
CALL-CORRECT SPECIALISATION OF LOGIC PROGRAMSA. BOSSIDipartimento di Matematica e Informatica, via Torino 155,30173 Venezia, ItalyE-mail: bossi@dsi.unive.itS. ROSSIDipartimento di Matematica, via Belzoni 7,35131 Padova, ItalyE-mail: sabina@math.unipd.itIn this paper we introduce the concept of specialisable call correct program. Itis based on the notion of specialised derivation which is intended to describe pro-gram behaviour whenever some constraints on procedure calls are assumed. Bothoperational and �xpoint constructions are de�ned. They characterize successfulderivations of programs where only atoms satisfying a given call-condition are se-lected. We show that specialisable call correct programs can be transformed intocall-correct ones. A su�cient condition to verify specialisable call correctness isstated.1 IntroductionIn this paper we introduce a novel notion of correctness for logic programs. Itcharacterizes correct programs wrt to a given pre/post speci�cation ?;?;?;?;?;?where the only request on the call patterns is that they can be instanziatedin order to satisfy a given call-condition. Programs satisfying such propertyare called specialisable call correct (s.c.c., in short) and are proved to be spe-cialisable into correct ones where all the call patterns do satisfy the givencall-condition. This allows us to reason on type correctness of logic programswithout the need of augmenting programs with type declarations (in the formof Prolog procedure) as in ?;?;?. Abstract interpretation techniques can be usedto provide a �nite description of the call-condition.As an example of a useful call-specialisation, consider the following Prolog pro-gram computing the frontier of a binary tree ?:front(void; [ ]):front(tree(X; void; void); [X]):front(tree (X;L;R); Xs)  nel tree(tree(X;L;R));front(L;Ls);front(R;Rs);append(Ls; Rs; Xs):1



nel tree(tree( ; tree ( ; ; ); )):nel tree(tree( ; ; tree ( ; ; ))):where the relation nel-tree is used to enforce a tree to be neither the emptytree nor a leaf tree(a; void; void). Observe that the simpler program obtainedby removing the atom nel tree(tree(X;L;R)) in the body of the third clauseand by discarding the relation nel tree is indeed incorrect (see ?).Suppose that the domain of application consists of the set of trees whose leftsubtrees are always leafs and consider the following pre/call/post speci�cation:Pre = ffront (t; l) j t is a term and l is a variableg[fnel list (t)j t is a termg [ fappend (u; v; z) j u; v; z are termsgCall = ffront (t; l) j t is either the empty tree or a leaf or a termof the form tree(u; r; s) where r is a leaf and u; s and l are termsg[fnel list (t)j t is a termg [ fappend (u; v; z) j u; v; z are termsgPost = ffront (t; l) j l is the frontier of the binary tree tg[fnel list (t)j t is a termg [ fappend (u; v; z) j u; v; z are termsg:The program is s.c.c. wrt the Pre, Call and Post . In fact, each derivation start-ing with a query Q satisfying the pre-condition Pre where all the call-patternscan be instantiated to an atom satisfying the call-condition Call, produces acomputed instance Q� satisfying the post-condition Post. The program canbe specialised into a call-correct one as follows:front (void; [ ]):front (tree (X; void; void); [X]):front (tree (X; tree (L; void; void); R); Xs) nel tree (tree (X; tree (L; void; void); R));front (tree (L; void; void); Ls);front (R;Rs);append (Ls; Rs; Xs):augmented by de�nitions of the relations nel tree and append. Note thatby unfolding (see ?) the atoms in the body of the third clause of the relationfront, one can further optimize the program as follows:front (void; [ ]):front (tree (X; void; void); [X]):front (tree ( ; tree (L; void; void); R); [LjRs]) front (R;Rs):which does not use both the relations nel tree and append.2



In this paper, we de�ne a specialised semantics which captures the be-haviour of call-correct derivations of a program P . This is obtained by gen-eralizing the s-semantics approach ?;?;? in order to handle call-conditions. Weshow that the specialised semantics can be computed both by a top-down anda bottom-up construction.Moreover, we provide a su�cient condition to prove that a program is s.c.c.wrt to a given pre/call/post speci�cation. It consists in one application of thespecialised immediate consequence to the post-condition. A simple programspecialisation which transforms s.c.c. programs into call-correct ones is alsode�neda.2 PreliminariesThe reader is assumed to be familiar with the terminology of and the basicresults in the semantics of logic programs ?;?;?.Let L be the �rst order language consisting of a �nite set C of data conc-tructors, a �nite set P of predicate symbols, a denumerable set V of variablesymbols. Let T be the set of terms built on C and V. Variable-free termsare called ground. A substitution is a mapping � : V ! T such that the setD(�) = fXj �(X) 6= Xg (domain of �) is �nite. If V � V, we denote by �jVthe restriction of � to the variables in V , i.e., �jV (Y ) = Y for Y 62 V . More-over if E is any expression, we use the abbreviation �jE to denote �jVar(E).� denotes the empty substitution. The composition �� of the substitutions� and � is de�ned as the functional composition, i.e., ��(X) = �(�(X)). Arenaming is a substitution � for which there exists the inverse ��1 such that���1 = ��1� = �. The pre-ordering � (more general than) on substitutions issuch that � � � i� there exists �0 such that ��0 = �. We say that � and � arenot comparable if neither � � � nor � � �. The result of the application of thesubstitution � to a term t is an instance of t denoted by t�. We de�ne t � t0 (tis more general than t0) i� there exists � such that t� = t0. We say that t andt0 are not comparable if neither t � t0 nor t0 � t. The relation � is a preorder.Let � be the associated equivalence relation (variance). A substitution � is auni�er of terms t and t0 if t� = t0�. We denote by mgu(t1; t2) any idempotentmost general uni�er (mgu, in short) of t1 and t2. All the above de�nitions canbe extended to other syntactic objects in the obvious way.Atoms, queries, clauses and programs in the language L are de�ned asfollows. An atom is an object of the form p(t1; : : : ; tn) where p 2 P is an n-ary predicate symbol and t1; : : : ; tn 2 T . A query is a (possibly empty) �nitesequence of atoms A1; : : : ; Am. The empty query is denoted by 2. A clause isaFor an extended version of this paper the reader is referred to ?.3



a formula of the formH  B where H is an atom andB is a query. H is calledthe head of the clause and B its body. When B is empty, H  B is writtenH  and is called a unit clause. A program is a �nite set of clauses. Atomsare denoted by A;B;C;H; : : :; queries by Q;A;B;C; : : : ; clauses by c; d; : : :;and programs by P . The language associated with a program P is obviouslyde�ned.The computation process within the logic programming framework is basedon the SLD resolution procedure. Consider a non empty query A; B;C and aclause c. Let H  B be a variant of c variable disjoint with A; B;C. Supposethat B and H unify and let � be their mgu. We write thenA; B;C �=)P;c (A;B;C)�and call it SLD-derivation step of A; B;C and c w.r.t. B, with an mgu �.H  B is called its input clause. B and B� are called the selected atom andthe selected atom instance, respectively, of A; B;C. If the program P is clearfrom the context or the clause c is irrelevant we drop a reference to them.An SLD-derivation is obtained by iterating SLD-derivation steps. A maximalsequence � := Q0 �1=)P;c1 Q1 �2=)P;c2 � � �Qn �n+1=)P;cn+1 Qn+1 � � �of SLD-derivation steps is called an SLD-derivation of P[fQ0g ifQ0; : : : ; Qn+1; : : :are queries, �1; : : : ; �n+1; : : : are substitutions, c1; : : : ; cn+1; : : : are clauses of P ,and for every step the input clauses are standardized apart.The length of an SLD-derivarion �, denoted by len(�), is the number ofSLD-derivarion steps in �. We denote by Sel(�) the set of all the selected atominstances, one for each derivation step, of �. SLD-derivations can be �nite orin�nite. Consider a �nite SLD-derivation � := Q0 �1=)P;c1 Q1 � � � �n=)P;cn Qnof a query Q := Q0, also denoted by � := Q0 �7�! Qn with � = �1 � � ��n. IfQn = 2 then � is called successful. The restriction of � to the variables of Q,denoted by �jQ is called a computed answer substitution (c.a.s., in short) ofQ and Q� is called a computed instance of Q. If Qn is non-empty and thereis no input clause whose head uni�es with the selected atom of Qn, then theSLD-derivation � is called failed.3 InterpretationsBy the extended Herbrand base BEL for a language L we mean the quotient setof all the atoms of L with respect to �. The ordering induced by � on BELwill still be denoted by �. For the sake of simplicity, we will represent the4



equivalence class of an atom A by A itself. An interpretation I is any subset ofBEL. When the language is clear from the context then we drop a reference toit. We denote by inst(I) the set of all instances of atoms in I and by ground (I)the set of all ground instances of atoms in I. Moreover, we denote by Min(I)the set of minimal elements of I de�ned as ?: Min(I) = fA 2 I j 8A0 2I if A0 � A then A = A0g:Example 3.1 Let I be the set fsublist(u; v) j u is a list of at most two vowels and v is anytermg. ThenMin(I) = fsublist([ ]; Ys); sublist([a]; Ys); : : : ; sublist([a; e]; Ys); : : : ; sublist([o; u]; Ys)gwhere Ys is a variable.The notion of truth extends the classical one to account for non-ground for-mulas in the interpretations. So, if A is an atom then I j= A i� A 2 inst(I);whereas, if Q is a query of the form A1; : : : ; An then I j= Q i� Ai 2 inst(I) forall i 2 f1; : : : ; ng. Note that I j= A i� there exists A0 2 I such that A0 � A;moreover, if I j= A then for all A0 such that A � A0, I j= A0.De�nition 3.1 (Minimal Instances of an Atom Satisfying I) Let I be aninterpretation and A be an atom. The set of minimal instances of A satisfyingI is the set MinI(A) = Min(fA0 2 inst(A) j I j= A0g):Example 3.2 Consider the interpretation I of the Example 3.1. ThenMinI(sublist([XjXs]; Ys)) = fsublist([a]; Ys); : : : ; sublist([a; e]; Ys); : : : ; sublist([o; u]; Ys)g:Observe that although I is in�nite, bothMin(I) andMinI(sublist([XjXs]; Ys))are �nite.The following notion of specialised uni�er is the basic concept upon whichspecialised derivations are de�ned.De�nition 3.2 (Specialised Uni�ers) Let I be an interpretation and t1 and t2be terms. A substitution � is a I-uni�er of t1 and t2 if t1� = t2� and I j= t1�.A most general I-uni�er (mguI , in short) of t1 and t2, denoted bymguI(t1; t2);is any idempotent I-uni�er � such that for any other I-uni�er �0, either � � �0or � and �0 are not comparable.Example 3.3 Consider again the interpretation I of the Example 3.1. ThenmguI(sublist([a;X]; Ys); sublist(Zs; Ys))5



denotes both substitutions�1 = fX=e; Zs=[a; e]g; �2 = fX=i; Zs=[a; i]g; �3 = fX=o; Zs=[a; o]g; �4 = fX=u;Zs=[a; u]g:Note that the substitutions �1; : : : ; �4 are pairwise not comparable.For the sake of simplicity, we will write � = mguI(t1; t2) even if mguI(t1; t2) isnot uniquely determined.It is well known that set inclusion does not adequately re
ect the propertyof non-ground atoms of being representatives of all their ground instances. So,in this paper we refer to the partial ordering v on interpretations de�ned byFalaschi et al. ? as follows:� I1 � I2 i� 8A1 2 I1; 9A2 2 I2 such that A2 � A1.� I1 v I2 i� (I1 � I2) and (I2 � I1 implies I1 � I2).Intuitively, I1 � I2 means that every atom veri�ed by I1 is also veri�ed by I2(I2 contains more positive information). Note that � has di�erent meaningsfor atoms and interpretations. I1 v I2 means either that I2 strictly containsmore positive information than I1 or (if the amount of positive information isthe same) that I1 expresses it by fewer elements than I2 (I2 is more redundant).The relation � is a preorder, whereas the relation v is an ordering. If I1 � I2,then I1 v I2. It is easy to see that for every interpretation I, I � Min(I), butalso Min(I) v I. Moreover, for every atom A, MinI(A) vMin(I).The set of all the interpretations I with the ordering v is a completelattice, noted by hI;vi, where BE is the top element and ; is the bottomelement.4 Specialised DerivationsWe are now ready to introduce our specialised derivations. They di�er from thestandard SLD-derivations for the fact that at each derivation step specialisedmost general uni�ers are computed instead of standard mgus.De�nition 4.1 Assume given a program P and an interpretation I. LetA; B;C be a non empty query, c be a clause, H  B be a variant of c variabledisjoint with A; B;C. Suppose that B and H unify and � = mguI(B;H). Wewrite then A; B;C �=)P;c;I (A;B;C)�and call it I-derivation step of A; B;C and c w.r.t. B, with an mgu �. H  Bis called its I-input clause. B and B� are called the I-selected atom and the6



I-selected atom instance, respectively, ofA; B;C. An I-derivation of P[fQ0gis a maximal sequence� := Q0 �1=)P;c1;I Q1 �2=)P;c2;I � � �Qn �n+1=)P;cn+1;I Qn+1 � � �of I-derivation steps where the I-input clauses are standardized apart. Con-sider a �nite I-derivation � := Q0 �1=)P;c1;I Q1 � � � �n=)P;cn ;I Qn of a queryQ := Q0, also denoted by � := Q0 �7�!I Qn with � = �1 � � ��n. If Qn = 2then � is called successful. The restriction of � to the variables of Q is calleda I-computed answer substitution (I-c.a.s. in short) of Q and Q� is called aI-computed instance of Q. If Qn is non-empty and there is no I-input clauseH  B such that H uni�es with the I-selected atom B of Qn with a substi-tution � = mguI(B;H), then � is called failed.Note that for every I-derivation �, Sel (�) � I, or equivalently, I j= A for allA 2 Sel(�).Whenever I is omitted, we implicitly assume that I = BE . It is easy to seethat if I is the extended Herbrand base BE , then I-derivations are indeedSLD-derivations.Example 4.1 Consider the interpretation I of Example 3.1 and the programSUBLIST:sublist([ ]; Ys):sublist([XjXs]; [XjYs]) : �sublist(Xs; Ys):sublist(Xs; [Y jYs]) : �sublist(Xs; Ys):It produces two I-c.a.s. for the query sublist([a;X]; [a; e; a; b; a; u]) that are�1 = fXs=[a; e]g and �2 = fXs=[a; u]g, whereas any I-derivation of the querysublist([a; b]; [a; e; a; b; a; u]) fails.A Lifting Lemma for specialised derivations holds.Lemma 4.1 (Specialised Lifting Lemma) Let I be an interpretation and � :=Q� �7�!I 2 be a successful I-derivation of a query Q�. Then, there exists asuccessful I-derivation �0 := Q �07�!I 2 where �0 � ��.Proof 1 By induction on len(�).Basis. Let len(�) = 1. In this case Q consists of only one atom B and� := B� �=)I 2where the I-input clause used in the I-derivation step is a unit clause H  and � = mguI(B�;H). We can assume that �jH = �. Then, �� is a I-uni�er7



of B and H. Hence, there exists �0 = mguI(B;H) such that �0 � ��.Induction step. Let len(�) > 1. Then Q := A; B;C and� := (A; B;C)� �1=)I (A;B;C)��1 �27�!I 2where B is the I-selected atom of Q, c := H  B is the �rst I-input clause,�1 = mguI(B�;H) and � = �1�2. We can assume that �jc = �. Then, ��1is a I-uni�er of B and H. Hence, there exists �01 = mguI(B;H) such that�01 � ��. Let 
 be a substitution such that �01
 = ��1. By the inductivehypothesis, there exists a successful I-derivation(A;B;C)�01 �027�!I 2where �02 � 
�2. Therefore,�0 := (A; B;C) �01=)I (A;B;C)�01 �027�!I 2with �0 = �01�02 is a successful I-derivation such that �0 � �01
�2 = ��1�2 = ��.25 Pre/Call/Post Speci�cationsIn this section we propose a characterization of program behaviour in termsof pre/call/post speci�cations based on the notion of specialised derivarionde�ned above.De�nition 5.1 Let P be a program and Pre, Call and Post be interpretations.We say that P is specialisable call correct (s.c.c., in short) wrt the pre-conditionPre, the call-condition Call and the post-condition Post, denoted byfPre;CallgPfPostgspec;if and only if for any query Q,Pre j= Q and Q �7�!P;Call 2 implies Post j= Q�.Example 5.1 Consider the program SUBLIST and the interpretationsPre = fsublist(u; v) j u is a variable and v is a ground listgCall = fsublist(u; v) j u is a list of at most two vowels and v is a termgPost = fsublist(u; v) j u is a sublist of at most two vowels of the list vgThe program SUBLIST is s.c.c. wrt Pre, Call and Post.We de�ne the strongest post-condition of P wrt Pre and Call as below.8



De�nition 5.2 (Strongest Post-condition) Let P be a program. The strongestpost-condition of P with respect to a pre-condition Pre and a call-conditionCall, noted sp(P;Pre;Call), is the smallest interpretation Post wrt to v suchthat fPre;CallgPfPostgspec .De�nition 5.3 Let P be a program and Call be an interpretation. We saythat P is call-correct wrt Call i� for any SLD-derivation �, Sel(�) � Call, i.e.,� is a Call-derivation.6 Specialised Operational and Fixpoint SemanticsBased on the s-semantics approach?, we de�ne both a top-down and a bottom-up construction which model the specialised computed answer substitutions ofthe specialised derivations.De�nition 6.1 (Specialised Operational Semantics) Let P be a program andCall be an interpretation. The Call-computed answer substitution semanticsof P isOCall(P ) = fA 2 BE j 9p 2 P; 9X1; : : : ; Xn distinct variables in V; 9�;p(X1; : : : ; Xn) �7�!P;Call 2;A = p(X1; : : : ; Xn)�g:Note that if Call is the extended Herbrand base BE , then OBE (P ) is the originals-semantics de�ned by Falaschi et al. in ?.Example 6.1 Consider the program SUBLIST and the interpretation Call ofExample ??.OCall (SUBLIST) = fsublist([ ]; [X1; : : : ; Xn]); n � 0g [fsublist([a]; [X1; : : : ; Xn; a;Xn+1; : : : ; Xn+m]); n;m � 0g [: : :fsublist([a; e]; [X1; : : : ; Xn; a; e;Xn+1; : : : ; Xn+m]); n;m � 0g [ : : :We de�ne a projection operator on the set of interpretations I. It allows usto characterize the strongest post-condition of a program P with respect to apre-condition Pre and a call-condition Call.De�nition 6.2 (�I) Let I and J be interpretations. The projection of J onthe interpretation I is:�I(J) = fA 2 BE j 9A0 2Min(I); 9A00 2 J9� = mgu(A0; A00)A = A0�g:9



Proposition 6.1 Let P be a program and Pre and Call be interpretations.Then Min(�Pre(OCall(P ))) = sp(P;Pre;Call).Proof 2 We prove that fPre;CallgPfPostgspec holds, i.e., for any query Qsuch that Pre j= Q and Q �7�!Call 2, then Min(�Pre(OCall (P ))) j= Q�. LetQ := A1; : : : ; An. It is easy to prove that for all j 2 f1; : : : ; ng, there ex-ists a successful Call-derivation Aj� 
j7�!Call 2 where Aj�
j = Aj�. For allj 2 f1; : : : ; ng, let pj 2 P and X1; : : : ; Xn be distinct variables in V such thatpj(X1; : : : ; Xn) � Aj�. By Lemma 4.1, for all j 2 f1; : : : ; ng, there exists asuccessful Call-derivation pj(X1; : : : ; Xn) �j7�!Call 2 where pj(X1; : : : ; Xn)�j �Aj�. By De�nition ??, pj(X1; : : : ; Xn)�j 2 OCall(P ). Moreover, since Pre j=Aj , there exists A0j 2Min(Pre) such thatA0j � Aj�. Let �0j = mgu(pj(X1; : : : ; Xn)�j ; A0j).By properties of substitutions, A0j�0j � Aj� and by De�nition ??, A0j�0j 2�Pre(OCall (P )). This proves that for all j, Min(�Pre (OCall(P ))) j= Aj� andthen Min(�Pre(OCall (P ))) j= Q�.Further, for any interpretation J such that fPre;CallgPfJgspec,Min(�Pre(OCall (P ))) vJ . First, Min(�Pre(OCall(P ))) � J . In fact, if A 2 Min(�Pre(OCall (P )))then, by De�nitions ?? and ??, there exist p 2 P, X1; : : : ; Xn distinctvariables in V and a substitution � such that p(X1; : : : ; Xn) �7�!Call 2 andA0 2 Min(Pre) with �0 = mgu(p(X1; : : : ; Xn)�; A0) and A = A0�0. Therefore,by the hypothesis fPre;CallgPfJgspec, there exists A00 2 J such that A00 � A.Finally, if J � Min(�Pre(OCall (P ))) then Min(�Pre (OCall(P ))) � J . Thisfollows immediately by De�nition of operator Min . 2Observe that if Pre is the extended Herbrand base BE , then �Pre(OCall(P )) =OCall(P ) and then, sp(P;BE ;Call) =Min(OCall(P )).Lemma 6.1 Let P be a program and Pre, Call and Post be interpretations.Then, fPre;CallgPfPostgspec holds i� sp(P;Pre;Call) v Post.In order to de�ne the specialised �xpoint semantics, we introduce an im-mediate consequence operator TP;I on the set of interpretations I. Its least�xpoint can be shown to be equivalent to the specialised operational semanticsOI(P )De�nition 6.3 (TP;I Transformation) Let P be a program and I and J beinterpretations.TP;I(J) = fA 2 BE j 9H  B1; : : : ; Bn 2 P;9B01; : : : ; B0n variant of atoms in J and renamed apart,9� = mguI((B1; : : : ; Bn); (B01; : : : ; B0n));A 2MinI (H�)g:Note that if I is the extended Herbrand base BE , then TP;BE coincides withthe S-transformation TS de�ned in ?. 10



Proposition 6.2 (Monotonicity and Continuity of TP;I) Let P be a programand I be an interpretation. The transformation TP;I is monotonic and contin-uous in the complete lattice hI;� i.Proof 3 Analogous to monotonicity and continuity of TS in ?. 2De�nition 6.4 (Powers of TP;I) As usual, we de�ne powers of transformationTP;I as follows: TP;I " 0 = ;;TP;I " n+ 1 = TP;I(TP;I " n);TP;I " ! = Sn�0(TP;I " n):Proposition 6.3 TP;I " ! is the least �xpoint of TP;I in the complete latticehI;vi.Proof 4 By proposition ??, TP;I " ! is the least �xpoint of TP;I with respectto set inclusion. Moreover, for any �xpoint J of TP;I , TP;I " ! � J , i.e., byDe�nition of v, TP;I " ! v J . 2We are now ready to formally de�ne the specialised �xpoint semantics.De�nition 6.5 (Specialised Fixpoint Semantics) Let P be a program andCallbe an interpretation. The Call-�xpoint semantics of P is de�ned asFCall(P ) = TP;Call " !:7 Specialised ProgramsIn this section we show that any s.c.c. program P wrt a given pre/call/postspeci�cation Pre, Call and Post , i.e., such that fPre;CallgPfPostgspec, can betransformed into a specialised programPCall such that fPre;BEgPCallfPostgspecholds and PCall is call-correct wrt Call.Specialised programs are formally de�ned as follows.De�nition 7.1 (Specialised Program) Let P be a program and Call be aninterpretation. The Call-program corresponding to P , denoted by PCall , isde�ned as:PCall = f(H  B)
 j H  B 2 P and H
 2MinCall(H)g:Observe that a variant of a clause of PCall can be viewed as a clause of the form(H  B)
 where H  B is a variant of a clause of P and H
 2MinCall (H).Example 7.1 Consider the program SUBLIST and the interpretations Pre,Call and Post given in the Example ??. The program SUBLIST can be trans-formed into a specialised program SUBLISTCall as follows.11



sublist([ ]; Ys):sublist([a]; [ajYs]): �sublist([ ]; Ys):: : :sublist([a; e]; [ajYs]): �sublist([e]; Ys):: : :sublist([a]; [Y jYs]): �sublist([a]; Ys):: : :sublist([a; e]; [Y jYs]): �sublist([a; e]; Ys):: : :It is easy to see that the assertion fPre;BEg SUBLISTCall fPostgspec holds,meaning that for any query Q such that Pre j= Q and successful SLD-derivation� of SUBLISTCall [ fQg with computed answer substitution �, Post j= Q�.Moreover, for any selected atom instance A 2 Sel (�), Call j= A.Proposition 7.1 Let P be a program such that fPre;CallgPfPostgspec.Then, fPre;BEgPCallfPostgspec holds.Proof 5 Let Q be a query such that Pre j= Q and � := Q �7�!PCall ;BE 2 be asuccessful SLD-derivation of PCall [ fQg. We prove that Post j= Q�. In orderto obtain this result, we prove that there exists a successful Call-derivation�0 := Q� �7�!P;Call 2 of P [ fQ�g where Q�� = Q�. The fact that Post j= Q�follows from the hypothesis fPre;CallgPfPostgspec.By induction on len(�).Basis. Let len(�) = 1. In this case, Q consists of only one atom B and� := B �=)PCall ;BE 2where the input clause is a unit clause of the form (H  )
 such that H  isa variant of a clause of P , H
 2 MinCall (H) and � = mgu(B;H
). We canassume that H  is variable disjoint with B�. Let � be a substitution suchthat �jB� = � and �jH = 
�. By properties of substitutions and De�nition 3.2,� = mguCall(B�;H). Hence,�0 := B� �=)P;Call 2is a successful Call-derivation of B� such that B�� = B�.Induction step. Let len(�) > 1. In this case Q := A; B;C and� := A; B;C �1=)PCall ;BE (A;B
;C)�1 �27�!PCall ;BE 2where the �rst input clause has the form (H  B)
 such that H  B isa variant of a clause of P , H
 2 MinCall(H) and �1 = mgu(B;H
). Let12



� = �1�2. We can assume that H  B is variable disjoint with Q�. Let �1 be asubstitution such that �1jQ� = � and �1jH = 
�. By properties of substitutionsand De�nition 3.2, �1 = mguCall(B�;H). Hence, by the inductive hypothesisand De�nition 4.1, there exists a successful I-derivation�0 := (A; B;C)� �1=)P;Call (A;B;C)�1 �27�!P;Call 2where Q��1�2 = Q�. 2Proposition 7.2 Let P be a program such that fPre;CallgPfPostgspec.Then, P is call-correct wrt Call.Proof 6 Let � be an SLD-derivation of PCall [ fQg. We prove that for allA 2 Sel(�), Call j= A. Indeed, for all A 2 Sel (�) there exists and SLD-derivation step A; B;C �=)PCall ;BE (A;B;C)�of � where A = B�, B is the selected atom of the query A; B;C, (H  B)
 isthe input clause used in the SLD-derivation step, H  B is a variant of a clauseof P , H
 2MinCall(H) and � = mgu(B;H
). Hence, Call j= H
� = B� = A.2Both the operational and the �xpoint semantics of specialised programs areequivalent to the corresponding specialised semantics of the original programs,i.e., for any programP and interpretation I, bothOI(P ) = O(PI) andFI(P ) =F(PI) hold. Due to space limitation, the reader is referred to ? for a rigorousproof of Theorems stated below.Theorem 7.1 Let P be a program and Call be an interpretation. Then O(PCall ) =OCall(P ).Proof 7 Recall that O(PCall ) = OBE (PCall ). The result follows from thefollowing claim.Claim: There exists a successful SLD-derivation � := Q �7�!PCall ;BE 2 of aquery Q i� there exists a successful Call-derivation �0 := Q �07�!P;Call 2 whereQ� = Q�0. 2Theorem 7.2 Let P be a program and Call be an interpretation. Then F(PCall) =FCall(P ).Proof 8 Recall that F(PCall) = FBE (PCall). The result follows from thefollowing claim.Claim: For all n > 0, A 2 TPCall ;BE " n i� A 2 TP;Call " n. 2The equivalence of the specialised operational and �xpoint semantics followsimmediately. 13


