CALL-CORRECT SPECIALISATION OF LOGIC PROGRAMS

A. BOSSI

Dipartimento di Matematica e Informatica, via Torino 155,
80173 Venezia, Italy
E-mail: bossi@dsi.unive.it

S. ROSSI
Dipartimento di Matematica, via Belzoni 7,
85131 Padova, Italy
E-mail: sabina@math.unipd.it

In this paper we introduce the concept of specialisable call correct program. It
is based on the notion of specialised derivation which is intended to describe pro-
gram behaviour whenever some constraints on procedure calls are assumed. Both
operational and fixpoint constructions are defined. They characterize successful
derivations of programs where only atoms satisfying a given call-condition are se-
lected. We show that specialisable call correct programs can be transformed into
call-correct ones. A sufficient condition to verify specialisable call correctness is
stated.

1 Introduction

In this paper we introduce a novel notion of correctness for logic programs. It
characterizes correct programs wrt to a given pre/post specification »%%% "7
where the only request on the call patterns is that they can be instanziated
in order to satisfy a given call-condition. Programs satisfying such property
are called specialisable call correct (s.c.c., in short) and are proved to be spe-
cialisable into correct ones where all the call patterns do satisfy the given
call-condition. This allows us to reason on type correctness of logic programs
without the need of augmenting programs with type declarations (in the form
of Prolog procedure) as in 7. Abstract interpretation techniques can be used
to provide a finite description of the call-condition.

As an example of a useful call-specialisation, consider the following Prolog pro-
gram computing the frontier of a binary tree *:

front(void,[]).

front(tree(X, void, void), [X]).

front(tree (X, L, R), X;) < nel tree(tree(X, L, R)),
front(L, L;),
front(R, R;),
append(L;, R, X5).

1

nel tree(tree(, tree (-, ,), J)).
nel tree(tree(, _, tree (., _, .))).

where the relation nel-tree is used to enforce a tree to be neither the empty
tree nor a leaf tree(a, void, void). Observe that the simpler program obtained
by removing the atom nel tree(tree(X, L, R)) in the body of the third clause
and by discarding the relation nel tree is indeed incorrect (see 7).

Suppose that the domain of application consists of the set of trees whose left
subtrees are always leafs and consider the following pre/call/post specification:

Pre = {front (¢,]) |t is a term and [is a variable}U

{nel list ()|t is a term} U {append (u,v, z) | u, v, z are terms}
Call = {front (¢,[) | ¢ is either the empty tree or a leaf or a term

of the form tree(u,r, s) where r is a leaf and u, s and [are terms}U

{nel list ()|t is a term} U {append (u,v, z) | u, v, z are terms}
Post = {front (t,[) | [is the frontier of the binary tree ¢}U

{nel list ()|t is a term} U {append (u,v, z) | u, v, z are terms}.

The program is s.c.c. wrt the Pre, Call and Post. In fact, each derivation start-
ing with a query) satisfying the pre-condition Pre where all the call-patterns
can be instantiated to an atom satisfying the call-condition Ceall, produces a
computed instance (8 satisfying the post-condition Post. The program can
be specialised into a call-correct one as follows:

front (void, []).
front (tree (X, void, void), [X]).
front (tree (X, tree (L,void, void), R), X;) —
nel tree (tree (X, tree (L, void, void), R)),
front (tree (L, void, void), L;),
front (R, R;),
append (L;, Ry, X5).

augmented by definitions of the relations nel tree and append. Note that
by unfolding (see *) the atoms in the body of the third clause of the relation
front, one can further optimize the program as follows:

front (void, []).
front (tree (X, void, void), [X]).
front (tree (., tree (L,void, void), R),[L|R;]) — front (R, R;).

which does not use both the relations nel tree and append.

In this paper, we define a specialised semantics which captures the be-
haviour of call-correct derivations of a program P. This i1s obtained by gen-
eralizing the s-semantics approach »%7 in order to handle call-conditions. We
show that the specialised semantics can be computed both by a top-down and
a bottom-up construction.

Moreover, we provide a sufficient condition to prove that a program is s.c.c.
wrt to a given pre/call/post specification. It consists in one application of the
specialised immediate consequence to the post-condition. A simple program
specialisation which transforms s.c.c. programs into call-correct ones is also

defined?.

2 Preliminaries

The reader is assumed to be familiar with the terminology of and the basic
results in the semantics of logic programs”””.

Let £ be the first order language consisting of a finite set C of data conc-
tructors, a finite set P of predicate symbols, a denumerable set V of variable
symbols. Let T be the set of terms built on C and V. Variable-free terms
are called ground. A substitution is a mapping 6 : ¥V — 7 such that the set
D(0) = {X]| 0(X) # X} (domain of 0) is finite. If V' C V, we denote by 0y
the restriction of 0 to the variables in V', ie., 0|y (Y) =Y for Y & V. More-
over if F is any expression, we use the abbreviation 6|g to denote 0)vy,(g)-
¢ denotes the empty substitution. The composition 8o of the substitutions
¢ and o is defined as the functional composition, i.e., fo(X) = o(8(X)). A
renaming is a substitution p for which there exists the inverse p~! such that
pp~t = p~1tp = c. The pre-ordering < (more general than) on substitutions is
such that # < ¢ iff there exists 6’ such that 8¢’ = 0. We say that 6 and o are
not comparable if neither # < ¢ nor o < #. The result of the application of the
substitution # to a term ¢ is an instance of t denoted by t6. We define t <t (¢
is more general than ¢') iff there exists § such that {0 = ¢'. We say that ¢ and
t’" are not comparable if neither ¢ < ¢ nor t' <+t. The relation < is a preorder.
Let & be the associated equivalence relation (variance). A substitution @ is a
unifier of terms ¢ and ¢’ if t0 = t'6. We denote by mgu(ty,t2) any idempotent
most general unifier (mgu, in short) of t; and t5. All the above definitions can
be extended to other syntactic objects in the obvious way.

Atoms, queries, clauses and programs in the language £ are defined as
follows. An afom is an object of the form p(t1,...,t,) where p € P is an n-
ary predicate symbol and #1,...,t, € 7. A query is a (possibly empty) finite
sequence of atoms Ay, ..., A,,. The empty query is denoted by O. A clause 1s

2For an extended version of this paper the reader is referred to’.

3

a formula of the form H < B where H is an atom and B is a query. H 1s called
the head of the clause and B its body. When B is empty, H — B is written
H — and is called a unit clause. A program is a finite set of clauses. Atoms
are denoted by A, B,C, H,..., queries by ,A,B,C, ..., clauses by ¢,d, ...,
and programs by P. The language associated with a program P is obviously
defined.

The computation process within the logic programming framework is based
on the SLD resolution procedure. Consider a non empty query A, B, C and a
clause ¢. Let H — B be a variant of ¢ variable disjoint with A, B, C. Suppose
that B and H unify and let # be their mgu. We write then

A B,C=L,.(A B,C)

and call it SLD-deriwvation step of A, B, C and ¢ w.r.t. B, with an mgu 6.
H — B is called its input clause. B and B are called the selected atom and
the selected atom wnstance, respectively, of A, B, C. If the program P is clear
from the context or the clause ¢ is irrelevant we drop a reference to them.
An SLD-derivation is obtained by iterating SLD-derivation steps. A maximal
sequence

[[0nt
6= QO :1>P,cl Ql :2>P,02 c Qn :>1P,cn+1 Qn+1 co

of SLD-derivation steps is called an SLD-derivation of PU{Qo}if Qo,..., Qnt1,--.

are queries, f1,...,0,41,...are substitutions, ¢1,...,¢p41, ... are clauses of P,
and for every step the input clauses are standardized apart.

The length of an SLD-derivarion 8, denoted by len(8), is the number of
SLD-derivarion steps in 6. We denote by Sel(é) the set of all the selected atom
instances, one for each derivation step, of §. SLD-derivations can be finite or
infinite. Consider a finite SLD-derivation é := Qg %Rcl Q- %ch @n
of a query @ := o, also denoted by 6 := Qg LN Q. with 8 = 6, ---6,,. If
(), = O then 6 1s called successful. The restriction of @ to the variables of (),
denoted by 0)¢ is called a computed answer substitution (c.a.s., in short) of
Q) and Q0 is called a computed instance of Q). If Q),, 1s non-empty and there
is no input clause whose head unifies with the selected atom of @),,, then the
SLD-derivation § is called failed.

3 Interpretations

By the extended Herbrand base B% for a language £ we mean the quotient set
of all the atoms of £ with respect to . The ordering induced by < on Bi
will still be denoted by <. For the sake of simplicity, we will represent the

4

equivalence class of an atom A by A itself. An interpretation I is any subset of
B%. When the language is clear from the context then we drop a reference to
it. We denote by inst(I) the set of all instances of atoms in I and by ground(I)
the set of all ground instances of atoms in I. Moreover, we denote by Min(I)
the set of minimal elements of I defined as*: Min(I) = {A € I | VA’ €
Tif A7 < A then A= A’}

Example 3.1 Let I be the set {sublist(u,v) | u is a list of at most two vowels and v is any
term}. Then

Min(I) = {sublist([],Y;), sublist([a],Y3),...,sublist([a, €], Ys), ..., sublist([o, u],Y;)}
where Y, 1s a variable.

The notion of truth extends the classical one to account for non-ground for-
mulas in the interpretations. So, if A is an atom then I = A iff A € inst(I);
whereas, if @) is a query of the form Ay, ..., A, then I = Q iff A; € inst(I) for
all i € {1,... n}. Note that I = A iff there exists A’ € I such that A’ < A4;
moreover, if I |= A then for all A’ such that A <A’ T | A"

Definition 3.1 (Minimal Instances of an Atom Satisfying I) Let I be an
interpretation and A be an atom. The set of minimal instances of A satisfying
I is the set

Ming(A) = Min({A" € inst(A) | T £ A'}).

Example 3.2 Consider the interpretation I of the Example 3.1. Then
Min(sublist([X]|X;],Y;)) = {sublist([a],Y;), ..., sublist([a,e],Y;),...,sublist([o, u], ¥s)}.

Observe that although 7 is infinite, both Min(I) and Miny(sublist([X|X;],Ys))
are finite.

The following notion of specialised unifier is the basic concept upon which
specialised derivations are defined.

Definition 3.2 (Specialised Unifiers) Let I be an interpretation and ¢; and #5
be terms. A substitution 8 is a T-unifier of {1 and {5 if {10 = 126 and I = 1416.
A most general I-unifier (mguy, in short) of 1 and ¢5, denoted by

mgur(ti,ta),

is any idempotent [-unifier 6 such that for any other I-unifier 6, either 8 < ¢
or f and ¢ are not comparable.

Example 3.3 Consider again the interpretation [of the Example 3.1. Then
mgu(sublist([a, X],Y;), sublist(Z,,Y;))

5

denotes both substitutions
6, ={X/e, Zs/la,e]}, 02 = {X/i,Z/]a,i]}, 03 = {X/o,Zs/[a, 0]}, 04 = {X/u, Zs/[a,u]}.

Note that the substitutions 84, ..., 84 are pairwise not comparable.
For the sake of simplicity, we will write = mgu;(t1,t2) even if mgu;(t1,t2) is
not uniquely determined.

It is well known that set inclusion does not adequately reflect the property
of non-ground atoms of being representatives of all their ground instances. So,
in this paper we refer to the partial ordering C on interpretations defined by
Falaschi et al. * as follows:

o 1 <1y iff VA, € Il,HAz € I such that A, < Ay
* Il E Iz iff (Il S Iz) and (Iz S Il implies Il g Iz)

Intuitively, I; < I, means that every atom verified by Iy is also verified by I
(I contains more positive information). Note that < has different meanings
for atoms and interpretations. I; C I means either that Is strictly contains
more positive information than I or (if the amount of positive information is
the same) that I expresses it by fewer elements than I5 (12 is more redundant).
The relation < is a preorder, whereas the relation C is an ordering. If I; C I,
then I; C I». Tt is easy to see that for every interpretation I, I < Min(I), but
also Min(I) C I. Moreover, for every atom A, Miny(A) C Min(I).

The set of all the interpretations Z with the ordering C is a complete
lattice, noted by (Z,C), where B¢ is the top element and @ is the bottom
element.

4 Specialised Derivations

We are now ready to introduce our specialised derivations. They differ from the
standard SLD-derivations for the fact that at each derivation step specialised
most general unifiers are computed instead of standard mgus.

Definition 4.1 Assume given a program P and an interpretation 7. Let
A B, C be a non empty query, ¢ be a clause, H < B be a variant of ¢ variable
disjoint with A, B, C. Suppose that B and H unify and 6 = mgu (B, H). We
write then

A B,C=%p.;(A,B,C)

and call it I-derivation step of A, B, C and ¢ w.r.t. B, with an mgu 6. H — B
is called its I-input clause. B and B are called the I-selected atom and the

6

I-selected atom instance, respectively, of A, B, C. An I-derivation of PU{Qo}
1s a maximal sequence

[[Ot
6= QO :1>P,01,I Ql :2>P,02,I Qn :>1P,cn+1,1 Qn-l—l c

of I-derivation steps where the I-input clauses are standardized apart. Con-
sider a finite I-derivation § := @y %pychj Q1 é>pycn’1 @y of a query
Q := Qo, also denoted by 6 := Qo biq Q, with 6 =0,---0,. If Q, = 0O
then 6 is called successful. The restriction of # to the variables of @) is called
a I-computed answer substitution (I-c.a.s. in short) of @ and Q@ is called a
I-computed instance of Q). If), 1s non-empty and there is no I-input clause
H — B such that H unifies with the I-selected atom B of (),, with a substi-
tution # = mgu, (B, H), then é is called failed.

Note that for every I-derivation &, Sel(8) < I, or equivalently, I = A for all
A € Sel(8).

Whenever [is omitted, we implicitly assume that I = B¢. It is easy to see

that if I is the extended Herbrand base B¢, then I-derivations are indeed
SLD-derivations.

Example 4.1 Consider the interpretation I of Example 3.1 and the program
SUBLIST:

sublist([],Y5).

sublist([X|X;], [X]|Y;]) : —sublist(X,,Y;).

sublist(X,,[V]|Y;]) : —sublist(X,,Ys).

It produces two I-c.a.s. for the query sublist([a, X],[a,e, a,b, a,u]) that are
61 = {Xs/[a,e]} and 65 = {X/[a,u]}, whereas any I-derivation of the query
sublist([a,b], [a, e, a, b, a, u]) fails.

A Lifting Lemma for specialised derivations holds.

Lemma 4.1 (Specialised Lifting Lemma) Let I be an interpretation and § :=
Q0 1 O be a successful I-derivation of a query Q0. Then, there exisls a

successful I-derivation & := Q ——1 O where o’ < lo.

Proof 1 By induction on len(§).
Basis. Let len(§) = 1. In this case @ consists of only one atom B and

(SZIBH:U>ID

where the I-input clause used in the I-derivation step is a unit clause H «—
and o = mguy(B0, H). We can assume that 6|5 = ¢. Then, 6o is a I-unifier

7

of B and H. Hence, there exists 6/ = mgu (B, H) such that ¢/ < fo.
Induction step. Let len(é) > 1. Then @ := A, B, C and

§:=(A,B,C) = (A, B, C)loy 27 O

where B is the [-selected atom of @), ¢ := H «— B is the first I-input clause,
o1 = mgur(BO,H) and ¢ = 0103. We can assume that |, = ¢. Then, fo;
is a [-unifier of B and H. Hence, there exists ¢f = mgu;(B, H) such that
o) < fo. Let v be a substitution such that o}y = fo;. By the inductive
hypothesis, there exists a successful I-derivation

(A,B,C)o, ~2; O

where of, < yoa. Therefore,

i

8 :=(A,B,C) =%/ (A,B,C)o} 2, O

with ¢/ = ¢}) is a successful I-derivation such that ¢/ < o|yoy = o105 = bo.
O

5 Pre/Call/Post Specifications

In this section we propose a characterization of program behaviour in terms
of pre/call/post specifications based on the notion of specialised derivarion

defined above.

Definition 5.1 Let P be a program and Pre, Calland Post be interpretations.
We say that P is specialisable call correct (s.c.c., in short) wrt the pre-condition
Pre, the call-condition Call and the post-condition Post, denoted by

{Pre, Call} P{Post} spec,

if and only if for any query @,
Pre = @ and @ pry cant O implies Post = Q6.
Example 5.1 Consider the program SUBLIST and the interpretations

Pre = {sublist(u,v) | u is a variable and v is a ground list}
Call = {sublist(u,v) | u is a list of at most two vowels and v is a term}
Post = {sublist(u,v) | u is a sublist of at most two vowels of the list v}

The program SUBLIST is s.c.c. wrt Pre, Clall and Post.
We define the strongest post-condition of P wrt Pre and Call as below.

8

Definition 5.2 (Strongest Post-condition) Let P be a program. The strongest
post-condition of P with respect to a pre-condition Pre and a call-condition
Call, noted sp(P, Pre, Call), is the smallest interpretation Post wrt to C such
that { Pre, Call} P{Post}peo.

Definition 5.3 Let P be a program and Call be an interpretation. We say
that P is call-correct wrt Calliff for any SLD-derivation 8, Sel(8) < Call; i.e.,
6 18 a Clall-derivation.

6 Specialised Operational and Fixpoint Semantics

Based on the s-semantics approach’, we define both a top-down and a bottom-
up construction which model the specialised computed answer substitutions of
the specialised derivations.

Definition 6.1 (Specialised Operational Semantics) Let P be a program and
Call be an interpretation. The Call-computed answer substitution semantics

of P is

Ocan(P)={A€ B¢ |Ip€P,3Xy,..., X, distinct variables in V, 36,

9
p(X1,..., Xn) —p,can O,
A=p(X1,. . X6},

Note that if Call is the extended Herbrand base B¢, then Qe (P) is the original
s-semantics defined by Falaschi et al. in”.

Example 6.1 Consider the program SUBLIST and the interpretation Call of
Example ?77.

O cqu(SUBLIST) = {sublist([],[X1,...,Xy]), n >0} U
{sublist([a], [X1,..., Xn, & Xnt1,.- s Xntm]), n,m >0} U

{sublist([a,e],[X1,..., Xn,a,6, Xnt1,---s Xntm]), ,m >0} U...

We define a projection operator on the set of interpretations Z. It allows us
to characterize the strongest post-condition of a program P with respect to a
pre-condition Pre and a call-condition Call.

Definition 6.2 (II;) Let I and J be interpretations. The projection of .J on
the interpretation I is:

U(J) = {A € B | 3A € Min(I),3A" € J

30 = mgu(A’, A”)
A= A6}

9

Proposition 6.1 Let P be a program and Pre and Call be interpretations.
Then Min(pre (O cau(P))) = sp(P, Pre, Call).
Proof 2 We prove that {Pre, Call} P{Post}pe. holds, i.e., for any query @

such that Pre | @ and @ bLCGH O, then Min(Mpre(Ocan(P))) E QO. Let
Q = Ay,..., A,. Tt is easy to prove that for all j € {1,...,n}, there ex-
ists a successful Callderivation A;0 blc(l” O where A;0y; = A;0. For all
Je{l,...,n}, let p; € P and X4,..., X, be distinct variables in V such that
pi(X1,...,X,) < A;0. By Lemma 4.1, for all j € {1,...,n}, there exists a

successful Call-derivation p;(X1,...,X,) bicd” O where p; (X1,..., X,)0; <

A;0. By Definition 77, p;(X1,...,Xn)0; € Ocau(P). Moreover, since Pre |

Ay, there exists A; € Min(Pre)such that A} < A;0. Let 0; = mgu(p;(Xi,..., Xn)0;, A}).
By properties of substitutions, 4707 < A;0 and by Definition 7?7, A0 €
Opre(Ocau(P)). This proves that for all j, Min(Ilpy.(Ocan(P))) E A;0 and

then Min(Hpre(Ocall(P))) ': QG

Further, for any interpretation J such that { Pre, Call} P{J }spec, Min(Il pre(Ocan(P))) C
J. First, Min(Hpre(Ocall(P))) < J. In fact, if A € Min(Hpre(Ocall(P)))
then, by Definitions 77 and 7?7, there exist p € P, Xy,..., X, distinct
variables in V' and a substitution @ such that p(Xi,..., X,) bLCGH O and
A" € Min(Pre) with ¢ = mgu(p(X1,...,Xp)0,A’) and A = A'¢’. Therefore,
by the hypothesis { Pre, Call} P{J }pcc, there exists A” € J such that A" < A.
Finally, if J S Min(Hpre(Ocall(P))) then Min(Hpre(Ocall(P))) g J. This
follows immediately by Definition of operator Min. O
Observe that if Pre is the extended Herbrand base B¢, then I p,. (O cau(P)) =
O can(P) and then, sp(P,BE, Call) = Min(Ocau(P)).

Lemma 6.1 Let P be a program and Pre, Call and Post be interpretations.
Then, {Pre, Call} P{Post}pe. holds iff sp(P, Pre, Call) C Post.

In order to define the specialised fixpoint semantics, we introduce an im-
mediate consequence operator Tp; on the set of interpretations 7. Its least
fixpoint can be shown to be equivalent to the specialised operational semantics
Or(P)

Definition 6.3 (Tp; Transformation) Let P be a program and I and J be
interpretations.

TPVI(J)I{AEBE | dH «— By,...,B, € P,
B4, ..., B, variant of atoms in J and renamed apart,
30 = mgu;((B1,...,Bn),(By,...,B.)),
A€ Ming(HO)}.

Note that if I is the extended Herbrand base B¢, then Tp pe coincides with
the S-transformation T defined in”.

10

Proposition 6.2 (Monotonicity and Continuity of Tp ;) Let P be a program
and I be an interpretation. The transformation Tp 1 s monotonic and contin-
wous in the complete lattice (Z,C).

Proof 3 Analogous to monotonicity and continuity of 7 in”. O

Definition 6.4 (Powers of Tp 1) As usual, we define powers of transformation
Tp 1 as follows:

TP,I T 0 = wa
TprIn+1=Tpi(Tpr | n),
Tprlw =U,»oTps 1 n).
Proposition 6.3 Tp; | w is the least fizpoint of Tp 1 in the complete lattice

(z,0).

Proof 4 By proposition 77, Tp 1 | w is the least fixpoint of Tp ; with respect
to set inclusion. Moreover, for any fixpoint J of Tpr, Tpr Tw C J, i.e., by
Definition of C, Tpr Tw C J. O

We are now ready to formally define the specialised fixpoint semantics.
Definition 6.5 (Specialised Fixpoint Semantics) Let P be a program and Call
be an interpretation. The Call-fizpoint semantics of P is defined as

Fean(P) =Tp can | w.

7 Specialised Programs

In this section we show that any s.c.c. program P wrt a given pre/call/post
specification Pre, Call and Post, i.e., such that { Pre, Call} P{Post},e., can be
transformed into a specialised program Pep such that { Pre, BE}PCGH{Post}Spec
holds and Pgypp is call-correct wrt Call.

Specialised programs are formally defined as follows.

Definition 7.1 (Specialised Program) Let P be a program and Call be an
interpretation. The Call-program corresponding to P, denoted by Pcgn, 18
defined as:

Peoan = {(H — B)’y | H—BePand Hy € Mincall(H)}.

Observe that a variant of a clause of Pcyj; can be viewed as a clause of the form
(H < B)y where H — B is a variant of a clause of P and Hy € Mincq(H).

Example 7.1 Consider the program SUBLIST and the interpretations Pre,
Call and Post given in the Example 77. The program SUBLIST can be trans-
formed into a specialised program SUBLIST ¢y as follows.

11

sublist([],Y5).
sublist([a], [a|Ys]): —sublist([],Y;).

sublist([a,], [a]Yy]): —sublist([e], Yy).
sublist([a], [Y]V,]): —sublist([a],Y,).

sublist([a, €], [V|Vi]): —sublist([a, €],)).

It is easy to see that the assertion {Pre, B¢} SUBLISTcun {Post}pec holds,
meaning that for any query @ such that Pre = @ and successful SLD-derivation
8 of SUBLIST¢u U {Q} with computed answer substitution 6, Post = Q6.
Moreover, for any selected atom instance A € Sel(8), Call = A.
Proposition 7.1 Let P be a program such that {Pre, Call} P{Post}pe..
Then, {Pre,Bg}PCGH{Post}spec holds.

Proof 5 Let) be a query such that Pre = @ and é := @ 'LPCallng O be a
successful SLD-derivation of PegyrU{Q}. We prove that Post = (0. In order
to obtain this result, we prove that there exists a successful Call-derivation
& = Q0 pr cant O of PU{Q0} where Q0o = Q6. The fact that Post |= Q8
follows from the hypothesis {Pre, Call} P{Post}pe..

By induction on len(§).

Basis. Let len(§) = 1. In this case, @ consists of only one atom B and

[
(S — B :>PCGHVB£ (]

where the input clause is a unit clause of the form (H <)y such that H — is
a variant of a clause of P, Hy € Mincqou(H) and 6 = mgu(B, Hy). We can
assume that H « is variable disjoint with Bf. Let o be a substitution such
that ojpg = ¢ and o7 = 0. By properties of substitutions and Definition 3.2,
0 = myu con(BO,). Hence,

8 = BO == p can O

1s a successful Call-derivation of B8 such that Bfoc = B6.
Induction step. Let len($) > 1. In this case @ := A, B, C and

8, b2
6= Aa Ba C :>Pc’allvBg (Aa pr’ C)gl '—>PC(1HVB£ 0

where the first input clause has the form (H — B)y such that # — B is
a variant of a clause of P, Hy € Mincou(H) and 61 = mgu(B, Hy). Let

12

6 = 0,05. We can assume that H «— B is variable disjoint with (8. Let oy be a
substitution such that oyjgs = ¢ and oq);7 = y0. By properties of substitutions
and Definition 3.2, 01 = mgu o (Bf, H). Hence, by the inductive hypothesis
and Definition 4.1, there exists a successful [-derivation

8 = (A,B,C)0 =p cann (A, B,C)oy v Zop can O

where Qo105 = Q0. O
Proposition 7.2 Let P be a program such that { Pre, Call} P{Post}pe..
Then, P s call-correct wrt Call.
Proof 6 Let § be an SLD-derivation of Peg U {Q}. We prove that for all
A € Sel(8), Call = A. Indeed, for all A € Sel(8) there exists and SLD-
derivation step

A,B,C=Lp, 5 (A,B,C)

of § where A = Bf, B is the selected atom of the query A, B,C, (H — B)y is
the input clause used in the SLD-derivation step, H «— B is a variant of a clause
of P, Hy € Mincqu(H) and 8 = mgu(B, Hy). Hence, Call = Hy0 = Bl = A.
O

Both the operational and the fixpoint semantics of specialised programs are
equivalent to the corresponding specialised semantics of the original programs,
i.e., for any program P and interpretation I, both Or(P) = O(Pr) and F;(P) =
F(Pr) hold. Due to space limitation, the reader is referred to” for a rigorous
proof of Theorems stated below.

Theorem 7.1 Let P be a program and Call be an interpretation. Then O(Peoan) =
Ocau(P).

Proof 7 Recall that O(Pcai) = Ope(Pcoani). The result follows from the
following claim.

Claim: There exists a successful SLD-derivation § := @ prca”ﬁg O of a

query @ iff there exists a successful Call-derivation 6’ :=) »€—I>p7 can O where

Qo6 =Q0¢. O

Theorem 7.2 Let P be a program and Call be an interpretation. Then F(Peoan) =
Fean(P).

Proof 8 Recall that F(Pcaii) = Fpe(Pean). The result follows from the
following claim.

Claim: For alln >0, A € Tpe B8 Tniff A€Tp con T n. O

The equivalence of the specialised operational and fixpoint semantics follows
immediately.

13

