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a, Universit�a Ca' Fos
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e,piazza,srossig�dsi.unive.itAbstra
t. Information 
ow se
urity in a multilevel system aims at gua-ranteeing that no high level information is revealed to low level users,even in the presen
e of any possible mali
ious pro
ess. Persistent BNDC(P BNDC, for short) is an information-
ow se
urity property whi
h issuitable to deal with pro
esses in dynami
 
ontexts. In this work weshow that P BNDC is 
ompositional with respe
t to the repli
ation ope-rator. Then, by exploiting the 
ompositionality properties of the 
lassof P BNDC pro
esses, we de�ne a proof system whi
h provides a veryeÆ
ient te
hnique for the stepwise development and the veri�
ation ofre
ursively de�ned P BNDC pro
esses.1 Introdu
tionThe design of large and 
omplex systems that satisfy a given property stronglydepends on the ability of dividing the task of the system into subtasks that aresolved by system 
omponents. It is the 
lassi
al divide-and-
onquer approa
h,at the basis of any systemati
 development of 
omplex systems. When se
urityis the property of interest, diÆ
ulties 
an be en
ountered in applying this ap-proa
h sin
e se
ure systems might not be 
omposed by se
ure 
omponents only.Nevertheless it is essential to know how properties of the 
omponents behaveunder 
omposition. General theories of 
ompositionality exist for properties likesafety and liveness [25, 1℄ and 
ompositionality results for information-
ow based
on�dentiality properties have also been developed [18, 26, 15℄.The problem of prote
ting 
on�dential data in a multilevel system is oneof the relevant issues in 
omputer se
urity. Information 
ow se
urity assures
on�dentiality sin
e it guarantees that no high level (
on�dential) informationis revealed to users running at low levels [12, 17, 9, 22℄, even in the presen
eof any possible mali
ious pro
ess. To establish that information does not 
owfrom high to low it is suÆ
ient to establish that high behavior has no e�e
ton what low level users 
an observe, i.e., the low level view of the system isindependent of high behavior. This notion of information 
ow se
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as Non-Interferen
e, has been introdu
ed in [13℄, and subsequently developed bymany authors in many di�erent settings [9, 10, 21, 23, 14℄.In this paper we 
onsider the se
urity property Persistent BNDC (P BNDC,for short), proposed in [11℄, and further studied in [4℄. P BNDC is a se
urityproperty based on Non-Interferen
e suitable to analyze pro
esses in 
ompletelydynami
 hostile environments. In [11℄ it is proved that the P BNDC property isequivalent to an already proposed se
urity property 
alled SBSNNI and studiedin [9℄. From the analysis presented in [9℄ two important problems emerge: howto verify the P BNDC property and how to 
onstru
t P BNDC pro
esses. The�rst problem has been 
onsidered in [11℄ and it has been shown to be de
idable.The se
ond problem has been analyzed in [4℄ where we exploit the 
omposi-tionality properties of P BNDC pro
esses to de�ne a proof system whi
h allowsus to stati
ally prove that a pro
ess is P BNDC by just inspe
ting its syntax.The proof system 
onsists of two layers, a kernel whi
h deals only with non-re
ursive pro
esses and a se
ond layer where a rather 
omplex rule, involvingmany expensive 
he
ks, handles re
ursive pro
esses. The system is 
orre
t butnot 
omplete, for instan
e it does not deal with re
ursive pro
esses involving theparallel operator. The in
ompleteness and the 
omplexity of the system is dueto the la
k of a 
ompositionality result for 
onstant de�nitions, whi
h is the onlyway re
ursion is expressed in the SPA language, a variant of Milner's CCS [19℄.In this paper we 
onsider another form of re
ursion expressed using the repli-
ation operator (!) instead of 
onstant de�nitions. The two approa
hes have thesame expressive power in �-
al
ulus [20, 24℄, but as re
ently proved in [7℄, repli-
ation 
annot supplant re
ursion in CCS. In this paper we show that the 
lassof P BNDC pro
esses is 
ompositional with respe
t to the repli
ation operator.This allows us to extend the kernel Core of the proof system in [4℄ with a newinferen
e rule for the repli
ation, thus allowing us to deal also with re
ursivepro
esses involving the parallel operator. Moreover, we prove a partial 
omposi-tionality of P BNDC with respe
t to 
onstant de�nitions, i.e., we identify a 
lassof 
onstant de�nitions whi
h 
an be safely added to our language and treatedby the extended proof system.The paper is organized as follows. In Se
tion 2 we introdu
e the language,and re
all the de�nition of P BNDC pro
ess and its properties. In Se
tion 3 weprove that P BNDC is 
ompositional with respe
t to the repli
ation operator,and then present a proof system whi
h, by exploiting the new 
ompositionalityresult, extends the kernel presented in [4℄ by adding re
ursion through repli
ationin a very simple way. In Se
tion 4 we (re)-introdu
e 
onstant de�nitions. Finally,in Se
tion 5 we draw some 
on
lusions. All the proofs 
an be found in [5℄.2 Basi
 Notions2.1 The LanguageIn this se
tion we report the syntax and semanti
s of the pro
ess algebra we
onsider. It is a variation of Milner's CCS [19℄, similar to SPA [9℄, where the2



set of visible a
tions is partitioned into high level a
tions and low level ones inorder to spe
ify multilevel systems. Di�erently from [19℄, we use the repli
ation(!) operator instead of the 
onstant de�nitions. Intuitively, the pro
ess !E (bangE) means EjEj : : :, i.e., the parallel 
omposition of as many 
opy as needed ofthe pro
ess E. In Se
tion 4 we will reintrodu
e 
onstant de�nitions.The syntax of our pro
ess algebra is based on the same elements as CCS thatis: a set L of visible a
tions su
h that L = I [ O where I = fa; b; : : :g is a setof input a
tions and O = f�a;�b; : : :g is a set of output a
tions; a spe
ial a
tion� whi
h models internal 
omputations, i.e., not visible outside the system; a
omplementarily fun
tion�� : L ! L, su
h that ��a = a, for all a 2 L; A
t = L[f�gis the set of all a
tions. The set of visible a
tions is partitioned into two sets, Hand L, of high and low a
tions su
h that H = H and L = L. A pro
ess E is aterm built using the following produ
tions:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j!Ewhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(L) � L [ f�g, f(H) �H [ f�g, f(��) = f(�) and f(�) = � .Given a �xed set L we denote by E ! the set of all pro
esses, by E !H the set ofall high level pro
esses, i.e., those 
onstru
ted over H [ f�g, and by E !L the setof all low level pro
esses, i.e., those 
onstru
ted over L [ f�g.The operational semanti
s of pro
esses is given in terms of a Labelled Tran-sition System (LTS). In parti
ular, the operational semanti
s of our languageis the LTS (E !;A
t ;!), where the states are the terms of the algebra and thetransition relation !� E ! � A
t � E ! is de�ned by stru
tural indu
tion as theleast relation generated by the inferen
e rules reported in Figure 1.In the paper we use the following notations. If t = a1 � � � an 2 A
t� andE a1! � � � an! E0, then we say that E0 is rea
hable from E and write E t! E0, orsimply E  E0. We also write E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0where ( �!)� denotes a (possibly empty) sequen
e of � labelled transitions. Ift 2 A
t�, then t̂ 2 L� is the sequen
e gained by deleting all o

urren
es of �from t. As a 
onsequen
e, E â=) E0 stands for E a=) E0 if a 2 L, and forE( �!)�E0 if a = � (note that �=) requires at least one � labelled transition while�̂=) means zero or more � labelled transitions). Given two pro
esses E;F wewrite E � F when E and F are synta
ti
ally equal.The 
on
ept of observation equivalen
e between two pro
esses is based onthe idea that two systems have the same semanti
s if and only if they 
annot bedistinguished by an external observer. This is obtained by de�ning an equiva-len
e relation over E !. We report the de�nitions of weak bisimulation and strongbisimulation [19℄. Intuitively, weak bisimulation equates two pro
esses if theymutually simulate their behavior step by step, but it does not 
are about inter-nal � a
tions. So, when P simulates an a
tion of Q, it 
an also exe
ute some �a
tions before or after that a
tion.De�nition 1 (Weak Bisimulation). A symmetri
 binary relation R � E !�E !over pro
esses is a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 !̀ E01 E2 �̀! E02Parallel ` 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restri
tion if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0 E !̀ E0 E �̀! E00Repli
ation ` 2 L!E a! E0j!E !E �! E0jE00j!EFig. 1. The operational rules� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R;Two pro
esses E;F 2 E ! are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R 
ontaining the pair (E;F ).The relation � is the largest weak bisimulation and is an equivalen
e rela-tion [19℄.Strong bisimulation is stronger than weak bisimulation, sin
e it 
onsider the� a
tions as all the other a
tions.De�nition 2 (Strong Bisimulation). A symmetri
 binary relation R � E !�E ! over pro
esses is a strong bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F a! F 0 and (E0; F 0) 2 R;Two pro
esses E;F 2 E ! are strong bisimilar, denoted by E � F , if there existsa strong bisimulation R 
ontaining the pair (E;F ).The relation � is the largest weak bisimulation and is an equivalen
e rela-tion [19℄. Moreover, two strongly bisimilar pro
esses are also weakly bisimilar.2.2 The P BNDC Se
urity PropertyIn this se
tion we re
all the Persistent Bisimulation-based Non Dedu
ibility onCompositions (P BNDC, for short) se
urity property (see [11℄). We start by4



introdu
ing an equivalen
e relation on low a
tions that is a sort of weak bisim-ulation whi
h 
onsiders only the low a
tions. Hen
e, when two pro
esses areweakly bisimilar on low a
tions they 
annot be distinguished by a low level user.De�nition 3 (Weak Bisimulation on Low A
tions). A symmetri
 binaryrelation R � E ! � E ! over pro
esses is a weak bisimulation on low a
tions, if(E;F ) 2 R implies, for all a 2 L [ f�g,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R.Two pro
esses E;F 2 E ! are weakly bisimilar on low a
tions, denoted by E �l F ,if there exists a weak bisimulation on low a
tions R 
ontaining the pair (E;F ).The relation �l is the largest weak bisimulation on low a
tions and it is anequivalen
e relation [5℄. Moreover, it holds E �l F if and only if E nH � F nH .Using weak bisimulation on low a
tions we re
all the notion of Bisimulation-based Non Dedu
ibility on Compositions (BNDC, for short) [9℄ whi
h is at thebasis of P BNDC. The BNDC se
urity property aims at guaranteeing that noinformation 
ow from the high to the low level is possible, even in the presen
eof an atta
ker. A system E is BNDC if for every high pro
ess � a low user
annot distinguish E from (Ej�), i.e., if � 
annot interfere [13℄ with the lowlevel exe
ution of E.De�nition 4 (BNDC). Let E 2 E !. E 2 BNDC i� 8 � 2 E !H ; E �l (Ej�).In [11℄ it is shown that BNDC is not strong enough for systems in dynami
environments. To deal with these situations, the property P BNDC is intro-du
ed. Intuitively, a system E is P BNDC if it never rea
hes inse
ure states.De�nition 5 (P BNDC). Let E 2 E !. E 2 P BNDC i� E  E0 implies E0 2BNDC.Although the de
idability of BNDC is still an open problem, P BNDC isde
idable (in polynomial time) as shown in [11℄. In [4℄ another de
idable 
har-a
terization of P BNDC pro
esses has been proposed. It allows us to expressP BNDC in terms of a lo
al property of high level a
tions and it re
alls theunwinding 
onditions proposed in other settings. Also if we are using a variationof the SPA, with repli
ations instead of 
onstant de�nitions, the 
hara
terizationpresented in [4℄ holds.Theorem 1 (Unwinding). Let E 2 E !. E 2 P BNDC i� if E  Ei h! Ej ,then Ei �̂=) Ek and Ej �l Ek.The following lemma rephrases the 
orresponding lemma in [4℄ and it provesthat the 
lass of P BNDC pro
esses enjoys the following 
ompositionality prop-erties.Lemma 1. The 
lass of P BNDC pro
esses 
ontains all the pro
esses in E !L[E !Hand is 
losed with respe
t to restri
tion, renaming, and parallel 
omposition.Moreover, if Ei; Fj 2 P BNDC, ai 2 L and hj 2 H, i 2 I and j 2 J , thenPi2I ai:Ei +Pj2J (hj :Fj + �:Fj) 2 P BNDC.5



3 P BNDC and Repli
ationsIn this se
tion we �rst extend the 
ompositionality result of Lemma 1 by provingthat P BNDC is 
losed also with respe
t to the repli
ation operator. Then wepresent a proof system for P BNDC pro
esses.3.1 Compositionality of P BNDC wrt !We start by observing that the pro
esses rea
hable from !E have the form of aparallel 
omposition of a �nite number of pro
esses rea
hable from E and !E.Lemma 2. Let E 2 E ! be a pro
ess. If !E  E0, then there exist n � 0 andE1; : : : ; En su
h that E  Ei, for i = 1; : : : ; n and E0 � E1jE2j : : : jEnj!E:Hen
e the set fE1; : : : ; Eng of pro
esses rea
hable from E 
hara
terizes thepro
ess E1jE2j : : : jEnj!E rea
hable from !E.There is an interesting 
onne
tion between the pro
esses rea
hable from Eand the pro
esses rea
hable from !E when E is P BNDC : if the sets fF1; : : : ; Fngand fG1; : : : ; Gng of pro
esses rea
hable from E are pairwise weakly bisimilaron low a
tions, i.e., Fi �l Gi, this relation is preserved also on the pro
essesrea
hable from !E that they 
hara
terize.Lemma 3. Let E be a P BNDC pro
ess and 8i 2 f1; ::; ng Fi; Gi be rea
hablefrom E. If 8i 2 f1; ::; ng Fi �l Gi then F1jF2 : : : jFnj!E �l G1jG2 : : : jGnj!E:The two previous lemmas, together with the unwinding 
ondition (see The-orem 1), allow us to prove that P BNDC is 
ompositional with respe
t to therepli
ation operator.Theorem 2. Let E 2 E ! be a pro
ess. If E 2 P BNDC, then !E 2 P BNDC.3.2 A Proof System for Pro
esses with Repli
ationsIn [4℄ it has been presented a proof system whi
h allows us to build P BNDCpro
esses in an in
remental way. The proof system is 
omposed by a set of ruleswhose 
on
lusions are in the form E 2 HP [A℄, where A is a set of 
onstants.The intended meaning of the judgment is that E is a P BNDC pro
ess providedthat all the 
onstants in A are P BNDC . The set A plays the role of a set ofassumptions: if it is empty then E is P BNDC otherwise we are still workingon our 
onstru
tion under open hypothesis. It is immediate to observe that thesystem des
ribed in [4℄ is 
orre
t also using set of pro
esses, instead of set of
onstants, as assumptions. Hen
e, in this se
tion the meaning of E 2 HP[A℄ isthat E is a P BNDC pro
ess provided that all the pro
esses in A are P BNDC .We show how to exploit Lemma 1 and Theorem 2 in order to extend the systemto the 
ase of pro
esses with repli
ation. In parti
ular, let us 
onsider the proofsystem System ! whose rules are shown in Figure 21.1 We use E[F=G℄ to denote the pro
ess we obtain by repla
ing all the o

urren
es of Gin E with F , where G denotes a pro
ess whose o

urren
es in E 
an be synta
ti
allyand unambiguously identi�ed. 6



E 2 HP [fEg℄ E is a pro
ess (Pro
)E 2 HP [;℄ E 2 E !L (Low) E 2 HP [;℄ E 2 E !H (High)E 2 HP[A℄E n v 2 HP[A℄ (Rest) E 2 HP [A℄E[f ℄ 2 HP [A℄ (Label)E 2 HP [A℄ F 2 HP[B℄EjF 2 HP [A [B℄ (Par)Ei 2 HP[Ai℄ Fj 2 HP[Bj ℄Pi2I ai:Ei +Pj2J(hj :Fj + �:Fj) 2 HP [[IAi [ [JBj ℄ ai 2 L [ f�g; hj 2 H(Choi
e)E 2 HP[A℄!E 2 HP[A℄ (Repl) E[G℄ 2 HP[A℄ F 2 HP[B℄E[F=G℄ 2 HP[(A n fFg) [B℄ (Subst)Fig. 2. The proof system System !Theorem 3 (Corre
tness). System ! is 
orre
t, i.e., if there exists a proof inSystem ! whi
h ends with E 2 HP [A℄, then E is P BNDC provided that all thepro
esses in A are P BNDC.Corollary 1. Let E 2 E !. If there exists a proof of E 2 HP [;℄, then E isP BNDC .Example 1. Consider the pro
ess CH de�ned asCH � ((in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0))j!(�:(in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0)))) n f�; �gwhere in0; in1; �; � 2 L and out0; out1 2 H . This pro
ess CH is a 
hannel whi
hmay a

ept a value 0 (or 1) through the low level input in0 (or in1). When itholds a value, it may deliver it through a high level output out0 (or out1). The
hannel 
an transmit values in�nitely many times. In fa
t, when the � a
tion isrea
hed the pro
ess resets itself and re
ursively repeats the sequen
e of a
tions.This pro
ess is a variation of the 
hannel des
ribed in [19℄. It is easy to seethat we 
an derive the judgement CH 2 HP [;℄ in System !.This example shows that System ! is more powerful than Core of [4℄, in fa
tCore 
annot handle any re
ursive pro
ess. In [4℄ we introdu
ed a more 
omplexrule to deal with re
ursion. 7



4 Adding Constant De�nitionsIn this se
tion we add some 
onstant de�nitions to our language. Then, exploit-ing the 
ompositionality of P BNDC with respe
t to the repli
ation operator,we prove a 
ompositionality result for P BNDC with respe
t to the 
onstantde�nitions we 
onsider. We do not add all 
onstant de�nitions, sin
e in CCS,di�erently from �-
al
ulus [24℄, repli
ation is not expressive enough to representall 
onstant de�nitions [7℄.4.1 De�nitions using Repli
ationsIn standard CCS [19℄ 
omplex re
ursive systems are de�ned parametri
ally, asZ def= E[Z℄; where Z is a pro
ess identi�er and E[Z℄ a pro
ess expression whi
hmay 
ontain \
alls" to Z as well as to other parametri
 pro
esses.Example 2. Consider the pro
ess Z re
ursively de�ned as Z def= a:Z + b:0: Intu-itively this pro
ess 
an perform either an a
tion a and return in its initial stateor an a
tion b and terminate. Similarly it is possible to 
onsider two mutuallyde�ned pro
essesX and Y where X performs an a
tion a and then 
alls Y ; whileY performs an a
tion b and 
alls X . Their de�nitions areX def= a:Y Y def= b:XThis way of de�ning re
ursive pro
esses was taken as basi
 in [9℄ and in otherprevious works on P BNDC (see [4℄). In the 
ontext of the �-
al
ulus in [20℄,an en
oding is de�ned whi
h eliminates a �nite number of 
onstant de�nitionsusing repli
ation. As already noti
ed in [24℄, the same en
oding applied to fullCCS does not work (see also Remark 1). In what follows we identify a fragmentof CCS on whi
h the en
oding is 
orre
t.Let A
t = L[f�g be a set of a
tions, with L partitioned into the two sets Hand L, as des
ribed in Se
tion 2.1. Let C be a �nite set of 
onstants. Considerall the pro
esses D whi
h 
an be obtained using the following produ
tions:D ::= 0 j a:D j D +D j DjD j Zwhere Z 2 C is a 
onstant whi
h must be asso
iated to a de�nition Z def= D.Let Edef be the set of pro
esses de�ned with this syntax. Given a pro
ess D,
onst(D) denotes all the 
onstants whi
h o

ur in D. We say that a pro
ess Dis 
onstant-free if 
onst(D) = ;.In order to de�ne the semanti
s of the pro
esses in Edef we add to the rulesof Figure 1 the following rule to deal with 
onstant de�nitions.Constant if Z def= DZ �! DThis rule tells us that if Z def= D then Z performs a � transition and then behavesas D. 8



Example 3. Let Z be the 
onstant de�ned in Example 2. By applying on
e therule Constant we obtain that Z �! a:Z + b:0, then either a:Z + b:0 b! 0 ora:Z + b:0 a! Z. In the se
ond 
ase we 
an apply again the rule Constant.All the pro
esses in Edef 
an be translated into an equivalent (bisimilar)pro
ess of the language E ! presented in Se
tion 2.1 (i.e., into a pro
ess withrestri
tion and repli
ation and without 
onstant de�nition).We brie
y re
all how the en
oding whi
h removes the 
onstant de�nitionsworks. Let Z1; : : : ; Zn be n 
onstants de�ned as Zi def= Di, where for all i =1; : : : ; n 
onst(Di) � fZ1; : : : ; Zng. Let S = f�1; �1; : : : ; �n; �ng be a new set ofa
tions disjoint from A
t . We asso
iate to the 
onstant Zi the a
tions �i and �iand we introdu
e the notation2:bZi � !(�i:Di[�1:0=Z1; : : : ; �n:0=Zn℄);where in Di ea
h 
onstant Zj is repla
ed by the 
onstant-free expression �j :0.Sin
e 
onst(Di) � fZ1; : : : ; Zng, bZi is a 
onstant-free expression.De�nition 6 (En
oding of Edef). Let D 2 Edef be a pro
ess with 
onst(D) �fZ1; : : : ; Zng. Its en
oding [[D℄℄ is the 
onstant-free pro
ess[[D℄℄ � (D[�1:0=Z1; : : : ; �n:0=Zn℄j bZ1j : : : j bZn) n S:In parti
ular, when D is one of the Zi's we obtain[[Zi℄℄ � (�i:0j bZ1j : : : j bZn) n S:Example 4. Let Z be the 
onstant de�ned in Example 2. The en
oding of Z is[[Z℄℄ � (�:0j bZ)nS,but bZ �!(�:0:((a:Z+b:0)[�:0=Z℄))) �!(�:0:(a:�:0+b:0))) hen
ewe obtain [[Z℄℄ � (�:0j!(�:0:(a:�:0+ b:0)))nS. Note that bZ and [[Z℄℄ are di�erent.Remark 1. In the en
oding, the a
tion �i is used to make a \
all to the pro-
edure" Zi whi
h is represented by bZi. The en
oding does not work in the fullCCS, sin
e the s
ope of the restri
tions and renamings is not enlarged to thebZi. Consider for instan
e a 
onstant Z de�ned as Z def= a:Z and the pro
essE � (Z)nfag: The pro
ess E 
an only perform a � a
tion, then it terminates. Ifwe apply our en
oding we obtain [[E℄℄ � ((�:0) n fagj!(�:a:�:0)) n S: Di�erentlyfrom E, the pro
ess [[E℄℄ performs a � , and then it is able to perform an a
tiona, sin
e in bZ the a
tion a is allowed. A
tually, we 
an over
ome this problemand de�ne a 
orre
t translation for E (see De�nition 7). Another pro
ess whi
h
annot be translated is obtained using two mutual re
ursive 
onstant de�nitionsX def= (a:X jb:a:Y ) n fa; ag Y def= (b:Y ja:b:X) n fb; bg2 We use the notation D[Z1; : : : ; Zn℄ when we want to stress the fa
t that the 
onstantsZ1; : : : ; Zn 
an o

ur in D. 9



The pro
ess F � X 
an perform only b and � a
tions. Its en
oding would be thepro
ess [[F ℄℄ de�ned as(�X :0j!(�X :((a:�X :0jb:a:�Y :0) n fa; ag))j!(�Y :((b:�Y :0ja:b:�X :0) n fb; bg))) n S:The pro
ess [[F ℄℄ 
an perform also a a
tions, sin
e the restri
tion on a is notapplied to bY . The solution we will apply later to enlarge the en
oding 
annotbe applied to this pro
ess.The following theorem states the observational equivalen
e between D and[[D℄℄ when D belongs to Edef . Sin
e D 2 Edef and [[D℄℄ 2 E ! the bisimulation weestablish is a relation on Edef � E !.Theorem 4. For ea
h D 2 Edef it holds D � [[D℄℄.The a
tions �i's introdu
ed in the en
oding are neither high nor low levela
tions. They are used only in the en
oding, in order to obtain 
onstant free-pro
esses, but they are not visible outside be
ause of the outmost restri
tion.Indeed, they are introdu
ed only to �re in�nitely many times the a
tions of theDi's. Nevertheless, we have to de
ide how to treat them in the de�nition of theatta
kers and in the de�nition of the low level observational equivalen
e. We
onsider this issue in the next se
tion.Before moving to our se
urity property we show how to apply the en
odingto a ri
her language in whi
h restri
tion and renaming 
an be used \outside"the re
ursive de�nitions. In parti
ular, 
onsider all the pro
esses E de�ned bythe following produ
tions:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j!E j Zwhere Z 2 C is a 
onstant whi
h must be asso
iated to a de�nition Z def= D,with D 2 Edef . Let Edef! be the set of pro
esses de�ned with this syntax.Sin
e the 
onstants are de�ned using pro
esses in Edef , by Theorem 4, we havethat Z � [[Z℄℄. Observing that � is a 
ongruen
e on our language we immediatelyget that the following en
oding 
an be applied to the pro
esses in Edef!.De�nition 7 (En
oding of Edef!). Let E 2 Edef! be a pro
ess with 
onst(E) �fZ1; : : : ; Zng its en
oding ffEgg is the 
onstant-free pro
essffEgg � E[[[Z1℄℄=Z1; : : : ; [[Zn℄℄=Zn℄:Corollary 2. For ea
h E 2 Edef! it holds E � ffEgg.Example 5. Consider the 
onstant Z and the pro
ess E de�ned in Remark 1.The pro
ess E is in Edef!. Its en
oding is ffEgg � ((�:0j!(�:a:�:0)) n S) n fag:Now, we 
orre
tly obtain that E performs a � transitions, then it terminates.The 
onstants X and Y of Remark 1 do not belong to Edef!. In fa
t, in orderto translate X we would need a 
orre
t en
oding of Y , and this is not possiblewithout a 
orre
t en
oding of X , i.e., we enter in a loop. We 
an 
on
lude thatEdef! is still not expressive as CCS with 
onstant de�nitions. On the other hand,Corollary 2 says that Edef! is expressive as E !. The relation between Edef! andEdef is still an open problem; we 
onje
ture that Edef! is more powerful.10



4.2 P BNDC and De�nitionsLet A
t = L[H [f�g as de�ned in Se
tion 2.1. Let S be a new set of (syn
hro-nization) a
tions su
h that S \A
t = ; and S = S, i.e., S is 
losed with respe
tto the 
omplementation operation. In what follows we 
onsider as set of a
tionsA
t 0 = L[H [ f�g [ S. Moreover, we require that if f is a relabelling fun
tion,then 8� 2 S; f(�) = �. As previously observed the a
tions of S do not represent`real' a
tions, but they are only instrumental for the en
oding. The pro
esses westart with have no a
tions in S, while their en
odings do. For this reason it isne
essary to de
ide how to treat S with respe
t to our se
urity notions. In orderto keep the 
ompositionality of P BNDC it is 
onvenient to assimilate them tolow level a
tions. Therefore, the high level atta
ker 
annot perform them andthe low level user 
an observe them. In this way we 
an treat in a 
ompositionalway also pro
esses in whi
h these a
tions o

ur. In parti
ular, we extend the
on
ept of weak bisimulation on low a
tions 
onsidering the a
tions in S as ifthey were a
tions in L. With a slight abuse of notation from now on we say thattwo pro
esses E;F 2 Edef! (built also using a
tions in S) are weakly bisimilaron low a
tions, denoted by E �l F , if there exists a symmetri
 binary relationR � Edef! � Edef! su
h that if (E;F ) 2 R, then for all a 2 L [ S [ f�g,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R.Clearly �l is still the largest weak bisimulation on low a
tions and it is anequivalen
e relation. Moreover it is still true that E �l F i� E nH � F nH .Using this de�nition of �l the notions of BNDC and P BNDC 
an be 
on-sistently transposed. Noti
e that using these extended de�nitions Theorem 1and Theorem 2 
ontinue to hold. As far as Lemma 1 is 
on
erned some trivial
hanges are ne
essary. In parti
ular, let Edef!HS (EdefHS) be the set of all pro
essesin Edef! (Edef) 
onstru
ted over H [ S [ f�g. Similarly, let Edef!LS (EdefLS ) be theset of all pro
esses 
onstru
ted over L [ S [ f�g and Edef!HL (EdefHL) be the set ofall pro
esses 
onstru
ted over L [ H [ f�g. In the �rst senten
e of Lemma 1it is ne
essary to 
onsider 
onstant-free pro
esses in Edef!LS [ Edef!H . In the thirdsenten
e the a
tions ai's 
an range over L[S [ f�g. Moreover, from Theorem 4we immediately get the following result.Corollary 3. Let Z1; : : : ; Zn be 
onstants de�ned as Zi def= Di, with Di 2 EdefHLfor i = 1; : : : ; n. If for all i = 1; : : : ; n it holds 
onst(Di) � fZ1; : : : ; Zng and[[Zi℄℄ 2 P BNDC, then all the Zi's are P BNDC .4.3 Extension of the Proof System to Pro
esses with De�nitionsIn order to deal with the language extended with the a
tions in S and with the
onstant de�nitions we have to modify some of the rules of the proof systemdes
ribed in Se
tion 3.2 and to add new rules to deal with 
onstant de�nitions.In parti
ular, we 
hange the rules (Low) and (Choi
e) by 
onsidering L [ Sinstead of L and by adding \E is 
onstant-free" to the rules (Low) and (High).Then we add the following rules to deal with 
onstant de�nitions11



E n S 2 HP[;℄ E 2 Edef!HS ; E is 
onstant-free (High2)[[Xi℄℄ 2 HP[A℄Xi 2 HP [A℄ (Xi def= Di)ni=1; Di 2 EdefHL (Const)where [[Xi℄℄ is a 
onstant-free pro
ess.We 
all Systemdef! the modi�ed system. Corollary 3 ensures its 
orre
tness.Example 6. Consider the 
hannel C as de�ned in [3℄ (see [19℄) and its en
oding.C = in0:(out0:C + �:C) + in1:(out1:C + �:C)[[C℄℄ � (�:0j !(�:(in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0)))) n SIt is easy to see that we 
an derive C 2 HP [;℄ in our extended proof system.Noti
e that the pro
ess CH des
ribed in Example 1 is exa
tly the pro
ess weobtain after a � transition of [[C℄℄.Corollary 4. Let E 2 Edef! be a pro
ess. If there exists a proof of E 2 HP[;℄in Systemdef!, then E is P BNDC .By exploiting the result of Corollary 2 we 
an add the derived rule below,whi
h 
an be used to shorten derivations involving 
onstant de�nitions:ffEgg 2 HP [A℄E 2 HP[A℄ E 2 Edef!HL (Trans)Example 7. Let Z be de�ned as Z def= l:Z+h:l:0+ �:l:0 and 
onsider the pro
essE � l:Z, where l 2 L and h 2 H . By applying rule (Trans) we 
an dire
tlyprove that E is P BNDC without expli
itly prove that [[Z℄℄ is P BNDC .Example 8. Consider the two pro
esses X and Y mutually de�ned as followsX def= l:X jY Y def= �:X + h:Xwhere l 2 L and h 2 H . Their en
odings in E ! are[[X ℄℄ � (�X :0j!(�X :(l:�X :0j�Y :0))j!(�Y :(�:�X :0+ h:�X :0))) n S[[Y ℄℄ � (�Y :0j!(�X :(l:�X :0j�Y :0))j!(�Y :(�:�X :0+ h:�X :0))) n SIt is easy to derive the judgements [[X ℄℄ 2 HP[;℄ and [[Y ℄℄ 2 HP[;℄ in System !,hen
e we 
on
lude that X and Y are P BNDC pro
esses.It is worth noti
ing that the system proposed in [4℄ 
annot treat the pro
ess ofExample 8. In fa
t, as already observed in the introdu
tion, the system of [4℄does not deal with re
ursive pro
esses involving the parallel operator.12



5 Con
lusionsIn this paper we study the 
lass of P BNDC pro
esses written in a variant ofSe
urity Pro
ess Algebra (SPA) where re
ursive pro
esses are de�ned by meansof repli
ations instead of 
onstant de�nitions. The modi�ed language is slightlyless powerful than the original one, but the loss of expressive power is largely
ompensated by the 
ompositionality result obtained.We proved that the 
lass of P BNDC pro
esses is 
ompositional with respe
tto repli
ation. This result allows us to de�ne a proof system whi
h providesa very eÆ
ient te
hnique for the stepwise development and the veri�
ation ofre
ursively de�ned P BNDC pro
esses. We also identify a 
lass of 
onstantsde�nitions whi
h 
an be safely added to our language and treated by an extendedproof system.We are 
urrently working in extending the results on information 
ow se
urityobtained for SPA to �-
al
ulus, where the two forms of re
ursion are equivalent.Our feeling is that we 
ould rea
h the same 
ompositional results rea
hed in SPAlanguage, by 
hoosing a good extension for the P BNDC 
lass.As already noti
ed in [4℄, there are many other approa
hes to the veri�
ationof information 
ow properties. In the literature we found only another exampleof a proof system for se
urity proposed by Martinelli [16℄ whi
h deals only with�nite pro
esses. Other veri�
ation te
hniques for information 
ow se
urity arebased on types (see, e.g., [23, 14℄) and 
ontrol 
ow analysis (see, e.g., [2, 6℄).However, most of them are 
on
erned with di�erent models, e.g., tra
e semanti
s(see, e.g., [8, 18℄).Referen
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