An Abstract Interpretation Framework for (almost) Full Prolog!

B. Le Charlier S. Rossi P. Van Hentenryck
University of Namur University of Padova Brown University
21 rue Grandgagnage 7 via Belzoni Box 1910, Providence

B-5000 Namur (Belgium) 1-35131 Padova (Italy) RI 02912 (USA)

Abstract

A novel abstract interpretation framework is introduced, which captures Prolog depth-first strategy
and the cut operation. The framework is based on a new conceptual idea, the notion of substitution
sequences, and the traditional fixpoint approach to abstract interpretation. It broadens the class
of analyses that are amenable in practice to abstract interpretation and refines the precision of
existing analyses. Its practicability is demonstrated in a companion paper [4]. This paper focuses
on theoretical foundations.

1 Introduction

Abstract interpretation has been shown to be a valuable tool to obtain high-performance imple-
mentation of Prolog [24, 25]. Yet traditional abstract interpretation frameworks of Prolog (e.g.
[5, 19, 20]) usually ignores many features of Prolog, such as the depth-first search strategy and
the cut operation. Still these frameworks are very valuable, since they allow many analyses such
as types, modes, and sharing to be performed with good accuracy and they were fundamental in
developing practical analysis tools. However, as the technology matures, their limitations become
more apparent. In particular, they lead to the following two inconvenients:

1. The precision of the analysis is inherently limited for some classes of programs. A typical
example is the definition of multi-directional procedures, using cuts and meta-predicates to select
among several versions. Ignoring the depth-first search strategy and the cut prevents the compiler
from performing various important compiler optimizations such as dead-code elimination [4].

2. The existing frameworks are not expressive enough to capture certain analyses in their entirety.
A typical example is determinacy analysis, where existing approaches either resort to special-
purpose proofs (e.g. [22]) or their frameworks ignore certain aspects of the analysis, e.g. the cut
and/or how to obtain the determinacy information from input/output patterns (e.g. [13, 9]).

This paper proposes a step in overcoming these limitations. A novel abstract interpretation
framework is introduced, which captures the depth-first seach strategy and the cut operation (only
dynamic predicates such as assert/retract are ignored). The key conceptual idea underlying the
framework is the notion of substitution sequences which models the successive answer substitutions
of a Prolog goal. This notion enables the framework to deduce and reason about information
not available in most frameworks, such as sure success and failure, the number of solutions, and/or

!Partly supported by the Office of Naval Research under grant N00014-91-J-4052 ARPA order 8225 and the
National Science Foundation under grant numbers CCR-9357704 and a NSF National Young Investigator Award.

termination, broadening the class of applications amenable to abstract interpretation and improving
the accuracy of existing analyses.

The main technical contribution of this paper is to show how to apply the traditional fixpoint
approach [8] to the conceptual idea. A main difficulty lies in the fact that the abstract semantics
cannot simply be defined as the least fixpoint of the abstract transformation obtained from the
collecting semantics, since the least fixpoint of the transformation obtained by “lifting” the con-
crete semantics to sets of substitution sequences is not a consistent approximation of the concrete
semantics. The notion of pre-consistent postfixpoint is introduced to remedy this problem. The
practical consequences of this formalization are discussed and include the need for so-called upper-
closed abstract domains and a special form of widening in the abstract interpretation algorithm.
The paper also specifies precisely all the abstract operations of the framework through consistency
conditions.

It is important to point out that this paper is more than yet another abstract interpretation
framework. The framework was motivated by computational considerations and its practicability
and simplicity have been demonstatred on a cardinality analysis described in a companion paper
[4]. The cardinality analysis, which is an instantiation of the framework to a specific abstract
domain, approximates among other things the number of solutions to a goal. It is shown that
the analysis requires only a small overhead compared to a mode/sharing analysis and outperforms
existing determinacy analyses in precision.

The rest of the paper is organized as follows. Section 2 motivates the paper through two
extremely simple examples and gives an overview of the framework. Section 3 is an informal
presentation of the main technical difficulties on a single example as well as the adopted solutions.
Section 4 sketches the concrete semantics. Section 5 and 6 contain respectively the specification of
the abstract operations and the abstract semantics. Section 7 discusses the abstract interpretation
algorithm while section 8 presents related work, in particular the work of File and Rossi [12] and
Barbuti et al. [2]. Section 9 concludes the paper. The appendices describe the concrete semantics
and sketch the proofs of the main technical results.

2 Overview of the Framework

Two Simple Examples We start by two extremely simple examples which are not handled well
by existing abstract interpretation frameworks. Consider the program

p(a). q(b).
p(X) - q(X). q(c).

Assume that we are interested in determinacy analysis of p/I called with a ground argument.
Examinations of the clauses in isolation will not determine the determinacy of the goal. This was
recognized in several places (e.g. [13, 9]) which proposes to use input/output patterns to remedy the
problem. However, these works focus on determining the patterns and cannot integrate all aspects
of the analysis in a single abstract interpretation framework. As a consequence, they need special-
purpose proofs for the final part of the analysis losing the simplicity of the abstract interpretation
framework. Similarly these work do not take control (depth-first search and the cut) into account
which reduces the precision of the analysis. Our framework handles all aspects of the analysis in a
single framework. Consider now the extension of the previous program

r(X):-p(X), .
r(d).

and assume that r/I is called with a variable. Abstract interpretation frameworks ignoring the
search rule and the cut cannot infer that p(X) surely succeeds and hence that the cut is executed.
In fact, they simply ignore the cut and would conclude when instantiated with a type domain (e.g.
[14, 7]) that r produces an element from {a,b,c,d}. Using our framework, it is possible to design
an analysing concluding that r/1 only produces the element a. We now describe informally the
basic ideas on how to obtain such an analysis.

Concrete Semantics The starting point of our approach is a concrete semantics which associates
with a program P a total function from the set of pairs (8, p) to the set of substitution sequences,
where p is a predicate symbol and 6 is a substitution. The novelty is the notion of substitution
sequences which models the sequence of computed answer substitutions (e.g. [18]) produced by
the execution of p(x1,...,2,)0. The resulting sequence can have different shapes. If the execution
terminates (producing m computed answer substitutions), S is a finite sequence < 60y,...,6,, >.
If the execution produces m computed answer substitutions and then enters into an infinite loop,
then S is an incomplete sequence < #y,...,6,,, L >, where L models non termination [3]. Finally,
if the execution produces an infinite number of computed answer substitutions, then S is an infinite
sequence < 6y,...,6;,...> (i € N). We note SUBST(5) the set of substitutions in §. The concrete
semantics internally manipulates slightly more complex objects, substitution sequences with cut,
to take the cut into account.

Abstract Semantics The abstract semantics works with description of sequences called abstract
sequences. It associates with a program a total function which, given a pair (3, p) (where 3 is an
abstract substitution), returns an abstract sequence B, whose informal semantics can be described
as follows:

"The execution of p(x1, ..., 2,)0 with 8 satisfying the property 5 produces a substitution
sequence S satisfying the property described by B.”

It is important to realize that abstract domains for sequences need not be much more compli-
cated than traditional abstract domains. We illustrate this with two examples.

Abstract Domain 1: An abstract sequence B € ASS is of the form (3, m, M,t) where j is
an abstract substitution, m € N, M € N U {oo}, t € {snt,st,pt}. The concretization function
Cec: ASS — (55 maps B on the set of substitution sequences S such that any substitution 8 which
is an element of 5 belongs to Cce(3) (the set of substitutions described by 3); the number of elements
of 5, excluding 1, is not smaller than m and not greater than M. Additionally, the sequences are
finite if ¢ = st and incomplete or infinite if ¢ = snt. (snt means “sure non termination”, st means
“sure termination” and pt stands for “possible termination”.) The abstract domain is used in the
companion paper and, on our first program, the abstract semantics defines (p({a,b,c}),0,1, st)) as
the result of a query g(ground). Note that the domain is not too complex computationally.

Abstract Domain 2: The first abstract domain does not achieve maximal precision on the second
example. A more precise domain consists of abstract sequences B of the form (< f1,..., 08, >
,B,m, M,t), where m, M and ¢ are given the same meaning as before. If S € Cc(B), it must be of
the form < 6y, ...,6,, >:: 5" with 8; € Cc(5;) (1 < i < m), where :: denotes the usual concatenation
operation on sequences. Moreover, each substitution in 5" must belong to Ce(5). On the second
example, the abstract semantics defines (< p({a}), p({b}),p({c}) >, p({}), 3,3, st)) as the result of
p(var). The new domain is likely to be computationally reasonable, since they are few situations
where a large number of abstract substitutions will be maintained.

Abstract Interpretation Algorithm The last step of the analysis is the computation of the
abstract semantics with extensions of existing algorithms such as GAIA [17] and PLAI[21].

3 Technical Difficulties and Adopted Solutions

The foundation of this work is the fixpoint approach to abstract interpretation [8]. Starting from
a concrete semantics, we try to define a collecting semantics, an abstract semantics approximating
the collecting semantics, and an algorithm to compute part of the abstract semantics. Applying
this approach to the above informal ideas leads to some novel theoretical and practical problems.?
The main problem is that the abstract semantics can no longer be defined as the least fixpoint of the
basic transformation obtained by “lifting” the concrete semantics to sets of substitution sequences.
In this section, we illustrate these problems and their proposed solutions on a simple example.

Concrete Semantics Consider the following program

repeat.
repeat :- repeat.

The concrete semantics of this program maps the input < e, repeat >, where € is the empty
substitution, to the infinite sequence < ¢,...,¢,...>. This comes from the fact that the result 5
is described as the least fixpoint of a transformation 7 : PSS — PSS:

TS =< e>n 8.

where PSS is the set of substitution sequences. Operationally, this expresses that the first clause
first succeeds once producing the result . The second clause then succeeds exactly as many times as
the recursive call, producing the same sequence of results. PSS can be endowed with the following
ordering: 57 C 55 iff either S; = S5 or there exist 9,5 € PSS such that S = 5 < L > and
Sy =85 : 8. PSSis then a pointed cpo with minimal element < L >. 7y is continuous and has a
least fixpoint which is computed as follows: Sy =< L >, S;41 =< e > 5; =<¢,...,¢6, L > (with
i occurrences of €), and Ifp(m) = U325 =< €,...,¢,...> as expected.

Collecting Semantics The technical problems arise when we “lift” the semantics to sets of
substitution sequences. The “collecting” semantics associates with the program the transformation

Tt p(PSS) — p(PSS) defined by
R ={<e>u 9 : §e€X}.

?Note that similar problems have been encountered in functional programming [1].

©(PSS) is a complete lattice for set inclusion and 79 is monotonic. However, Ifp(7;) is not a
consistent approximation of Ifp(my) (i.e. Ifp(11) & Ifp(72)), since Ifp(73) is the empty set. Note
however that 7 is consistent with respect to 71 in the following sense: for all 5 € PSS and for all
Y € p(PSS), S € X implies 74(9) € 7(X).

The first cause of inconsistency of Ifp(72) is that S, the first iterate in the Kleene sequence for
lfp(m1), obviously does not belong to the first iterate of the Kleene sequence for [fp(r3) (which is
empty). In order to get a consistent approximation of Ifp(71), we may attempt to build another
sequence of sets of substitution sequences as follows:

EOI{<J_>}, EZ'_HITQEZ'I{<€,...,€,J_>}(i20).

The problem is that this sequence is not increasing with respect to inclusion.

This new problem could possibly be solved by using another ordering on (some subset of)
©(PSS). This ordering should in a way combine the ordering on PSS and inclusion in p(PSS). The
traditional solution to this problem in denotational semantics consists in using a power domain
construction (e.g. [23]). Although this solution is elegant theoretically, it is somewhat heavy for
an abstract interpretation framework which should lead to efficient implementations. We adopted
a solution which is less natural from a denotational standpoint but leads to effective analyses as
demonstrated by the companion paper [4]. The solution is best presented in three steps.

First, 79 is replaced by a transformation 7s:

T32 =XU TQE.

T3 is extensive (i.e. ¥ C 3% for all ¥). In addition, the sequence defined by ¥ = {< L >} and
Y41 = m3X; is increasing and its limit is the set:

o0
Yoo = USi = {<L><eLl> <6610 >, 00
=0

Y contains the entire Kleene sequence for [fp(m) but still not Ifp(7y) itself.

The second step is thus to complete increasing chains of sets of substitution sequences (with
respect to C) with their limits. Sets of substitution sequences so completed are called upper-closed
and we denote by (S5 the set of such upper-closed sets®. 7 and 73 can be redefined over C'SS. The
upper bound operation | | in €SS is no longer J: it adds to the union the limit of every chain in
the union. Applying the new construction to 75 leads to the result ¥, = |[7Z,¥; which contains
all non finite sequences of empty substitutions.

The last step of our construction consists in refining this correct but imprecise result. Instead
of starting the iteration with 73, 75 is used during an arbitrary number of steps before switching
to 73. Since each iterate for 7, contains the corresponding iterate for 7, switching to 75 after ¢
steps guarantees that the set Y., contains all iterates from the i-th and also the limit, since sets
are upper-complete. In the above example, we deduce that repeat produces at least ¢ results.

Abstract Computation The construction can be adapted to the abstract semantics by using
consistent abstractions of 7 and 75. However, if the abstract domain is not noetherian, a widening
operation must be used instead of the upper bound operation to ensure the finiteness of the analysis.

*Upper-closed sets can actually be viewed as a (simple) form of power domain construction.

Let us consider this last case. Consider an abstract domain 4SS5 with a concretization function
Cc: ASS — (€SS and with an element By such that < L >€ Ce(By). Consider also an abstract
version on 74 of T, i.e.

VS € PSS VB € ASS: S € Ce(B) = 1S € Ce(raB).
The computation in the abstract domain iterates 7, for j steps:
Biy1 = mB;(0 <4 < j).

Then, unless a fixpoint has already been reached, the computations “jumps” to a value B, such
that B; < B,, and 4B, < B,,.

The process is sound for the following reason. Let S be the iterates to Ifp(m). Since S = (L) €
Ce(Bp) and 74 is consistent, S; € Ce(B;) by induction. Since B; < B,, and B, is a postfixpoint,
Sk € Ce(By,) for all k > j because Si € Ce(By) = Sky1 € Ce(1aBy), by consistency of 74. Hence,
Sk+1 € Cc(By) by 74By, < By, and monotonicity of Cec. Finally, since Ce(B,,) is upper-closed,
lfp(11) € Ce(By).

To illustrate the process on a concrete example, consider the first abstract domain, dropping
the abstract substitution part since it is useless. 74 is defined by 74(m, M,t) = (m+ 1, M + 1,1)
and By = (0,0, snt). The first iterations give B; = (j,j, snt). To get a postfixpoint, the second
J is replaced by oo to obtain B, = (j,00,snt), since 4B, = (j + 1,00,5nt) < B,. B, is a
consistent approximation of [fp(m1) and expresses that at least j substitutions are generated and
that the procedure surely loops. We do not know however if it loops after giving a finite number
of substitutions or if it produces an infinite number of substitutions.

Theoretical Implications The above construct implies that the abstract semantics can no
longer be defined as the least fixpoint of the abstract transformation obtained by abstracting
the collecting semantics. The abstract semantics is defined as certain postfixpoints of the abstract
transformation (see the definition of pre-consistent set of abstract tuples later on).

Practical Implications In practice, the construct imposes two requirements on the abstract
domain. First, it is necessary to make sure that the concretization function only returns upper-
closed sets. This requirement, which is satisfied by our two abstract domains, does not seem to
be too restrictive in practice. Second, the designer needs to decide when to apply the widening
operation. This is of course domain-dependent. A heuristic is to let the decision be driven by the
substitution part of the domain. The widening on abstract sequences is applied when this part
stabilizes. This is the choice adopted in the companion paper and it seems to give an effective
tradeoff between precision and efficiency.

4 Concrete Semantics

Space restrictions forbid us to include the concrete semantics in the paper (see the appendix). The
concrete semantics is a fixpoint semantics defined on normalized programs [5], i.e. clause heads
are of the form p(#,...,2,) and bodies contain atoms of the form p(a;,,...,2;,), i = z;, ;, =
flxiy,. .. 2,), and !. To simplify the traditional problems with renaming, we use two sets of variables
and substitutions [17]. (Program) substitutions (denoted by #) are of the form {1 /t1,...,2,/t.},

where the ¢; are terms and the z; are (so-called) program variables (parameters). We assume
another infinite (disjoint) set of (so-called) standard variables. The ¢;’s may only contain standard
variables. By definition, dom(#) = {x1,...,2,} and codom(8) is the set of variables in the ¢;’s.
We also use standard substitutions which are substitutions in the usual sense.They are denoted
by o possibly subscripted and only use standard variables. mgu’s are standard substitutions. The
composition #o of a program substitution with a standard substitution is defined in a non standard
way by 0o = {1 /ti0,...,2,/t,0}. We note PS the set of program substitutions.

The concrete semantics uses objects of the form (8, p), (6, pr), (6,¢), and (8, ¢), where p, pr,c,g
are respectively a predicate name, a procedure, a clause, and the body or a prefix of the body of a
clause. It also uses substitution sequences and objects of the form (5, ¢f), where S is a substitution
sequence and ¢f € {cut,nocut}. Objects of the form (6, p) are mapped to substitution sequences
which model the sequence of answer substitutions produced by p for 8. Objects of the form (6, c)
and (6, ¢g) are mapped to objects of the form (9, ¢f), where cfindicates whether the execution of the
clause or of the prefix has been cut. Assuming an underlying program P, we note by (6, p) — 5
the fact that the concrete semantics of P maps (6, p) to 5.

5 Abstract Operations

Abstract Domains We assume the existence of three cpos: AS, ASS and ASSC. Elements of A
are called abstract substitutions and denoted by 3. Elements of ASS are called abstract sequences
and denoted by B. Elements of ASSC are called abstract sequences with cut information and
denoted by C'. The meaning of these abstract objects is given through monotonic concretization
functions: Ce : AS — CS, Cec : ASS — CSS and Cc : ASSC — CSSC. CS = p(PS), CSS is
the set of sets of substitution sequences which are upper-closed. CSSC' is similarly defined but
increasing chains only contain substitution sequences with identical cut information. CS', €SS and
CSSC are ordered by inclusion. Each object O in AS, ASS and ASSC has a domain dom(O) which

is the common domain of all program substitutions in its concretization.

Organization FEach abstract operation is motivated and specified by a consistency condition.
Many of these operations are identical or simple generalizations of operations described in [16, 17],
which were themselves inspired by [5]. Other are simple “conversion” operations between the three
different domains. The newer operations are CONC, AI-CUT, EXTGS and they are explained
in detail since they contain the main originality of our framework. Reference [4] proposes an
implementation of these operations on a particular abstract domain.

Concatenation of Abstract Sequences: CONC(§,C,B)=B’'. Let pr be a procedure of the
form ¢q,...,¢, (n > 1). A suffiz of pris any sequence of clauses ¢;,...,¢, (1 <@ < n). Operation
CONC'is used to “concatenate” (at the abstract level) the result C' of a clause ¢; with an abstract
sequence B resulting from “concatenating” the results of ¢;41,...,¢, (1 <7 < n). It is assumed
that all results are produced for the same abstract input substitution §. 3 is added as an extra
parameter in order to improve the accuracy of the operation.

In order to express the consistency conditions for the operation CONC, “concatenation” of
concrete sequences needs to be defined first. Consider two sequences 57 and 53 without cut in-
formation. S stands for the result of ¢; and Sy stands for the (combined) result of ¢;4q,...,cy.

If execution of ¢; terminates, then suffix ¢;41,...,¢, is executed. Otherwise ¢;y1,...,¢, is not

executed. Therefore, the combined result 51055 of ¢;, ..., ¢, is defined by
5108, = 575 if Sy is finite (i.e. neither incomplete nor infinite),
S1 otherwise.

The definition can be extended to sequences with cut information. If no cut is executed in ¢;
(because ¢; does not contain a cut or ¢; fails or loops before reaching a cut), the previous reasoning
applies. Otherwise, suffix ¢;11,..., ¢, is not executed. In the first case, the result of ¢; is (S1, nocut),
while, in the second case, the result is (51, cut). So, the combined result (S, ¢f)0S53 of ¢;,..., ¢,

is defined by

(51,¢/)08, = 5108, if ¢f = nocut,
51 if ¢f = cut.

Operation CONC performs the concatenation of abstract sequences, i.e. of descriptions of sets
of sequences, and is defined as follows (recall that we note CONC(3,C',B)=B')*:

b e Ce(9),
(S1,¢f) € Ce(C),

S € CC(B),

V¢ € SUBST(5,)USUBST(S55): 6" <46

= <Sl,Cf>DSQ S CC(B/)

Since 8 represents many different input substitutions, ¢' and B may contain incompatible sub-
stitution sequences, i.e. sequences containing substitutions which are not all instances of the same
input substitution. Concatenations of incompatible substitution sequences are removed by the last
condition, since they do not correspond to any actual execution. (6’ < 6 means that €' is more
instantiated than 6.)

Abstract Unification of two program variables: AI-VARS(S) = B’. This operation is sim-
ilar to operation AI-VAR of [16, 17] but returns an abstract sequence instead of an abstract sub-
stitution. As the concrete unification may only fail or succeed (assuming an occur-check), Ce(B’)
should only contain finite substitutions of length 0 or 1:

0 € Ce(B),
o € mgu(x10,220)

0 € Ce(B),

} = <o >€ CC(B/); 0= mgu($10,$20)

} = <> Ce(B').

Abstract Unification of a variable and a functor: AI-FUNCS(3, f) = B’. The operation is

similar to the previous one: let Smgu = mgu(z10, f(z2,...,2,)0).
0 € Ce(B), . 6 e Ce(), /
o € Smgu = <o >€ Ce(B'); 0 = Smgu = <>€ Ce(B).

*In order to enhance readability of the specifications, it is assumed that all free symbols are implicitely universally
quantified and range over a domain which is “obvious” from the context. “” denotes conjunction.
®In the implementation B is only computed on demand, since it is not always needed.

Abstract Treatment of the Cut: AI-CUT(C) = C’. Let g be the sequence of literals before
a cut (!) in a clause. Execution of g for a given input substitution @ either fails or loops without
producing any result, or produce one or more results before failing, looping or producing results
for ever. Execution of the goal ¢ , ! also fails or loops without producing results in the first case
but, in the second case, it produces exactly one result (the first result of ¢) and then stops. At
the abstract level, C' represents a set of substitution sequences produced by ¢, while C’ represents
the corresponding set of substitution sequences produced by g , ! . Clearly the sequences in
Cc(C') should be obtained by “cutting” the sequences in Ce(C') after their first element if it is a
substitution. Hence, the following specification:

(<>,¢cf) € Cc(C) = (<>, cf) € Ce(C);
(< L>,cf)e Ce(C) = (< L>cf)e Ce(C);
(<O0>:8¢cf)e Ce(C) = (< 8>, cut) € Ce(C).

We now turn to the projection and extension operations. The first and the third are the same as
in our previous papers [16, 17] and we provide their specifications without additional explanations.
The second one is a simple generalization of an existing one to sequences. The fourth one is a more
complex generalization and we explain it in detail.

Extension at Clause entry: FXTC(c,) = '. Assume that § is an abstract substitution on

{1,...,2,} and ¢ is a clause containing variables {z1,...,2,} (m > n).
6 € Ce(p),
Y1y Ym—n are distinct

7
standard variables. = {x1/210,. .20 /200,041 /Y1, T Ym—n} € Ce(F').

Yly- ooy Ym—n & codom(0)

Restriction at Clause Exit: RESTRC(c,C') = C’. With the same notations as above, the
execution of the body of ¢, for the input §’, produces the abstract sequence with cut information
C. Operation RESTRC simply restricts C' to the variables in D = {xq,...,2,}: ©

(<b1,...,05,...>,¢f) € Cc(C) = (<Oup,....0D,...>,cf) € Ce(C").

Restriction before a call: RESTRG(I,3) = 3'. Assume that § is an abstract substitution on
D =A{z1,...,2n}, and [is a literal p(a;,...,2;,) (or xy = @4 (n=2) or ay, = f(2iy,...,24,))
(or any other built-in using variables z; ,..., ;).

6cCe(p) = {ar/ayb,...,x,/z;,0) € Ce(f).

Extension of the Result of a Call: EXTGS({,C,B) = C' This operation is rather complex
and we first motivate it through the correspondence between the concrete and abstract executions.
We assume the same notations as for RESTRG, that [occurs in the body of a clause ¢ and that ¢
is the sequence of literals before [in the body.

%The notation p should be obvious (otherwise see the appendix).

In the concrete semantics, execution of g for an input substitution 8 produces a sequence (with
cut information) (5, ¢f). Then [is executed for each substitution 6; of 5, producing a new sequence
S; for each 6;. The “result” of g,lis the sequence $;0...05;.... 7

At the abstract level, C' stands for a set of possible S’s while B stands for (a superset of) all
corresponding 5;’s. Because of the abstraction, the mapping between each 5 and its corresponding
Si’s is lost as well as the ordering of the §;’s. Operation FXTGS has to reestablish this mapping
as best as possible by a kind of backward unification.

Note that, in the above (concrete) concatenation, there can be infinitely many 5;’s and the
definition of O must be extended as follows:

DRy Sk =<>; O3Sk = (F4ey S0 (12 0); OFL; Sk = LR ((Dfy S6)0 < L >).

It can be verified that this definition fits the intuition in all cases. For instance, if one of the 5; is
incomplete or infinite, subsequent sequences are ignored. 092, <>=< L > which expresses that
the computation of an infinite number of sequences (albeit all empty) never terminates.

More technically, B is obtained by 1) extracting the substitution part 5 of C' (the sequence
structure is forgotten), 2) applying RESTRG to 3, 3) executing procedure p with input 5 giving B.
Therefore, B is an abstract sequence on {z1,...,2,} and we have to reexpress it on {z;,,...,2;, }
while combining it with C'. The precise specification is as follows. NELEM(S) stands for the
number of elements in S. NELEM(S)= NSUBST(S)+ 1if 5 is incomplete; in this case, we define
SNeLEM(s) =< L >, by convention. Otherwise, NELEM(S) = NSUBST(S).

(5,¢f) € Ce(C),
(Vk:1 <k < NSUBST(S):
0 is the k-th substitution of 5,

0, = {x1/2i 0k, .. w0/, 0k}, = (MGG, ofy e Ce(C).
Sy € Ce(B),

S]/g =< 0201“1, .. .,0201“]‘, R

Sk =< 0k0k71, .. .,Hkam, ce >)

In order to prevent introduction of undesired variable sharing in the result, we can also specify
that no substitution oy ; introduces “new” variables already in codom(6) but not in codom(6),).
Formally: dom(oy, ;) C codom(8),) and (codom(0y)\codom(8;.)) N codom(oy ;) = 0 Yk, j.

Finally, we need three less important conversion operations.

SEQ(C) = B'. This operation forgets the cut information in C. It is applied to the result of the
last clause of a procedure before combining this with the result of the other clauses.

(S,¢cfy € Ce(C) = S e Ce(B).

SUBST(C') = . This operation forgets still more information. It extracts the “abstract substi-
tution part” of C'. It is applied before executing a literal in a clause. See operation FXTGS.

(S, cf)y € Ce(C),

is an element of S

} = fe Ce(f).

"Note that the execution of g is in fact interleaved with the executions of [in Prolog. However, in abstract
interpretation, it is natural to assume that ¢ is completed before starting executions of | because abstract executions
always terminates.

EXT-NOCUT(p) = C". The empty prefix of the body of a clause produces a one element sequence
and contains no cut. This is expressed by the following specification:®

6 e Cc(f) = (<>, nocut) e Cc(C).

Other built-ins. Built-ins such as var, ground, functor, arithmetic predicates, ...can be handled
in our framework. In fact, any meta predicate can be dealt with except assert and retract because
they modify the underlying program. We do not describe the abstract treatment of these built-ins
for space reasons but they are taken into account by our implementation (see [4]).

6 Abstract Semantics

Sets of Abstract Tuples The abstract semantics of a program P is defined as a set of abstract
tuples (3, p, B) where p is a predicate symbol of arity n occurring in P, § € AS, B € ASS and
dom(p) = dom(B) = {z1,...,2,}. The underlying domain UD of the program is the set of all
(B,p) such that 5 € AS, dom(p3) = {21,...,2,} and p occurs in P. In fact, we only consider
sets of abstract tuples which are functions from UD into ASS and we use both B = sat(j3,p) or
(B,p, B) € sat. We denote SATT the set of all those sets.

Abstract Transformation This transformation is in the same spirit as the transformation pro-
posed in [16]. The main difference is that (output) abstract substitutions are replaced by abstract
sequences. Abstract operations are modified accordingly. For example, the semantics in [16] uses
an operation UNION to collect clause results. This operation is now replaced by operation CONC.
Two major simplifications with respect to the concrete semantics have been however introduced
to handle literals more simply. Let ¢ be a goal of the form ¢’,1 and C be the abstract sequence
resulting from the execution of ¢’. First, the input abstract sequence C' for [is “abstracted” to a
single abstract substitution §” approximating all substitutions in the concretization of C', i.e. the
sequence structure of C' is “lost”. Second, the input and ouput sequences for [are combined in all
possible way through a unique operation EXTGS. This simplification was shown to provide a good
trade-off between accuracy and efficiency for the abstract domains considered in [4]. This trade-off
could be reconsidered for more elaborate domains.

The abstract transformation is defined in terms of one function and one transformation given in
figure 1. T is an auxiliary function for the definition of the transformation T'SAT. T has arguments
of the form (f3, cons, sat) where cons may be a predicate name p, a procedure or a suffix of a
procedure (both denoted pr), a clause ¢ or a goal ¢ (i.e. the body or a prefix of the body of a
clause). § is a substitution whose domain agrees with the particular cons. sat is a set of abstract
tuples. The result of 7' is either an abstract sequence B (for p and pr) or an abstract sequence with
cut information C' (for ¢ and g).

T(3,p, sat) executes p(z1,...,x,) with input abstract substitution 5 by calling the function
T(3,pr, sat) that executes all clauses defining p on f. T(f,c.pr’, sat) concatenates the results
produced by the first clause and by the rest of the procedure. T(f,¢, sat) executes a clause by
extending the abstract substitution § to all variables in ¢, executing the body and restricting the
result to the variables in the head. T'(/, ¢, sat) executes the body of a clause by considering each

®In [4], operations EXTC and EXT-NOCUT are combined into a single operation EXTCS.

10

TSAT(sat) = {(8,p,B) : (8,p) € UD and B =T(4,p, sat)}

T(8,p, sat) = T(8, pr, sat)
where pr is the procedure defining p

T(3, pr,sat) =SEQ(C)

where C =1T(8,c,sat) if prise
T(8,pr,sat) =CONC(B,C, B)
where B =T(3,pr',sat)

C =1T(8,c,sat) if pris c.pr’

T(8, ¢, sat) = RESTRC(c¢,C)
where C=T(EXTC(c,5),q,sat)
g is the body of ¢

T(83,<>,sat) =
where C

C
= EXT-NOCUT()

T(3,(g,1),sat) = AI-CUT(C)

where C=T(8,y9,sat)

T(8,(g,1),sat) =EXTGS(,C, B)

where B= AIFVARS(#) iflis @y = =
AILFUNCS(Z,) iflisx; = f(...)
sat(f3',p) if lisp(...)

B = RESTRG(l, p")
B = SUBST(C)
C=T(8,g,sat).

Figure 1: The Abstract Transformation

literal in turn. The empty prefix of the body produces a one element abstract sequence with the
information that no cut has been executed so far. When the next literal to execute is a cut, operation
AI-CUT is executed. Otherwise the next literal [is executed with input 3" that approximates all
substitutions in the concretization of C'. Operation RESTRG expresses 5" in terms of the formal
parameters z1,...,2x, of [. If [is a procedure call then only a lookup in sat is performed, otherwise
either operation AI-VARS or AI-FUNCS is executed. Operation FXTGS is performed after each
call in order to obtain the result of the full goal. TSAT is a transformation from SATT to SATT.

Abstract Semantics Transformation TSAT can be shown monotonic if the abstract operations
are. However monotonicity is not an essential requirement for our framework because we do not
define the abstract semantics as the least fixpoint of TSAT which is not consistent in general as
explained in section 2. In order to get a consistent sat, the transformation is applied to sat’s which
are pre-consistent.

11

Definition 1 [Pre-Consistency] A set of abstract tuples sat is pre-consistent iff, for each abstract
tuple (8,p, B) € sat, (0,p) — S with § € Ce(8) implies that there exists S’ C S such that
5" e Ce(B).

When there exists an abstract sequence B s such that < L >€ Ce(Bcys), it is easy to
define a first pre-consistent set of abstract tuples, since < L >C § for all §. Moreover, applying
transformation TSAT to pre-consistent sats gives other pre-consistent sats which are better lower
approximations of the concrete outputs by consistency of the abstract operations. Finally, a post-
fixpoint is reached to obtain consistency. The abstract semantics can thus be formalized as any
pre-consistent postfixpoint of the abstract transformation. Formally, the results whose proofs are
summarized in appendix and follows the informal reasoning of Section 2 can be stated as follows.

Lemma 2 Let sat be a pre-consistent set of abstract tuples. Then T'SAT(sat)is pre-consistent.

Theorem 3 [Consistency of the Abstract Semantics] Let sat be a pre-consistent set of abstract
tuples such that TSAT(sat) < sat. Then sat is consistent. That is: let p be a predicate symbol, #
be a substitution, 3 be an abstract substitution, S be a substitution sequence. We have

ée’epé :(g)sv} = S Ce(sat(B,p)).

7 The Generic Abstract Interpretation Algorithm

We now discuss how postfixpoints of the abstract transformation can be computed. The key idea is
that a postfixpoint can be computed by a generalization of existing generic abstract interpretation
algorithms [5, 21, 16, 17]. We focus on the generalizations and their justifications here. See [4] for
a description of the algorithm. The key generalization in the algorithm is the use of a more general
form of widening, called E-widening, when updating the set of abstract tuples with a new result.

Definition 4 [E-widening] Let A be an abstract domain and B;, B! be elements of A. A E-widening
is an operation V : 4 X A — A which, given the sequences By,..., B;,...and B,..., B}, ... such
that B';11 = BiyaVB'; (i > 0), satisfies

1. B, > B; (1> 1);
2. There is a j > 0 such that all B’; with j < 7 are equal.

The E-widening is used as follows in the algorithm. Given an input pair (5, p), the output abstract
sequence is computed by generating two sequences By,...,B;,...and B'g,..., B';,... as follows:

1. By = Bc<,> is stored in the initial sat as the output for (3, p);
2. B; results from the ¢-th abstract execution of procedure p for abstract input 5;
3. B'; = B;VB';_; is stored in the current sat after the i-th abstract execution of procedure p;

4. reexecution stops when B;1; < B!

Termination of the algorithm is guaranteed because all B! must be equal for all 7 greater than
some j. Hence, since B! = B}, and B}, > Bji1, we have Bj11 < B}. Consistency of the result
is guaranteed because each B! is pre-consistent and the algorithm terminates with a postfixpoint.
Pre-consistency of the B! follows from B’; > B; and the pre-consistency of B; due to Lemma 2. An
example of E-widening is defined in [4].

12

8 Related Work

Perhaps the closest related work is the work of File and Rossi [12], who describe an extension
of the framework in [6], where an OLDT abstract tree is adorned with information about sure
success or failure of the goals. The information is then used in the cut operation to prune the
OLDT-tree whenever the cut is reached in all corresponding executions. Sure success is modelled
in our framework by abstract sequences having only non-empty sequences in their concretizations.
Sure failure is modelled by the empty sequence. There are several differences between the two
frameworks. At the theoretical level, their framework can be characterized as operational and non-
compositional while ours is compositional and based on the fixpoint approach. At the algorithmic
level, there are two main differences. The first is best described on a goal p(X), . Whenever
p(X) surely succeeds, their framework stops after generating the first ”sure” solution, while ours
computes the entire abstract sequence for p(X) and then cuts it to maintain at most one solution.
Our algorithm may thus imply some redundant work. However, if p(X) is used in several contexts,
their algorithm should recognize this situation and expand the OLDT-tree further. The second
difference comes from the fact that our framework may deduce sure success even though the success
branch may be unknown, while it is not clear how to obtain this result in their approach. Finally, our
approach has been shown computationally tractable in [4]. At the time of writing, no experimental
result have been reported on their approach.

The work of Barbuti et al. [2] also aims at modelling Prolog control. The main difference
between their work and ours is that their framework is intended to use control information deduced
from outside, while our framework both deduces and uses control information inside the framework.

Our framework is usually not able to compute precise termination information (except for
non recursive procedures) since this is inherently outside the scope of computational induction,
the basis of the abstract interpretation approach followed here. However some applications such as
cardinality analysis [4] could be improved by allowing the framework to use termination information
from the outside as in [2]. Furthermore, our framework is able to provide precise information about
non-termination. This is an important consequence of the fact that the limit of an infinite chain
of incomplete substitution sequences is either an incomplete substitution sequence or an infinite
sequence. Precise information about non termination may improve other analyses significantly in
the case of incorrect programs, making it useful for static debugging.

9 Conclusion

This paper has introduced a novel abstract interpretation framework, capturing the depth-first
search strategy and the cut operation of Prolog. The framework is based on the notion of sub-
stitution sequences and the abstract semantics is defined as a pre-consistent postfixpoint of the
abstract transformation. Abstract interpretation algorithms need upper-closed domains and a spe-
cial widening operator to compute the semantics. This approach overcomes some of the limitations
of existing frameworks. In particular, it broadens the applicability of the abstract interpretation
approach to new analyses and improves the precision of existing analyses. Its practicability has
been demonstrated in the companion paper [4].

13

References

S. Abramski and C. Hankin. An introduction to abstract interpretation. In S. Abramski and C. Hankin, editors,
Abstract Interpretation of Declarative Languages, chapter 1, pages 9-31. Ellis Horwood Limited, 1987.

R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog control. In Proceedings of POPL’92, pages
95-104. ACM Press, 1992.

M. Baudinet. Proving Termination Properties of Prolog Programs: A Semantic Approach. In Proc. Third IFEFE
Symp. on Logic In Computer Science, pages 336-347. IEEE, 1988.

C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality Analysis of Prolog. Technical report,
Department of Computer Science, Brown University, March 1994. (Submitted to ILPS’94).

M. Bruynooghe. A practical framework for the abstract interpretation of logic programs. Journal of Logic
Programming, 10(2):91-124, February 1991.

P. Codognet and G. Filé. Computations, abstractions and constraints in logic programs. In Proceedings of

(1CCL’92), Oakland, U.S.A., April 1992.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type analysis of prolog using type graphs. In Proceedings
of (PLDI’94), Orlando, Florida, June 1994.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of (POPL’77).

S. Dawson, C.R. Ramakrishnan, [.V. Ramakrishnan, and R.C. Sekar. Extracting Determinacy in Logic Programs.
In ICLP-93, Budapest (Hungary), June 1993.

A. de Bruin and E. de Vink. Continuation Semantics for Prolog with cut. In Proc. TAPSOFT’89, Lecture Notes
in Computer Science, pages 178-192, Berlin, 1989. Springer-Verlag.

S.K. Debray and P. Mishra. Denotational and operational semantics for Prolog. (5(1)):61-91, 1988.
G. Filé and S. Rossi. Static analysis of Prolog with cut. In Proc. of LPAR’93.

R. Giacobazzi. Detecting Determinate Computations by Bottom-up Abstract Interpretation. In FSOP’92, pages
167-181, 1992.

G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program variables by means of
abstract interpretation. Journal of Logic Programming, 13(4), 1992.

N.D. Jones and A. Mycroft. Stepwise development of operational and denotational semantics for Prolog. In
Sten-Ake Tarnlund, editor, Proceedings of ICLP’84, pages 281-288.

B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract interpretation algorithm and its
complexity analysis. In Proceedings of (ICLP’91).

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract Interpretation Algorithm
for Prolog. (TOPLAS), January 1994.

J.W. Lloyd. Foundations of Logic Programming. Springer Series: Symbolic Computation—Artificial Intelligence.
Springer-Velag, second, extended edition, 1987.

K. Marriott and H. Sgndergaard. Semantics-based dataflow analysis of logic programs. In G. Ritter, editor,
Information Processing’89, pages 601-606, San Fransisco, California, 1989.

C.S. Mellish. Abstract interpretation of Prolog programs. In Abstract Interpretation of Declarative Languages,
chapter 8, pages 181-198. Ellis Horwood Limited, 1987.

K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of Variable Dependency Using Abstract
Interpretation. Journal of Logic Programming, 13(2-3):315-347, August 1992.

D. Sahlin. Determinacy Analysis for Full Prolog. In PEPM’91, 1991.
D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., 1988.

A. Taylor. LIPS on MIPS: Results from a Prolog Compiler for a RISC. In Proceedings of (ICLP’90), Jerusalem,
Israel, June 1990. MIT Press.

P. Van Roy and A. Despain. High-Performance Computing with the Aquarius Compiler. IEEE Computer, 25(1),
January 1992.

14

A The Concrete Semantics

A.1 Introduction

This appendix presents a fixpoint semantics for (normalized) definite logic programs with cut
which can be proved equivalent to Prolog “standard” semantics (i.e. SLD-resolution with the left-
most selection rule and the depht-first search strategy). The "raison d’étre” of this instrumental
semantics is the proof of consistency of the abstract semantics. The semantics is not aimed at
replacing existing proposals such as [10, 11, 15] but these proposals are too far from our abstract
semantics to provide a convenient basis for a consistency proof.

Technically, the concrete semantics is a denotational semantics, since it is compositional and uses
a fixpoint construction over a complete partial order SCTT built on the relation C on substitution
sequences. However, our definition uses (pseudo) transition rules to highlight the similarities and
differences with operational semantics for logic programs which do not take into account the search
rule nor the cut. As a result, the concrete semantics “looks” very much like a simple SOS semantics
but it is not operational because its fixpoint construction uses the ordering on SCTT instead of
set inclusion. Defining an equivalent operational semantics in SOS style would require either to
complicate the semantic objects (to take into account the choice points, backtracking and so on) or
to introduce an infinite hierarchy of transition rules corresponding to the different iterates of the
Kleene’s sequence leading to the fixpoint.

A.2 Basic definitions

We complement here the set of definitions of the main paper. Let # be a substitution and D C
dom(0). The restriction of § to D, denoted 6|p, is the substitution 6 such that dom(¢') = D
and z6 = 26’ for all € D. The notion of free variable is non-standard to avoid clashes between
variables during renaming. A free variable is represented by a binding to a standard variable that
appears nowhere else. We use mgu(t1,t2) to denote the set of most general unifiers of ¢; and ;.

Let S;ecN be an increasing chain of substitution sequences, i.e. So C ... C 5; T The least
upper bound sequence LI2,5; can be constructed as follows:

U2yS: = Sk if 3k € N such that S; = 5, (Vi > k)
<y, 8> i Wie NS S =< 0y,....0 > Sl

A.3 Concrete Operations

We define here some operations which are used by the concrete semantics. It can be observed that
all operations return a set of program substitutions (resp. substitution sequences) although the
result is conceptually a single substitution (resp. substitution sequence) in general. When a set
contains many elements they are equivalent up to renaming. For brevity we omit some obvious
preconditions in the definitions.

Extension and Restriction for a Clause The EFXTC operation extends a substitution on
variables on the head of a clause to all variables in the clause. Let ¢ be a clause, var(c) = D and
var(head(c)) = D'. The RESTRC operation restricts a substitutions sequence on all variables in a
clause to the variables in the head.

15

EXTC(c,6)
RESTRC(c, §)

{0": dom(0') =D, 0, =6 and Ve € D\ D', x is free in §' }
{ S}

Restriction and Extension for a Call The RESTRG operation expresses a substitution €, on
the parameters z;,,...,2;, of a call /, in terms of its formal parameters z;,...,2,. The FXTG
operation extends a substitution # with a substitutions sequence 5 representing the result of exe-
cuting a call [on 6.

RESTRG(1,0) = {8 :dom(0')={z1,....2,}, and a2 = 2,0 (1 <k <n)}
EXTG(1,0,5) = {<boy,...,00;,...>:30 € RESTRG(l,0) such that S =< #'oy,...,00;,...>
and dom(o;) C codom(8') and (codom(6)\codom(8')) N codom(o;) = O Vi }

Unification Operations Operation AI-VAR unifies 216 with x96. Operation AI-FUNC unifies

210 with f(xg,...,2,)8. Observe that the operations do not specify the parameters 1, x5 (resp.
T1,%2,...,%,) as arguments. This is because operation RESTRG is applied before.
AI-VAR() = {<>} it 0 = mgu(a16, 226)
{< 00 >:0 € mgu(z10,2:0)} otherwise
ALIFFUNCO, f) = {<>} if 0 = mgu(x16, f(xq,...,2,)0)

{< 00 >:0 € mgu(a10, f(z2,...,2,)0)} otherwise

A.4 The Concrete Semantic Domain SCTT

We define the concrete semantic domain SCTT with respect to a fixed underlying program P. The
concrete underlying domain CUD is the set of pairs (6, p) such that 6 is a program substitution, p
is a n-ary predicate of P and dom(0) = {x1,...,2,}. A set of concrete tuples is a total function
——: CUD — PSS such that each pair (8, p) is mapped to a substitution sequence S where dom(8) =
dom(S). This is denoted by (#,p) — 5. (In fact, S should be defined up to a renaming of the
standard variables occurring in it but we ignore this technicality, for the sake of simplicity.)

By definition, SCTT is the set of all sets of concrete tuples. Its minimal element is — such
that (6,p) — 1 < L > fot all (#,p). The ordering on SCTTis defined by

—C—' iff Y(0,p) € CUD : (8,p) — S and (8,p) —' §" = SLC 5"

It is easy to show that SCTTis a cpo for this ordering.

A.5 Auxiliary Semantic Rules

In order to define the concrete semantics as the least fixpoint of a continuous transformation of
SCTT, we first introduce a set of semantic rules which extend a set of concrete tuples — to a
function from ECUD to PSS U (PSS x {cut,nocut}). The extended concrete underlying domain
FCUD consists of the pairs of the form (8, p), (0,¢), (8,9), (0,pr), (8,1), where p, ¢, g, pr, | are
respectively a predicate symbol, a clause, the body or a prefix of the body of a clause, a procedure
or a suffix of a procedure, and (an occurrence of)) a literal in the body of a clause (for the program
P). The semantic rules specify the result of executing ¢, g, pr, [for the input p, assuming that
——: CUD — PSS is used as an oracle to solve the procedure calls.

16

The rules are given and explained below. The derived function is also denoted ——.

Execution of a Body The empty prefix produces a one element sequence (the cut is not ex-
ecuted). A cut is executed in a clause iff it follows a sequence of literals producing at least one
result. Then it reduces this sequence to its first element. Otherwise failure or non termination
occurs. Execution of other literals is more complicated. The result of ¢,/ can be “computed” as
follows. First, the result S of g is computed. Then literal [is executed with each substitution 6
in S (restriction and renaming are handled by RESTRG). Each resulting sequence 5}, is extended
wrt ;. Finally, all extended sequences are concatenated.

g == 4g! g =9,
g = <> 0,9y — (S, cf) 0,9y — (S, cf)
Se{<>,<L>} S=<f>:5
(0, 9) — (< 8 >, nocut) (#,9) — (S, cf) (0, 9) — (< 0 >, cut)
g == ¢l g == g1 g == g1
o= ay, =y, o= ay, = f(wiy, .oy 2,) U= plag,, ... x;,)
(0,9") —(S,cf) (0,9") — (S, cf) (0,9") —(S,cf)
S=<b,...,0...> S=<by,...,0p...> S=<by,.. . ,0...>
., € RESTRG(!, 6) 6. € RESTRG(!,6y) ., € RESTRG(!, 6)
S, € AI-VAR(#,) , S, € AI—FUNC(H;C,If) (0,,p) — S, ,
Sy € EXTG(I,Hk,Sk) Sy € EXTG(I,@k,Sk) Sy € EXTG(I,Hk,Sk)
0,9) — (TS ef) (0,9) — (TET Sk) (0,9) — (OEFSE of)

Procedure and Clause Execution If a cut is executed in the first clause of a procedure, other
clauses are not executed. Otherwise the result of the procedure (for input #) is the concatenation
of the sequences produced by the first clause and by the rest of the procedure. Non termination of
the first clause is correctly handled due to the definition of O.

Executing a clause ¢ with input # amounts to extending @ to all variables in ¢, executing the
body of ¢, and restricting the sequence of results to the variables in the head. The cut is executed
in the clause iff it is executed in its body.

= ! ¢ == p(l‘l,...,l‘n) — g
/ e 0, € EXTC(c,0)
pr = ¢ pr = c.pr (6, c) — (S, nocut) 01 g) — (5" cf)
0,¢) — (S, cf) (6, ¢) — (S, cut) (0,pr'y — ' 1, cf)
(0,pr) — S @, pry — S @, pr) — 509 S € RESTRC(c, S")

(0,¢) — (S, cf)

A.6 The Concrete Semantics

We first define a semantic transformation: TSCT : SCTT — SCTT, by the following rule. Note
that (6, pr) — S is defined by means of the previous rules which use — as an oracle (a base
case).

pr defines p in P
@, pry — S
(0.0) == 5

17

Theorem 5 Transformation TSCT : SCTT — SCTT is monotonic and continuous.

Proof It can be shown that all basic operations used by the semantic rules (e.g. O) are monotonic
and continuous. The theorem follows. O

Definition 6 [Concrete Semantics] By definition, the concrete semantics of P (the underlying
program) is Ifp(TSCT). We note it — in the sequel.

Theorem 7 [Correctness of the Concrete Semantics] Let p(ty,...,%,) be an initial goal where p is
the name of a n-ary procedure of the underlying program P. Consider the sequence oy,...,0;,...
of computed answer substitution produced for p(t1,...,t,) wrt P using SLD-resolution, the left-
most selection rule, the depht-first search strategy and the usual meaning of the cut. Let 8 =

{z1/t1,...,2,/ty}. Define S =< 6oy,...,00,, >, if the execution terminates after producing m
results; § =< 0oq,...,00,,, L >, if the execution produces m computed answer substitutions and
then enters into an infinite loop; S =< foq,...,00;,... > (¢ € N), if the execution produces an

infinite number of computed answer substitutions. We have:

(0,p) — S.

Proof [Sketch] Let us note " the i-th iterate of the Kleene’s sequence leading to ——. We can
define a sequence T; of SLD-trees obtained by limiting the depth of procedure unfolding up to ¢ and
pasting an (artificial) infinite branch on each unfolded goal. Then the sequence S; corresponding to

the sequence of computed answer substitutions for 7} is such that: (6, p) —— S;. The result follows
by continuity. O

B Correctness of the Abstract Semantics

We use the notations and definitions of the main paper.

Lemma 8 Let sat be a set of abstract tuples such that sat is pre-consistent and is a postfixpoint
of TSAT, i.e. TSAT(sat) < sat. Let (8,p) € UD and 6 € Ce(3). Let S such that (8, p) — S and
S; such that (8, p) —— S; (0 < 7). Then for all i € N, there exists S/ € PSS such that 5; C S/ C S
and S! € Ce(sat(3,p)).

Proof [By induction on i.] The result is straightforward for ¢ = 0 since sat is pre-consistent.
Suppose i > 0. By induction hypothesis, for all (3, p) € UD and 6 € Ce(3), there exists S_; € PSS
such that

Sic1 S5 S and S_y € Ce(sat(B,p)).

41
This defines a set of concrete tuples “=L" such that
i—1!

-1
i C+— L.

By monotonicity of the concrete transformation,

.3

SCT
7 i—1'
— C— C— .

18

By consistency of the abstract operations, for all (5,p) € UD, 6 € Ce(f) and S? such that

TSCT
i—1/

(0.p) — Si,
we have S! € Ce(sat’(8,p)) where sat’

= TSAT(sat). But, since sat is a post-fixpoint, 57 €
Ce(sat’(B,p)) implies 57 € Ce(sat(s,p)). O

Theorem 9 [Correctness] Let sat be a set of abstract tuples. If sat is a postfixpoint of T'SAT,
ie. TSAT(sat) < sat, and is pre-consistent, then it is consistent, i.e., for all (5,p) € UD and for
all @ € Ce(f), (0, p) — S implies that S € Ce(sat(3,p)).

Proof Assume fixed (8,p) € UD and 6 € C¢(3). Consider the corresponding sequences S’ in the
lemma. From these S, we construct an increasing chain: 5§ C ...5” C by defining S =< L >
and S” = STUS”, (i > 0). The least upper bound S5 U S is defined because 5!, 5", C S.
Moreover, 57U S}, is either equal to S} or to S7 ; which implies that it belongs to Ce(sat(8,p)).
Clearly, 5; C S” C S for all ¢ so that 5 = |[Zy.5; C [[Z; 57 C 5. Therefore, since C'e(sat(f,p))
is upper-complete, S € C¢(sat(3,p)). O

19

