
A Theory of Adaptable Contract-Based Service Composition

G. Bernardi M. Bugliesi D. Macedonio S. Rossi
Dipartimento di Informatica, Università Ca’ Foscari, Venice, Italy

e-mail:{gbernard,bugliesi,mace,srossi}@dsi.unive.it

Abstract

Service Oriented Architectures draw heavily on techniques
for reusing and assembling off-the-shelf software compo-
nents. While powerful, this programming practice is not
without a cost: the software architect must ensure that the
off-the-shelf components interact safely and in ways that
conform with the specification. We develop a new theo-
ry for adaptable service compositions. The theory pro-
vides an effective framework for analyzing the conformance
of contract-based service compositions, and for enforcing
their compliance, in a uniform, formally elegant setting.

1. Introduction

Modern software design is increasingly being based on
a methodology that has become known as Service Oriented
Architecture (SOA). Central to SOA is the idea of reusing
existing off-the-shelf software units (services) and assem-
bling them to develop new applications. Two approaches
have emerged as mainstream: orchestration and choreog-
raphy. An orchestration combines existing services around
the orchestrator, a component that acts as the coordinator of
the services and mediates all of their interactions. A choreo-
graphy, instead, organizes the services along a message flow
which all partners must comply with autonomously, without
intervention of a central coordinator.

Several languages have recently emerged as specifica-
tion formalisms for orchestrations (e.g., XLANG, WSFL
and WS-BPEL) and choreographies (e.g., WS-CDL and
BPEL4Chor). Such languages provide primitives for as-
sembling services based on abstract descriptions of the ser-
vices’ behavior, given as interfaces or service contracts.

Needless to say, a number of challenges rest behind the
scene of a design paradigm based on reusing off-the-shelf
components: most notably, they arise from the mismatches
between the behavior expected of the services to be in-
cluded in a composition, and the behavior of the available
services. At a very basic level, such mismatches may hin-
der the compliance [11] of the composite application, by

leading it to a deadlock state, or trapping it into an infi-
nite loop (a livelock). At a higher level, they may break
the behavioral conformance with respect to the specifica-
tion [1, 3, 4, 12].

There is a large body of work in the literature on how the
mismatches may be attacked using techniques for compo-
nent/service adaptation. In this paper, we develop a new
theory of adaptable compositions that draws on the the-
ory of contracts developed in [6], and supports the analy-
sis of compliance and conformance of contract-based ser-
vice compositions in a uniform, formally elegant setting.
Our approach uses the filters introduced in [6] both as pre-
scriptions of behavior (coercions to prevent service mis-
behavior) and as descriptors of the choreographic roles of
the service components. We devise an algorithm to ensure
the compliance of a composition by the automatic synthe-
sis of an adapting filter. Further, we describe a technique,
based on a simulation ordering, to verify the conformance
of the adapted composition by contrasting the adapted con-
tract against the associated role filter.

The paper is structured as follows. Sections 2 and 3 in-
troduce our theory of service contract compositions and fil-
ters. Section 4 describes the algorithm for synthesizing the
adapting filter. Section 5 shows how the theory supports the
analysis of conformance. Section 6 discusses related work.

2. A Process Algebra for Service Composition

We represent service contracts as terms of a CCS-like
[10] process calculus with recursion and operators for
guarded and internal choice, but no parallel composition.
Parallel composition arises in service contract compositions
(SCC’s for short), that we define after [3, 4, 11] as the par-
allel (and concurrent) composition of located contracts. We
presuppose a denumerable set N of action names, ranged
over by a, b, c, and a denumerable set Loc of location
names, ranged over by l,m, n. The actions represent the ba-
sic units of observable behavior of the underlying services,
while the location names specify the peers providing the
services together with the ports on which the services are
made available. The syntax of contract actions p, contracts

Table 1 Dynamics of Service Contracts and SCC’s

Contract transitions: σ
λ−→ σ′ with λ ranging over the following actions λ ::= p | τ .

1X
∑
pi.σi

pi−→ σi σ1 ⊕ σ2
τ−→ σi (i = 1, 2)

σ
{
rec(X)σ/X

}
X

rec(X)σX

σ
{
rec(X)σ/X

}
λ−→ σ′

rec(X)σ λ−→ σ′

SCC transitions: C
α−→L C

′ with α ranging over the actions an→m | ān→m and L ⊂ Loc is a finite set of locations.

σX

[σ]n X

σ
τ−→ σ′

[σ]n
τ−→L [σ′]n

σ
a−→ σ′

(m ∈ L)
[σ]n

am→n−→ L [σ′]n

σ
ā@m−→ σ′

(m 6= n)
[σ]n

ān→m−→ L [σ′]n

C1 X C2 X

C1 ‖ C2 X

C1
an→m−→ L C

′
1 C2

ān→m−→ L C
′
2

C1 ‖ C2
τ−→L C

′
1 ‖ C ′2

C1
α−→L C

′
1

C1 ‖ C2
α−→L C

′
1 ‖ C2

C1
τ−→L C

′
1

C1 ‖ C2
τ−→L C

′
1 ‖ C2

σ and compositions C is formally defined as follows:

p ::= ā@l | a send | receive a message

σ ::= 1 | X termination | variable
|

∑n
i=1pi.σi external choice

| σ ⊕ σ internal choice
| rec(X)σ recursion

C ::= [σ]l located contract
| C ‖ C composition

The contract p.σ describes a service that waits for a messa-
ge on p and then continues as σ; dually, p̄@l.σ sends a mes-
sage on p to the service located at l and then behaves as σ.∑n
i=1 pi.σi is a guarded, external choice: a service with

this contract may choose any of the pi and then continue as
σi. We assume that n ≥ 0 and pi 6= pj whenever i 6= j,
and note 0 a sum with n = 0. Internal choices may be
unguarded: σ ⊕ σ′ denotes a local choice between σ and
σ′. The term rec(X)σ defines a possibly recursive con-
tract: the recursion variable X may only occur guarded by
a prefix in σ. Finally, 1 signals successful termination.

A composition must be well-formed [3, 4] to constitute a
legal SCC, namely: (i) every component [σ]l must occur at
a different location l of the composition, and (ii) the target
of each output action at a given location must be different
from the the location itself (i.e., the action ā@l cannot occur
inside a component [σ]l). If C = [σ1]l1 ‖ · · · ‖ [σn]ln is
a legal SCC, we say that C is an {l1, . . . , ln}-SCC (dually,
that {l1, . . . , ln} are the underlying locations for C).

Throughout, we assume that contracts are closed and that
SCC’s are well formed. Also, we often omit trailing 1’s.

Dynamics of contracts and SCCs. We define the dyna-
mics of the calculus in terms of labelled transition semantics
(and a success predicate), with rules reported in Table 1. We
remark that the syntactic restriction on the external choice
operator implies that for any given contract σ and action p,
there is always at most one σ′ such that σ

p−→ σ′.
The transitions for SCC’s are relative to the underlying

set of locations. The transitions are mostly standard. Per-
haps interestingly, the input transition is presented in an
early style, by anticipating the source m of the signal on
which the input action at n is going to synchronize. This
gives us finer control on the synchronizations an input ac-
tion may have in a given SCC. This, in turn, provides us
with further control on how to shape an SCC by filtering.

Throughout, we omit the subscript L and write α−→ in
place of α−→L when clear from the context. Also, we write
=⇒L to note the reflexive and transitive closure of τ−→L.

Finally, we introduce the notion of compliance [3]. Intu-
itively, a composition of services is compliant if it is dead-
lock and livelock free, i.e., it does not get stuck nor does it
get trapped into infinite loops with no exit states.

Definition 2.1 [Compliance] Let C be a L-SCC. C is com-
pliant, noted C ↓, if for every C ′ such that C =⇒L C

′ there
exists C ′′ such that C ′ =⇒L C

′′ and C ′′X.

Example 2.2 Table 2 shows an example of a compliant ser-
vice contract composition. Three services are involved in
this composition: C, S and B representing a customer, a
supplier and a bank, respectively. The elementary actions
represent business activities that result in messages being
sent or received. For example, the action Request@S un-
dertaken by the customer results in a message being sent to

Table 2 A compliant SCC for E-payment: C ‖ S ‖ B

C = [Request@S .((PayDebit@S .GetProd.1 + PayCredit@S .GetProd.1) ⊕

PayCash@S .GetCash@S .GetProd.1)]C

S = [Request.Request@B .(PayDebit.CheckDebit@B .Done.GetProd@C .1 +
PayCredit.CheckCredit@B .Done.GetProd@C .1 +
PayCash.GetCash.GetProd@C .Done@B .1)]S

B = [Request.(CheckDebit.Done@S.1 + CheckCredit.Done@S.1 + Done.1)]B

the supplier. In the example, the customer sends a request to
the supplier and then decides whether to pay cash or by an
electronic card, either a debit card or a credit card. The sup-
plier contacts its referring bank and waits for the (internal)
decision of the customer: in case of cash payment it accepts
the money, then it ships the order and closes the commu-
nication with the bank, in case of electronic transaction it
checks with the bank the availability of the money before
shipping the order to the customer.

3. Filters and Component Adaptation

A filter is the specification of the legal flow of actions for
an individual contract. We extend the definition of filters in
[6] to allow recursive filters. The syntax is as follows:

f ∈ F := 0 | α.f | f × f | f ⊗ f | X | rec(X) f

Filters have a simple semantics, defined in Table 3. The
transition relation is readily understood if we view a filter
as a deterministic finite-state automaton accepting possibly
infinite strings over the alphabet of SCC actions. If we take
this view, f1 × f2 and f1 ⊗ f2 are directly realized as the
union and the intersection of the automata f1 and f2.

Definition 3.1 [FILTER PRE-ORDER] The filter pre-order
f ≤ g is the largest relation such that if f α7−→ fα then
g

α7−→ gα and fα ≤ gα.

We note (F ,v) the partial order induced by ≤: as usual
we abuse the notation and identify a filter f with its equiva-
lence class [f]∼, where ∼ is the symmetric closure of ≤.
The union and intersection of filters represent the glb and
lub operators for (F ,v). Futhermore, if we assume a finite
alphabet A of actions, the set of filters FA insisting on A
forms a complete lattice with 0 as bottom and the identity
filter IA def= rec(X)

∏
α∈A α.X as top element.

Filters may be employed to block any contract transition
that hinder the mutual compliance of the peers within an
SCC: specifically, the application f . [σ]` blocks any action
from [σ]` that is not explicitly enabled by f (cf. the second
block of rules in Table 3).

Filters may be composed to help shape an SCC. Given a
set of locations L, a composite L-filter F is finite map from
the locations in L to filters: {` → f` | ` ∈ L}. An L-filter
may be applied to an L-SCC:

F .L C ::= F [l1] . [σ1]l1 ‖ · · · ‖ F [ln] . [σn]ln

When we write F.LC we tacitly assume that the underlying
set of locations for both F and C is L. The operators of
union and intersection, as well as the the ordering on filters
extends directly to composite filters, as expected. Namely,
for F and G L-filters and for • ∈ {×,⊗}, we define:

F ≤L G iff F [`] ≤ G[`] for all ` ∈ L
(F •L G)[`] def= F [`] •G[`] for all ` ∈ L

We may then generalize the syntax of SCCs by allowing
the term F .L C to account for the application of filters on
the locations of the SCC. In the following, we will omit the
subscript L when clear from the context. The dynamics of
filtered SCCs derives directly by combining the transitions
in the last block of rules in Table 1 with the ones for filtered
locations in Table 3. Notice that when writing F . C we
may safely assume that C is not filtered, as nested filter ap-
plications like F1 . F2 . C may equivalently be represented
as the application of the intersection filter (F1 ⊗ F2) . C.

Relevance and weak compliance. Being behavioral
transformers, filters also help recover a notion of compli-
ance for SCCs that are not compliant according to our cur-
rent definition. Intuitively, a composition C is weakly com-
pliant if it can be made compliant by filtering away all ac-
tions that may bring it to a deadlock or a livelock. We say
that a composite filter F fixes C if F . C is compliant.

Definition 3.2 [Weak Compliance] A composition C is
weakly compliant, written C⇓, if there exists a composite
filter F that fixes C.

Example 3.3 Consider the SCC obtained from the one de-
picted in Table 2 by replacing the service B with B∗ =
[Request.(CheckCredit.Done@S.1 + Done.1)]B . In this
case we lose compliance, asB∗ only accepts credit cards: as

Table 3 Dynamics of Filtered SCC’s

Transitions for filters

α.f
α7−→ f

f
{
rec(X) f/X

}
α7−→ f ′

rec(X) f α7−→ f ′

f
α7−→ fα g

α7−→ gα

f ⊗ g α7−→ fα ⊗ gα

f
α7−→ fα g

α7−→ gα

f × g α7−→ fα × gα

f
α7−→ fα g 6 α7−→

f × g α7−→ fα

f 6 α7−→ g
α7−→ gα

f × g α7−→ gα

Transitions for filtered locations

[σ]n
α−→ [σ′]n f

α7−→ f ′

f . [σ]n
α−→ f ′ . [σ′]n

[σ]n
τ−→ [σ′]n

f . [σ]n
τ−→ f . [σ′]n

[σ]n X

f . [σ]n X

a result the composition gets stuck in case the customer and
the supplier agree on a payment by debit card. However the
composition can be fixed by filtering out the actions leading
the customer to pay by debit card.

In the next section we present an algorithm that given
a composition C infers a composite filter F that fixes C,
whenever such F exists. The algorithm is so structured as
to guarantee two important properties on the inferred fil-
ter. On the one hand, the filter is as permissive as possible,
in that it is the greatest (with respect to the pre-order ≤)
among the filters that fix C. On the other side, the inferred
filter is relevant, i.e., minimal in size: for any computation
state reached by the SCC via a series of τ transitions (local
moves or synchronizations), the filter only enables actions
that may be attempted at that state (either directly, or via a
local choice), by one of the components of the SCC.

While the notion of relevance is intuitive, the presence
of the local moves makes its definition somewhat involved.
We introduce some notation to help (i) to distinguish a local
move from a synchronization, and (ii) to identify the con-
tribution of every location in a synchronization. We write

• C τ
↪−→ C ′ iff C τ−→ C ′ because C ≡ [σ]` ‖ C ′′,

C ′ ≡ [σ′]` ‖ C ′′ and [σ]`
τ−→ [σ′]`.

• C
{an→m}
↪−→ C ′ iff C τ−→ C ′ because C ≡ C1 ‖ C2,

C1
an→m−→ C ′1, C2

ān→m−→ C ′2, and C ′ ≡ C ′1 ‖ C ′2.

We let ϕ range over the labels {an→m} and τ . We define
τ
↪−→→ def=

τ
↪−→ · · · τ

↪−→ and
{an→m}
↪−→→ def=

τ
↪−→→ ·

{an→m}
↪−→ · τ

↪−→→.

Definition 3.4 [RELEVANCE] Let C be a non-empty set of
L-SCCs. A filter f is `-relevant in C, written f ∝` C, if
whenever f α7−→ f̂ one has α ∈ {a →`, ā`→ } and there

exists Ĉ ∈ C such that1 Ĉ
{α}
↪−→→ and f̂ ∝` {C ′ | Ĉ

{α}
↪−→→ C ′}.

1This notation is loose: when α = ā`→ , {α} is, in fact, {a`→ }

A composite L-filter F is relevant for C, written F ∝ C
iff F [`] ∝` C for all ` ∈ L. Finally, a composite L-filter is
relevant for an L-SCC C if F ∝ {C}.

4. Synthesis of the Maximal Relevant Filter

We now describe the algorithm that, given an SCC, syn-
thesizes the v-greatest relevant filter that fixes the SCC.

Given a composition C, the algorithm keeps track of the
reachable states of the computation in C so as to filter out
the actions that may bring C to a deadlock or a livelock.
SinceC is finite state, the reachable states may be organized
into a finite state reduction graph.

A reduction graph is a directed graph G = (V,E) with
labeled edges and vertices. The vertices in V represent the
reachable states of the underlying composition C. With
each v ∈ V we associate two fields: state[v] gives the
computation state (i.e., the derivative C ′ of the initial state
C) associated with v; result [v] is a tag, SUCC, FAIL or
UNDEF, that informs on the possible outcomes of the com-
putation starting off at this state. An edge in E is a triple
(u,v)ϕ representing the transition state[u]

ϕ
↪−→ state[v].

The reduction graph only traces the states reached by means
of synchronizations or internal moves, thus disregarding all
states reached by labeled transitions.

Reduction graphs are stored in adjacency list representa-
tion, so that the set of outgoing edges for each u ∈ V can be
retrieved as Adj[u]: thus (u,v)ϕ ∈ E iff (ϕ,v) ∈ Adj[u].
We also writeAdj[u, ϕ] for the set {v ∈ V | (u,v)ϕ ∈ E}.
Vertices with no outgoing edges are called leaves. We de-
note by root[G] the vertex representing the initial state C.

The algorithm involves several steps. The first step
builds the reduction graph for the given SCC. The second
step propagates the result labels to verify whether the SCC
admits a filter, i.e., whether its reduction graph contains at
least one successful path from the root to a final state. The

third step extracts the sub-graph of the successful paths in
the reduction graph. The algorithm fails at this stage if the
extracted sub-graph is empty. Otherwise the algorithm suc-
ceeds by synthesizing the filter from the success sub-graph.

Building the reduction graph. The reduction graph G =
(V,E) is built in a top-down manner from a given initial
SCC term C through the function BuildGraph(C). The
construction iteratively explores the set of states reached
from C. The auxiliary function NewVertex(C) creates
a new vertex with UNDEF result label and state C. The loop
terminates when all the vertices reached have been visited.

Function BuildGraph(C)

Input: A choreography C
Output: G = (V,E) the reduction graph of C

r := newVertex(C); V := {r}; E := ∅; W := ∅;
while (V \W 6= ∅) do

u := select(V \W);
if state[u] X then

result [u] := SUCC;

else if state[u]
ϕ

↪ 6−→ then
result [u] := FAIL;

foreach Ĉ : state[u]
ϕ
↪−→ Ĉ do

v := select({w ∈ V | state[w] = Ĉ);
if v = NULL then

v := newVertex(Ĉ); V := V ∪ {v};
E := E ∪ {(u,v)ϕ};

W := W ∪ {u};
G := (V,E); root[G] := r;
return G;

Lemma 4.1 If G is a graph generated by the function
BuildGraph(C), then all the internal vertices ofG are la-
beled as UNDEF. Only the leaf with state [1]`1 ‖ . . . ‖ [1]`k ,
if it exists, is labeled as SUCC and it is denoted succ[G]. All
the other leafs are labeled as FAIL.

Example 4.2 The graph G below is generated by the con-
figuration C1 ‖ C2, with C1 = [(a.d.1 + b.1) ⊕ (a.1 +
c.e.1)]m and C2 = [ā@m.1 + b̄@m.1 + c̄@m.1]n, and
labels: result [w1] = result [w3] = FAIL, result [u] =
result [v1] = result [v2] = UNDEF, result [w2] = SUCC,
and succ[G] = w2.

u
τ

uukkkkkkkkkkk
τ

))TTTTTTTTTTT

v1{an→m}
yysssss

{bn→m}))SSSSSSSSSS v2 {cn→m}
%%KKKKK

{an→m}uukkkkkkkkkk

w1 w2 w3

Labelling the reduction graph. Let us first introduce
some auxiliary definitions. Let locs(ϕ) be {m,n} in case
ϕ = {am→n}, and ∅ in case ϕ = τ . Then, let G = (V,E)
be a reduction graph, and ϕ = {am→n}.

- A path π = (u,u1)ϕ1 , . . . , (un−1,v)ϕn
from u to v in G

is ϕ-free if locs(ϕ) ∩ locs(ϕi) = ∅ for all i’s.

- A vertex v is a ϕ-free descendant of u in G (dually, u is a
ϕ-free ancestor of v) if there is a ϕ-free path from u to v.

- A vertex u yields a conflict on ϕ if u has two distinct
ϕ-free descendants v1 and v2 such that (v1,w1)ϕ and
(v2,w2)ϕ ∈ E and result [w1] 6= result [w2] 6= UNDEF.

- A vertex v has a conflict onϕ inG, noted ConflictG(ϕ,v)
if v has a ϕ-free ancestor yielding a conflict on ϕ.

Intuitively, a graphG represents a compliant SCC if eve-
ry path in G starting form root[G] can be extended to reach
succ[G]. To ensure compliance, filters must then prune the
graph by banning all the ‘bad’ synchronizations that lead to
a node that cannot reach succ[G], and by preserving all the
‘good’ synchronizations that converge to succ[G]. Due to
the presence of internal choices, the same synchronization
can look good at one point, but actually be bad. The defini-
tion of conflict captures formally this notion of ambiguous
synchronizations.

Example 4.3 In the graph G of Example 4.2 it holds that
ConflictG({an→m},u). Indeed, focus on v2. In order to
guarantee compliance, we have to ban (v2,w3){cn→m} and
to preserve (v2,w2){an→m}. On the other hand, at v1 we
have to prune the edge (v1,w1){an→m} as it leads to a failu-
re. Since u reaches v1 and v2 via τ actions, and a filter has
no control on τ ’s, the candidate filter should allow and, at
the same time, prohibit the action an→m at location m and
ām→n at location n. This is clearly impossible, hence the
choreography C1 ‖ C2 cannot be fixed.

The next step consists in labelling the graph to propagate
the result label from succ[G] back towards root[G]. This is
achieved by the procedure LabelGraph(G) which runs
the auxiliary procedure PushLabels(G) twice. The lat-
ter receives a graphG generated by BuildGraph(C) and
updates just the UNDEF vertices of G. The result label at
each vertex u is set to FAIL if there exists at least one silent
transition from u to a FAIL vertex; it is set to SUCC if ei-
ther there are no silent transitions from u to a FAIL vertex
and there exists a silent transition from u to a SUCC vertex
or there exists one non-silent and non-conflicting transition
from u to a SUCC vertex. The procedure iteratively exam-
ines all the vertices in the graph until it reaches a fixed point.

Lemma 4.4 The following conditions are invariant for the
main loop in PushLabels(G). For every node u in G:
(i) result [u] changes to FAIL and SUCC at least once; (ii)

Procedure PushLabels(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

done := false;
while ¬ done do

done := true;
foreach u ∈ V do

succ := false; fail := false;
if Adj[u, τ] 6= ∅ then

if ∃v ∈ Adj[u, τ] : result [v] = FAIL then
fail := true;

else if ∃v∈Adj[u, τ] : result [v] = SUCC
then

succ := true;
else if ∃(ϕ,v) ∈ Adj[u] ∧ result [v] =
SUCC ∧ ¬Conflict(ϕ,u) then

succ := true;
if succ ∧ result [u] 6= SUCC then

result [u] := SUCC; done := false;
else if fail ∧ result [u] 6= FAIL then

result [u] := FAIL; done := false

result [u] never changes to UNDEF; (iii) when result [u] =
FAIL, then the label does not change anymore during the
computation.

Moreover, at the end of the loop the variable done is
false iff some node u has changed its status during the
current loop. Hence the procedure PushLabels(G) ter-
minates.

Procedure LabelGraph(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

PushLabels(G);
foreach u ∈ V do

if result [u] = UNDEF then
result [u] := FAIL;

PushLabels(G);

Lemma 4.5 After the call to PushLabels(G), the fol-
lowing conditions hold for every node u in G: (i)
result [u] = FAIL iff either there exists no (u,v)ϕ ∈ E
such that result [v] = SUCC and ¬ConflictG(ϕ,u) or
there exists (u,v)τ ∈ E such that result [v] = FAIL; (ii)
result [u] = SUCC iff there exists no (u,v)τ ∈ E such
that result [v] = FAIL and there exists either (u,v)τ ∈ E
such that result [v] = SUCC or (u,v)ϕ ∈ E with ϕ 6= τ ,
¬ConflictG(ϕ,u) and result [v] = SUCC; (iii) result [u] =

UNDEF iff result [v] = UNDEF for every node v that is
reachable form u.

By Lemmata 4.5 and 4.1, it follows that if result [u] =
UNDEF after a run of PushLabels(G) then it is im-
possible to reach any leaf of G from u. Hence u is
inside a cycle of UNDEF vertices. In this case, ver-
tex u must be marked FAIL. This is accomplished
by the LabelGraph(G) procedure which first runs
PushLabels(G), then sets to FAIL every UNDEF vertex,
and finally it runs PushLabels(G) again.

Example 4.6 The reduction graph G below is generated
by [(rec(X) a.X) ⊕ b.1]m ‖ [(rec(X) ā@m.X) +
b̄@m.1]n

UNDEF
τ

vvllll τ
((RRRR

UNDEF

{an→m}

YY UNDEF{bn→m}
((QQQQ

SUCC

After the first run of PushLabels(G), we obtain:
SUCC

τ
vvmmmm τ

''OOOO

UNDEF

{an→m}

YY SUCC {bn→m}
''OOOO

SUCC

Now the UNDEF node must clearly be set to FAIL. Thus,
a further run of PushLabels(G) is needed to propagate
the failure to the root.

FAIL
τ
xxpppp

τ
''OOOO

FAIL

{an→m}

ZZ SUCC {bn→m}
''OOOO

SUCC

The following post-condition for LabelGraph(G)
holds. We say that a path π inG is successful if result [u] =
SUCC for every node u in π, otherwise π is unsuccessful. A
node u is root-successful if it is reachable from root[G] via
a successful path, otherwise it is root-unsuccessful.

Lemma 4.7 Let G be generated by BuildGraph(C),
then after the call LabelGraph(G) it holds: (i) for ev-
ery root-successful node u in G, there exists a successful
path from u to succ[G]; (ii) for every root-unsuccessful
node u in G, either there exists no path from u to succ[G]
or there exist a path π from u to v and u′,v′ such that
result [v]=FAIL and (u′,v′)τ∈π.

Extracting the success subgraph. Item (i) of Lemma 4.7
hints that the root-successful vertices of G represent the
computation of a compliant configuration, as they satisfy
the requirements of Definition 2.1. Item (ii) of the same
lemma hints that if we consider just a root-unsuccessful
node, we make this ideal computation break compliance.

The next step of the algorithm computes the sub-graph ofG
that only includes the root-successful vertices, along with
the edges in the successful paths. This computation is ac-
complished by the SuccessGraph(G) function below.

Function SuccessGraph(G)

Input: A closed reduction graph G = (V,E)
Output: G′ = (V ′, E′) the success sub-graph of G

V ′ := (result [root[G]] = SUCC) ? {root[G]} : ∅;
E′ := ∅; done := false;
while ¬ done do

done := true;
foreach (u,v)ϕ ∈ E \ E′ do

if u ∈ V ′∧result [v] = SUCC∧¬Conflict(ϕ,u)
then

V ′ := V ′ ∪ {v}; E′ := E′ ∪ {(u,v)ϕ};
done := false

return G′ = (V ′, E′);

Lemma 4.8 Let G = (E, V) be a graph generated by the
procedure BuildGraph(C), and let G′ = (E′, V ′) be
the graph generated by SuccessGraph(G). Then u ∈
V ′ if and only if u is root-successful in G.

Synthesizing the filter. The filter is extracted from the
success graph by projecting the complementary actions of
each synchronization step to the contributing locations. Let
G = BuildGraph(C), G′ = SuccessGraph(G),
and FAlg

C = ExtractFilterL(root [G], ∅, G′). Thanks
to item (i) of Lemma 4.7 we derive the correctness of the
algorithm. By construction, FAlg

C is relevant for C. Fur-
thermore, item (ii) of Lemma 4.7 and Lemma 4.8 imply
that FAlg

C is maximum among the relevant filters that fix C.

Theorem 4.9 [SOUNDNESS AND MAXIMALITY] Let C be
a SCC. Then FAlg

C . C is compliant. Moreover, if a filter F
fixes C and is relevant for C, then F ≤ FAlg

C .

Corollary 4.10 [COMPLETENESS] Let C be a service-
contract composition. If C is weakly compliant, then the al-
gorithm succeeds and extracts the maximum relevant filter.

Example 4.11 Consider the service contract composition
C ‖ S ‖ B∗ of Example 3.3. A run of our algorithm will
produce the filter F depicted in Table 4.

5. Conformance Validation

Filters have an additional purpose in our theory, as beha-
vioral descriptors: in fact, we employ them to specify the

Function ExtractFilterL(u, U,G)

Input: G = (V,E) a success graph. u ∈ V,U ⊆ V
Output: F , an L-composite filter

F [`] := 0 for all ` ∈ L.;
if state[u] X then

return F ;
if u ∈ U then

rec[u] := true; return (Xu, . . . , Xu);
foreach (ϕ,v) ∈ Adj[u] do

Fv := ExtractFilterL(v, U ∪ {u}, G);
foreach location ` ∈ L do

if ϕ = {a`→ } then
F [`] := F [`]× ā`→ .Fv[`];

else if ϕ = {a →`} then
F [`] := F [`]× a →`.Fv[`];

else
F [`] := F [`]× Fv[`]j;

if rec[u] = true then
foreach ` ∈ L : Xu ∈ fv(F [`]) do

F [`] := rec(Xu)F [`];

return F ;

intended roles of a choreography. This is possible as fil-
ters are built around actions that provide accurate informa-
tion on the end-points involved in the operations of message
sent/reception. This is precisely what we need when pro-
jecting a choreographic design on the components to define
the role (i.e., the expected behavior) of each component.

We then check the conformance of a composition against
a choreographic specification as we outline next. We as-
sume that choreography specifications are given directly in
projected form, as a set Φ = {Φ(`) | ` ∈ L} of role spec-
ifications, with each role specified by a filter. We let α=⇒
denote the weak transition τ−→

∗ α−→ τ−→
∗
, and α1...αn=⇒ a se-

quence of such transitions (it stands for τ−→
∗

when n = 0).

Definition 5.1 [ROLE SUPPORT] A binary relation S be-
tween (role) filters and service contracts is a role simulation
if whenever (φ, [σ]`) ∈ S one has:
• if φ

α7−→ φ′ there exist α1, . . . , αn, σ
′ such that

[σ]`
α1...αn=⇒ · α−→ [σ′]` with α 6=αi and (φ′, [σ′]`) ∈ S;

• if [σ]`
α=⇒ [σ′]` then either φ α7−→ φ′ and (φ′, [σ′]`) ∈

S or φ 6 α7−→ and (φ, [σ′]`) ∈ S.

A contract [σ]` supports a role φ, noted φ/[σ]`, if (φ, [σ]`) ∈
S with S role simulation. A L-SCC C supports a specifica-
tion Φ, written Φ /L C iff Φ(`) / [σ`]` for all ` ∈ L.

A role simulation allows the simulating contract to have
additional observable behavior over the simulated role, but
only if it preserves the branching structure of the role.

Table 4 The Filter F for C ‖ S ‖ B∗

F [C] = RequestC→S .(PayCreditC→S .GetProdS→C .0× PayCashC→S .GetCashC→S .GetProdS→C .0)

F [S] = RequestC→S .RequestS→B .(PayCreditC→S .CheckCreditS→B .DoneB→S .GetProdS→C .0×

PayCashC→S .GetCashC→S .GetProdS→C .DoneS→B .0)

F [B∗] = RequestS→B .(CheckCreditS→B .DoneB→S .0× DoneS→B .0)

Definition 5.2 [CONFORMANCE] A contract composition
C is Φ-conformant iff FAlg

C exists and Φ / (FAlg
C . C).

Requiring FAlg
C . C to support Φ gives a guarantee of

functional completeness for the filtered choreography. On
the other hand, the properties of FAlg

C ensure that the addi-
tional behavior exposed by (FAlg

C .C), if any, is safe. To il-
lustrate, let φ = am→`.φ

′ be the role, and σ = a.σ1⊕b.a.σ2

be the contract at `. Then, φ / [σ]` whenever φ′ / [σ1]`
and φ′ / [σ2]`. Indeed, when [σ]` is a filtered location, we
know that the ‘spurious’ action b does not deadlock (other-
wise b.a.σ2 would have been filtered away). On the other
hand φ 6/ [a.σ1 ⊕ b]` as the service at ` may deliberately
choose not to execute a as required by its role.

6. Related Work

There is a number of proposals in the literature dealing
with composition, interoperation and adaption within SOA.
Closer to our work are the proposals that address the com-
pliance problem within choreographies [3, 4, 11]. In [11]
the problem is reduced to a bipartite compatibility problem:
each partner can check locally its compliance by verifying
its compatibility with the aggregation of all its partners. Our
present concern is more general, as we also devise a tech-
nique for adapting the aggregation to solve the behavioral
mismatches that hinder compliance.

Component adaptation has itself received much interest
in the literature. Among the many approaches [2, 5, 7], the
closest to ours is perhaps [8], where the authors develop a
method for the automated extraction of an adapter for a ser-
vice composition out of the LTS. The adapter is deployed
as an independent component that orchestrates the execu-
tion of its peers to ensure safety of the execution flow. More
recently, in [9], the approach has been refined with a tech-
nique for projecting the global adapter onto the individu-
al system components. While we share some of the initial
ideas with these two papers, specifically the idea of extract-
ing the adapter from the LTS, our approach is different for
a number of design choices and technical issues. First, we
extract the filters directly from the individual components
rather than obtaining them by a projection from a global

adapter. Secondly, our filter fully preserves the action se-
quence in the original components, whereas the adapter
synthesized in [9] may require a reorder. Also, our formal-
ization of adapters as filters makes it possible to formulate,
and prove formally, a precise characterization of the proper-
ties satisfied by the extracted filter (i.e., relevance and max-
imality). Finally, our theory provides a uniform setting for a
combined analysis of compliance and conformance in terms
of well-established behavioral techniques.

References

[1] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella.
Verifying the conformance of web services to global interaction pro-
tocols: A first step. In WS-FM’05, volume 3670 of LNCS, pages
257–271. Springer, 2005.

[2] A. Bracciali, A. Brogi, and C. Canal. A formal approach to compo-
nent adaptation. Journal of Systems and Software, 74(1):45–54,
2005.

[3] M. Bravetti and G. Zavattaro. Towards a unifying theory for chore-
ography conformance and contract compliance. In SC’07, volume
4829 of LNCS, pages 34–50. Springer, 2007.

[4] M. Bravetti and G. Zavattaro. Contract compliance and choreogra-
phy conformance in the presence of message queues. In WS-FM’08,
LNCS. Springer, 2008. To appear.

[5] A. Brogi, C. Canal, and E. Pimentel. Component adaptation through
flexible subservicing. Science of Computer Programming, 63(1):39–
56, 2006.

[6] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for
web services. In POPL’08, pages 261–272. ACM press, 2008.

[7] P. Inverardi and M. Tivoli. Deadlock free software architectures
for com/dcom applications. Journal of Systems and Software,
65(3):173–183, 2005.

[8] R. Mateescu, P. Poizat, and G. Salaün. Behavioral adaptation of com-
ponent compositions based on process algebra encodings. In ASE’07,
pages 385–388. ACM Press, 2007.

[9] T. Melliti, P. Poizat, and S. Ben Mokhtar. Distributed behavioural
adaptation for the automatic composition of semantic services. In
FASE’08, volume 4961 of LNCS, pages 146–162, 2008.

[10] R. Milner. Communication and Concurrency, volume 92 of Prentice
Hall International Series in Computer Science. Prentice Hall, 1989.

[11] M. Tarek, C. Boutrous-Saab, and S. Rampacek. Verifying correctness
of web services choreography. In ECOWS’06, pages 306–318, 2006.

[12] W. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. Ver-
beek. Conformance checking of service behavior. ACM Transactions
on Internet Technology, Special Issue on Middleware for Service-
Oriented Architectures, 2008. To appear.

