATENATION OF TWO ABSTRACT SEQUENCES. We are now in posi-
tion to describe in details the concatenation operation CONC.

Operation 5.16. CONC(By, By) = B’
This operation is used to concatenate the (abstract) results obtained from the
execution of a procedure and a clause.
SPECIFICATION Let By = (Bin, Brer, Bhues Elor_outs EX,1) (K = 1,2) be two ab-
stract sequences with dom 4y (B1) = dom oy (B2). CONC(By, By) returns a pseudo
abstract sequence B’ = (3., ;“ef,ﬁout,Eiaef_out,E;Ol) such that dom;,(B’) =
domin(By), dom oyt (B') = dom oy (By) (k= 1,2) and
(#,51) € Ce(By) - ,
(0, 55) € Ce(Bs) = (0,51 :: S2) € Ce(B').

IMPLEMENTATION The implementation is defined as follows:

/
m = Bin
< ref s trref’ trref’ 5t> = EXT—LUB(B}‘ef ’ 67%#)
<Bouta trout’ trout) = LUB(out) gut)
E;‘ef_out = (trref + 7f7nout) (E}"ef out) (trief + tr?)ut)<(E%ef_out)
(trref + {501 = 501}) (sol)l—l
(trref + {50l — sol})<(EZ U if st
(trmt + {501 = 501}) (SUMSOI(ESOI’ Esol))
£ =
sot (trref + {501 = 501}) (sol)l—l
(trref + {501 = 501}) (sol)l—l :
if —st.
(trmt + {501 = 501}) (SUMSOI(ESOI’ Esol))
tr sol([[SOI - 0]])
where

<6inta trzl‘nta trzz'nt> = GLB(ﬁref %ef)

31

—1

Esol

—=2
sol

= (Iri + {sol = sol})> (E,)
(1, + {s0l = sol})” (E7,)

and {rgor 2 {sol} — I ¢ + {sol} is the canonical injection. The structural map-

k

pings tr’ﬁef, trl . (k=1,2) and tr;,; satisfy the following commutative diagram:

Il
trint I
2
%) %:
Iref

The least upper bound operator U between (in)equation systems is implemented as
convex union (see [69]).

I;‘ef

6. RELATED WORKS

Logic program analysis has attracted so many researchers in the last decade that
it is not possible to give a comprehensive account of all interesting works related
to ours. We focus on some of them, which can be integrated (at least partially) in
an implementation of our analyser.

6.1. Logic Program Construction and Verification With Prolog

A methodology to verify the correctness of Prolog programs based on the theory
of logic programming and a number of additional arguments has been proposed
by K.R. Apt in [3]. The emphasis is on elegant methods which are not fully au-
tomatable but can be applied straightforwardly “by hand”. Termination proofs for
logic programs executing using the Prolog search rule is a prerequisite for the other
aspects of the methodology but we delay the discussion of this topic to the next
section entirely devoted to termination. Assuming termination, other desirable
properties such as (partial) correctness, occur-check freedom, absence of run-time
errors (for arithmetic predicates), and absence of floundering (for negated atoms)
are established: occur-check freedom and absence of floundering can be verified by
a syntactic analysis establishing that the program is well moded (or alternatively,
but for occur-check only, nicely moded). Occur-check freedom and absence of floun-
dering can be verified by our analyser thanks mainly to the mode and possible
sharing components.!?However, still better results could be obtained by enhancing
the domain with a linearity component. Generally speaking, our approach is more
powerful than the syntactic characterizations given by well moded and nicely moded
programs because we can reason “inside” the terms bound to program variables.
Absence of run-time errors is verified in Apt’s approach by resorting to (a limited

120ther components may improve the precision of mode and sharing information.

32

form of) directional types [1]. The same information can be derived by our analyser
if the type component of the abstract domain is extended with information about
numbers and ground arithmetic expressions.

Another methodology for Prolog program construction based on the logic pro-
gramming paradigm has been proposed by Y. Deville in [32]. This methodology
consists of three main steps: elaboration of a specification, construction of a logic
description, and derivation of a Prolog procedure. The third step of the methodol-
ogy 1nvolves a number of checks relative to the modes and the types of the argu-
ments, the number of solutions to the procedure, and termination. Our analyser
is strongly connected to Deville’s proposal since our notion of abstract sequence
is able to express the mode and multiplicity information of Deville’s specification
scheme. Our proposal even improves on Deville’s by allowing us to specify struc-
tural and sharing information. Our treatment of types and termination is however
not able to support the methodology in full generality because, in Deville’s ap-
proach, types are arbitrary sets of terms and termination proofs may use arbitrary
well-founded relations. Previous attempts to partially automate Deville’s method-
ology have been made in the project FOLON [37]. The analyser described here
can be viewed as an improvement of the FOLON analysers presented in [23, 24],
which are only based on the abstract substitution notion and are unable to deal
with termination, multiplicity, and term size relations. A more refined analyser,
which includes multiplicity and termination analysis, has finally been presented in
[14]. Tt can be seen as a preliminary version of the analyser proposed in this paper.

6.2. Termination Analysis of Logic Programs

Termination analysis of logic programs has received a lot of attention in the last
few years (see [25] for a detailed survey). So, once again, we restrict our discussion
to a few selected works.

The most general approach to proving termination of Prolog programs is proba-
bly the one of Y. Deville [32]. Tt basically consists of proving that recursive calls to
a procedure are strictly decreasing with respect to some well-founded relation. A
drawback of this approach is that it can be cumbersome to apply it “by hand,” be-
cause 1t requires to explicitly reason about the execution of the procedure, according
to Prolog operational semantics.

Thus, simpler methods have been investigated, the most fundamental of which
are due to K.R. Apt, M. Bezem, and D. Pedreschi [2, 4, 5, 6]. They noticeably
introduce the classes of acceptable and semi-acceptable programs which are guar-
anteed to terminate according to Prolog search rule, for a large class of queries
(i.e., bounded queries). Such programs are characterized through the existence of
a level mapping, which maps literals to natural numbers, and of a model I such
that (roughly speaking) the level mapping of literals respecting the model decreases
through embedded procedure calls. The simplicity of the method comes from the
consideration of a model which relieves us of reasoning about Prolog operational
semantics. The limitation to bounded queries (i.e., queries whose level mapping is
bounded under ground instantiation) has been relaxed by A. Bossi, N. Cocco, and
M. Fabris, who reason on terms that are rigid, i.e., whose norm is invariant under
any instantiation [7, 8].

The previous methods cannot be fully automated since they involve finding a
model and a level mapping for the program. Nevertheless, several (incomplete)

33

automatic methods have been shown able to prove the termination of interesting
classes of programs. The methods proposed by J.D. Ullman and A. Van Gelder
[63], L. Pliimer [58, 59, 60],and D. Schreye and K. Verschaetse [65, 66, 67] amounts
to derive an interargument relation on the sizes of the arguments of a procedure
and to using it to prove that the size of some argument decreases through recursive
calls. In these methods, the interargument relation can be seen as a model of the
procedure and can be inferred by means of bottom-up abstract interpretation. The
size of arguments is however fixed by an a priori given norm. Further works by
S. Decorte, D. De Schreye, and M. Fabris have addressed the issue of inferring
norms automatically [31, 30].

The analyser that we presented in this paper can be seen as a partial imple-
mentation of Deville’s approach because we use size relations between input and
output terms without requiring term rigidity or similar conditions. For instance,
our analyser can prove the termination of the following “impure” Prolog procedure,
for any possible input:

close(X):- var(X), X=[].

close(X):- novar(X), X=[H|T], close(T).
Nevertheless, our use of norms is less general than Deville’s use of arbitrary well-
founded relations.

6.3. Abstract Interpretation and Logic Program Analysis

The design of our analyser is based on the methodology of abstract interpretation
[10, 18, 20]. More specifically, we reuse the approach (and actually part of the
code) of the system GAIA [47]. There are however two major differences between
our analyser and GATA. First, an analysis with GAIA (or with other similar systems
(e.g., PLAI [56]) based on abstract interpretation frameworks such as [10, 41, 52,
53, 57]) operates on a complete program P and an (abstract) description of a top
level goal. The system then explores the whole code of P and performs fixpoint
computations to handle recursive calls. To the contrary, our analyser deals with
each procedure of the program separately and exploits user-provided information
to “solve” the literals of a clause (except unification and other built-in predicates).
Second, the notion of abstract sequence that we use is more elaborated than the
abstract substitution notion used in the various applications of GAIA (e.g., [16, 17,
47, 48, 64]). A simpler notion of abstract sequence has been introduced in GAIA
recently [9, 45, 46] but it is less convenient than ours to express relations between
input terms, output terms, and the number of solutions to a goal as well as to
detect mutual exclusion of clauses.

The abstract domain for substitutions that we use in this paper is related to the
abstract equation system (AES) introduced in [40] by G. Janssens, M. Bruynooghe,
and A. Mulkers.!3The structural description of the terms associated with the pro-
gram variables is equivalent in both domains: in Pat(R), it is expressed by the
same-value and frame components while, in the domain AES, abstract equations
associating every program variable with an “abstract” term are used. A noticeable
conceptual difference between the two domains lies in the interaction between the
structural description and the information given by the other components: in the
domain AES, such information is given only for the “leaves” (i.e., the abstract vari-

13Note however that the first definition of Pattern [55] is anterior to the definition of AES.

34

ables, representing the subterms whose structure is not known), while, in Pat(}),
the particular component describes all indices (i.e., all subterms of the terms of
the substitutions). Keeping information about all indices eases the construction
of abstract operations [16] and, for some domains, increases the precision of the
abstraction.!*Moreover, if all indices are described, the “Generalise” operation of
the domain AES reduces to an inverse constraint mapping (as it is no longer nec-
essary to propagate this information to all indices). The generic domain Pat(R)
is thus based on a representation that is closer to the implementation (of the ab-
stract domain): operations on this domain can be easily translated to algorithms,
thereby simplifying the correctness proof of an implemented system. Finally, if the
cost is too high to keep information about all indices, or if it does not improve the
precision of the information, it is possible to work only with leaves and to compute
descriptions for all indices only when it is needed (e.g., before applying constraint
mappings).

A similarity can also be seen between our work and the type, mode, and deter-
minism system encapsulated in the programming language Mercury [61]. In fact, as
already mentioned in the introduction, information like modes and types is crucial
in every logic program analysis and a language aiming at incorporating optimiza-
tion needs to deal with them. In practice, our pattern and type components are less
expressive than Mercury type system but, conversely, determinism in Mercury does
not benefit from size relations which results in an a priori less precise multiplicity
analysis. Thus an analyser similar to ours could be integrated to Mercury condi-
tional to a (substantial) improvement of the type component. (Techniques similar
to [17] could be applied.) Such an analyser should then outperform the current
Mercury analyser both for determinacy analysis and termination. Furthermore,
our analyser could alternatively be used to transform pure untyped logic programs
into Mercury programs (not into Prolog).

Another interesting relation can be seen with papers on declarative debug-
ging [13] and even more with recent proposals on integrating verification and ab-
stract interpretation techniques in a uniform, more general setting [36, 50]. All
these proposals are mainly based on the assertion (precondition-postcondition) ap-
proach by Drabent and Maluszinsky [33]. The novelty of our approach is that the
notion of abstract sequences allows us to characterize “success” input substitutions
(by means of 3, ,) and to deal with global information relating input and output
substitutions (e.g., size relations) explicitly.

6.4. Automatic Complexity Analysis of Logic Programs

Automatic complexity analysis [27] is useful for automatically tuning the task gran-
ularity in parallel executions of logic programs [28]. Tt can be used also to select the
most efficient Prolog version of a logic procedure [14]. Our analyser is able to verify
precise relations between the sizes of the arguments and the number of solutions
to a Prolog procedure. Thus it can be used as a basis for an automatic complexity
analysis similar to [27]. The work in [27] is not based on abstract interpretation
but instead it exploits general knowledge about logic programs; different size no-
tions are used corresponding to different types (e.g., lists, integers) and the relation

e g., it is not possible to deduce information about the linearity of terms of the form f(t1,t2)
from the sole assertion that 1 and ¢, are linear terms.

35

between the number of solutions and the size of terms is expressed by means of
difference equations; finally, this work assumes a number of preliminary analyses.
In our approach, all analyses are performed at the same time and may interact,
which theoretically allows more precise analyses. However, in order to compete
with [27], our abstract domain needs to be improved further to deal with multiple
norms and difference equations.

7. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a generic analyser for pure Prolog, designed ac-
cording to a verification approach. A correctness proof of the analyser has also been
given. The analyser is based on a notion of abstract sequence, which is expressive
enough to model most semantic properties of terminating Prolog programs. Addi-
tionally to the description of the analyser, a complete domain of abstract sequences
has been presented. This domain allows us to derive all kinds of information that are
useful for Prolog program verification, in a single analysis: modes, types, sharing,
sizes, determinacy, and multiplicity. The domain has nevertheless some limitations,
mainly with respect to types. We also have described the implementation of two
main operations over the domain in order to demonstrate how such operations
can be designed and proven correct. Finally, we have compared our approach to a
number of other works relative to Prolog program verification and construction, ter-
mination analysis of logic programs, abstract interpretation and abstract domains,
automatic complexity analysis, as well as to the analyser of the new logic language
Mercury. Thus, in our opinion, this paper contains sufficient material to allow
an implementor building a practical system in which state-of-the-art techniques of
Prolog program verification can be integrated.

Although our analyser has been presented for pure Prolog, it can be readily
extended to deal with most non pure features of Prolog. We have incidentally
mentioned how this can be done in the previous sections. Now, we summarize this
issue. Arithmetic built-ins, such as is and <, and test predicates, such as var
and ground, can be handled without additional coding by providing behaviours
capturing their operational semantics. (Unification could also be handled by means
of a set of behaviours but, due to the ubiquitous character of this operation, such
a treatment would be inaccurate.) The treatment of the cut requires to enhance
the concrete and abstract domains with so-called “cut information” in the style of
[9, 45, 46]; such a treatment can be integrated in our analyser, since it is based on
the same concrete semantics. Furthermore, as negation by failure is easy modeled
through the cut, it can also be handled simply. Some Prolog systems include a “non
floundering” test to ensure that negated atoms are executed safely. Such a test can
be performed statically in our analyser thanks to the mode and possible sharing
components. The occur-check can be treated by the same means. Nevertheless,
other aspects of some Prolog systems such as the “dynamic predicates” assert
and retract cannot be handled by our analyser; neither can other treatments of
negation such as delaying non ground negated atoms. We are aware of no rigorous
methods to verify programs using these features, however.

We are currently completing an implementation of the analyser based on the
domain presented in this paper. In fact, we have been able to reuse most of the code
of GAIA [47] but we still have to implement the operations on the size components

36

based on the polyhedron library of D.K. Wilde [69]. Our next task will be to
apply the analyser to the verification of a significant number of Prolog programs.
A further step will be to extend the analyser with more powerful abstract domains
for types [17, 39], sharing [38], and linearity [62].

In addition to the implementation of a complete analyser, various applications
of it will be investigated. First, we will go back to the problem of deriving correct
Prolog implementations of purely declarative descriptions. More specifically, we will
investigate various logic description (or program) classes which can be obtained by
inductive [34] or deductive [11, 35, 42, 68] synthesis. Following the general idea of
[32], we will investigate how our analyser can be used to prove that some Prolog
translation of such logic descriptions correctly implements the intended meaning
of the descriptions according to the correctness criteria proposed by the authors of
[34, 35], respectively. This will require to integrate the correctness criteria and our
behaviour notion into a convenient specification schema similar to [32]. Second, we
will extend our analyser to perform an automatic complexity analysis in the spirit
of [27]. Such an analysis can be seen as a relatively straightforward by-product of
our analysis of the number of solution to a procedure. Best-case and worst-case
analyses are both obtainable since our component F,; provides lower and upper
bounds to the number of solutions. Finally, our ultimate goal will be to derive the
most efficient version of a Prolog procedure automatically thanks to the results of
the complexity analysis.

ACKNOWLEDGEMENTS

We wish to thank the referees for their much useful comments and suggestions for
improvements.

REFERENCES

1. A. Aiken and T.K. Lakshman. Directional Type Checking of Logic Programs. In
B. Le Charlier, editor, First International Static Analysis Symposium, number 864
in Lecture Notes in Computer Science, pages 43—60, Namur, Belgium, September
1994. Springer-Verlag.

2. K. R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J.W. Lloyd,
editor, Proc. Symp. on Computational Logic, volume 1 of Basic Research Series,
pages 150-176. Springer-Verlag, Berlin, 1990.

3. K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

4. K.R. Apt and D. Pedreschi. Proving Termination of General Prolog Programs.
In Proc. International Conference on Theoretical Aspects of Computer Science,
Sendai, Japan, 1991.

5. K.R. Apt and D. Pedreschi. Modular Termination Proofs for Logic and Pure Prolog
Programs. Technical Report 6/93, Dipartimento di Informatica, Universita di Pisa,
1993.

6. M. Bezem. Characterizing Termination of Logic Programs with Level Mappings.
Journal of Logic Programming, 15(1 & 2):79-98, 1992.

7. A. Bossi, N. Cocco, and M. Fabris. Typed norms. In B. Krieg-Brueckner, editor,
Proc. ESOP’92, pages 73-92. Springer-Verlag, LNCS 582, 1992.

8. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and their Use in Prov-
ing Universal Termination of a Logic Program. Theoretical Computer Science,
124(2):297-328, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

37

C. Braem, B. Le Charlier, S. Modard, and P. Van Hentenryck. Cardinality Anal-
ysis of Prolog. In M. Bruynooghe, editor, Proceedings of the International Logic
Programming Symposium (ILPS’94), Ithaca NY, USA, November 1994. MIT Press.
M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10(2):91-124, February 1991.

A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from in-
ductive proofs. In J.W. Lloyd, editor, Computational Logic, Esprit Basic Research
Series, 1990.

M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining domains.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 194-205. ACM Press, 1993.

M. Comini, G. Levi, M.C. Meo, and G. Vitiello. Proving Properties of Logic
Programs by Abstract Diagnosis. In Mads Dam, editor, Proc. of the Fifth Workshop
on Analysis and Verification of Multiple-Agent Languages (LOMAPS’96), volume
1192 of LNCS. Springer Verlag, June 1996.

A. Cortesi, B. Le Charlier, and S. Rossi. Specification-Based Automatic Verification
of Logic Programs. In Logic Program Synthesis and Transformation. Proceedings
of the 6th International Workshop, LOPSTR’96, volume 1207 of LNCS. Springer
Verlag, August 1996.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and Software Sup-
port for Abstract Domain Design: Generic Structural Domain and Open Product.
Technical report, Institute of Computer Science, University of Namur, Belgium,
(also Brown University), Namur, Belgium, 1993.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combination of Abstract
Domains for Logic Programming. In Proceedings of the 21th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’94), Port-
land, Oregon, January 1994.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type Analysis of Prolog using
Type Graphs. Journal of Logic Programming, 23(3):237-278, June 1995.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Conference Record of Fourth ACM Symposium on Programming Languages
(POPL’77), pages 238-252, Los Angeles, California, January 1977.

P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundation. In Proc. ACM Symposium on Artificial Intelligence and
Programming Languages, pages 1-12. SIGPLAN Notices, 1977.

P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-
grams. Journal of Logic Programming, 13(2-3), 1992.

P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic
and Computation, 2(4):511-547, 1992.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract inter-
pretation. In ACM Press, editor, Conference Record of the 19th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages
83-94, Aug 1992.

P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures for
Ensuring Correctness. In Proc. of Programming Language Implementation and
Logic Programming PLILP’90, volume 456 of Lecture Notes in Computer Science,
pages 222-237, Linkoping, Sweden, August 1990. Springer-Velag.

P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic Definitions
Augmented with Type Information into Prolog Procedures: Some Experiments.
In Proceedings of LOPSTR 93, Workshops in Computer Science. Springer Verlag,
July 1993.

38

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

D. De Schreye and S. Decorte. Termination of Logic Programs: the Never-Ending
Story. Journal of Logic Programming, Special anniversary edition, 1994. Accepted
for publication.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for Analysing
the Termination of Definite Logic Programs with respect to Call Patterns. In Proc.
FGCS5’92, pages 481-488, ICOT Tokyo, 1992. ICOT.

S.K. Debray and N.W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, 1993.

S.K. Debray, N.W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proceedings ACM SIGPLAN’90 conference on programming language
design and implementation, pages 174188, June 1990.

S.K. Debray and D.S. Warren. Functional computations in logic programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 11(3):451-481,
July 1989.

S. Decorte, D. De Schreye, and M. Fabris. Exploiting the Power of Typed Norms
in Automatic Inference of Interargument Relations. Technical report, Department
of Computer Science, K.U.Leuven, Belgium, 1994.

S. Decorte, D. De Schreye, and M. Fabris. Automatic inference of norms : a missing
link in automatic termination analysis. In D. Miller, editor, Proceedings ILPS’93,
pages 420-436, Vancouver, Canada, 1993.

Y. Deville. Logic Programming: Systematic Program Development. MIT Press,
1990.

W. Drabent and J. Maluszynski. Inductive Assertion Method for Logic Programs.
Theoretical Computer Science, 59:133-155, 1988.

P. Flener and Y. Deville. Logic Program Synthesis from Incomplete Specifications.
Journal of Symbolic Computation: Special Issue on Automatic Programming, 1993.
P. Flener and K.-K. Lau. Program Schemas as Steadfast Programs. Technical
Report BU-CEIS-97, Bilkent University, Department of Computer Science, 1997.

M. Gallardo, P. Merino, and J.M. Troya. Relating Abstract Interpretation with
Logic Program Verification. In A. Bossi, editor, ILPS5’97 Post-Conference Work-
shop on Verification, Model-Checking and Abstract Interpretation, Port Jefferson,
USA, 1997.

J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Con-
struction of Logic Programs (Extended Abstract). In M. Bruynooghe and M. Wirs-
ing, editors, Proceedings of the Fourth International Workshop on Programming
Language Implementation and Logic Programming (PLILP’92), Lecture Notes in
Computer Science, Leuven, August 1992. Springer-Verlag.

D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Alias-
ing in Logic Programs. In E.L. Lusk and R.A. Overbeek, editors, Proceedings of the
North American Conference on Logic Programming (NACLP’89), pages 154-165,
Cleveland, Ohio, October 1989. MIT Press.

G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-
gram Variables by Means of Abstract Interpretation. Journal of Logic Program-
ming, 13(2-3):205-258, 1992.

G. Janssens, M. Bruynooghe, and A. Mulkers. Abstract equation systems: De-
scription and insights. Report CW217, Department of Computing Science, K.U.
Leuven, November 1995.

N.D. Jones and H. Sgndergaard. A Semantic-Based Framework for the Abstract
Interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract In-
terpretation of Declarative Languages, chapter 6, pages 123-142. Ellis Horwood
Limited, 1987.

K.K. Lau and S.D. Prestwich. Top-down Synthesis of Recursive Logic Procedures
from First-order Logic Specifications. In D.H.D. Warren and P. Szeredi, editors,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

39

Proc. Seventh Int’l Conf. on Logic Programming, pages 667-684. The MIT Press,
Cambridge, Mass., 1990.

B. Le Charlier, C. Leclere, S. Rossi, and A. Cortesi. Automated verification of
prolog programs. Research Paper RP-98-002; Institute of Computer Science, Uni-
versity of Namur, Belgium, 1998.

B. Le Charlier and S. Rossi. Sequence-Based Abstract Semantics of Prolog. Tech-
nical Report RR-96-001, Facultés Universitaires Notre-Dame de la Paix, Institut
d’Informatique, February 1996.

B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpreta-
tion Framework Which Accurately Handles Prolog Search-Rule and the Cut. In
M. Bruynooghe, editor, Proceedings of the International Logic Programming Sym-
posium (ILPS’94), Ithaca NY, USA, November 1994. MIT Press.

B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence-Based Abstract Inter-
pretation of Prolog. Technical Report RR-97-001, Facultés Universitaires Notre-
Dame de la Paix, Institut d’Informatique, January 1997.

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(1):35-101, January 1994.

B. Le Charlier and P. Van Hentenryck. Reexecution in Abstract Interpretation of
Prolog. Acta Informatica, 32:209-253, 1995.

C. Leclere and B. Le Charlier. Two Dual Abstract Operations to Duplicate, Elim-
inate, Equalize, Introduce and Rename Place-Holders Occurring Inside Abstract
Descriptions. Research Paper RP-96-028, University of Namur, Belgium, Septem-
ber 1996.

G Levi and Volpe P. A Reconstruction of Verification Techniques by Abstract Inter-
pretation. In A. Bossi, editor, ILPS’97 Post-Conference Workshop on Verification,
Model-Checking and Abstract Interpretation, Port Jefferson, USA, 1997.

JW. Lloyd. Foundations of Logic Programming. Springer Series: Symbolic
Computation—Artificial Intelligence. Springer-Verlag, second edition, 1987.

K. Marriott and H. Sgndergaard. Semantics-based Dataflow Analysis of Logic
Programs. In G. Ritter, editor, Information Processing’89, pages 601-606, San
Fransisco, California, 1989.

C. S. Mellish. Abstract Interpretation of Prolog Programs. In S. Abramsky and
C. Hankin, editors, Abstract Interpretation of Declarative Languages, chapter 8,
pages 181-198. Ellis Horwood Limited, 1987.

Daniel Le Métayer. Program analysis for software engineering: new applications,
new requirements, new tools. ACM Computing Surveys, 28(4es):167-167, Decem-
ber 1996.

K. Musumbu. Interprétation Abstraite de Programmes Prolog. PhD thesis, Institute
of Computer Science, University of Namur, Belgium, September 1990. In French.
K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of Variable De-
pendency Using Abstract Interpretation. Journal of Logic Programming, 13(2-
3):315-347, August 1992.

U. Nilsson. Systematic Semantic Approximations of Logic Programs. In P. Der-
ansart and J. Maluszynski, editors, Proc. of the International Workshop on Pro-
gramming Language Implementation and Logic Programming (PLILP’90), volume
456 of Lecture Notes in Computer Science, pages 293-306, Linkoping, Sweden,
August 1990. Springer-Verlag.

L. Plimer. Termination Proofs for Logic Programs based on Predicate Inequalities.
In Proceedings ICLP’90, pages 634—648, Jerusalem, June 1990. MIT Press.

L. Plimer. Awutomatic Termination Proofs for Prolog Programs Operating on
Nonground Terms. In Proc. ILPS’91, pages 503-517, San Diego, October 1991.
MIT Press.

40

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Plimer, L.. Automatic Verification of GHC-Programs: Termination. In Proceedings
FGCS’92, Tokyo, 1992.

Somogyi, Z. and Henderson, F. and Conway, T. The Execution Algorithm of
Mercury, an Efficient Purely Declarative Logic Programming Language. Journal
of Logic Programming, 29(1-3):17—64, 1996.

Sgndergaard, H. An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of the
FEuropean Symposium on Programming (ESOP’86), volume 213 of Lecture Notes in
Computer Science, pages 327-338, Sarrbruecken, Germany, March 1986. Springer-
Verlag.

J.D. Ullman and A. Van Gelder. Efficient tests for top-down termination of logical
rules. Journal ACM, 35(2):345-373, April 1988.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of Prop. Journal
of Logic Programming, 23(3):237-278, June 1995.

K. Verschaetse. Static Termination Analysis for Definite Horn Clause Programs.
PhD thesis, Dept. Computer Science, K.U.Leuven, 1992.

K. Verschaetse and D. De Schreye. Deriving Termination Proofs for Logic Pro-
grams, using Abstract Procedures. In Proc. ICLP’91, pages 301-315, Paris, June
1991. MIT Press.

K. Verschaetse, S. Decorte, and D. De Schreye. Automatic Termination Analysis.
In Proc. LOPSTR’92, LNCS. Springer-Verlag, 1993.

G.A. Wiggins. Synthesis and Transformation of Logic Programs in the Whelk
Proof Development System. In Proc. of the 1992 Joint International Conference
and Symposium on Logic Programming. The MIT Press, Cambridge, Mass., 1992.
D. K. Wilde. A TLibrary for Doing Polyhedral Operations. Technical Report No.
785, IRISA-Institut de Reserche en Informatique et Systémes Aléatoires, Rennes
Cedex-France, 1993.

41

select (X, [XIT], T):- 1ist(T).

select(X, [HIT], [HITS]):- select(X, T, TS).

select(X, L, LS):—; L=[HIT],> H=X,3 LS=T,4 1list(T)s5 .5
select(X, L, LS):—7 L=[HIT],s LS=[HITS],9 select(X, T, TS)ig .11

FIGURE 2.1. The procedure select/3 and its (annotated) normalized version

select(in(X:var, L:ground, LS:var),
ref(_, [_llist],_),
out(ground, _,ground list),
srel(L_ref = LS_out + 1, sol = L_ref),
sexpr(L))
list(in(L: ground), ref(list), srel(sol = 1), sexpr(L))

FIGURE 2.2. Specifications for select/3 and 1list/1

============================= B_sgelect =============================
beta_in: sv = {X->1,L->2,LS->3}; frm = {}

mo = {1->var,2->ground, 3->var}
{1->anylist,2->any,3->anylist}
= {(1,1),(3,3)}
beta_ref: sv = {X->1,L->2,LS->3}; frm = {2->[4[5]}

mo = {1->var,2->ground,3->var,4->ground,5->ground}

ty = {1->anylist,2->1list,3->anylist,4->any,5->1ist}

ps = {(1,1),(3,3)}
beta_out: sv = {X->1,L->2,LS->3}; frm = {2->[4[5]}

mo = {1->ground,2->ground,3->ground,4->ground, 5->ground}

ty = {1->any,2->list,3->list,4->any,5->list}

ps = {}
in_ref = {1->1,2->2,3->3,4->4,5->5}
in_out = {1->6,2->7,3->8,4->9,5->10}
E_ref_out = {sz(8)=sz(5)}
E_sol = {sol=sz(5)+1}

eI
n <
non

============================== B_list ==============================
beta_in: beta_ref: beta_out:

sv = {L->1} sv = {L->1} sv = {L->1}

frm = {} frm = {} frm = {}

mo = {1->ground} mo = {1->ground} mo = {1->ground}
ty = {1->any} ty = {1->list} ty = {1->list}
ps = {2 ps = {} ps = {}

E_ref_out = {}
E_sol = {sol=1}

FIGURE 2.3. Abstract sequences for select/3 and list/1

42

FIGURE 3.1. Modes

