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ABSTRACT

We introduce a notion of noninterference for a typed ver-
sion of the w-calculus where types are used to assign secrecy
levels to channels. Noninterference is expressed in terms of
a partial congruence (p-congruence, for short). We provide
a proof technique in the form of a bisimulation-like partial
equivalence relation that is a binary relation which is sym-
metric and transitive but not reflexive.

We show that the noninterference property is composi-
tional with respect to most of the operators of the language
leading to efficient proof techniques for the verification and
the construction of (compositional) secure systems.

In order to allow downgrading of sensitive information,
we extend the m-calculus with declassification primitives and
we study a property which scales to noninterference when
downgrading is not permitted.
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1. INTRODUCTION

A number of formal definitions of security properties for
different languages and models has been proposed and stu-
died in the literature. One of the most successful approaches
is information flow security which requires that there is no
flow from private (secret) to public data. The concept of
noninterference [6] has been introduced to formalize the ab-
sence of information flow in multilevel systems. It demands
that public outputs are unchanged as secret inputs are var-
ied or, more generally, that the low level observation of the
system is independent from the behaviour of its high com-
ponents. Useful surveys of research into language-based in-
formation flow security and noninterference in process lan-
guages can be found in [4, 16, 17].

Syntax-directed typechecking techniques are usually used
to guarantee forms of noninterference for the w-calculus [8,
11, 13, 14, 15]. In these works type systems play a cen-
tral role in the definition of noninterference, since both the
observation of the system and the observed processes are
constrained by types. A soundness theorem guarantees that
well-typed processes are interference-free.

In our previous work [3] we propose a different approach
to noninterference for the w-calculus, where the use of types
is much lighter. We use a slight extension of the basic type
system for the w-calculus [21] where security levels are asso-
ciated with channels. As for security, the only typing con-
straint is that values at a given security clearance cannot
flow through channels with a lower security level. Such a
typing discipline ensures that information does not explic-
itly flow from high to low, but it does not deal with implicit
flows. Instead, we characterize noninterference in terms of
the actions that typed processes may perform.

The definition of noninterference presented in [3] is in-
spired by the P.BNDC (Persistent BNDC') property defined
by Focardi and the second author in [5] for CCS. Roughly,
a process P is interference-free if for every state P’ reach-
able from P, and for every high level process H (that is
a process which can only perform high level actions) the
processes P’ and P’ | H are indistinguishable for a low level
observer. This definition involves a notion of reachability for
typed processes which allows us to reason on all the possible
states in which a process may evolve. The security definition
is persistent in the sense that if a process satisfies noninter-



ference then also all its reachable states do. As discussed
in [5], persistence is technically useful since it allows one
to apply inductive reasoning when proving security results
(e.g., compositionality). Furthermore, in [3] persistence is
exploited to give various quantifier-free characterizations of
noninterference based on bisimulation-like relations leading
to efficient methods for the verification and construction of
(compositional) secure systems.

In this paper we follow a different approach: instead of re-
quiring persistence we consider a more sophisticated notion
of contextuality and show that this leads to more precise
and efficient definitions. In order to give an intuition, con-
sider the program P = (v€)(h{€).€().P') with ¢ standing
for a public channel and h for a private one. According to
the operational semantics of the m-calculus, the process P
may extrude the scope of the new name ¢, evolving into a
state where £ is a free name, and reaching the state P’, i.e.,

(wOR) - )
— I{).P" —— P'. Thus, according to the defi-

nition of noninterference presented in [3], in order to prove
that P is secure, we need to check that also P’ satisfies the
security definition. However, the name ¢ will never be ex-
truded to a low level observer since it is communicated along
a high level channel. Hence the low observer will never be
able to observe the state P’. The process P is indeed se-
cure independently from P’, which should not be required to
be secure. On the other hand, if Q = (v£2)(f1{€2).€2().Q")
where both ¢; and ¢> denote a public channel, then Q' is
clearly observable from a low level point of view and thus
it is correct to require that it satisfies the global security
definition in order to ensure that @ is interference-free.

In this paper we study a more precise, contextual, defini-
tion of noninterference for the m-calculus expressed in terms
of so-called partial congruences (p-congruences, for short)
capturing the low level behaviour of processes whatever are
their surrounding high level contexts, i.e., whatever are their
high level behaviours.

One of the most natural observation equivalences for the
m-calculus is reduction barbed congruence £ ([12, 9]), which
is a congruence defined in terms of reduction and observabil-
ity. More precisely, two processes P and @ exhibit the same
behavior if they are are equivalent with respect to a relation
R which is

(1) reduction closed, i.e., if P — % P’ then Q = @

and P'RQ’
(2) barb preserving, i.e., if P ——— then there exists
n(m)

Q' such that Q = Q' ———
(3) conteztual, i.e., C[P] R C[Q)] for all contexts C[ ].

In multilevel systems, where processes and resources are
associated with security clearances taken from a complete
lattice (X, <) of security annotations, the observation can
be parameterized with respect to the security level o of the
observer. In [3] we define a o-reduction barbed congruence
capturing the o-low behavior of processes. Formally, it is a
relation R, which is

(1) reduction closed
. . n(m)
(2) o-barb preserving, i.e. if P ——— where the secu-
rity level of n is less or equal than o then there exists

n(m)

Q' such that Q = Q' ——

(3) contextual with respect to o-low level contexts, i.e., it
holds CL[P] R, CL[Q] for all context Cr[] where
Cr[ ] may interact with the process filling the hole just
through channels of level at most o.

In [3] we show how the P_.BNDC property can be de-
fined in the m-calculus using the abovementioned observa-
tion equivalence.

In this paper we generalize the o-reduction barbed congru-
ence in order to equate processes exhibiting the same o-level
behaviour whatever is the surrounding o-high level context.
Such a relation leads to a natural definition of noninterfer-
ing processes, that is processes whose observable behavior is
independent from the surrounding high level context.

The new relation, denoted with =, simply changes the
notion of contextuality as follows:

P =, Q implies CL[CL[P]] &, CL[CHQ]]-

for all o-high contexts C};[ ] and C%[ ] which may interact
with the process filling the hole just through channels of
level not less than o, and for all o-low contexts CL[ ].

The resulting relation is no more an equivalence. Instead,
it is a partial equivalence relation, that is symmetric and
transitive but not reflexive. We call it o-reduction barbed p-
congruence, p-congruence for short; moreover, 22, is indexed
on a typing environment I" that associates security levels to
channel names.

It is then natural to define noninterference as the reflexive
closure of =,. Thus we say that a process P in a type envi-
ronment I' satisfies the o-noninterference property, written
I'>PeNI(=,),if

'eP=, P
In particular, by contextuality, if P is o-noninterfering then
I & OL[Cy[P]] =, CLCh[P]]

for all o-low contexts C7[ | and for all o-high contexts Cg][ ]
and C3[ ).

Interestingly, a proof technique for 2, exists in the form of
a partial equivalence relation (per model, see [18]) on typed
labelled transition systems.

A typed LTS is built around typed actions of the form

I'>P —; I'p P indicating that in the type environ-
ment I', the process P performs the action a of level § and
evolves to P’ in the possibly modified environment I''. We
define a partial equivalence relation ~, in the spirit of the
definitions in [18, 19] for imperative and multi-threaded lan-
guages, and we prove that =, provides a coinductive charac-
terization of the p-congruence 22,. We show that the partial
equivalence relation =, is an efficient proof technique for the
security property N'Z(%,), which is decidable over the set of
finite state processes. Furthermore, we show that N'Z(2,)
is compositional with respect to most of the operators of the
m-calculus. In particular, if P and @ satisfy NZ(2,) then
P | @ and !P also do.

It is well-known that strong noninterference can hardly
be achieved in real systems. Indeed, real-world applications
often release bits of information as part of their intended
behaviour. For instance, when two high level users com-
municate through an encrypted channel, as in the case of a
purchase protocol, secret information is revealed whenever
a condition, such as “payment transferred”, has been ful-
filled. In order to permit systems to leak information by



design, information flow controls often include some notion
of downgrading, which allows trusted entities to declassify
information from a higher to a lower security level.

A number of definitions and analysis for different kinds of
information release policies over a variety of languages and
calculi have been recently proposed. The reader is referred
to the work of Sabelfeld et al. [20] for a road map of the
main directions of the research on this topic.

In this paper we extend the noninterference framework
for the m-calculus illustrated above by integrating a mech-
anism for the secure downgrading of information into the
m-calculus. More precisely, following [2], we enrich the stan-
dard m-calculus with a family of declassified actions of the
form decs a(z:T) and decs a(b) with § belonging to the com-
plete lattice of security annotations. We call Dec mr-calculus
the new language. If a is a channel of a security level &'
with § < 6’ then decs a(z:T) is an action declassified to the
lower level 6 which can be used by the programmer to spec-
ify an “escape hatch” for information release, i.e., to allow
information arising from this action to flow downwards up
to level 6. The same holds for the write action decs a(b).
In this approach the dec constructor is used to declassify
actions instead of names, obtaining a flexible, finer-grained,
downgrading mechanism that, for instance, allows program-
mers to interleave declassified and non declassified actions
over the same channel.

We show that the noninterference property NZ(22,) scales
to the Dec w-calculus, which also inherit the efficient proof
technique based on the relation =, .

The rest of the paper is organized as follows. In Section 2
we present the language, its semantics and the type system.
P-congruences together with the corresponding proof tech-
nique are introduced in Section 3. In Section 4 we define
o-noninterference and show its compositionality properties.
In Section 5 we extend the noninterference framework in
order to deal with a declassification mechanism. Section 6
concludes the paper.

2. SYNTAX AND SEMANTICS OF TYPED
PI-CALCULUS

In this section we introduce the language, its operational
semantics and the type system we will be concerned with.

We presuppose a countably-infinite set of names and a
countably-infinite set of variables ranged over by n, ..,q and
by z,..,z, respectively. We often use a,b,c to range over
both names and variables. We also assume a complete lattice
(2, <) of security annotations, ranged over by o,d, where
T and L represent the top and the bottom elements of
the lattice. The syntax of processes and types is shown
in Table 1. It is a synchronous, polyadic, calculus with the
match/mismatch operator. The choice of the synchronous
model is motivated by the fact that it gives rise to more
interferences with respect to an asynchronous one. Nev-
ertheless, our results can be adapted to the asynchronous
case'. On the other hand, as explained in [9], the matching
construct is essential for the coinductive characterization of
the partial congruence shown in Section 3.

As usual, the input construct a(zi:Th,...,zr:Tk).P acts
as a binder for the variables z1,...,z in P, while the re-

! A discussion about the asynchronous m-calculus can be
found in Section 6 where we compare our work with the
security m-calculus of [8].

striction (vn:T)P acts as a binder for the name n in P.
We identify processes up to a-conversion. We use fn(P)
and fv(P) to denote the set of free names and free vari-
ables, respectively, in P. We write P{z := n} to denote
the substitution of all free occurrences of z in P with n,
and we often write a(Z:T),a(b), (vp:T), T as a shorthand for
a(xy:Th, ..., xp:Ty).0,a(by, ..., br).0, (Wp1:T1)...(wpr:Tk) and
T1,...,Ty. In this paper we restrict to closed processes, that
are processes containing no free occurrences of variables; for
a discussion on how to extend our theory to open terms the
reader is referred to [2].

Types assign security levels to channels. More precisely,
if o € 3, then o[T1,...,Tk] is the type of channels of level
o which carry k values of type Ti,...,T;. We consider a
function A associating to types the corresponding level, that
is A(O’[Tl,...,Tk]) =0.

SemanticSThe operational semantics of our language is
given in terms of a labelled transition system (LTS) defined
over processes. The set of labels, or actions, is the following:

a = T internal action

3

(m) receive a tuple
vp:T) ()

—~

p Cm send a tuple
of (fresh) names

We write fn(a) and bn(a) to denote the set of free and bound
names occurring in the action «, where bn(a) = {p} if @ =
(vp:T)7(mm), and bn(a) = @ otherwise. The LTS is defined
in Table 2 and it is entirely standard; we just omitted the
symmetric rules for (Sum), (PAR), (ComM) and (CLOSE) in
which the role of the left and right components are swapped.

We simply write P —2 4 when the process resulting from
P after the action « does not matter.

Type SystemOur type system corresponds to the basic
type system for the m-calculus (see [21]). The main judg-
ments take the form I" - P, where IT" is a type environment,
that is a finite mapping from names and variables to types.
Intuitively, I' - P means that the process P uses all chan-
nels as input/output devices in accordance with their types,
as given in I'. The other, auxiliary, judgments are I' - a : T
stating that the name/variable a has type T inI', and ' - ¢
stating that the type environment I' is well formed. The
typing rules are collected in Table 3, and they are based on
the following rule of type formation, which prevents a chan-
nel of security level ¢ from carrying values of level higher
than 6.

(CHANNEL TYPE)
FT, AT =6 i=1,...,k

F O[Ty, ..., Tk]

Notice that the type formation rules guarantee the absence
of any explicit flow of information from a higher to a lower
security level: for instance, the process M(passwd).o where
a secret password is forwarded along a public channel, is not
well-typed.

It is easy to prove that our type system enjoys the stan-
dard subject reduction property (see [21]), expressing the
consistency between the operational semantics and the typ-
ing rules.



Prefizes =

a(br,...,bx) | a(z1:T1,..

o xp:Ty) where k>0

Processes P = w.P | ifa=bthenPelseP | P|P | wn:T)P | !IP | O
Types T == o[T,...,Tx] where k>0

Table 1: Syntax

(PAR) (IN) (Our)
P25 p bn(a) N (Q) =0 - -
Plo 5 Pl n@T).P 2 pla = i) Ay P — p
(OpEN) ~ (REP-ACT) (RES)
(vp:T) n(m) , 5 5 a , a ,
p 2", p q#n,p q€m P — P P — P n¢fn(a)Ubn(a)

(vq:T) (vp:T) () ,
wv¢gT) P ——— P
(CLOSE)

(wp:T) () , n(m)
P —— PQ — Qpna(Q)=10

P =5 P'|IP

(MATcCH)

(vn:T)P SN (vn:T)P'

(MISMATCH)
n#m

P|Q —— wpD)(P'|Q')

ifn =nthen Pelse Q —— P

if n = mthen P else Q SN Q

Table 2: Labelled Transition System

3. OBSERVATION AS P-CONGRUENCES

In this section we define system observations in terms of
p-congruences that are parametric with respect to the secu-
rity level o of external observers. P-congruences are type-
indexed relations that equate the o-low level, observable,
behavior of processes interacting with whatever o-high con-
text.

We say that ['> P is a configuration if I" is a type environ-
ment and P is a process such that I' - P. A type-indexed
relation over processes is a family of binary relations be-
tween processes indexed by type environments. We write
I' E PR Q to mean that P and () are related by R at I
and ['> P and I' > @ are configurations.

To define our relations, we will ask for the largest type-
indexed relation over processes which satisfies the following
properties.

Reduction ClosureA type-indexed relation R over pro-

cesses is reduction closed if T'= PR Q and P - P’ imply

that there exists Q' such that Q = Q' and ' F P’ RQ’,

WheTre —> denotes the reflexive and transitive closure of
— .

o-Barb PreservationLet ¢ € £, P be a process and T’
a type environment such that I' F P. We write I' E P |7,

it P ﬂ> with A(I'(n)) =< o. Furthermore we write
[ £ P |7 if there exists some P’ such that P = P’ and
CEP 7.

A type-indexed relation R over processes is o-barb pre-
servingif TE PRQ and I' E P|] imply I' F Q |7.

o-Contextuality.Let a context be a process with at most
one hole []. If C[-] is a context and P is a process, then we

write C[P] for the process obtained by replacing the hole in
C[] by P.

A (T'/T)-context is a context C[-r] such that, when filled
with a process well typed in I, it becomes a process well
typed in I'. More formally, if P is a process, I' is a type
environment such that I' - P and C[-r] is a (I'/I')-context,
then I - C[P].

In order to type contexts, the type system of Table 3 is
extended with the following rule:

(Crx)

O, F[r]

We are interested in two classes of contexts, called o-low
and o-high contexts. Intuitively, the o-low contexts are used
to observe the o-low behaviour of processes, while the o-high
contexts are used to describe their possible o-high interac-
tions. More precisely, a o-low (resp. o-high) context is an
evaluation context which may interact with the process fill-
ing the hole just through channels of level at most (resp. at
least) o. We first introduce the notions of o-low and o-high
level sources.

Definition 1. (o-low and o-high level sources) Let P be a
process and I' be a type environment such that I' - P.

e We say that the process P is a o-low level source in
I, denoted I' iz P, if I' - P and Vm € fn(P) it holds
A(T(m)) < o

e We say that the process P is a o-high level source in
I', denoted I" ¥ P, if for all names a used in P as a
subject in an input or an output prefix, A(I'(a)) A o.
Notice that this definition does not prevent a o-high
level source from communicating o-low values (along
o-high channels).



(EmpPTY) (ENV a) (PROJECT)
I'kFo FT a¢ Dom(T) Fa:Tko
OEo Na:Tko Na:Tka:T
(Ourput) (INPUT) (PARA)
Ita:d[T] THb:T THP Tka:8[T] 0,&:TFP TP THQ
I Fa(b).P I'Fa(i:T).P TFP|Q
(MaTcH) (Res) (REPL) (DEAD)
Tha:T THb:T THP THQ Tn:T+P r-p ko
I'Fifa =0bthen P else Q +(wn:T)P LHP TFO

Table 3: Type System

The following definition provides a precise formalization
of o-low and o-high contexts.

Definition 2. (o-low and o-high contexts) Let o € X.
Consider the following grammar:
Clr]l == [r] | (wnT)Clr] |

e A context C[r] is a o-low context if it is a (I'/I')-
context generated by the grammar above where A(T) <
ocand I+, P.

Clel| P | P|C[r]

e A context C[-r] is a o-high context if it is a (I''/T")-
context generated by the grammar above where A(T) A
oand I'F P.

We write IV +, C[r] (resp. I' 7 C[-r]) to indicate that
C[-r] is a o-low (resp. o-high) (I''/T')-context.

Ezample 1. Let be T' = h:T[L[]], L[], TV = £:L[] and
o<T.

e The context (vh)(h(¢) | [-r]) is a (I'/T")-o-high context
since the process h(¢) in parallel with the hole can only
perform a o-high action; it can then interact with a

process filling the hole through the high channel h.

e On the other hand, the context (vh)(h{(€)) | [r] is a
(T"/T")-0-low context.

We say that a type-indexed relation R over processes
is o-contextual if for any o-low context Cr and for all o-
high contexts C}; and C% such that T’ F° Cg[r], C&[r]
and I'"' k, Cp[r] it holds that I' E P R @ imply I' F
CL[CH[P]] R CL[CEH[Q]].

Definition 8. (P-Congruence 2%,) Let ¢ € X. The o-
reduction barbed partial congruence, denoted by 2, is the
largest type-indexed relation over processes which is sym-
metric, o-contextual, reduction closed and o-barb preserv-
ing.

The next proposition establishes a precise comparison be-
tween the o-reduction barbed p-congruence &, and the stan-
dard reduction barbed congruence 2 [9] cited in the Intro-
duction.

PROPOSITION 1. Let o € X, P and Q be two processes
and I" be a type environment such that I' - P,Q.

1.TEP~Q #TEP,Q.
2.TEP=,Q #TEP=Q.

8. If T E P 2=, P then for all Q such that T E P = Q it
holdsTEQ =, Q andTE P =, Q.

PROOF. We give two counter-ezamples for the statements
1 and 2. Consider the simple processes P1 = h().£(), P> =
£().h() and Ps = £().k(). Moreover, consider the type en-
vironment I' = h:T[],k:T[],6:L[]. It is easy to see that
FIZPI EPl butF|=P1 %0- Pl, andF|=Pg Eo’ P3 but
'E P, # Ps.

The proof of 3 is trivial.

The previous counter-examples also show that =, is in
general not reflexive, e.g., ' F P, %, P1.

3.1 A proof technique for P-congruences

In this section we develop a proof technique for the re-
lations 2%, defined above, which is decidable over the set
of finite state processes. More precisely, following [8, 9], we
define a LTS of typed actions (called typed LTS) over config-
urations. As in [8], actions are parameterized over security

levels and take the form
I'bP —; I'sP

indicating that the process P in the type environment I' can
perform the action « to interact with some J-level observer.
In this case, we say that « is a d-level action.

The rules of the typed LTS are obtained from those in Ta-
ble 2 by taking into account the type environment I' which
records the security levels of the channels used by the pro-
cess. Differently from [8], our typed actions are built around
just a single type environment I' constraining the observed
process P. This differs from [8] where, due to the presence of
subtyping, two distinct type environments are needed, one
for the observer and the other for the observed process.

The rules of the typed LTS are reported in Table 4; note
the presence of an additional input action with the form
(vp:T) n(m) occurring when the process receives the new
names p generated by the environment.



(Our) (IN)
Crkn:6[T] 6 =<0

Chn:6[T] Thm:T 6 <9

(REP-ACT)

IbP —s T'sP

()
eva(m).P ——s I'> P
(WEAK)

wpT)n(m) _ -
IgTvP —— s I'b P g#n,p q€m

- ()
Pon(z:T).P ——s I'>P{Z:=m}

IolP —s T's P |IP

(OPEN)

(vp:T) n(m)
IgToP ——— 5 T'sP q#n,p q€m

(vq:T)(vp:T) n(1m)

'>sP ——— T's P

(RES) (PAR)

I,nT>P ——s I',nTs P n¢fn(e)Ubn(a)

I>P ——s "> P bola)N(Q) =0

(vq:T) (vp:T) 7 () , ,
e (vgT)P ————— I'pP

(RED)

P 5 P

I's (wn:T)P ——s T's (vn:T)P'

I'sP|Q —5s I'o P | Q

bP — 5 TP

Table 4: Typed LTS for m-calculus

A precise relationship between the untyped actions and
the typed ones is established in the following proposition,
whose proof is immediate.

PrROPOSITION 2. Let I'> P be a configuration. Then

e I'n>P —T>5 I'> Q@ if and only if P SN Q.
(vp:T) (1) , . (vp:T) T(1n) .
e 'nP — 5 I'sP' iff P ——— P’ with
A(D(n)) =61 and 01 <X 4.

(vp:T) n(mm) n ()
o ToP —— " T'sP ifand only if P ——s P’
with A(T'(n)) = d1, 61 = and pN Dom(T) = 0.

The next proposition shows how the type environment is
modified after the execution of an action. It can be easily
proved by induction on the depth of the derivation of the
judgment in the hypothesis.

PROPOSITION 3. Let be b P — 35 ' P’, then
e ifa=1 then ' =T.
o ifa € {(vp:T)a(m), (vp:T)n(in)} then T =T, p:T.

Relying on the typed LTS, we now introduce a partial bisim-
ilarity on o-low actions, denoted with =, which provides a
coinductive characterization of the o-reduction barbed p-
congruence =,. Intuitively, the relation =, observes the
o-low actions, while simulating the o-high actions by inter-
nal transitions.

We use the following notation: given a security level o €

Y, we write 'bP ——° I'pP'if whenever I'>P 5 IV P’
then ¢ < J. In this case we say that I'> P has performed a
o-high level action.

With an abuse of notation, we write = for the reflexive

-
and transitive closure of ——5. We also write —=>4

for = —an; =, and ==; for = if @ = 7 and

==»; otherwise. Moreover, for a given relation R over
configurations, we write I' E P R @ whenever (I'b P) R (I'>
Q). WhenT =T, .., T}, we denote by A(T') the least upper
bound of levels A(Th),. .., A(Tk).

Definition 4. (Partial Bisimilarity on o-low actions =)
Let o € . Partial bisimilarity on o-low actions is the largest
symmetric relation =, over configurations, such that when-
ever 'EP =, Q

o ifIoP — 55, I'» P’, then there exists Q' such that
'c@Q = I'vQ withI"EQ' =, P.

o ifI>P — 7 I'bP' with a belonging to {(v5:T) (i),
(vp:T)n(m)} where p : T = p1:T1, j»:T» such that
A(Ty) £ o, and A(T») < o, then there exists @' such
that '>Q = IpQ’ with I, p1:Th F Q' &, (vp2:T2)P'.

To give an intuition of the second item in which restricted
low and high names are handled differently, consider the pro-
cesses P = (v0)(h{€).6{).R) and Q = (vk)(h(k).k().R) in the
type environment I' = h: T[], k: T[], &:L[]. In both processes
a name is extruded along a high level channel, which means
that only high level contexts can receive that name and use
it to synchonize on the second action. However, when the
extruded name is low the high context cannot read from it,
hence no context will ever interact with R. On the other
hand, when the extruded name is high the high context can
synchonize on the second action and possibly interact with
the process R.

The relation =, is a partial equivalence relation, i.e., it
is not reflexive. In fact, if we consider the process P =
h().£().0 and the type environment I' = h : T[],£: L[] we
get T P#%, Pwheno=1.

THEOREM 1. Let 0 € X, P and @ be processes and I" be
a type environment such that T'F P, Q. It holds:

'EP=,Qifand only if T E P =, Q.

4. INFORMATION FLOW

We are now ready to define noninterference in terms of
P-congruences in the spitit of [18]. This property is called
NZ(=,) and ensures that no information flow occurs even
in the presence of malicious processes, e.g., Trojan Horse
programs, that run at the classified (higher than o) level.

A process P in a type environment I satisfies the property
NZ(=2,) if the configuration I' > P belongs to the reflexivity
closure of 2,. The formal definition of N'Z(2,) is as follows.



Definition 5. (o-Noninterference) Let o € 3, P be a pro-
cess and I be a type environment such that I' - P. The pro-

cess P satisfies the o-noninterference property in I, written
I'>P e NI(=,), if

Pz, P

Ezample 2. In the following examples, we assume just two
security levels: T and L with L < T; let also h be a high
level channel and /,¢;,¢> be low level channels. Let I" be
the type environment h : T[], £: L[], £y : L[], €2 : L[] and
o=1.

e Let us first consider the following simple insecure pro-
cess: Py = h().£() | h{). The process P is clearly inse-
cure in the type environment I' since the low level, ob-
servable, action ¢() directly depends on the high level
input k(). Indeed, by choosing C}[-r] = k() | [] and
Ci[r] = CE['r] = ['r], one can easily observe that

I E CL[CH[P1]] %- CLICH[PL]).

e Let us consider a further classic example of insecure
process, that is P, = h(2:T).if z = nthen £1() else f()
in the type environment I' = h: T[T], ¢; : L[], n: T
(here the security level of n is irrelevant). To show
that I' > P, ¢ NZ(2,) one can choose Cg[] =
h{ny | ['], Cel-+] = C%[-r] =[], and observe that
I E CLICY[P:]] 2» CL[C][P:]]. Intuitively, when n
is a high level name, a low level observer may infer
from P> the value of the high level variable z, which is
clearly unsound.

e Finally, consider the process Ps = P, | h{n) | h{m),
where the variable x can be nondeterministically sub-
stituted either with n or m. Ps is still an insecure
process since an external attack can destroy the non-
determinism causing an interference: for instance, if
Cull = h(y).h(2).h{n} | [] and Cr[] = CE[] = [],
then CL[Ck[Ps]] %+ CLICEH[Ps]].

The characterization of p-congruences in terms of partial
bisimilarity on o-low actions provides a better understand-
ing of the operational semantics of secure processes. More-
over, it allows one to define efficient proof techniques for
o-noninterference just by inspecting the typed LTS of pro-
cesses. Notice that the partial bisimilarity on o-low actions
is decidable in the case of finite state processes, i.e., pro-
cesses whose typed LTS is finite. Moreover, by exploiting
the following compositionality results, the partial bisimilar-
ity on o-low actions can be used to define methods, e.g., a
proof system, both to check the security of complex systems
and to incrementally build processes which are secure by
construction.

THEOREM 2. (Compositionality of o-Noninterference) Let
o € X, P and Q be two processes and ' be a type en-
vironment such that T + P,Q. IfT'> P € NI(2,) and
I'>Q e NI(=,) then

1. T'va(d).Pe NZI(=;) where
I"=TU{a:d0[T]}U{b:T} and § < o;

2. Uva(i:T).P € NZ(2,) where
I"=TU{a:d[T]} and § <X o;

3. I">ifa =bthen P else Q € NZ(=%,) where
I'=TU{a:T}U{b:T}

4. T>P|QEeENI();
5. T'>(wnT)P e NI(2,) where ' =T1",n:T;
6. To!P e NI(=,).

Ezample 3. Let P and ) be finite state processes and
I’ be a type environment such that I' - P,Q. Even if
R =!P | @ might be an infinite state process, we can eas-
ily check whether I'> R € NZ(2,) just exploiting the de-
cidability of ' > P € NZ(,) and I'> Q € NZI(,) and
the compositionality of N'Z(=,) with respect to the parallel
composition and replication operators.

5. EXTENSION WITH DOWNGRADING

In this section we extend the w-calculus with a declas-
sification mechanism that allows a programmer to control
information release from higher to lower levels.

The new calculus, called Dec w-calculus, is obtained by en-
riching the syntax of processes with a family of declassified
actions of the form decs n(m) and decs n(Z:17'). Whenever n
is a channel of level higher than 4, the declassified read/write
actions decs n(#:T) and decs n(m) can be used by the pro-
grammer to specify an “escape hatch” for information re-
lease, that is to allow information arising from these actions
to flow downwards up to the level §. Notice that the declas-
sification has a visible impact only when a o-high action is
declassified to an observable level § (i.e., when 6 < o). How-
ever, following the lines of the previous sections, we prefer
to introduce a downgrading mechanism which is parametric
on the security levels.

According to the literature, we assume a declassification
model where only programmers may enable the downgrading
of secret information to an observable level, while external
entities can only synchronize on those declassified actions
that do not allow the flow of information to cross the obser-
vation level o.

We refer to [2] for a detailed discussion of motivations and
a formal study of Decm-calculus. In this section we show
how p-congruences and the related noninterference propre-
rties can be extended to deal with downgrading.

The type system of the Dec 7-calculus ensures that actions
can be downgraded only to lower levels. It can be obtained
by adding the following rules to those in Table 3.

(DeEc OutpuT)
CFa(d).P TFa:6[T]
I + decs a(b).P

6 <01

(DEC INPUT)
TFa(@:T).P Tta:d[T]
[ b decsa(i: T).P

6 <01

The operational semantics of the Decm-calculus is ob-
tained from that of the w-calculus by adding the rules in
Table 5, that are built around the new actions decs n(m),
decs n(m) and (vp:T) decs n(m). Notice that we allow a de-
classified action to synchronize only with the corresponding
declassified co-action. In other words, we require that both
users of a channel (the reader and the writer) agree to down-
grade the communication.




(DEC OuT)

: decy (1)
decs n(m).P —— P
(DeEc OPEN)

(vp:T) decs n (1)

P q#n qgem

(DEC IN)
decy n(#T).P —="", pls .= )
(Dec CLOSE)
(vp:1") Tecy n(rh) P Q dec; n (i) Q' Fim(Q) =10

( T)P (vq:T) (vp:T") decg n(mm) P
vq:

PIQ —— (wp:T)(P|Q)

Table 5: Labeled Transition System for Declassified Actions

The theory of p-congruences developed in the previous
sections scales to the Dec w-calculus by adapting the defini-
tions of o-low and o-high contexts.

As we said before, the downgrading must be controlled
by programmers, whereas neither external observers, nor at-
tackers can fire a declassified communication that allows the
flow of information to cross the observation level o. This re-
sults in defining o-low and o-high level sources as follows,
where the only allowed declassifications do not let the flow
of information to cross the level o.

Definition 6. (o-low and o-high level sources) Let I' - P.

e We say that the process P is a o-low level source in
I, denoted I' iz P, if I' - P and Vm € fn(P) it holds
A(D(m)) < o.

e We say that the process P is a o-high level source in
I', denoted T' ¥ P, if every subject of an input or an
output prefix is of the form a with A(I'(a)) A o or
decs a with 6 £ o.

Now o-low and o-high contexts can be defined in the
Dec m-calculus exactly as in Definition 2 where o-low and
o-high level sources are defined according to definition 6.

As for o-barb preservation, the Dec w-calculus inherits the
definition of o-barbs form Section 3. Notice that these barbs
are enough to also observe those declassified actions that use
low level channels.

The p-congruences and the noninterference property for
the Decm-calculus are then defined as follows:

Definition 7. (P-Congruence 22%¢) Let ¢ € ¥. The o-
reduction barbed partial congruence, denoted by ovdec s the
largest type-indexed relation over processes which is sym-
metric, o-contextual, reduction closed and o-barb preserv-
ing (according to the above definitions adapted to the Dec -

calculus).

Definition 8. (o-Noninterference) Let o € X, P be a Decn-
process and I be a type environment such that I' = P. The
process P satisfies the o-noninterference property in I, writ-
ten I'> P € NZ(=%), if

I'EPPp

Ezample 4. Consider the processes Pi = h().£() | k()
and P> = decs h().£() | decs h() in the type environment
I' = h:T[],£:L]] and let § be an observable level under
o. We can prove that P; is not secure since I' £ P, 2,

Py, whereas I' E P> =%° {(), hence P: is a secure pro-
cess. The difference between the to processes comes from
the fact that o-high contexts can interfere with the plain
communication along the channel h, but not with the de-
classified communication. On the other hand, the process
P3; = hi().decs h().4() | decs h() with hi being a high chan-
nel is insecure since observing the low action £() reveals the
occurrence of the high actions hi() and h(), but only the
second one has been downgraded by the programmer.

In order to define a proof technique for noninterference,
the partial bisimilarity studied in Section 3 can be adapted
to the Decm-calculus by extending the typed LTS of Table
4 with the declassified actions collected in Table 6. The new
rules state that if a o-high action, e.g., h(n) is declassified to
an observable level d, then the resulting action decs h(n) is
still a o-high action. This is justified by the fact that o-low
contexts cannot synchronize on (i.e., observe) declassified
actions, thus setting to d the level of the action decs h(n)
would be wrong. Even if the downgrading does not affect
the level of a typed action, the examples above show the ac-
tual impact of declassification on the admissible information
flows. The following definition of partial bisimilarity gives a
further account of the impact of declassification on security.

Definition 9. (Partial Bisimilarity on o-low actions éiec)
Let o € . Partial bisimilarity on o-low actions is the largest

. . - dec .
symmetric relation &,  over configurations, such that when-
- dec

ever FP=, Q

o ifIpP — 25, I'» P’, then there exists Q' such that
';Q == I'pQ withI"EQ' =, P'.

o ifI>P — 7 I'sP' with o belonging to { (v:T) (i)
(vp:T)n(m)} where p : T = p1:T1, j»:T» such that
A(Ty) £ o, and A(T») < o, then there exists @' such
that '>Q = IpQ’ with D, p1:Th E Q' &, (vp2:Th)P'.

Even if the definition of éiec appears identical to Defi-
nition 4, its second clause implies that o-high actions that
have been declassified by P to an observable level, need not
to be matched by 7-steps of @, thus implementing the fact
that they represent an (explicitly allowed) information flow.

In the Decm-calculus the following theorem holds by a
straightforward extention of the proof of Theorem 1.

THEOREM 3. Let o € X, P and @ be processes and I" be
a type environment such that T'F P, Q. It holds:

- dec

DEP=*Qifand only if T E P =, Q.

)



(DEC OuT)
I'kn: 61[T]

decg,, n(m)
' decy,n(m).P ——— s TpP

01 X6

(DEC WEAK)

(vp:T) decs, n (i) , ,
gTvP —— s I'p P qg#n,p q€M

(DEC IN)

Ckn:6[T] TrFm:T

01 X6

decs, n (1)

I >decs,n(z:T).P ——s > P{Z :=m}

(DECc OPEN)

(vp:T) decs, n () , ,
gT'vP —— s I'vb P qg#n,p g€m

(vq:T) (vp:T) decs, n (1)
I'sP s "> P

(vq:T) (vp:T) decg, n(ri)
> (vg:T)P s I'> P

Table 6: Typed LTS for Decm-calculus

6. CONCLUSION AND RELATED WORK

In this paper we introduce the concept of p-congruences to
model noninterference for a typed version of the 7-calculus.
We first consider a simple typing discipline where types are
used to assign secrecy levels to channels. We then extend our
approach by allowing the secure downgrading of information
through explicit declassification operations.

With respect to our previous works [3, 2], in this paper
we provide a more precise and efficient definition of non-
interference. As discussed in the introduction, the security
definitions presented in [3, 2] are persistent in the sense that
if a process is secure then also all the states reachable from
it in the typed LTS do. Although persistence allows us to
apply inductive reasoning when proving security results, it
turns out to be too strong when modeling noninterference.

In this paper we show that persistence may be replaced
by a more sophisticated notion of contextuality which leads
to more precise and efficient definitions in terms of a gener-
alized version of reduction barbed congruence. We precisely
compare this new relation with the standard barbed con-
gruence for the m-calculus, and we develop a coinductive
characterization that provides efficient methods for the ver-
ification and construction of (compositional) secure systems.

A number of type-based techniques ensuring forms of non-
interference have been developed for the w-calculus. Be-
tween them, the security w-calculus of Hennessy and Riely
[10, 8] is the closest one. It consists of a typed version of the
asynchronous w-calculus where types associate read/write
capabilities to channels as well as security clearances. Non-
interference properties based on may and must equivalences
are achieved by means of typing constraints forcing a no-
write-down policy. In particular, the noninterference results
presented by Hennessy in [8] can be stated succintly as fol-
lows. If a well typed process P only performs input actions
of level at most o, then for all processes H whose outputs
are not observable (i.e., H writes at levels not lower that o),
P and P | H are indistinguishable by any testing process
running at security level at most o. The noninterference
theorem comes from the fact that in the security w-calculus
communication between processes of different levels is pre-
cisely constrained. Let P and H be two communicating
processes, then either (1) P sends an output to H, but this
case does not produce any information leak due to the fact
that the output is asynchronous, or (2) P reads a message
from H, which is instead prevented by the typing rules which
forbid write-downs.

Our type system can be embedded into that of [8] using
the following type translation:

[o[T]] = {rs (7D, ws([TD}

where a channel of level § corresponds to a read-write chan-
nel where both capabilities have security level §. Such a
translation helps in understanding the difference between
the two approaches. Splitting the read and write capabilites
and using an associated subtyping relation increases the flex-
ibility of typing, however, consider the process P = £().h(),
which is clearly a secure process. Besides being well typed, P
does not match the hypothesis of the noninterference theo-
rem of [8] since it contains an high level input, hence nothing
can be said about its security properties, whereas it can be
easily proved that P € NZ(=,).

Furthermore, in the security m-calculus no observation
congruences are studied. We think that proving contex-
tual noninterference results using flexible type systems of
i/o-types is not straightforward, and we keep it for future
work.

Honda, Yoshida, Vasconcelos and Berger [11, 13, 22] con-
sider advanced type systems for processes of the linear/affine
m-calculus where each action type is associated to a secrecy
level. They express noninterference in terms of typed bisim-
ulation equivalences. Their type systems guarantee that ev-
ery communication on a linear channel must eventually suc-
ceed, and so its success alone does not carry any information.
For instance, the process h().f(), which waits for an input
on the secret channel h and then performs the low-level out-
put £(), is considered secure as long as h is a linear channel.
Similarly, Zdancewic and Myers [23] propose a type system
dealing with linear channels in a concurrent language with
(a restricted form of) join-patterns as synchronization prim-
itives. Furthermore, their type system controls the temporal
ordering of communications on linear channels. Kobayashi
[14] presents an even more flexible type system which can
deal with arbitrary usage of channels, so that programs us-
ing various concurrency primitives (including locks) can be
encoded into the m-calculus and analyzed.

The typing constraints imposed by the type systems dis-
cussed above allow one to reason only on a limited class of
processes and contexts. For instance, consider the process
lz(y).P|lz(y).Q. It is rejected by the type system of, e.g.,
[13] and thus it is not considered secure independently of the
security level of its channels. As another example, when h is
a nonlinear channel, the process (vh)(h().£() | h()) is never
typed in most of the mentioned type systems even if this



process does not leak any secret information. As another ex-
ample consider the process P = (vh)(h | ! (h.(k | B)) | k.£)
with h and k being high channels and [ being a low one.
We can prove that P satisfies noninterference. However it
cannot be deemed secure by using the type systems in the
above mentioned works. The problem comes from the inse-
cure subterm k.f where an observable action depends on a
high one.

Our use of a lighter type system leads to stronger non-
interference properties, that check the security of processes
against a bigger class of attackers. Interestingly, as shown
in Section 5, we can increase the flexibility of our approach
by admitting a form of downgrading which allows trusted
entities to declassify information from a higher to a lower
security level. This is done following the ideas previosly de-
velopped in [1, 2]. Thus, for instance, the process h().f()
can be deemed secure by declassifying the high level action
h().

As for the downgrading, the work which is most related to
our approach is [1] by Bossi, Piazza and the second author.
They propose a general unwinding framework for formaliz-
ing different nointerference properties of CCS processes per-
mitting downgrading. Their calculus is not extended with
any particular declassification operator but instead a dis-
tinct set D of downgrading actions is considered. The main
advantage of explicitly introducing a declassification con-
struct, as the dec operator used in this paper, is that, in
the same process, high level names can be used both as se-
cret channels and as downgraded ones. This is clearly not
possible in [1].

The only work we are aware of dealing with a form of
downgrading for the m-calculus is a recent work by Gor-
don and Jeffrey about conditional secrecy [7]. They pro-
pose a system of secrecy types for the m-calculus which
supports multiple, dynamically-generated security levels, to-
gether with the controlled downgrading of security levels.

Differently from our approach, their system downgrades names

instead of actions and is based on trace semantics. Further-
more, their security notion deals with direct flows only and
does not address implicit flows nor noninterference.
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