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Abstract. Information flow security in a multilevel system aims at gua-
ranteeing that no high level information is revealed to low level users,
even in the presence of any possible malicious process. Persistent_ BNDC
(P-BNDC, for short) is an information-flow security property which is
suitable to deal with processes in dynamic contexts. In this work we
show that P_.BNDC is compositional with respect to the replication ope-
rator. Then, by exploiting the compositionality properties of the class
of P.BNDC processes, we define a proof system which provides a very
efficient technique for the stepwise development and the verification of
recursively defined P_.BNDC' processes.

1 Introduction

The design of large and complex systems that satisfy a given property strongly
depends on the ability of dividing the task of the system into subtasks that are
solved by system components. It is the classical divide-and-conquer approach,
at the basis of any systematic development of complex systems. When security
is the property of interest, difficulties can be encountered in applying this ap-
proach since secure systems might not be composed by secure components only.
Nevertheless it is essential to know how properties of the components behave
under composition. General theories of compositionality exist for properties like
safety and liveness [25, 1] and compositionality results for information-flow based
confidentiality properties have also been developed [18, 26, 15].

The problem of protecting confidential data in a multilevel system is one
of the relevant issues in computer security. Information flow security assures
confidentiality since it guarantees that no high level (confidential) information
is revealed to users running at low levels [12,17,9,22], even in the presence
of any possible malicious process. To establish that information does not flow
from high to low it is sufficient to establish that high behavior has no effect
on what low level users can observe, i.e., the low level view of the system is
independent of high behavior. This notion of information flow security, known
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as Non-Interference, has been introduced in [13], and subsequently developed by
many authors in many different settings [9, 10,21, 23, 14].

In this paper we consider the security property Persistent_BNDC (P-BNDC,
for short), proposed in [11], and further studied in [4]. P.BNDC is a security
property based on Non-Interference suitable to analyze processes in completely
dynamic hostile environments. In [11] it is proved that the P_.BNDC property is
equivalent to an already proposed security property called SBSNNI and studied
in [9]. From the analysis presented in [9] two important problems emerge: how
to verify the P_.BNDC property and how to construct P_.BNDC processes. The
first problem has been considered in [11] and it has been shown to be decidable.
The second problem has been analyzed in [4] where we exploit the composi-
tionality properties of P_.BNDC processes to define a proof system which allows
us to statically prove that a process is P_.BNDC by just inspecting its syntax.
The proof system consists of two layers, a kernel which deals only with non-
recursive processes and a second layer where a rather complex rule, involving
many expensive checks, handles recursive processes. The system is correct but
not complete, for instance it does not deal with recursive processes involving the
parallel operator. The incompleteness and the complexity of the system is due
to the lack of a compositionality result for constant definitions, which is the only
way recursion is expressed in the SPA language, a variant of Milner’s CCS [19].

In this paper we consider another form of recursion expressed using the repli-
cation operator (!) instead of constant definitions. The two approaches have the
same expressive power in w-calculus [20,24], but as recently proved in [7], repli-
cation cannot supplant recursion in CCS. In this paper we show that the class
of P_.LBNDC processes is compositional with respect to the replication operator.
This allows us to extend the kernel Core of the proof system in [4] with a new
inference rule for the replication, thus allowing us to deal also with recursive
processes involving the parallel operator. Moreover, we prove a partial composi-
tionality of P_.BNDC with respect to constant definitions, i.e., we identify a class
of constant definitions which can be safely added to our language and treated
by the extended proof system.

The paper is organized as follows. In Section 2 we introduce the language,
and recall the definition of P_.BNDC process and its properties. In Section 3 we
prove that P_.BNDC' is compositional with respect to the replication operator,
and then present a proof system which, by exploiting the new compositionality
result, extends the kernel presented in [4] by adding recursion through replication
in a very simple way. In Section 4 we (re)-introduce constant definitions. Finally,
in Section 5 we draw some conclusions. All the proofs can be found in [5].

2 Basic Notions

2.1 The Language

In this section we report the syntax and semantics of the process algebra we
consider. It is a variation of Milner’s CCS [19], similar to SPA [9], where the



set of visible actions is partitioned into high level actions and low level ones in
order to specify multilevel systems. Differently from [19], we use the replication
() operator instead of the constant definitions. Intuitively, the process !E (bang
E) means E|E|..., i.e., the parallel composition of as many copy as needed of
the process E. In Section 4 we will reintroduce constant definitions.

The syntax of our process algebra is based on the same elements as CCS that
is: a set £ of visible actions such that £ = I UO where I = {a,b,...} is a set
of input actions and O = {a,b,...} is a set of output actions; a special action
7 which models internal computations, i.e., not visible outside the system; a
complementarily function - : £ — L, such that a = a,foralla € L; Act = LU{7}
is the set of all actions. The set of visible actions is partitioned into two sets, H
and L, of high and low actions such that H = H and L = L. A process F is a
term built using the following productions:

E:=0|a.E|E+E|E|E|E\v|E[f]|lE

where a € Act, v C L, f: Act — Act is such that f(L) C LU {7}, f(H) C
HU{r}, f(a) = f(a) and f(r) = .

Given a fixed set £ we denote by &' the set of all processes, by €% the set of
all high level processes, i.e., those constructed over H U {7}, and by £} the set
of all low level processes, i.e., those constructed over L U {7}.

The operational semantics of processes is given in terms of a Labelled Tran-
sition System (LTS). In particular, the operational semantics of our language
is the LTS (&', Act,—), where the states are the terms of the algebra and the
transition relation —C &' x Act x &' is defined by structural induction as the
least relation generated by the inference rules reported in Figure 1.

In the paper we use the following notations. If t = ay ---a, € Act™ and
E % ... 3 E'. then we say that E’ is reachable from E and write E BN E’, or
simply E ~ E'. We also write E == E' if B(5)* & (D) (5)* B (5)*E
where (5)* denotes a (possibly empty) sequence of 7 labelled transitions. If
t € Act*, then £ € £* is the sequence gained by deleting all occurrences of 7

from t. As a consequence, E == E' stands for E == E' if a € £, and for
E(5)*E' if a = 7 (note that == requires at least one 7 labelled transition while

== means zero or more 7 labelled transitions). Given two processes E, F we
write £ = F when F and F are syntactically equal.

The concept of observation equivalence between two processes is based on
the idea that two systems have the same semantics if and only if they cannot be
distinguished by an external observer. This is obtained by defining an equiva-
lence relation over £'. We report the definitions of weak bisimulation and strong
bisimulation [19]. Intuitively, weak bisimulation equates two processes if they
mutually simulate their behavior step by step, but it does not care about inter-
nal 7 actions. So, when P simulates an action of @), it can also execute some T
actions before or after that action.

Definition 1 (Weak Bisimulation). A symmetric binary relation R C £' x &'
over processes is a weak bisimulation if (E, F) € R implies, for all a € Act,
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Fig. 1. The operational rules

o if ES E', then there exists F' such that F =% F' and (E",F') € R;

Two processes E,F € £ are weakly bisimilar, denoted by E ~ F, if there exists
a weak bisimulation R containing the pair (E, F).

The relation = is the largest weak bisimulation and is an equivalence rela-
tion [19].

Strong bisimulation is stronger than weak bisimulation, since it consider the
T actions as all the other actions.

Definition 2 (Strong Bisimulation). A symmetric binary relation R C ' x
E' over processes is a strong bisimulation if (E, F) € R implies, for all a € Act,
o if ES E', then there exists F' such that F = F' and (E',F') € R;

Two processes E,F € £ are strong bisimilar, denoted by E ~ F, if there exists
a strong bisimulation R containing the pair (E, F).

The relation ~ is the largest weak bisimulation and is an equivalence rela-
tion [19]. Moreover, two strongly bisimilar processes are also weakly bisimilar.

2.2 The P_BNDC Security Property

In this section we recall the Persistent Bisimulation-based Non Deducibility on
Compositions (P-BNDC, for short) security property (see [11]). We start by



introducing an equivalence relation on low actions that is a sort of weak bisim-
ulation which considers only the low actions. Hence, when two processes are
weakly bisimilar on low actions they cannot be distinguished by a low level user.

Definition 3 (Weak Bisimulation on Low Actions). A symmetric binary

relation R C £ x £ over processes is a weak bisimulation on low actions, if
(E,F) € R implies, for all a € L U {7},

o if E% E', then there exists F' such that F L F' and (E'",F') € R.

Two processes E, F € £ are weakly bisimilar on low actions, denoted by E ~; F,
if there exists a weak bisimulation on low actions R containing the pair (E, F).

The relation as; is the largest weak bisimulation on low actions and it is an
equivalence relation [5]. Moreover, it holds E = F if and only if E\ H ~ F'\ H.

Using weak bisimulation on low actions we recall the notion of Bisimulation-
based Non Deducibility on Compositions (BNDC, for short) [9] which is at the
basis of P.BNDC. The BNDC' security property aims at guaranteeing that no
information flow from the high to the low level is possible, even in the presence
of an attacker. A system E is BNDC if for every high process II a low user
cannot distinguish E from (E|II), i.e., if IT cannot interfere [13] with the low
level execution of E.

Definition 4 (BNDC). Let E € £'. E € BNDC iff V IT € £y, E ~; (E|II).

In [11] it is shown that BNDC' is not strong enough for systems in dynamic
environments. To deal with these situations, the property P_.BNDC' is intro-
duced. Intuitively, a system FE is P_BNDC if it never reaches insecure states.

Definition 5 (P_BNDC). Let E € £'. E € P_.BNDC iff E ~ E' implies E' €
BNDC.

Although the decidability of BNDC is still an open problem, P_.BNDC' is
decidable (in polynomial time) as shown in [11]. In [4] another decidable char-
acterization of P_BNDC(C' processes has been proposed. It allows us to express
P_BNDC in terms of a local property of high level actions and it recalls the
unwinding conditions proposed in other settings. Also if we are using a variation
of the SPA, with replications instead of constant definitions, the characterization
presented in [4] holds.

Theorem 1 (Unwinding). Let E € £'. E € P_BNDC iff if E ~ E; % E;,
then E; == E}, and E; ~; Ey.

The following lemma rephrases the corresponding lemma in [4] and it proves
that the class of P_.BNDC processes enjoys the following compositionality prop-
erties.

Lemma 1. The class of P_.BNDC processes contains all the processes in £ UE};
and is closed with respect to restriction, renaming, and parallel composition.
Moreover, if E;,F; € P.BNDC, a; € L and h; € H,i € I and j € J, then
Ziel a;. F; + Zje](h]"Fj + T.Fj) € P_.BNDC'.



3 P_BNDC and Replications

In this section we first extend the compositionality result of Lemma 1 by proving
that P_.BNDC' is closed also with respect to the replication operator. Then we
present a proof system for P_.BNDC' processes.

3.1 Compositionality of P_.BNDC wrt !

We start by observing that the processes reachable from !E have the form of a
parallel composition of a finite number of processes reachable from E and 'E.

Lemma 2. Let E € &' be a process. If |E ~» E', then there exist n > 0 and
E,,...,E, such that E ~ E;, fori=1,...,n and E' = E\|Es|...|E,|'E.

Hence the set {E1,..., E,} of processes reachable from E characterizes the
process Fi|FEs|...|E,|lE reachable from !E.

There is an interesting connection between the processes reachable from E
and the processes reachable from !E when E is P.BNDC' if the sets {F1,. .., Fy,}
and {G4,...,G,} of processes reachable from E are pairwise weakly bisimilar
on low actions, i.e., F; a5 G, this relation is preserved also on the processes
reachable from !E that they characterize.

Lemma 3. Let E be a P.BNDC process and Vi € {1,..,n} F;,G; be reachable
fmm E. IfVZ S {1, ..,n} F; ~; G; then F1|F2 . |Fn|'E ] G1|G2 . |Gn|'E

The two previous lemmas, together with the unwinding condition (see The-
orem 1), allow us to prove that P_.BNDC' is compositional with respect to the
replication operator.

Theorem 2. Let E € £ be a process. If E € P_.BNDC, then |E € P_BNDC.

3.2 A Proof System for Processes with Replications

In [4] it has been presented a proof system which allows us to build P_.BNDC
processes in an incremental way. The proof system is composed by a set of rules
whose conclusions are in the form F € HP[A], where A is a set of constants.
The intended meaning of the judgment is that E is a P_.BNDC process provided
that all the constants in A are P_.BNDC'. The set A plays the role of a set of
assumptions: if it is empty then E is P_.BNDC otherwise we are still working
on our construction under open hypothesis. It is immediate to observe that the
system described in [4] is correct also using set of processes, instead of set of
constants, as assumptions. Hence, in this section the meaning of E € HP[A] is
that F is a P_BNDC process provided that all the processes in A are P_.BNDC'.
We show how to exploit Lemma 1 and Theorem 2 in order to extend the system
to the case of processes with replication. In particular, let us consider the proof
system System! whose rules are shown in Figure 2!.

! We use E[F/G] to denote the process we obtain by replacing all the occurrences of G
in E with F, where G denotes a process whose occurrences in E can be syntactically
and unambiguously identified.



E is a process (Proc)

E € HP{E}]
——— Ee€é& (Low ————— E€é&; (High
E € HP[D] © ( ) E € HP[D] © (High)
E € HP[A] E € HP[A]
————— (Rest) —— (Label)
E\v e HP[A] E[f] € HP[A]
E € HP[A] F € HP[B]
(Par)
E|F € HP[AU B]
E; € HP[A;] F; € HP[B;] ai € LU{r},hj € H
Eie[ a;. B; + Zje](h]"Fj + T.Fj) € HP[U[Ai @] U]Bj] (OhOice)
E € HP[A] E[G] € HP[A] F € HP[B]
——  (Repl) (Subst)
IE € HP[A] E[F/G) € HP[(A\ {F})U B]

Fig. 2. The proof system System'

Theorem 3 (Correctness). System! is correct, i.e., if there exists a proof in
System' which ends with E € HP[A], then E is P_.BNDC' provided that all the
processes in A are P_.BNDC..

Corollary 1. Let E € &'. If there exists a proof of E € HP[(], then E is
P_BNDC'.

Ezample 1. Consider the process CH defined as

CH = ((ing.(outq.7.0 + 7.5.0) + in.(out;.7.0 + 7.5.0))|
l(o.(ing.(outy.7.0 + 7.5.0) + iny.(out,.7.0 + 7.7.0)))) \ {o,7}

where ing,ini,0, € L and outg, out; € H. This process CH is a channel which
may accept a value 0 (or 1) through the low level input ing (or in;). When it
holds a value, it may deliver it through a high level output outy (or out;). The
channel can transmit values infinitely many times. In fact, when the @ action is
reached the process resets itself and recursively repeats the sequence of actions.

This process is a variation of the channel described in [19]. Tt is easy to see
that we can derive the judgement CH € HP[0] in System.

This example shows that System' is more powerful than Core of [4], in fact
Core cannot handle any recursive process. In [4] we introduced a more complex
rule to deal with recursion.



4 Adding Constant Definitions

In this section we add some constant definitions to our language. Then, exploit-
ing the compositionality of P.BNDC' with respect to the replication operator,
we prove a compositionality result for P.BNDC with respect to the constant
definitions we consider. We do not add all constant definitions, since in CCS,
differently from 7-calculus [24], replication is not expressive enough to represent
all constant definitions [7].

4.1 Definitions using Replications

In standard CCS [19] complex recursive systems are defined parametrically, as

7% E[Z], where Z is a process identifier and E[Z] a process expression which

may contain “calls” to Z as well as to other parametric processes.

Ezample 2. Consider the process Z recursively defined as Z ©f 0.7 +b.0. Intu-
itively this process can perform either an action @ and return in its initial state
or an action b and terminate. Similarly it is possible to consider two mutually
defined processes X and Y where X performs an action a and then calls Y; while
Y performs an action b and calls X. Their definitions are

X oy v oy x

This way of defining recursive processes was taken as basic in [9] and in other
previous works on P_.BNDC' (see [4]). In the context of the m-calculus in [20],
an encoding is defined which eliminates a finite number of constant definitions
using replication. As already noticed in [24], the same encoding applied to full
CCS does not work (see also Remark 1). In what follows we identify a fragment
of CCS on which the encoding is correct.

Let Act = LU {7} be a set of actions, with £ partitioned into the two sets H
and L, as described in Section 2.1. Let C be a finite set of constants. Consider
all the processes D which can be obtained using the following productions:

D:=0|aD|D+D|DD|Z

where Z € C is a constant which must be associated to a definition Z % D.
Let £9¢f be the set of processes defined with this syntax. Given a process D,
const(D) denotes all the constants which occur in D. We say that a process D
is constant-free if const(D) = (.

In order to define the semantics of the processes in £9¢f we add to the rules
of Figure 1 the following rule to deal with constant definitions.

Constant ifz%p

T

Z =D

This rule tells us that if Z % D then Z performs a 7 transition and then behaves
as D.



Ezxample 3. Let Z be the constant defined in Example 2. By applying once the

rule Constant we obtain that Z < a.Z + b.0, then either a.Z + .0 %0 or
a.Z +b.0 % Z. In the second case we can apply again the rule Constant.

All the processes in £9°f can be translated into an equivalent (bisimilar)
process of the language &' presented in Section 2.1 (i.e., into a process with
restriction and replication and without constant definition).

We briefly recall how the encoding which removes the constant definitions
works. Let Zy,...,7Z, be n constants defined as Z; def D;, where for all ¢ =
1,...,n const(D;) C{Z,...,Z,}. Let S = {01,071,...,04,0,} be a new set of
actions disjoint from Act. We associate to the constant Z; the actions o; and 7;
and we introduce the notation?:

Z; =(01.Di[7.0/Z1,...,50.0/Z,)),

where in D; each constant Z; is replaced by the constant-free expression 7; .0.
Since const(D;) C {Z1,...,Zn}, Z; is a constant-free expression.

Definition 6 (Encoding of £4°f). Let D € £9¢' be a process with const(D) C
{Z1,...,Z,}. Its encoding [D] is the constant-free process

[D] = (D[F1.0/Z1,...,50.0/Z,)| 21| .. .1 Za) \ S-
In particular, when D is one of the Z;’s we obtain
[Z:] = 7:.0|1Z4]...1Zn) \ S.

Ezample 4. Let Z be the constant defined in Example 2. The encoding of Z is
[Z] = (3.0|2)\S,but Z =!(6.0.((a.Z+b.0)[5.0/Z]))) =!(0.0.(a.7.0+b.0))) hence
we obtain [Z] = (7.0]!(6.0.(a.5.0+b.0))) \ S. Note that Z and [Z] are different.

Remark 1. In the encoding, the action o; is used to make a “call to the pro-
cedure” Z; which is represented by Z;. The encoding does not work in the full
CCS, since the scope of the restrictions and renamings is not enlarged to the

Z. Consider for instance a constant Z defined as Z < ¢.Z and the process
E = (Z)\ {a}. The process E can only perform a 7 action, then it terminates. If
we apply our encoding we obtain [E] = ((.0) \ {a}|!(c.a.7.0)) \ S. Differently
from E, the process [E] performs a 7, and then it is able to perform an action
a, since in 7 the action a is allowed. Actually, we can overcome this problem
and define a correct translation for E (see Definition 7). Another process which
cannot be translated is obtained using two mutual recursive constant definitions

def def

X @.Xpay)\ {a,a} Y 5.Y)a.5.X) \ {b,5}
2 We use the notation D[Z,...,Z,] when we want to stress the fact that the constants
Zi,...,%y, can occur in D.



The process F' = X can perform only b and 7 actions. Its encoding would be the
process [F] defined as

(7%.0[1(0x .(a.5%.0b.a5v.0) \ {a,a@}))|!(oy.((b57.0]ab7x.0) \ {b,5}))) \ S.

The process [F] can perform also a actions, since the restriction on a is not
applied to Y. The solution we will apply later to enlarge the encoding cannot
be applied to this process.

The following theorem states the observational equivalence between D and
[D] when D belongs to £9¢. Since D € £%¢f and [D] € &' the bisimulation we
establish is a relation on £9¢f x &'

Theorem 4. For each D € £ it holds D ~ [D].

The actions o¢;’s introduced in the encoding are neither high nor low level
actions. They are used only in the encoding, in order to obtain constant free-
processes, but they are not visible outside because of the outmost restriction.
Indeed, they are introduced only to fire infinitely many times the actions of the
D;’s. Nevertheless, we have to decide how to treat them in the definition of the
attackers and in the definition of the low level observational equivalence. We
consider this issue in the next section.

Before moving to our security property we show how to apply the encoding
to a richer language in which restriction and renaming can be used “outside”
the recursive definitions. In particular, consider all the processes E defined by
the following productions:

E:=0|aE|E+E|EE|E\v|E[f]|'E|Z

where Z € C is a constant which must be associated to a definition Z % D,
with D € £9¢f, Let £9°f* be the set of processes defined with this syntax.

Since the constants are defined using processes in £4¢f, by Theorem 4, we have
that Z ~ [Z]. Observing that ~ is a congruence on our language we immediately
get that the following encoding can be applied to the processes in 4ef'.

Definition 7 (Encoding of £9°""). Let E € £9¢" be a process with const(E) C
{Z1,...,7Z,} its encoding {E} is the constant-free process

e} = Ell21)/ 2y, -, 121/ Z0]-
Corollary 2. For each E € £ it holds E ~ {E}.

Ezample 5. Consider the constant Z and the process E defined in Remark 1.
The process E is in £, Its encoding is {E} = ((7.0]!(0.a.5.0)) \ S) \ {a}.
Now, we correctly obtain that E performs a 7 transitions, then it terminates.

The constants X and Y of Remark 1 do not belong to £4¢*. In fact, in order
to translate X we would need a correct encoding of Y, and this is not possible
without a correct encoding of X, i.e., we enter in a loop. We can conclude that
£def! i5 still not expressive as CCS with constant definitions. On the other hand,
Corollary 2 says that £9¢f' is expressive as £'. The relation between £ and
£9¢f is still an open problem; we conjecture that £4¢f' is more powerful.

10



4.2 P_BNDC and Definitions

Let Act = LUH U {7} as defined in Section 2.1. Let S be a new set of (synchro-
nization) actions such that SN Act =) and S = S, i.e., S is closed with respect
to the complementation operation. In what follows we consider as set of actions
Act' = LUH U{7}US. Moreover, we require that if f is a relabelling function,
then Vo € S, f(0) = 0. As previously observed the actions of S do not represent
‘real’ actions, but they are only instrumental for the encoding. The processes we
start with have no actions in S, while their encodings do. For this reason it is
necessary to decide how to treat S with respect to our security notions. In order
to keep the compositionality of P_BNDC' it is convenient to assimilate them to
low level actions. Therefore, the high level attacker cannot perform them and
the low level user can observe them. In this way we can treat in a compositional
way also processes in which these actions occur. In particular, we extend the
concept of weak bisimulation on low actions considering the actions in S as if
they were actions in L. With a slight abuse of notation from now on we say that
two processes E,F € £ (built also using actions in S) are weakly bisimilar
on low actions, denoted by E =; F, if there exists a symmetric binary relation
R C &def! x gdef! qych that if (E, F) € R, then for all a € LUS U {7},

o if £ % E', then there exists F' such that F =% F' and (E',F') € R.

Clearly = is still the largest weak bisimulation on low actions and it is an
equivalence relation. Moreover it is still true that E ~; F if E\ H ~ F \ H.

Using this definition of = the notions of BNDC and P_BNDC can be con-
sistently transposed. Notice that using these extended definitions Theorem 1
and Theorem 2 continue to hold. As far as Lemma 1 is concerned some trivial
changes are necessary. In particular, let &' (£9¢L) be the set of all processes
in £def! (gdef) constructed over H U S U {T} Similarly, let £d¢f* (£4¢f) be the
set of all processes constructed over L U S U {7} and 4! (Edef) be the set of
all processes constructed over L U H U {r}. In the ﬁrst sentence of Lemma 1
it is necessary to consider constant-free processes in £¢4' U £3!'. In the third
sentence the actions a;’s can range over LUS U {r}. Moreover, from Theorem 4
we immediately get the following result.

Corollary 3. Let Zy,...,Z, be constants defined as Zl = Dl, with D; € 3¢t
fori =1,...,n. If for all i =1,...,n it holds const(D;) C {Z,...,Z,} and
[Z:] € P-.BNDC, then all the Z;’s are P_.BNDC'.

4.3 Extension of the Proof System to Processes with Definitions

In order to deal with the language extended with the actions in S and with the

constant definitions we have to modify some of the rules of the proof system

described in Section 3.2 and to add new rules to deal with constant definitions.

In particular, we change the rules (Low) and (Choice) by considering L U S

instead of L and by adding “E is constant-free” to the rules (Low) and (High).
Then we add the following rules to deal with constant definitions

11



——— E € & Eis constant-free  (High?2)
E\ S € HP[] s

[Xi] € HP[A]

def
X =D)r,, D; e Edef (Const
v (6 DLy Die sk (Consy

where [X;] is a constant-free process.
We call System®®™ the modified system. Corollary 3 ensures its correctness.

Ezample 6. Consider the channel C' as defined in [3] (see [19]) and its encoding.

C =ing.(outy.C + 7.C) + iny.(out;.C + 7.C)
[C] = (@.0] Y(o.(ing-(outy.7.0 + 7.7.0) + iny.(out1.7.0 + 7.7.0)))) \ S

It is easy to see that we can derive C' € HP[()] in our extended proof system.
Notice that the process C'H described in Example 1 is exactly the process we
obtain after a 7 transition of [C].

Corollary 4. Let E € £%°F' be a process. If there exists a proof of E € HP[)]
in System®®", then E is P_BNDC..

By exploiting the result of Corollary 2 we can add the derived rule below,
which can be used to shorten derivations involving constant definitions:

{E} € HP[A]

E ¢ &8 (Trans)
E € HP[A] e

Ezample 7. Let Z be defined as Z 40y Z + h..0+7.0.0 and consider the process
E =1.Z, where | € L and h € H. By applying rule (T'rans) we can directly
prove that F is P_.BNDC without explicitly prove that [Z] is P_.BNDC.

Ezample 8. Consider the two processes X and Y mutually defined as follows

X xy v¥rx+4nx

where I € L and h € H. Their encodings in &' are

= (7%.0|!(0x.(.7%.0[77.0))|!(0y .(r5%.0 + h.7%.0))) \ S
V] = @v.0|!(ox.(1.7%.0[57.0))|!(oy.(r.7%.0 + h.5%.0))) \ S

It is easy to derive the judgements [X] € HP[0] and [Y] € HP[0] in System',
hence we conclude that X and Y are P_.BNDC processes.

It is worth noticing that the system proposed in [4] cannot treat the process of
Example 8. In fact, as already observed in the introduction, the system of [4]
does not deal with recursive processes involving the parallel operator.

12



5 Conclusions

In this paper we study the class of P_.BNDC processes written in a variant of
Security Process Algebra (SPA) where recursive processes are defined by means
of replications instead of constant definitions. The modified language is slightly
less powerful than the original one, but the loss of expressive power is largely
compensated by the compositionality result obtained.

We proved that the class of P_.BNDC' processes is compositional with respect
to replication. This result allows us to define a proof system which provides
a very efficient technique for the stepwise development and the verification of
recursively defined P_.BNDC' processes. We also identify a class of constants
definitions which can be safely added to our language and treated by an extended
proof system.

We are currently working in extending the results on information flow security
obtained for SPA to w-calculus, where the two forms of recursion are equivalent.
Our feeling is that we could reach the same compositional results reached in SPA
language, by choosing a good extension for the P_.BNDC(C' class.

As already noticed in [4], there are many other approaches to the verification
of information flow properties. In the literature we found only another example
of a proof system for security proposed by Martinelli [16] which deals only with
finite processes. Other verification techniques for information flow security are
based on types (see, e.g., [23,14]) and control flow analysis (see, e.g., [2,6]).
However, most of them are concerned with different models, e.g., trace semantics
(see, e.g., [8,18]).
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