
Quantitative Analysis of Concurrent Reversible
Computations

Andrea Marin1 and Sabina Rossi1

DAIS, Università Ca’ Foscari Venezia, Italy
Via Torino, 155

{marin,srossi}@dais.unive.it

Abstract. Reversible computing is a paradigm of computation that ex-
tends the standard forward-only programming to reversible program-
ming, so that programs can be executed both in the standard, forward
direction, and backward, going back to past states. In this paper we
present novel quantitative stochastic models for concurrent and coopera-
ting reversible computations. More precisely, we introduce the class of
ρ-reversible stochastic automata and define a semantics for the synchro-
nization ensuring that this class of models is closed under composition.
For this class of automata we give an efficient way of deriving the equilib-
rium distribution. Moreover, we prove that the equilibrium distribution
of the composition of reversible automata can be derived as the product
of the equilibrium distributions of each automaton in isolation.

1 Introduction

Reversible computing is a paradigm of computation which relies on the idea
that programs can be executed both in the standard, forward direction, and
backward. In contrast to traditional forward-only computations, reversible ex-
ecutions may restore a past state by undoing, one by one, all the previously
performed operations. According to [26] a bi-directional execution is any pro-
gram execution that carries with it the notion of a runtime choice between for-
ward and backward execution, regardless of the granularity of the execution
unit. Although still not widely used, reversible computing has a growing number
of promising applications. For instance, it has been shown in [4, 5] that ideally
reversible computations can be performed without loss of energy. Another appli-
cation scenario is the improvement of the performance in parallel computations.
Indeed, by assuming the reversibility of the computations we may increase the
concurrency of the systems by allowing the local processors to execute their jobs
asynchronously. In case of data dependence violations, the backward execution
rolls back the processor to the execution point where the dependency viola-
tion occurred. A practical application of this idea is the popular “time warp”
mechanism proposed by Jefferson in [17, 18]. Other applications include proces-
sors with speculative executions [11], debugging [8, 22], fault detection [7] and
tolerance [27], database transaction rollbacks and quantum computing [25, 30]
(see [26] for a survey of these application scenarios). Reversible computing can

be implemented in essentially two ways: the first consists in recording a set of
checkpoints that store the state of the processor at some epochs of the com-
putation, the second in implementing fully reversible programs where each step
of the computation may be inverted. Janus [34, 33] is an example of a time-
reversible programming language and many research efforts have been devoted
to the construction of reversible hardware components.

While the functional analysis of reversible computations has been widely ex-
plored in previous works (see [4, 28, 9, 20]), the quantitative analysis is a topic
that has still to be addressed. For forward-only computations, time-based quan-
titative analysis has been deeply studied especially in the context of systems
in which some aspects are abstracted out and assumed to have a probabilistic
nature (see, e.g.,[2]).

In this paper we focus on the problem of defining quantitative stochastic
models for concurrent and cooperating reversible computations. The stochastic
processes underlying our models are continuous-time Markov processes with a
discrete-state space (i.e., Continuous Time Markov Chains, CTMCs) which is a
common framework for the formal specification and evaluation of quantitative
properties of systems [29, 15, 13]. We focus on the derivation of the equilibrium
(or steady-state) performance indices, i.e., we aim at computing the probability
of observing the system in a certain state when the time elapsed since the begin-
ning of the computation is long enough (ideally infinite). Indeed, we can imagine
to repeat the computation infinite times, and the equilibrium distribution rep-
resents the probability of observing a certain state under this assumption. For
models with an underlying CTMC the necessary and sufficient condition for the
existence of a unique equilibrium distribution is that the chain is ergodic, i.e.,
its reachability graph is irreducible and the expected time elapsed from a visit
to any state until the next visit to the same state is finite.

Contribution. In this paper we use stochastic automata in the style of [29]
to model reversible processes. We introduce the class of ρ-reversible stochastic
automata and define a semantics for the synchronisation of reversible automata
that ensures that this class of models is closed under composition. For simplic-
ity, we introduce the synchronisation semantics for pairs of automata and then
we discuss how it is possible to extend it to an arbitrary number of automata.
We also address the problem of the computation of the equilibrium distribu-
tion. Indeed, for general Markovian models, the derivation of the equilibrium
distribution is known to be time expensive (O(n3) with n being the number of
model states) and prone to numerical stability problems [31] since it requires the
numerical solution of a linear system of equations. For the class of reversible au-
tomata we give an efficient way of deriving the steady-state distribution which
is also numerically stable since it involves only the product of floating point
numbers. Even more interestingly, we prove that the equilibrium distribution
of the composition of reversible automata can be derived as the product of the
equilibrium distributions of each automaton in isolation. In the literature, this
property is known as product-form [19, 3].

Related work. Formalisms for the description and the analysis of reversible
computations have been proposed in [10, 21] and the references therein. The
behavioural analysis of reversible computations has been studied in [28, 9, 20]
where the authors address the problem of reachability and system equivalences
via bisimulation. In [1] and subsequent papers, the authors propose a quan-
titative evaluation of the energy costs required to allow the system to reach
a steady-state behaviour. Our contribution is more related to formal methods
for the quantitative analysis of reversible computations and the computation
of the equilibrium distribution that, to the best of our knowledge, has still to
be explored. From a theoretical point of view, time-reversibility in CTMCs is
mainly studied in [19] where the author introduces also a class of product-form
models. In [23, 24] the authors introduce novel reversibility-based definitions for
Markov chains but, differently from the present work, there is not any notion of
compositionality. With respect to the above mentioned works, here we consider
interacting labelled automata representing reversible computations and define
a synchronisation semantics that is closed with respect to this class of compu-
tations. Moreover, we study their equilibrium distribution which, surprisingly,
is proved to exhibit an unconditional product-form. This is different from the
well-known quasi-reversibility based product-forms studied in [19, 12].

Plan of the paper. The paper is organized as follows. Section 2 introduces
the fundamental notions of Markov chain and reversibility. In Section 3 we in-
troduce the definition of stochastic automaton and provide the synchronization
semantics. In Section 4 we present our main theoretical results about reversible
automata, their closure under synchronization and their product-form solution.
Section 5 concludes the paper.

2 Continuous-Time Markov Chains

Let X(t) be a stochastic process taking values into a state space S for t ∈
R+. X(t) is stationary if (X(t1), X(t2), . . . , X(tn)) has the same distribution as
(X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ R+. X(t) satisfies
the Markov property and is called Markov process if the conditional (on both past
and present states) probability distribution of its future behaviour is independent
of its past evolution until the present state.

A Continuous-Time Markov Chain (CTMC) is a Markov process with a dis-
crete state space. A CTMC X(t) is time homogeneous if the conditional proba-
bility P (X(t+ τ) = s | X(t) = s′) does not depend upon t, and is irreducible if
every state in S can be reached from every other state. A state in a CTMC is
called recurrent if the probability that the process will eventually return to the
same state is one. A recurrent state is called positive-recurrent if the expected
number of steps until the process returns to it is finite. A CTMC is ergodic if it is
irreducible and all its states are positive-recurrent. We assume that any CTMC
which we deal with is ergodic. A process satisfying all these assumptions possesses
an equilibrium (or steady-state) distribution, that is the unique collection of pos-

itive numbers π(s) with s ∈ S such that limt→∞P (X(t) = s | X(0) = s′) = π(s)
for all s′ ∈ S.

The transition rate between two states s and s′ is denoted by q(s, s′), with
s 6= s′. The infinitesimal generator matrix Q of a Markov process is such that the
q(s, s′)’s are the off-diagonal elements while the diagonal elements are formed
as the negative sum of the non-diagonal elements of each row. The equilibrium
distribution π is the unique row vector of positive numbers π(s) with s ∈ S,
summing to unit and satisfying the system of global balance equations (GBEs):

πQ = 0 . (1)

The solution of system (1) is often unfeasible due to the large number of
states of the CTMC. The analysis of an ergodic CTMC in equilibrium can be
greatly simplified if it satisfies the property that when the direction of time is
reversed the behaviour of the process remains the same.

Given a stationary CTMC, X(t) with t ∈ R+, we call X(τ − t) its reversed
process. We denote by XR(t) the reversed process of X(t). It can be shown
that XR(t) is also a stationary CTMC. We say that X(t) is reversible if it is
stochastically identical to XR(t), i.e., the process (X(t1), . . . , X(tn)) has the
same distribution as (X(τ − t1), . . . , X(τ − tn)) for all t1, . . . , tn, τ ∈ R+ [19].

For a stationary Markov process there exists a necessary and sufficient con-
dition for reversibility expressed in terms of the equilibrium distribution π and
the transition rates.

Proposition 1. (Transition rates of reversible processes [19]) A stationary CTMC
with state space S and infinitesimal generator Q is reversible if and only if for
all s, s′ ∈ S with s 6= s′,

π(s)q(s, s′) = π(s′)q(s′, s) .

A reversible CTMC X(t) and its dual XR(t) have the same equilibrium
distribution.

The reversed process XR(t) of a Markov process X(t) can always be defined
even when X(t) is not reversible. In [12] the author shows that XR(t) is a CTMC
and its transition rates are defined according to the following proposition.

Proposition 2. (Transition rates of reversed process [12]) Given the stationary
CTMC X(t) with state space S and infinitesimal generator Q, the transition
rates of the reversed process XR(t), forming its infinitesimal generator QR, are
defined as follows: for all s, s′ ∈ S,

qR(s′, s) =
π(s)

π(s′)
q(s, s′) , (2)

where qR(s′, s) denotes the transition rate from s′ to s in the reversed process.

The equilibrium distribution π is the same for both the forward and the reversed
process.

3 Stochastic Automata

Many high-level specification languages for stochastic discrete-event systems
are based on Markovian process algebras [15, 6, 14] that naturally supply pow-
erful composition operators and timed actions whose delay is governed by inde-
pendent random variables with a continuous-time exponential distribution. The
expressivity of such languages allows the development of well-structured spec-
ifications and efficient analyses of both qualitative and quantitative properties
in a single framework. Their semantics is given in terms of stochastic automata,
an extension of labelled automata with clocks that are exponentially distributed
random variables.

In this paper we consider stochastic concurrent automata with an underly-
ing continuous-time Markov chain as common denominator of a wide class of
Markovian stochastic process algebra. Stochastic automata are equipped with a
composition operator which allows a complex automaton to be constructed from
simpler components. Our model draws a distinction between active and passive
action types, and in forming the composition of automata only active/passive
synchronisations are permitted.

Definition 1. (Stochastic Automaton (SA)) A stochastic automaton P is a tu-
ple (SP ,AP ,PP ,;P , qP) where

– SP is a denumerable set of states called state space of P
– AP is a finite set of active types
– PP is a finite set of passive types
– τ denotes the unknown type
– ;P ⊆ (SP ×SP ×TP) is a transition relation where TP = (AP ∪PP ∪ {τ})

and for all s ∈ SP , (s, s, τ) /∈;P
1

– qP is a function from ;P to R+ such that ∀s1 ∈ SP and ∀a ∈ PP ,∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a) ≤ 1.

In the following we denote by →P the relation containing all the tuples of
the form (s1, s2, a, q) where (s1, s2, a) ∈;P and q = qP (s1, s2, a). We say that
qP (s, s′, a) ∈ R+ is the rate of the transition from state s to s′ with type a
if a ∈ AP ∪ {τ}. Notice that this is indeed the apparent transition rate from
s to s′ relative to a [15]. If a is passive then qP (s, s′, a) ∈ (0, 1] denotes the
probability that the automaton synchronises on type a with a transition from s to
s′. Hereafter, we assume that qP (s, s′, a) = 0 whenever there are no transitions
with type a from s to s′. If s ∈ SP , then for all a ∈ TP we write qP (s, a) =∑
s′∈SP qP (s, s′, a). We say that P is closed if PP = ∅. We use the notation

s1
a
;P s2 to denote the tuple (s1, s2, a) ∈;P ; we denote by s1

(a,r)−−−→P s2 (resp.,

s1
(a,p)−−−→P s2) the tuple (s1, s2, a, r) ∈→P (resp., (s1, s2, a, p) ∈→P).

1 Notice that τ self-loops do not affect the equilibrium distribution of the CTMC
underlying the automaton. Moreover, the choice of excluding τ self-loops will simplify
the definition of automata synchronisation.

sp1
(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ AP = PQ)

sp1
(a,p)−−−→P sp2 sq1

(a,r)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ PP = AQ)

sp1
(τ,r)−−−→P sp2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq1)

sq1
(τ,r)−−−→Q sq2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp1 , sq2)

Table 1: Operational rules for SA synchronisation

Definition 2. (CTMC underlying a closed automaton) The CTMC underlying
a closed automaton P , denoted XP (t), is defined as the CTMC with state space
SP and infinitesimal generator matrix Q defined as: for all s1 6= s2 ∈ SP ,

q(s1, s2) =
∑

a,r:(s1,s2,a,r)∈→P

r .

We say that a closed automaton P is ergodic (irreducible) if its underlying
CTMC is ergodic (irreducible). We denote the equilibrium distribution of the
CTMC underlying P by πP .

The synchronisation operator between two stochastic automata P and Q
is defined in the style of master/slave synchronisation of SANs [29] based on
the Kronecker’s algebra and the active/passive cooperation used in Markovian
process algebra such as PEPA [15, 16].

Definition 3. (SA synchronisation) Given two automata P and Q such that
AP = PQ and AQ = PP we define the automaton P ⊗Q as follows:

– SP⊗Q = SP × SQ
– AP⊗Q = AP ∪ AQ = PP ∪ PQ
– PP⊗Q = ∅
– τ is the unknown type
– ;P⊗Q and qP⊗Q are defined according to the rules for −→P⊗Q depicted

in Table 1 where −→P⊗Q contains the tuples ((sp1 , sq1),(sp1 , sq2), a, q) with
((sp1 , sq1),(sp1 , sq2), a)∈;P⊗Q and q = qP⊗Q((sp1 , sq1), (sp1 , sq2), a).

Notice that although we define a semantics for pairwise SA synchronisations,
this can be easily extended in order to include an arbitrary finite number of
pairwise cooperating automata as discussed in Section 4.1. We point out that
the assumption that an automaton obtained by a cooperation does not have
passive types ensures that the resulting automaton has an underlying CTMC
and then we can study its equilibrium distribution.

4 Reversible Stochastic Automata

In this section we introduce the notion of ρ-reversibility for stochastic au-
tomata. This is defined in the style of the Kolmogorov’s criteria presented in
[19]. We assume that for each forward action type a there is a corresponding
backward type

�
a with

�
τ = τ . Formally

�· is a bijection (renaming) from TP to

TP . In most of practical cases,
�· is an involution, i.e.,

�
�
a = a for all a ∈ TP ,

and hence the semantics becomes similar to the one proposed in [10]. We say
that

�· respects the active/passive types of an automaton P if
�
τ = τ and for all

a ∈ TP \{τ} we have that a ∈ AP ⇔
�
a ∈ AP (or equivalently a ∈ PP ⇔

�
a ∈ PP).

Definition 4. (ρ-reversible automaton) Let P be an irreducible stochastic au-
tomaton, then P is ρ-reversible if ρ : SP → SP is a renaming (permutation)
of the states and

�· is a bijection from TP to TP that respects the active/passive
typing, such that:

1. q(s, a) = q(ρ(s), a), for each state s ∈ SP ;

2. for each cycle Ψ = (s1
a1
; s2

a2
; . . .

an−1
; sn

an
; s1) in P there exists one cycle

�

Ψ = (ρ(s1)
�
an
; ρ(sn)

�
an−1
; . . .

�
a2
; ρ(s2)

�
a1
; ρ(s1)) in P such that:

n∏
i=1

q(si, si+1, ai) =

n∏
i=1

q(ρ(si+1), ρ(si),
�
ai) with sn+1 ≡ s1 .

We say that
�

Ψ is the inverse of cycle Ψ . If ρ is the identity function we
simply say that P is reversible.

Observe that the cycle
�

Ψ is unique. This follows from the fact that, by Defini-
tion 1 of stochastic automaton, there exists at most one transition between any
pair of states with a certain type a ∈ TP . We stress on the fact that this class
of models does not belong to any well-known class of compositional reversible
models including those studied in [19, 12].

Example 1. (Reversible Random Number Generators) In the context of concur-
rent simulations, the Time Warp mechanism [17, 18] is an optimistic synchroni-
sation protocol which is used to synchronize parallel discrete event simulations
allowing a process to roll back when an event occuring in another process in-
validates part of its computation. The state of the process depends on a set of
random numbers that are generated by a pseudo Random Number Generator
(RNG). Reversible RNGs allow their state to move both forward and backward
so that if the simulation process is itself reversible, the rollback can be performed
without storing the process state in memory [26]. We can model a reversible RNG
by a simple sequential reversible automaton as shown in Fig. 1 (a). The model
consists of a denumerable set of states s1, s2, From each state si a random
number is generated causing a synchronising label ai and a transition to state
si+1 with rate rf . In the backward flow, the transition occurs from state si+1 to
si with type bi. Although it must be the case that the pseudo random number

s1 s2 s3 · · ·

a1,rf

b1,rb

a2,rf a3,rf

b2,rb b3,rb

(a) Infinite state model

s1

· · · s2

s3

a1,rf

bn,rb

b3,rb

an,rf

b1,rb

a2,rf

b2,rb

a3,rf

(b) Finite state model

Fig. 1: Models for RNGs

generated by type ai is the same generated in the backward transition typed bi,
the use of two different types allows the synchronising process to drive the RNG
in the forward or in the backward direction. Conversely, the use of the same type
would have led to a situation in which the simulator process is executing in the
forward direction while the RNG process draws pseudo random numbers in the
backward direction, hence introducing an undesired behaviour. The automaton

is ρ-reversible with ρ being the identity function and
�
ai = bi,

�

bi = ai.
Let us now consider a cyclic RNG in which, in the forward computation, the

state that follows sn is s1 for a given n > 2 as depicted in Fig. 1 (b). In this case,

we have also to consider the cycle s1
a1,rf−−−→ s2 · · ·

an−1,rf−−−−−→ sn
an,rf−−−→ s1 whose

inverse is s1
bn,rb−−−→ sn · · ·

b2,rb−−−→ s2
b1,rb−−−→ s1. In order for the rate condition of

Definition 4 to be satisfied, equation rnf = rnb must hold, i.e., rf = rb is required.
In other words, the automaton is reversible if the rate of generation of random
numbers is the same in the forward and backward flow.

Example 2. (Reversible computations with checkpoints) Traditional means for
restoring a computation to a previous state involve checkpoints, that are fixed
conditions such that when a checkpoint is reached the computation may decide
to proceed forward to the next checkpoint or backward to the previous one. In
these cases, differently from the model studied in Example 1, the decision about
moving forward or backward is not taken in each model state but only at the
fixed checkpoints. Fig. 2 shows the stochastic automaton underlying such com-
putations. From checkpoint CK1 the computation proceeds forward to states
s1, s2, . . . sn and then reaches checkpoint CK2. At checkpoint CK2 the compu-
tation can move backward to s′n, . . . , s

′
2, s
′
1 and then to CK1. We can show that

the computation is ρ-reversible with ρ(CKi) = CKi, ρ(si) = s′i, ρ(s′i) = ρ(si)

s′1 s′2 · · · s′n

· · · CK1 CK2 · · ·

s1 s2 · · · sn

τ,r1

τ,r2 τ,rn−2 τ,rn

ai,rai

bi,rbi

τ,r0

τ,rn+1

ai+1,rai+1

bi+1,rbi+1

τ,r1 τ,r2 τ,rn−1

τ,rn

Fig. 2: Model for a reversible computation with checkpoint

and
�
ai = bi,

�

bi = ai for all i. In order for the rate condition of Definition 4 to
be satisfied, the following cycle has to be considered:

Ψ = CK1
τ,r0−−→ s1

τ,r1−−→ s2
τ,r2−−→ · · · sn

τ,rn−−−→ CK2

τ,rn+1−−−−→ s′n
τ,rn−−−→ · · · s′2

τ,r2−−→ s′1
τ,r1−−→ CK1 .

The condition is trivially satisfied since the inverse cycle
�

Ψ , under the renaming
function ρ, coincides with Ψ . Moreover, for all si we have q(si, τ) = q(s′i, τ).

The following theorem provides a necessary condition for ρ-reversibility ex-
pressed in terms of the equilibrium distribution πP and the transition rates. It
is worth of notice the analogies between Theorem 1 and Propositions 1 and 2.

Theorem 1. (Detailed balance equations) If P is ergodic and ρ-reversible then
for each pair of states s, s′ ∈ SP , and for each type a ∈ TP , we have

πP (s)q(s, s′, a) = πP (s′)q(ρ(s′), ρ(s),
�
a) .

Notice that Theorem 1 differs from those proposed in [32, 19] in the sense
that in our theorem action types are taken into account.

The next proposition says that the states of an ergodic ρ-reversible automa-
ton have the same equilibrium probability of the corresponding image under ρ.

Proposition 3. (Equilibrium probability of the renaming of a state) Let P be
an ergodic ρ-reversible automaton. Then for all s ∈ SP ,

πP (s) = πP (ρ(s)) .

The class of ρ-reversible automata satisfies the property that any ρ-reversible
automaton can be rescaled allowing one to close the automaton by assigning the
same rate to each passive action with a certain label weighted on its probability,
while maintaining the equilibrium distribution.

Definition 5. (Scaled automaton) Let P be an automaton, a ∈ TP and k ∈ R+.
The automaton S = P{a · k} is defined as follows:

– SS = SP
– AS = AP and PS = PP if a ∈ AP ∪ {τ}
– AS = AP ∪ {a} and PS = PP \ {a} if a ∈ PP
– ;S = ;P

– qS(s1, s2, b) =

{
qP (s1, s2, b) if b 6= a

qP (s1, s2, b) · k if b = a

Intuitively, the rescaling of a passive type a with a factor ka should be inter-
preted as if the automaton is synchronising with an event that occurs according
to an independent homogeneous Poisson process with rate ka and hence can be
seen as a way to close an open automaton. The rescaling of an active type b
by a factor kb ≤ 1 should be interpreted as the reduction of the rates of the
transitions with type b due to the fact that a cooperating automaton is ready to
synchronise on b with a state independent probability kb. If kb > 1 we interpret
this as a speed up of the active transitions, e.g., because the synchronising au-
tomaton models the fact that one component performs part of the work that is
associated with the synchronising transition.

Since
�· is a permutation of the labels, we denote by [a] the orbit of type a,

i.e., a ∈ [a],
�
a ∈ [a],

�
�
a ∈ [a] and so on. When

�· is an involution then for all a we
have that [a] is either a singleton or contains two types. Notice that if

�· respects
the active/passive types of P , then for all a we have that the elements of [a] are
either all active or all passive. Notice that [τ] = {τ}.

Proposition 4. (ρ-reversible scaled automaton) If P is an ergodic ρ-reversible
automaton, then for all a ∈ TP , the automaton P ′ = P{b · k, b ∈ [a]} is also
ρ-reversible. Moreover, πP (s) = πP ′(s) for all states s ∈ SP .

According to Proposition 4 the ergodicity and the equilibrium distribution
of a ρ-reversible automaton does not depend on the rescaling of all the types
belonging to an orbit of

�· . As a consequence, if the automaton is open and we
close it by rescaling, its equilibrium distribution and ergodicity does not change
with the rescaling factor. Henceforth, we will talk about equilibrium distribution
and ergodicity of open automata in the sense that they are the same for any
closure obtained by rescaling.

The following relationship states that ρ-reversibility for stochastic automata
implies the reversibility of the underlying CTMC when the renaming function ρ
is the identity.

Proposition 5. (CTMC-reversibility) Let P be an ergodic automaton. If P is
ρ-reversible and ρ is the identity function then its underlying CTMC is reversible.

The opposite is, in general, not true.

Example 3. (Automaton ρ-reversibility and CTMC reversibility) Consider the
automaton depicted in Fig. 3 (a). Since it has only one active type a (indeed, in
this case,

�
a = a), the underlying CTMC can be trivially derived and it is identi-

cal to the model in Fig. 3 (a) where the action type a is not present. Since the

1 3

2 4

a,α

a,γ

a,α/2

a,α/2

a,γ

(a) ρ-reversible automaton

1 3

2 4

α/2

α/2

γ

α

γ

(b) Reversed underlying CTMC

Fig. 3: A ρ-reversible automaton with an underlying non-reversible CTMC.

CTMC underling the automaton is ergodic, we may construct the time-reversed
CTMC displayed in Fig. 3 (b). We notice that the two CTMCs are different and
hence the automaton is not reversible, however we can prove that under the
renaming ρ = {1→ 2, 2→ 1, 3→ 4, 4→ 3} the labelled automaton in Fig. 3 (a)
satisfies the conditions of Definition 4, i.e., it is ρ-reversible.

The following theorems are important to tackle the state space explosion
when studying a network of synchronising automata. Theorem 2 states that the
synchronisation of ρ-reversible automata is still ρ-reversible and therefore net-
works of more than two automata can be defined by combining pairs of automata.
Notice that operator ⊗ among ρ-reversible automata inherits the associativity
from Kronecker’s operator of the Stochastic Automata [29] or from the synchro-
nisation operator of PEPA [15]. Theorem 3 states that the composition of two
ρ-reversible automata has an equilibrium distribution that can be derived by the
analysis of the isolated cooperating automata (i.e., without generating the joint
state space and solving the system of global balance equations). Notice that this
analysis, differently from those based on the concepts of quasi-reversibility [19,
12] and reversibility, does not require a re-parameterisation of the cooperating
automata, i.e., the expressions of the equilibrium distributions of the isolated au-
tomata are as if their behaviours are stochastically independent although they
are clearly not.

Theorem 2. (Closure under ρ-reversibility) Let P and Q be two ρP - and ρQ-
reversible automata with respect to the same function

�· on the action types.
Then, the automaton P⊗Q is ρP⊗Q-reversible with respect to the same

�· , where,
for all (s1, s2) ∈ SP × SQ,

ρP⊗Q(sp, sq) = (ρP (sp), ρQ(sq)) . (3)

Theorem 3 plays a pivotal role in the theory developed in this paper. Indeed,
if we have a set of M cooperating automata the cardinality of the state space may
have the size of the Cartesian product of the state space of each single automaton.
Assuming that each automaton has a finite state space of cardinality N , the joint

state space has, in the worst case, a cardinality of NM . Since the computation
of the equilibrium distribution of a CTMC requires the solution of the linear
system of global balance equations, its complexity is O(N3M). In case of ρ-
reversible automata, the steady-state distribution can be computed efficiently
by means of Theorem 1 in linear time on the cardinality of the state space for
each automaton, and hence by Theorem 3 the complexity of the computation of
the joint equilibrium distribution is O(NM).

Theorem 3. (Product-form solution) Let P and Q be two ergodic ρP - and ρQ-
reversible automata with respect to the same function

�· on the action types, and
let πP and πQ be the equilibrium distributions of the CTMCs underlying P and
Q, respectively. If S = P ⊗Q is ergodic on the state space given by the Cartesian
product of the state spaces of P and Q, then for all (sp, sq) ∈ SP × SQ,

πS(sp, sq) = πP (sp)πQ(sq) . (4)

In this case we say that the composed automaton S exhibits a product-form
solution.

It is worth of stressing on the fact that the cooperating automata are not stochas-
tically independent. Indeed Theorem 3 holds only for the equilibrium distribu-
tion of the joint model, i.e., when t→∞. This is coherent with the literature on
product-forms of stochastic models, i.e., stochastic independence clearly implies
product-form but the opposite in not true.

Example 4. We consider the model for a reversible computation shown in Fig. 4.
P and Q communicate on an unreliable channel, i.e., a packet sent from P to Q
is recevied by Q with probability p and lost with probability 1 − p. P executes
its computation in the forward (s0 → s1 → s2 → s3 → s4 → s5) or backward
(s5 → s4 → s′3 → s′2 → s1 → s0) direction. It has two checkpoints modelled
by states s1 and s4 and the synchronisations with Q occur on the transitions
from s0 to s1 (and its dual from s1 to s0) and from s4 to s5 (and its dual from
s5 to s4). Q moves from s0 to s1 or s2 with a probabilistic choice upon the
synchronisation with type a. Notice that when P is executing in the backward
direction also Q is rolling back because of the synchronising type a. Assume
that the model encodes the result of the computation in state (s5, s4) or (s5, s5)
(where the first component of the state is associated with P and the second
with Q). We aim to compute the equilibrium probability of these two states that
represents the fraction of time that the process spends in the states that encode
the desired result. Notice that a, b, a, b ∈ AP = PQ.

Let us define the involution
�· as:

�
a = a,

�

b = b. Moreover, let ρP (si) = si
for i = 0, 1, 4, 5 and ρP (si) = s′i and ρP (s′i) = si for i = 2, 3, while ρQ(si) is the
identity for all i = 0, . . . , 5. We can prove that P and Q are ρ-reversible with
respect to ρP and ρQ, respectively, and

�· .
Now we use Theorem 1 to derive the equilibrium distribution of the isolated

automata. Let us consider an abitrary state in P , say s0. We can immediately
derive πP (s1) by using the detail balance equation and we obtain:

πP (s0)λ(1− p) = πP (s1)µ(1− p) ,

s′2 s′3

s0 s1 s4 s5

s2 s3

τ,γ2

τ,γ3
τ,λ(1−p)
a,λp

a,µp

τ,µ(1−p)
τ,γ1

τ,γ4
b,νp

τ,ν(1−p)

b,ηp

τ,η(1−p)τ,γ2

τ,γ3

(a) Model for P

s0

s1 s2

s3 s5

s4

a, 12 a, 12

a,1

τ,α1 b,1

a,1

b,1

τ,α2 b,1

b,1

(b) Model for Q

Fig. 4: A model for two communicating programs

which gives πP (s1) = πP (s0)λ/µ. Then, we derive πP (s2) using the detailed bal-
ance equation with s1 and obtain: πP (s2) = πP (s0)λγ1/(µγ2). By Proposition 3
we immediately have πP (s′2) = πP (s2). Then we derive πP (s′3) = πP (s3) =
πP (s0)λγ1/(µγ3), πP (s4) = πP (s0)λγ1/(µγ4) and πP (s5) = πP (s0)λγ1β/(µγ4η).
Notice that there may be more than one candidate detailed balance equation
that can be applied to derive the equilibrium distribution of a state, but The-
orem 1 ensures that this can be arbitrarly chosen. It remains to derive πP (s0)
that is computed by normalising the probabilities, i.e.:

πP (s0) =
γ2γ3γ4ηµ

βγ1γ2γ3λ+ γ1(γ2γ3 + 2(γ2 + γ3)γ4)λη + γ2γ3γ4η(λ+ µ)
.

We can apply the same approach to derive the equilibrium distribution of Q,
obtaining:

πQ(s5) = πQ(s2) = πQ(s1) = πQ(s0)
1

2
, πQ(s3) = πQ(s4) = πQ(s0)

α1

2α2
.

and by normalising the probabilities πQ(s0) = 2α2/(2α1 + 5α2). By Theorem 3
we have:

πP⊗Q(s5, s4) + πP⊗Q(s5, s5) = πP (s5)πQ(s4) + πP (s5)πQ(s5) .

Notice that we have not build the joint state space and also that the automata
P and Q are not independent. For example, when Q is in state s2 and P is in
checkpoint s4, Q moves to s5 only if P decides not to roll back to checkpoint s1
and the communication between P and Q is succesfull.

4.1 Synchronisation of an arbitrary number of automata

Since Definition 3 considers only cooperations of two stochastic automata,
in this section we discuss how it is possible to define networks with an arbitrary
number of synchronising ρ-reversible automata. The semantics we refer to when
we deal with multi-way synchronisations is an instance of that presented in [29,

15]. Informally, the automata synchronise on a set of types L, i.e., the activities
with type in L are carried out only jointly, while those outside are carried out
independently. It is well-known that this synchronisation semantics is associative.
It remains to prove that the results on ρ-reversible automata proposed here, are
applicable also for this multi-way synchronisation semantics.

Let P be a ρ-reversible automaton, and a /∈ TP , then also the automaton
P+a (P−a) is ρ-reversible where P+a (P−a) is identical to P but has active
(passive) type a as self-loop in each state with rate (probability) 1. Moreover,
let b ∈ AP , and let P ∗b be identical to P with the exception that label b is passive
(we are assuming that for all s1 ∈ SP we have

∑
s1∈SP qP (s1, s2, b) ≤ 1). Then,

assume we want to define a network of ρPi
−reversible automata P1, . . . , PM .

Let
�· be defined on all the types in ∪Mi=1TPi

, then we can proceed as follows.

Consider the automata P1 and P2 and define the automata P
+ai−aj
1 where ai ∈

PP2
\AP1

, aj ∈ AP2
\PP1

and P+ak−ah
2 , where ak and ah are defined analogously.

Then, the automaton P12 = P
+ai−aj
1 ⊗ P+ak−ah

2 is well-defined according to
Definition 3, is ρ-reversible and by Theorem 3 its steady-state probability is in
product-form. In order to make P12 synchronise with P3 we define P ∗b12 , for all
b ∈ (PP1

\ AP2
) ∪ (PP2

\ AP1
) and repeat the procedure for the synchronisation

of P ∗b12 with P3. Notice that this procedure gives the same semantics of the
master/slave synchronisation of SAN. Here, the advantage of proceeding pairwise
is that we can iteratively apply Theorem 3 to derive the equilibrium distribution
of the joint process very efficiently.

5 Conclusion

In this paper we studied a class of stochastic models, named ρ-reversible
automata, as a novel formalism for the quantitative analysis of reversible com-
putations. Similarly to reversible processes [19], ρ-reversible automata satisfy a
system of detailed balance equations which provide an efficient technique for
the computation of their equilibrium distribution. ρ-reversible automata are
equipped with a synchronisation operator similar to that of [29, 15] which is
associative and the class of ρ-reversible automata is closed under the synchro-
nising operator. Moreover, ρ-reversible automata always exhibit a product-form
solution (which is in general different from those known from the literature) al-
lowing one to compute the joint equilibrium distribution as the product of the
equilibrium distributions of the synchronising sub-components considered in iso-
lation. We prove that the equilibrium distribution of any ρ-reversible stochastic
automaton is insensitive to any ρ-reversible context. Therefore, our theory allows
for the definition of system components whose equilibrium performance indices
are independent of their context.

Acknowledgments

Work partially supported by the MIUR Project CINA: “Compositionality,
Interaction, Negoziation, Autonomicity for the future ICT society”.

References

1. G. Bacci, V. Danos, and O. Kammar. On the statistical thermodynamics of re-
versible communicating processes. In Proc. of Int. Conf. on Algebra and Coalgebra
in Computer Science (CALCO) 2011, pages 1–18, 2011.

2. C. Baier, E.M. Hahn, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. Model
checking for performability. Math. Structures in Comp. Sci., 23(S.I. 04), 2013.

3. S. Balsamo and A. Marin. Performance engineering with product-form models:
efficient solutions and applications. In Proc. of ICPE, pages 437–448, 2011.

4. C. Bennett. Logical reversibility of computations. IBM J. Res. Dev., 17(6):525–
532, 1973.

5. C. Bennett. Thermodynamics of computation. Int. J. of Physics, 21:905–940, 1982.

6. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202:1–54, 1998.

7. P.G. Bishop. Using reversible computing to achieve fail-safety. In Proc. of 8th Int.
Symp. on Soft. Reliability Eng., pages 182–191, 1997.

8. B. Boothe. Efficient algorithms for bidirectional debugging. SIGPLAN Not.,
35(5):299–310, 2000.

9. L. Cardelli and C. Laneve. Reversibility in massive concurrent systems. Scientific
Annals of Computer Science, 21(2):175–198, 2011.

10. V. Danos and J. Krivine. Reversible communicating systems. In Proc. of Int. Conf.
on Concurrency Theory (CONCUR), pages 292–307, 2004.

11. M. Dubois, M. Annavaram, and P. Stenstrom. Parallel Computer Organization
and Design. Cambridge Press, 2012.

12. P. G. Harrison. Turning back time in Markovian process algebra. Theoretical
Computer Science, 290(3):1947–1986, 2003.

13. H. Hermanns. Interactive Markov Chains. Springer, 2002.

14. H. Hermanns, U. Herzog, and J. P. Katoen. Process algebra for performance
evaluation. Theor. Comput. Sci., 274(1-2):43–87, 2002.

15. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
Press, 1996.

16. J. Hillston, A. Marin, C. Piazza, and S. Rossi. Contextual lumpability. In Proc.
of Valuetools 2013 Conf. ACM Press, 2013.

17. D.R. Jefferson. Virtual time. ACM Trans. on Programming Languages and Sys-
tems, 7(3):404–425, 1985.

18. D.R. Jefferson and P. Reiher. Supercritical speedup. In Proc. of the 24th Annual
Simulation Symp., pages 159–168, 1991.

19. F. Kelly. Reversibility and stochastic networks. Wiley, New York, 1979.

20. I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Concurrent
flexible reversibility. In Proc. of ESOP’13, pages 370–390. Springer-Verlag, 2013.

21. I. Lanese, C. Antares Mezzina, and F. Tiezzi. Causal-consistent reversibility. Bul-
letin of the EATCS, 114, 2014.

22. J. Lee. Dynamic reverse code generation for backward execution. Elect. notes in
Theor. Comp. Sci., 174(4):37–54, 2007.

23. A. Marin and S. Rossi. Autoreversibility: exploiting symmetries in Markov chains.
In Proc. of MASCOTS 2013, pages 151–160. IEEE Computer Society, 2013.

24. A. Marin and S. Rossi. On the relations between lumpability and reversibility. In
Proc. of MASCOTS’14, pages 427–432, 2014.

25. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, New York, NY, USA, 2000.

26. K.S. Perumalla. Introduction to reversible computing. CRC Press, 2013.
27. K.S. Perumalla and A.J. Park. Reverse computation for rollback-based fault tol-

erance in large parallel systems. Cluster Computing, 16(2):303–313, 2013.
28. I. Phillips and I. Ulidowski. Reversing algebraic process calculi. Journal of Logic

and Algebraic Programming, 73:70–96, 2007.
29. B. Plateau. On the stochastic structure of parallelism and synchronization models

for distributed algorithms. SIGMETRICS Perf. Eval. Rev., 13(2):147–154, 1985.
30. E.G. Rieffel and W.H. Polak. Quantum Computing: a Gentle Introduction. MIT

Press, 2011.
31. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, UK, 1994.
32. P. Whittle. Systems in stochastic equilibrium. John Wiley & Sons Ltd., 1986.
33. T. Yokoyama. Reversible computation and reversible programming languages.

Elect. notes in Theor. Comp. Sci., 253(6):71–81, 2010.
34. T. Yokoyama and R. Glück. A reversible programming language and its invert-

ible self-interpreter. In Proc. of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, pages 144–153, New York,
NY, USA, 2007. ACM.

