
Semantics and Termination of Simply-ModedLogic Programs with Dynamic SchedulingAnnalisa Bossi1, Sandro Etalle2;3, Sabina Rossi1, and Jan-Georg Smaus31 Universit�a di Venezia, fbossi,srossig@dsi.unive.it2 Universiteit Maastricht, etalle@cs.unimaas.nl3 CWI, Amsterdam, jan.smaus@cwi.nlAbstract. In logic programming, dynamic scheduling refers to a situ-ation where the selection of the atom in each resolution (computation)step is determined at runtime, as opposed to a �xed selection rule suchas the left-to-right one of Prolog. This has applications e.g. in parallelprogramming. A mechanism to control dynamic scheduling is providedin existing languages in the form of delay declarations.Input-consuming derivations were introduced to describe dynamic sched-uling while abstracting from the technical details. In this paper, we�rst formalise the relationship between delay declarations and input-consuming derivations, showing in many cases a one-to-one correspon-dence. Then, we de�ne a model-theoretic semantics for input-consumingderivations of simply-moded programs. Finally, for this class of programs,we provide a necessary and su�cient criterion for termination.1 IntroductionBackground. Logic programming is based on giving a computational interpre-tation to a fragment of �rst order logic. Kowalski [14] advocates the separationof the logic and control aspects of a logic program and has coined the famousformulaAlgorithm = Logic + Control.The programmer should be responsible for the logic part. The control should betaken care of by the logic programming system.In reality, logic programming is far from this ideal. Without the programmerbeing aware of the control and writing programs accordingly, logic programswould usually be hopelessly ine�cient or even non-terminating.One aspect of control in logic programs is the selection rule, stating whichatom in a query is selected in each derivation step. The standard selection rulein logic programming languages is the �xed left-to-right rule of Prolog. Whilethis rule provides appropriate control for many applications, there are situations,e.g. in the context of parallel execution or the test-and-generate paradigm, thatrequire a more 
exible control mechanism, namely, dynamic scheduling, wherethe selectable atoms are determined at runtime. Such a mechanism is providedin modern logic programming languages in the form of delay declarations [16].



To demonstrate that on the one hand, the left-to-right selection rule is some-times inappropriate, but that on the other hand, the selection mechanism mustbe controlled in some way, consider the following programs APPEND and IN ORDER% append(Xs,Ys,Zs)  Zs is the result of concatenating the lists Xs and Ysappend([H|Xs],Ys,[H|Zs])  append(Xs,Ys,Zs).append([],Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs), append(Ls,[Label|Rs],Xs).in order(void,[]).together with the query (read tree and write list are de�ned elsewhere)q : read tree(Tree), in order(Tree,List), write list(List):If read tree cannot read the whole tree at once { say, it receives the inputfrom a stream { it would be nice to be able to run the \processes" in orderand write list on the available input. This can only be done if one uses adynamic selection rule (Prolog's rule would call in order only after read treehas �nished, while other �xed rules would immediately diverge). In order toavoid nontermination one should adopt appropriate delay declarations, namelydelay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).delay write list(Ls, ) until nonvar(Ls).These declarations avoid that in order, append and write list are selected\too early", i.e. when their arguments are not \su�ciently instantiated". Notethat instead of having interleaving \processes", one can also select several atomsin parallel, as long as the delay declarations are respected. This approach toparallelism has been �rst proposed in [17] and \has an important advantage overthe ones proposed in the literature in that it allows us to parallelise programswritten in a large subset of Prolog by merely adding to them delay declarations,so without modifying the original program" [4].Compared to other mechanisms for user-de�ned control, e.g., using the cutoperator in connection with built-in predicates that test for the instantiation of avariable (var or ground), delay declarations are more compatible with the declar-ative character of logic programming. Nevertheless, many important declarativeproperties that have been proven for logic programs do not apply to programswith delay declarations. The problem is mainly related to deadlock.In the �rst place, for such programs the well-known equivalence betweenmodel-theoretic and operational semantics does not hold. For example, the queryappend(X,Y,Z) does not succeed (it deadlocks) and this is in contrast with thefact that (in�nitely many) instances of append(X,Y,Z) are contained in theleast Herbrand model of APPEND. This shows that a model-theoretic semanticsin the classical sense is not achievable, in fact the problem of �nding a suitable



declarative semantics is still open. Moreover, while for the left-to-right selectionrule there are results that allow us to characterise when a program is terminating,these results do not apply any longer in presence of dynamic scheduling.Contributions. This paper contains essentially four contributions tackling theabove problems.In order to provide a characterisation of dynamic scheduling that is rea-sonably abstract and hence amenable to semantic analysis, we consider input-consuming derivations [18], a formalism similar toModed GHC [20]. In an input-consuming derivation, only atoms whose input arguments are not instantiatedthrough the uni�cation step may be selected. Moreover, we restrict our atten-tion to the class of simply-moded programs, which are programs that are, in awell-de�ned sense, consistent wrt. the modes. As also shown by the benchmarksin Sec. 6, most practical programs are simply-moded. We analyse the relationsbetween input-consuming derivations and programs with delay declarations. Wedemonstrate that under some statically veri�able conditions, input-consumingderivations are exactly the ones satisfying the (natural) delay declarations ofprograms.We de�ne a denotational semantics which enjoys a model-theoretical readingand has a bottom-up constructive de�nition. We show that it is compositional,correct and fully abstract wrt. the computed answer substitutions of successfulderivations. E.g., it captures the fact that the query append(X,Y,Z) does notsucceed.Since dynamic scheduling also allows for parallelism, it is sometimes impor-tant to model the result of partial (i.e., incomplete) derivations. For instance,one might have queries (processes) that never terminate, which by de�nition maynever reach the state of success, i.e. of successful completion of the computation.Therefore, we de�ne a second semantics which enjoys the same properties as theone above. We demonstrate that it is correct, fully abstract and compositionalwrt. the computed substitutions of partial derivations. We then have a uniform(in our opinion elegant) framework allowing us to model both successful andpartial computations.Finally, we study the problem of termination of input-consuming programs.We present a result which fully characterises termination of simply-moded input-consuming programs. This result is based on the semantics mentioned in theprevious paragraph.The rest of this paper is organised as follows. The next section introducessome preliminaries. Section 3 de�nes input-consuming derivations and delay dec-larations, and formally compares the two notions. Section 4 provides a resulton denotational semantics for input-consuming derivations, �rst for completederivations, then for incomplete (input-consuming) derivations. Section 5 pro-vides a su�cient and necessary criterion for termination of programs using input-consuming derivations. Section 6 surveys some benchmark programs. Section 7concludes. The proofs have been omitted and can be found in [8].



2 PreliminariesThe reader is assumed to be familiar with the terminology and the basic results ofthe semantics of logic programs [1, 2, 15]. Following [2], we use boldface charactersto denote sequences of objects: t denotes a sequence of terms, B is a query (i.e.,a possibly empty sequence of atoms). The empty query is denoted by 2. Therelation symbol of an atom A is denoted Rel(A). The set of variables occurringin a syntactic object o is denoted Var(o). We say that o is linear if every variableoccurs in it at most once. Given a substitution � = fx1=t1; : : : ; xn=tng, we saythat fx1; : : : ; xng is its domain (denoted by Dom(�)), and Var(ft1; : : : ; tng)is its range (denoted by Ran(�)). Note that Var(�) = Dom(�) [ Ran(�). Ift1; : : : ; tn is a permutation of x1; : : : ; xn then we say that � is a renaming. Thecomposition of substitutions is denoted by juxtaposition (x�� = (x�)�). We saythat a term t is an instance of t0 i� for some �, t = t0�; further, t is a variantof t0, written t � t0, i� t and t0 are instances of each other. A substitution �is a uni�er of terms t and t0 i� t� = t0�. We denote by mgu(t; t0) any mostgeneral uni�er (mgu, in short) of t and t0. A query Q : A; B;C and a clausec : H  B (variable disjoint with Q) yield the resolvent (A;B;C)� with � =mgu(B;H). We say that A; B;C �=) (A;B;C)� is a derivation step (using c),and call B the selected atom. A derivation of P [ fQg is a sequence of derivationsteps Q �1=) Q1 �2=) � � � using (variants of) clauses in the program P . A �nitederivation Q �1=) � � � �n=) Qn is also denoted Q #�!P Qn, where # = �1 : : : �n.The restriction of # to Q is a computed answer substitution (c.a.s.). If Qn = 2,the derivation is successful.Delay Declarations. Logic programs with delay declarations consist of twoparts: a set of clauses and a set of delay declarations, one for each of its predicatesymbols. A delay declaration associated with an n-ary predicate symbol p hasthe form delay p(t1; : : : ; tn) until Cond(t1; : : : ; tn)where Cond (t1; : : : ; tn) is a formula in some assertion language [12]. A derivationis delay-respecting if an atom p(t1; : : : ; tn) is selected only if Cond(t1; : : : ; tn) issatis�ed. In particular, we consider delay declarations of the formdelay p(X1; : : : ; Xn) until nonvar(Xi1) ^ : : : ^ nonvar(Xik):where 1 � i1 < : : : < ik � n.1 The condition nonvar(ti1 ) ^ : : : ^ nonvar(tik ) issatis�ed if and only if ti1 ; : : : ; tik are non-variable terms. Such delay declarationsare equivalent to the block declarations of SICStus Prolog [13].Moded Programs. A mode indicates how a predicate should be used.1 For the case that k = 0, the empty conjunction might be denoted as true, or thedelay declaration might simply be omitted.



De�nition 2.1. A mode for a predicate symbol p of arity n, is a function mpfrom f1; : : : ; ng to fIn;Outg. utIf mp(i) = In (resp. Out), we say that i is an input (resp. output) positionof p. We denote by In(Q) (resp. Out(Q)) the sequence of terms �lling in theinput (resp. output) positions of predicates in Q. Moreover, when writing anatom as p(s; t), we are indicating that s is the sequence of terms �lling in itsinput positions and t is the sequence of terms �lling in its output positions.The notion of simply-moded program is due to Apt and Etalle [3].De�nition 2.2. A clause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is simply-moded i� t1; : : : ; tn is a linear vector of variables and for all i 2 [1; n]Var(ti) \ Var(t0) = ; and Var(ti) \ i[j=1Var(sj) = ;:A query B is simply-moded i� the clause q  B is simply-moded, where q isany variable-free atom. A program is simply-moded i� all of its clauses are. utThus, a clause is simply-moded if the output positions of body atoms are�lled in by distinct variables, and every variable occurring in an output positionof a body atom does not occur in an earlier input position. In particular, everyunit clause is simply-moded. Notice also that programs APPEND and IN ORDERare simply-moded wrt. the modes append(In,In,Out) and in order(In,Out).3 Input-Consuming ProgramsInput-consuming derivations are a formalism for describing dynamic schedulingin an abstract way [18].De�nition 3.1. A derivation step A; B;C �=) (A;B;C)� is input-consumingi� In(B)� = In(B). A derivation is input-consuming i� all its derivation stepsare input-consuming. utThus, allowing only input-consuming derivations is a form of dynamic sched-uling, since selectability depends on the degree of instantiation at runtime. If noatom is resolvable via an input-consuming derivation step, the query deadlocks.2It has been shown that the input-consuming resolvent of a simply-modedquery using a simply-moded clause is simply-moded [4].Example 3.2. Consider again the delay declarationdelay append(Ls, , ) until nonvar(Ls).2 Notice that there is a di�erence between this notion of deadlock and the one usedfor programs with delay declarations; see [6] for a detailed discussion.



It is easy to check that every derivation starting in a query append(t,s,X), whereX is a variable disjoint from s and t, is input-consuming wrt. append(In,In,Out)i� it respects the delay declaration. utTo show the correspondence between delay declarations and input-consumingderivations suggested by Ex. 3.2, we need some further de�nitions. We call a termt 
at if t has the form f(x1; : : : ; xn) where the xi are distinct variables. Note thatconstants are 
at terms. The signi�cance of 
at term arises from the followingobservation: if s and t are uni�able, s is non-variable and t is 
at, then s is aninstance of t. Think here of s being a term in an input position of a selectedatom, and t being the term in that position of a clause head.De�nition 3.3. A program P is input-consistent i� for each clause H  B ofit, the family of terms �lling in the input positions of H is linear, and consistsof variables and 
at terms. utWe also consider here delay declarations of a restricted type.De�nition 3.4. A program with delay declarations is simple if every delaydeclaration is of the formdelay p(X1; : : : ; Xn) until nonvar(Xi1) ^ : : : ^ nonvar(Xik):where i1; : : : ; ik are input positions of p.Moreover, we say that the positions i1; : : : ; ik of p are controlled, while theother input positions of p are free. utThus the controlled positions are those \guarded" by a delay declaration.The main result of this section shows that, under some circumstances, usingdelay declarations is equivalent to restricting to input-consuming derivations.Lemma 3.5. Let P be simply-moded, input-consistent and simple. Let Q be asimply-moded query.{ If for every clause H  B of P , H contains variables in its free positions,then every derivation of P [ fQg respecting the delay declarations is input-consuming (modulo renaming).{ If in addition for every clause H  B of P , the head H contains 
at termsin its controlled positions, then every input-consuming derivation of P [fQgrespects the delay declarations. utIn order to assess how realistic these conditions are, we have checked themagainst a number of programs from various collections. (The results can be foundin Sec. 6). Concerning the statement that all delay-respecting derivations areinput-consuming, we are convinced that this is the case in the overwhelmingmajority of practical cases. Concerning the converse, that is, that all input-consuming derivations are delay-respecting, we could �nd di�erent examples inwhich this was not the case. In many of them this could be �xed by a simple



transformation of the programs3, in other cases it could not (e.g., flatten, [19]).Nevertheless, we strongly believe that the latter form a small minority.The delay declarations for the considered programs were either given or de-rived based on the presumed mode. Note that delay declarations as in Def. 3.4can be more e�ciently implemented than, e.g., delay declarations testing forgroundness. Usually, the derivations permitted by the latter delay declarationsare a strict subset of the input-consuming derivations.4 A Denotational SemanticsPrevious declarative semantics for logic programs cannot correctly model dy-namic scheduling. E.g., none of them re
ects the fact that append(X,Y,Z) dead-locks. We de�ne a model-theoretic semantics that models computed answer sub-stitutions of input-consuming derivations of simply-moded programs and queries.We now de�ne simply-local substitutions, which re
ect the way clauses be-come instantiated in input-consuming derivations. A simply-local substitutioncan be decomposed into several substitutions, corresponding to the instantia-tion of the output of each body atom, as well as the input of the head.De�nition 4.1. Let � be a substitution. We say that � is simply-local wrt. theclause c : p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) i� there exist substitutions�0; �1 : : : ; �n and disjoint sets of fresh (wrt. c) variables v0; v1; : : : ; vn such that� = �0�1 � � ��n where for i 2 f0; : : : ; ng,{ Dom(�i) � Var(ti),{ Ran(�i) � Var(si�0�1 � � ��i�1) [ vi.4� is simply-local wrt. a query B i� � is simply-local wrt. the clause q  Bwhere q is any variable-free atom. utNote that if A; B;C �=) (A;B;C)� is an input-consuming derivation stepusing clause c : H  B, , then �jH is simply-local wrt. the clause H  and �jBis simply-local wrt. the query B.Example 4.2. Consider APPEND in mode append(In,In,Out), and its recursiveclause c : append([HjXs]; Ys; [HjZs])  append(Xs; Ys; Zs). The substitution � =fH=V; Xs=[]; Ys=[W]; Zs=[W]g is simply-local wrt. c: let �0 = fH=V; Xs=[]; Ys=[W]gand �1 = fZs=[W]g; then Dom(�0) � fH; Xs; Ysg, and Ran(�0) � v0 where v0 =fV; Wg, and Dom(�1) � fZsg, and Ran(�1) � Var((Xs; Ys)�0).3 To give an intuitive idea, the transformation would, e.g., replace the clauseeven(s(s(X))):- even(X). with even(s(Y)):- s decomp(Y,X), even(X)., wherewe de�ne s decomp(s(X),X). and the mode is s decomp(In,Out).4 Note that s0 is unde�ned. By abuse of notation, Var(s0 : : :) = ;.



4.1 Modelling Complete DerivationsIn predicate logic, an interpretation states which formulas are true and whichones are not. For our purposes, it is convenient to formalise this by de�ning aninterpretation I as a set of atoms closed under variance. Based on this notionand simply-local substitutions, we now de�ne a restricted notion of model.De�nition 4.3. Let M be an interpretation. We say that M is a simply-localmodel of c : H  B1; : : : ; Bn i� for every substitution � simply-local wrt. c,if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply-local model of a program P i� it is a simply-local model of eachclause of it. utNote that a simply-local model is not necessarily a model in the classicalsense, since the substitution in (1) is required to be simply-local. For example,given the program fq(1); p(X) q(X)g with modes q(In); p(Out), a model mustcontain the atom p(1), whereas a simply-local model does not necessarily containp(1), since fX=1g is not simply-local wrt. p(X)  q(X):We now show that there exists a minimal simply-local model and that it isbottom-up computable. For this we need the following operator TSLP on inter-pretations: Given a program P and an interpretation I , de�neTSLP (I) = fH� j 9 c : H  B1; : : : ; Bn 2 P9 � simply-local wrt.cB1; : : : ; Bn� 2 I g:Operator's powers are de�ned in the standard way: TSLP " 0(I) = I , TSLP "(i + 1)(I) = TSLP (TSLP " i(I)), and TSLP " !(I) = S1i=0 TSLP " i(I). It is easyto show that TSLP is continuous on the lattice where interpretations are orderedby set inclusion. Hence, by well-known results, TSLP " ! exists and is the least�xpoint of TSLP . We can now state our main result.Theorem 4.4. Let P be simply-moded. Then TSLP " !(;) is the least simply-local model of P . utWe now prove correctness, fully abstractness and compositionality of thesemantics. We denote the least simply-local model of P by M SLP .Theorem 4.5. Let the program P and the query A be simply-moded. Thefollowing statements are equivalent:(i) there exists an input-consuming successful derivation A #�!P 2,(ii) there exists a substitution �, simply-local wrt. A, such that A� 2 M SLP ,where A� is a variant of A#. ut



Example 4.6. Considering again APPEND, we have thatM SLAPPEND = 1[n=0fappend([t1; : : : ; tn]; s; [t1; : : : ; tnjs]) j t1; : : : ; tn; s are any terms g:Using Thm. 4.5, we can conclude that the query append([a,b],X,Y) succeedswith computed answer � = fY=[a; bjX]g. In fact, append([a,b],X,[a,b|X])2M SLAPPEND, and � is simply-local wrt. the query above.On the other hand, we can also say that the query append(X,[a,b],Y) hasno successful input-consuming derivations. In fact, for every A 2 M SLAPPEND we havethat the �rst input position of A is �lled in by a non-variable term. Thereforethere is no simply-local � such that append(X,[a,b],Y)� 2 M SLAPPEND. This showsthat this semantics allows us to model correctly deadlocking derivations.However, append(X,[a,b],Y)has instances inM SLAPPEND, and successful deriva-tions, if the requirement of simply-local substitutions, resp. input-consumingderivations, is ignored.4.2 Modelling Partial DerivationsDynamic scheduling also allows for parallelism. In this context it is importantto be able to model the result of partial derivations. That is to say, insteadof considering computed answer substitutions for complete derivations, we nowconsider computed answer substitutions for partial derivations. As we will see,this will be essential in order to prove termination of the programs.Let SM P be the set of all simply-moded atoms of the extended Herbranduniverse of P . In analogy to Theorem 4.4, we have the following theorem.Theorem 4.7. Let P be simply-moded. Then TSLP " !(SM P ) is the leastsimply-local model of P containing SM P . utWe denote the least simply-local model of P containing SM P by PM SLP , forpartial model. We now show correctness, fully abstractness and compositionalityof this semantics for partial derivations.Theorem 4.8. Let the program P and the query A be simply-moded. Thefollowing statements are equivalent:(i) there exists an input-consuming derivation A #�!P A0,(ii) there exists a substitution �, simply-local wrt. A, such that A� 2 PM SLP ,where A� is a variant of A#. utNote that the derivation in point (i) ends in A0, which might be non-empty.Example 4.9. Consider again APPEND. First, PM SLAPPEND containsM SLAPPEND as a sub-set (see Ex. 4.6). Note that M SLAPPEND is obtained by starting from the fact clauseappend([],Ys,Ys) and repeatedly applying the TSLP operator using the recur-sive clause of APPEND. Now to obtain the remaining atoms in PM SLAPPEND, we must



repeatedly apply the TSLP operator, starting from any simply moded atom, i.e.,an atom of the form append(s; t; x) where s and t are arbitrary terms but x doesnot occur in s or t. It is easy to see that we thus have to add SM P together withfappend([t1; : : : ; tnjs]; t; [t1; : : : ; tnjx]) j t1; : : : ; tn; s; t are arbitrary terms,x is a fresh variableg:Using Thm. 4.8, we can conclude that the query append([a,b|X],Y,Z) has apartial derivation with computed answer � = fZ=[a; bjZ0]g, and indeed, append([a; bjX]; Y; [a; bjZ0]) 2PM SLAPPEND, and � is simply-local wrt. the query above. Notice that, following thesame reasoning, one can also conclude that the query also has a partial derivationwith computed answer � = fZ=[ajZ0]g.5 TerminationInput-consuming derivations were originally conceived as an abstract and \rea-sonably strong" assumption about the selection rule in order to prove termi-nation [18]. The �rst result in this area was a su�cient criterion applicable towell- and nicely-moded programs. This was improved upon by dropping the re-quirement of well-modedness, which means that one also captures terminationby deadlock [6]. In this section, we only consider simply moded programs andqueries (simply-moded and well-moded programs form two largely overlapping,but distinct classes), and we provide a criterion for termination which is su�-cient and necessary, and hence an exact characterisation of termination. We �rstde�ne our notion of termination.De�nition 5.1. A program is input terminating i� all its input-consumingderivations started in a simply-moded query are �nite. utIn order to prove that a program is input terminating we need the conceptof moded level mapping [10].De�nition 5.2. A function j j is a moded level mapping i� it maps atoms intoN and such that for any s, t and u, jp(s; t)j = jp(s;u)j. utThe condition jp(s; t)j = jp(s;u)j states that the level of an atom is indepen-dent from the terms in its output positions.Note that programs without recursion terminate trivially. In this context, weneed the following standard de�nitions [2].De�nition 5.3. Let P be a program, p and q be relations. We say that{ p refers to q i� there is a clause in P with p in the head and q in the body.{ p depends on q i� (p; q) is in the re
exive and transitive closure of the relationrefers to.{ p and q are mutually recursive, written p ' q, i� p and q depend on eachother. ut



We now de�ne simply-acceptability, which is in analogy to acceptability [5],but de�ned to deal with simply-moded and input-consuming programs.De�nition 5.4. Let P be a program and M a simply-local model of P con-taining SM P . A clause H  A; B;C is simply-acceptable wrt. the moded levelmapping j j and M i� for every substitution � simply-local wrt. it,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:The program P is simply-acceptable wrt. M i� there exists a moded level map-ping j j such that each clause of P is simply-acceptable wrt. j j and M .We also say that P is simply-acceptable if it is simply acceptable wrt. someM . We can now show that this concept allows to characterize the class of inputterminating programs.Theorem 5.5. A simply-moded program P is simply-acceptable i� it is inputterminating. In particular, if P is input terminating, then it is simply-acceptablewrt. PM SLP . utLet us compare simply-acceptability to acceptability, used to prove left-termination [5]. Acceptability is based on a (classical) model M of the pro-gram, and for a clause H  A1; : : : ; An, one requires jH�j > jAi�j only ifM j= (A1; : : : ; Ai�1)�. The reason is that for LD-derivations, A1; : : : ; Ai�1 mustbe completely resolved before Ai is selected. By the correctness of LD resolu-tion [2], it turns out that the c.a.s. �, just before Ai is selected, is such thatM j= (A1; : : : ; Ai�1)�. It has been argued previously that it is di�cult to usea similar argument for input-consuming derivations [18]. Using the results ofthe previous section, we have overcome this problem. We exploited that pro-vided that programs and queries are simply-moded, we know that even thoughA1; : : : ; Ai�1 may not be resolved completely, A1; : : : ; Ai�1� will be in any \par-tial model" of the program.Example 5.6. Figure 1 shows program 15.3 from [19]: quicksort using a form ofdi�erence lists (we permuted two body atoms for the sake of clarity). This pro-gram is simply-moded, and when used in combination with dynamic scheduling,the standard delay declarations for it are the following:delay quicksort(Xs, ) until nonvar(Xs)delay quicksort dl(Xs, , ) until nonvar(Xs)delay partition(Xs, , , ) until nonvar(Xs)delay =<(X,Y) until ground(X) and ground(Y)delay >(X,Y) until ground(X) and ground(Y)The last two declarations fall out of the scope of Lemma 3.5. Nevertheless, ifwe think of the built-ins > and =< as being conceptually de�ned by a programcontaining in�nitely many ground facts of the form >(n,m), with n and m beingtwo appropriate integers, the derivations respecting the above delay declarations



% quicksort(Xs, Ys)  Ys is an ordered permutation of Xs.quicksort(Xs,Ys)  quicksort dl(Xs,Ys,[]).quicksort dl([X|Xs],Ys,Zs)  partition(Xs,X,Littles,Bigs),quicksort dl(Bigs,Ys1,Zs).quicksort dl(Littles,Ys,[X|Ys1]),quicksort dl([],Xs,Xs).partition([X|Xs],Y,[X|Ls],Bs)  X =< Y, partition(Xs,Y,Ls,Bs).partition([X|Xs],Y,Ls,[X|Bs])  X > Y, partition(Xs,Y,Ls,Bs).partition([],Y,[],[]).mode quicksort(In,Out).mode quicksort dl(In,Out,In).mode partition(In,In,Out,Out).mode =<(In,In).mode >(In,In). Fig. 1. The quicksort programare exactly the input-consuming ones. We can prove that the program is inputterminating. De�ne len aslen([hjt]) = 1 + len(t);len(a) = 0 if a is not of the form [hjt]:We use the following moded level mapping (positions with are irrelevant)jquicksort dl(l; ; )j = len(l);jpartition(l; ; ; )j = len(l):The level mapping of all other atoms can be set to 0. Concerning the model, thesimplest solution is to use the model that expresses the dependency between thelist lengths of the arguments of partition, i.e., M should contain all atoms ofthe form partition(l1; x; l2; l3) where len(l1) > len(l2) and len(l1) > len(l3).6 BenchmarksIn order to assess how realistic the conditions of Lemma 3.5 are, we have lookedinto three collections of logic programs, and we have checked whether thoseprograms were simply moded (SM), input-consistent (IC) and whether theysatis�ed both sides of Lemma 3.5 (L). Notice that programs which are not input-consistent do not satisfy the conditions of Lemma 3.5. For this reason, some Lcolumns are left blank. The results, reported in Tables 1 to 3, show that our re-sults apply to the majority of the programs considered. We considered in Table 1the programs from Apt's collection [2, 5], in Table 2 those of the DPPD's col-lection, (http://dsse.ecs.soton.ac.uk/�mal/systems/dppd.html), and in Table 3some programs of Lindenstrauss's collection (http://www.cs.huji.ac.il/�naomil).



SM IC L SM IC Lappend(In,In,Out) yes yes yes mergesort(In,Out) yes noappend(Out,Out,In) yes yes no mergesort(Out,In) noappend3(In,In,In,Out) yes yes yes mergesort variant(In,Out,In) yes yes nocolor map(In,Out) yes no ordered(In) yes nocolor map(Out,In) yes yes yes overlap(In,In) yes nodcsolve(In, ) yes yes yes overlap(In,Out) yes yes yeseven(In) yes no overlap(Out,In) yes yes yesfold(In,In,Out) yes yes yes perm select(In,Out) yes yes nolist(In) yes yes yes perm select(Out,In) yes yes nolte(In,In) yes yes no qsort(In,Out) yes yes yeslte(In,Out) yes yes yes qsort(Out,In) nolte(Out,In) yes yes no reverse(In,Out) yes yes yesmap(In,In) yes yes yes reverse(Out,In) yes yes yesmap(In,Out) yes yes yes select(In,In,Out) yes nomap(Out,In) yes yes yes select(Out,In,Out) yes yes yesmember(In,In) yes no subset(In,In) yes nomember(In,Out) yes yes yes subset (Out,In) yes yes yesmember(Out,In) yes yes yes sum(In,In,Out) yes yes yestype(In,In,Out) no sum(Out,Out,In) yes yes yesTable 1. Programs from Apt's Collection7 ConclusionIn this paper, we have proven a result that demonstrates { for a large classof programs { the equivalence between delay declarations and input-consumingderivations. This was only speculated in [6, 7]. In fact, even though the classof programs we are considering here (simply-moded programs) is only slightlysmaller than the one of nicely-moded programs considered in [6, 7], for the lattera result such as Lemma 3.5 does not hold.We have provided a denotational semantics for input-consuming derivationsusing a variant of the well-known TP -operator. Our semantics follows the s-semanticsapproach [9] and thus enjoys the typical properties of semantics in this class. Thissemantics improves on the one introduced in [7] in two respects: The semantics ofthis paper models (within a uniform framework) both complete and incompletederivations, and there is no requirement that the program must be well-moded.Falaschi et al. [11] have de�ned a denotational semantics for CLP programswith dynamic scheduling of a somewhat di�erent kind: the semantics of a queryis given by a set of closure operators; each operator is a function modelling apossible e�ect of resolving the query on a program state (i.e., constraint on theprogram variables). However, we believe that our approach is more suited totermination proofs.As mentioned in Sec. 4.2, in the context of parallelism and concurrency [17],one can have derivations that never succeed, and yet compute substitutions.



SM IC L SM IC Lapplast(In,In,Out) yes yes yes relative (In,Out) yes yes yesdepth(In,Out) yes no relative (Out,In) yes yes yesflipflip(In,Out) yes yes yes rev acc(In,In,Out) yes yes yesflipflip(Out,In) yes yes yes rotate(In,Out) yes yes yesgenerate(In,In,Out) yes no rotate(Out,In) yes yes yesliftsolve(In,In) yes yes yes solve(In,In,Out) ) yes noliftsolve(In,Out) yes yes yes square square(In,Out) yes yes yesmatch(In,In) yes no squretr(In,Out) yes yes yesmatch app(In,In) yes yes no ssupply(In,In,Out) yes yes yesmatch app(In,Out) yes yes no trace(In,In,Out) yes nomax lenth(In,Out,Out) yes yes yes trace(In,Out,Out) nomemo solve(In,Out) yes no transpose(In,Out) yes noprune(In,Out) yes no transpose(Out,In) yes yes yesprune(Out,In) yes no unify(In,In,Out) yes noTable 2. Programs from DPPD's CollectionSM IC L SM IC Lack(In,In, ) yes yes no huffman(In,Out) noconcatenate(In,In,Out) yes yes yes huffman(In,Out) nocredit(In,Out) yes yes yes normal form( ,In) yes nodeep(In,Out) yes yes yes queens(In,Out) yes yes yesdeep(Out,In) no queens(Out,In) yes yes nodescendant(In,Out) yes yes yes rewrite(In,Out) yes nodescendant(Out,In) yes yes yes transform(In,In,In,Out) yes yes yesholds(In,Out) yes yes yes twoleast(In,Out) noTable 3. Programs from Lindenstrauss's CollectionMoreover, input-consuming derivations essentially correspond to the executionmechanism of (Moded) FGHC [20]. Thus we have provided a model-theoreticsemantics for such programs/programming languages, which go beyond the usualsuccess-based SLD resolution mechanism of logic programming.On a more practical level, our semantics for partial derivations is used in orderto prove termination. We have provided a necessary and su�cient criterion fortermination, applicable to a wide class of programs, namely the class of simply-moded programs. For instance, we can now prove the termination of QUICKSORT,which is not possible with the tools of [18, 6] (which provided only a su�cientcondition). In the termination proofs, we exploit that any selected atom in aninput-consuming derivation is in a model for partial derivations, in a similar wayas this is done for proving left-termination. It is only on the basis of the semanticsthat we could present a characterisation of input-consuming termination forsimply-moded programs.
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