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Abstract. In logic programming, dynamic scheduling refers to a situ-
ation where the selection of the atom in each resolution (computation)
step is determined at runtime, as opposed to a fixed selection rule such
as the left-to-right one of Prolog. This has applications e.g. in parallel
programming. A mechanism to control dynamic scheduling is provided
in existing languages in the form of delay declarations.
Input-consuming derivations were introduced to describe dynamic sched-
uling while abstracting from the technical details. In this paper, we
first formalise the relationship between delay declarations and input-
consuming derivations, showing in many cases a one-to-one correspon-
dence. Then, we define a model-theoretic semantics for input-consuming
derivations of simply-moded programs. Finally, for this class of programs,
we provide a necessary and sufficient criterion for termination.

1 Introduction

Background. Logic programming is based on giving a computational interpre-
tation to a fragment of first order logic. Kowalski [14] advocates the separation
of the logic and control aspects of a logic program and has coined the famous
formula

Algorithm = Logic + Control.

The programmer should be responsible for the logic part. The control should be
taken care of by the logic programming system.

In reality, logic programming is far from this ideal. Without the programmer
being aware of the control and writing programs accordingly, logic programs
would usually be hopelessly inefficient or even non-terminating.

One aspect of control in logic programs is the selection rule, stating which
atom in a query is selected in each derivation step. The standard selection rule
in logic programming languages is the fixed left-to-right rule of Prolog. While
this rule provides appropriate control for many applications, there are situations,
e.g. in the context of parallel execution or the test-and-generate paradigm, that
require a more flexible control mechanism, namely, dynamic scheduling, where
the selectable atoms are determined at runtime. Such a mechanism is provided
in modern logic programming languages in the form of delay declarations [16].



To demonstrate that on the one hand, the left-to-right selection rule is some-
times inappropriate, but that on the other hand, the selection mechanism must
be controlled in some way, consider the following programs APPEND and IN_ORDER

% append(Xs,Ys,Zs) < Zs is the result of concatenating the lists Xs and Ys
append([H|Xs],Ys, [H|Zs]) < append(Xs,Ys,Zs).
append([],Ys,Ys).

% in_order(Tree,List) <« List is an ordered list of the nodes of Tree
in order(tree(Label,Left,Right),Xs) < in_order(Left,Ls),
in_order (Right,Rs), append(Ls, [Label|Rs],Xs).
in_order(void, []).

together with the query (read_tree and write_list are defined elsewhere)
q :read_tree(Tree), in order(Tree,List), write_list(List).

If read_tree cannot read the whole tree at once — say, it receives the input
from a stream — it would be nice to be able to run the “processes” in_order
and write_list on the available input. This can only be done if one uses a
dynamic selection rule (Prolog’s rule would call in_order only after read_tree
has finished, while other fixed rules would immediately diverge). In order to
avoid nontermination one should adopt appropriate delay declarations, namely

delay in order(T,_) until nonvar(T).
delay append(Ls,_,_) until nonvar(Ls).
delay write_list(Ls,_) until nonvar(Ls).

These declarations avoid that in_order, append and write_list are selected
“too early”, i.e. when their arguments are not “sufficiently instantiated”. Note
that instead of having interleaving “processes”, one can also select several atoms
in parallel, as long as the delay declarations are respected. This approach to
parallelism has been first proposed in [17] and “has an important advantage over
the ones proposed in the literature in that it allows us to parallelise programs
written in a large subset of Prolog by merely adding to them delay declarations,
so without modifying the original program” [4].

Compared to other mechanisms for user-defined control, e.g., using the cut
operator in connection with built-in predicates that test for the instantiation of a
variable (var or ground), delay declarations are more compatible with the declar-
ative character of logic programming. Nevertheless, many important declarative
properties that have been proven for logic programs do not apply to programs
with delay declarations. The problem is mainly related to deadlock.

In the first place, for such programs the well-known equivalence between
model-theoretic and operational semantics does not hold. For example, the query
append (X,Y,Z) does not succeed (it deadlocks) and this is in contrast with the
fact that (infinitely many) instances of append(X,Y,Z) are contained in the
least Herbrand model of APPEND. This shows that a model-theoretic semantics
in the classical sense is not achievable, in fact the problem of finding a suitable



declarative semantics is still open. Moreover, while for the left-to-right selection
rule there are results that allow us to characterise when a program is terminating,
these results do not apply any longer in presence of dynamic scheduling.

Contributions. This paper contains essentially four contributions tackling the
above problems.

In order to provide a characterisation of dynamic scheduling that is rea-
sonably abstract and hence amenable to semantic analysis, we consider input-
consuming derivations [18], a formalism similar to Moded GHC [20]. In an input-
consuming derivation, only atoms whose input arguments are not instantiated
through the unification step may be selected. Moreover, we restrict our atten-
tion to the class of simply-moded programs, which are programs that are, in a
well-defined sense, consistent wrt. the modes. As also shown by the benchmarks
in Sec. 6, most practical programs are simply-moded. We analyse the relations
between input-consuming derivations and programs with delay declarations. We
demonstrate that under some statically verifiable conditions, input-consuming
derivations are exactly the ones satisfying the (natural) delay declarations of
programs.

We define a denotational semantics which enjoys a model-theoretical reading
and has a bottom-up constructive definition. We show that it is compositional,
correct and fully abstract wrt. the computed answer substitutions of successful
derivations. E.g., it captures the fact that the query append(X,Y,Z) does not
succeed.

Since dynamic scheduling also allows for parallelism, it is sometimes impor-
tant to model the result of partial (i.e., incomplete) derivations. For instance,
one might have queries (processes) that never terminate, which by definition may
never reach the state of success, i.e. of successful completion of the computation.
Therefore, we define a second semantics which enjoys the same properties as the
one above. We demonstrate that it is correct, fully abstract and compositional
wrt. the computed substitutions of partial derivations. We then have a uniform
(in our opinion elegant) framework allowing us to model both successful and
partial computations.

Finally, we study the problem of termination of input-consuming programs.
We present a result which fully characterises termination of simply-moded input-
consuming programs. This result is based on the semantics mentioned in the
previous paragraph.

The rest of this paper is organised as follows. The next section introduces
some preliminaries. Section 3 defines input-consuming derivations and delay dec-
larations, and formally compares the two notions. Section 4 provides a result
on denotational semantics for input-consuming derivations, first for complete
derivations, then for incomplete (input-consuming) derivations. Section 5 pro-
vides a sufficient and necessary criterion for termination of programs using input-
consuming derivations. Section 6 surveys some benchmark programs. Section 7
concludes. The proofs have been omitted and can be found in [8].



2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results of
the semantics of logic programs [1, 2, 15]. Following [2], we use boldface characters
to denote sequences of objects: t denotes a sequence of terms, B is a query (i.e.,
a possibly empty sequence of atoms). The empty query is denoted by O. The
relation symbol of an atom A is denoted Rel(A). The set of variables occurring
in a syntactic object o is denoted Var(o). We say that o is linear if every variable
occurs in it at most once. Given a substitution o = {x1/t1,...,xn/tn}, We say
that {zi1,...,zp} is its domain (denoted by Dom(o)), and Var({ti,...,t,})
is its range (denoted by Ran(c)). Note that Var(c) = Dom(o)U Ran(o). If
t1,...,t, is a permutation of zy,...,z, then we say that o is a renaming. The
composition of substitutions is denoted by juxtaposition (zfo = (z6)c). We say
that a term ¢ is an instance of t' iff for some o, t = t'o; further, t is a variant
of ¢, written ¢ ~ ', iff ¢ and ' are instances of each other. A substitution 6
is a wnifier of terms ¢t and ¢’ iff t0 = ¢'d. We denote by mgu(t,t') any most
general unifier (mgu, in short) of ¢ and ¢. A query @ : A, B,C and a clause
¢ : H < B (variable disjoint with Q) yield the resolvent (A,B,C)# with § =
mgu(B, H). We say that A, B,C N (A, B, C)f is a derivation step (using c),
and call B the selected atom. A derivation of P U {Q} is a sequence of derivation

steps @ N Q1 EE using (variants of) clauses in the program P. A finite

derivation @ LN N @, is also denoted @ i)p Qn, where ¥ = 0;...6,.
The restriction of ¥ to Q) is a computed answer substitution (c.a.s.). If Q, = O,
the derivation is successful.

Delay Declarations. Logic programs with delay declarations consist of two
parts: a set of clauses and a set of delay declarations, one for each of its predicate
symbols. A delay declaration associated with an n-ary predicate symbol p has
the form

delay p(ti,...,t,) until Cond(ti,...,t,)

where Cond(t1,...,t,) is a formula in some assertion language [12]. A derivation
is delay-respecting if an atom p(t1,...,t,) is selected only if Cond(t1,...,t,) is
satisfied. In particular, we consider delay declarations of the form

delay p(Xi,...,X,) until nonvar(X; ) A...Anonvar(X;, ).

where 1 <41 < ... < i < n.! The condition nonvar(t;,) A ... A nonvar(t;, ) is
satisfied if and only if ¢;,, .. .,¢;, are non-variable terms. Such delay declarations
are equivalent to the block declarations of SICStus Prolog [13].

Moded Programs. A mode indicates how a predicate should be used.

! For the case that k = 0, the empty conjunction might be denoted as true, or the
delay declaration might simply be omitted.



Definition 2.1. A mode for a predicate symbol p of arity n, is a function m,
from {1,...,n} to {In, Out}. o

If my(i) = In (resp. Out), we say that ¢ is an input (resp. output) position
of p. We denote by In(Q) (resp. Out(Q)) the sequence of terms filling in the
input (resp. output) positions of predicates in (). Moreover, when writing an
atom as p(s,t), we are indicating that s is the sequence of terms filling in its
input positions and t is the sequence of terms filling in its output positions.

The notion of simply-moded program is due to Apt and Etalle [3].

Definition 2.2. A clause p(top,sp+1)  pi(si,t1),...,pn(sSn,tn) is simply-
moded iff t1,...,t, is a linear vector of variables and for all i € [1,n)]

Var(t;) N Var(to) =0 and Var(t;) N U Var(s;) = 0.
j=1

A query B is simply-moded iff the clause ¢ + B is simply-moded, where q is
any variable-free atom. A program is simply-moded iff all of its clauses are. 0O

Thus, a clause is simply-moded if the output positions of body atoms are
filled in by distinct variables, and every variable occurring in an output position
of a body atom does not occur in an earlier input position. In particular, every
unit clause is simply-moded. Notice also that programs APPEND and IN_ORDER
are simply-moded wrt. the modes append (In,In,0ut) and in_order (In,Out).

3 Input-Consuming Programs

Input-consuming derivations are a formalism for describing dynamic scheduling
in an abstract way [18].

Definition 3.1. A derivation step A, B,C =2 (A, B, C)f is input-consuming
iff In(B)# = In(B). A derivation is input-consuming iff all its derivation steps
are input-consuming. a

Thus, allowing only input-consuming derivations is a form of dynamic sched-
uling, since selectability depends on the degree of instantiation at runtime. If no
atom is resolvable via an input-consuming derivation step, the query deadlocks.?

It has been shown that the input-consuming resolvent of a simply-moded
query using a simply-moded clause is simply-moded [4].

Example 3.2. Consider again the delay declaration
delay append(Ls, _, -) until nonvar(Ls).

2 Notice that there is a difference between this notion of deadlock and the one used
for programs with delay declarations; see [6] for a detailed discussion.



It is easy to check that every derivation starting in a query append (¢,s,X), where
X is a variable disjoint from s and ¢, is input-consuming wrt. append (In, In,Out)
iff it respects the delay declaration. O

To show the correspondence between delay declarations and input-consuming
derivations suggested by Ex. 3.2, we need some further definitions. We call a term
t flat if t has the form f(x1,...,x,) where the z; are distinct variables. Note that
constants are flat terms. The significance of flat term arises from the following
observation: if s and t are unifiable, s is non-variable and ¢ is flat, then s is an
instance of ¢. Think here of s being a term in an input position of a selected
atom, and ¢ being the term in that position of a clause head.

Definition 3.3. A program P is input-consistent iff for each clause H < B of
it, the family of terms filling in the input positions of H is linear, and consists
of variables and flat terms. O

We also consider here delay declarations of a restricted type.

Definition 3.4. A program with delay declarations is simple if every delay
declaration is of the form

delay p(X1,...,%Xn) until nonvar(X;)A...Anonvar(X; ).

where i1, ...,i; are input positions of p.
Moreover, we say that the positions iy, ...,%; of p are controlled, while the
other input positions of p are free. O

Thus the controlled positions are those “guarded” by a delay declaration.
The main result of this section shows that, under some circumstances, using
delay declarations is equivalent to restricting to input-consuming derivations.

Lemma 3.5. Let P be simply-moded, input-consistent and simple. Let () be a
simply-moded query.

— If for every clause H + B of P, H contains variables in its free positions,
then every derivation of P U {Q} respecting the delay declarations is input-
consuming (modulo renaming).

— If in addition for every clause H < B of P, the head H contains flat terms
in its controlled positions, then every input-consuming derivation of PU{Q}
respects the delay declarations. O

In order to assess how realistic these conditions are, we have checked them
against a number of programs from various collections. (The results can be found
in Sec. 6). Concerning the statement that all delay-respecting derivations are
input-consuming, we are convinced that this is the case in the overwhelming
majority of practical cases. Concerning the converse, that is, that all input-
consuming derivations are delay-respecting, we could find different examples in
which this was not the case. In many of them this could be fixed by a simple



transformation of the programs®, in other cases it could not (e.g., flatten, [19]).

Nevertheless, we strongly believe that the latter form a small minority.

The delay declarations for the considered programs were either given or de-
rived based on the presumed mode. Note that delay declarations as in Def. 3.4
can be more efficiently implemented than, e.g., delay declarations testing for
groundness. Usually, the derivations permitted by the latter delay declarations
are a strict subset of the input-consuming derivations.

4 A Denotational Semantics

Previous declarative semantics for logic programs cannot correctly model dy-
namic scheduling. E.g., none of them reflects the fact that append (X,Y,Z) dead-
locks. We define a model-theoretic semantics that models computed answer sub-
stitutions of input-consuming derivations of simply-moded programs and queries.

We now define simply-local substitutions, which reflect the way clauses be-
come instantiated in input-consuming derivations. A simply-local substitution
can be decomposed into several substitutions, corresponding to the instantia-
tion of the output of each body atom, as well as the input of the head.

Definition 4.1. Let 6 be a substitution. We say that 8 is simply-local wrt. the

clause ¢ : p(to,spt1) < pi(si,t1),...,Pn(Sn, ty) iff there exist substitutions
00,01 .. .,0, and disjoint sets of fresh (wrt. ¢) variables vg, vy, ..., v, such that
6 = ogoy - - 0, where for i € {0,...,n},

— Dom(o;) C Var(t;),
— Ran(o;) C Var(sjopoy -0 1) Uv;.t

0 is simply-local wrt. a query B iff 6 is simply-local wrt. the clause ¢ < B
where ¢ is any variable-free atom. O

Note that if A, B,C =2 (A,B, C)f is an input-consuming derivation step
using clause ¢ : H < B, , then 6, is simply-local wrt. the clause H < and 6|
is simply-local wrt. the query B.

Ezxample 4.2. Consider APPEND in mode append(In,In,Qut), and its recursive
clause ¢ : append([H|Xs], Ys, [H|Zs]) < append(Xs,Ys,Zs). The substitution 6§ =
{H/V,Xs/[],Ys/[W],Zs/[W]} is simply-local wrt. ¢: let o9 = {H/V,Xs/[],Ys/[W]}
and o1 = {Zs/[W]}; then Dom(op) C {H,Xs, Ys}, and Ran(oo) C vy where vy =
{V,w}, and Dom(o1) C {Zs}, and Ran(o1) C Var((Xs, Ys)oy).

8 To give an intuitive idea, the transformation would, e.g., replace the clause
even(s(s(X))):- even(X). with even(s(Y)):- s_decomp(Y,X), even(X)., where
we define s_decomp (s (X),X) . and the mode is s_decomp(In,0Out) .

* Note that s¢ is undefined. By abuse of notation, Var(so...) = 0.



4.1 Modelling Complete Derivations

In predicate logic, an interpretation states which formulas are true and which
ones are not. For our purposes, it is convenient to formalise this by defining an
interpretation I as a set of atoms closed under variance. Based on this notion
and simply-local substitutions, we now define a restricted notion of model.

Definition 4.3. Let M be an interpretation. We say that M is a simply-local
model of ¢ : H + By,..., B, iff for every substitution € simply-local wrt. ¢,

if B,#,...,B,0 € M then Hf € M. (1)

M is a simply-local model of a program P iff it is a simply-local model of each
clause of it. O

Note that a simply-local model is not necessarily a model in the classical
sense, since the substitution in (1) is required to be simply-local. For example,
given the program {q(1), p(X) < q(X)} with modes q(In), p(Out), a model must
contain the atom p(1), whereas a simply-local model does not necessarily contain
p(1), since {X/1} is not simply-local wrt. p(X) < q(X).

We now show that there exists a minimal simply-local model and that it is
bottom-up computable. For this we need the following operator 75" on inter-
pretations: Given a program P and an interpretation I, define

T3i(I)={HO|3c¢:H < By,...,B,€P
3 0 simply-local wrt.c
By,...,B,0el 1.

Operator’s powers are defined in the standard way: TEL T 0(I) =1, TEL T
(i + 1)(I) = TEE(TEE 1 4(I)), and TEE 1 w(I) = Usey ToF 1 i(1). It is easy
to show that T'5% is continuous on the lattice where interpretations are ordered
by set inclusion. Hence, by well-known results, T5” 1 w exists and is the least
fixpoint of T5Y. We can now state our main result.

Theorem 4.4. Let P be simply-moded. Then T5L 1 w(() is the least simply-
local model of P. O

We now prove correctness, fully abstractness and compositionality of the
semantics. We denote the least simply-local model of P by MgL.

Theorem 4.5. Let the program P and the query A be simply-moded. The
following statements are equivalent:

(i) there exists an input-consuming successful derivation A p g,
(ii) there exists a substitution 6, simply-local wrt. A, such that A§ € M5,

where A6 is a variant of Ad. a



Example 4.6. Considering again APPEND, we have that

o0
Mgen = | J {append([t1, ..., ta], 8, [t1, -, tals]) | t1, ..., tn, s are any terms }.

n=0

Using Thm. 4.5, we can conclude that the query append([a,b],X,Y) succeeds
with computed answer § = {Y/[a,b|X]}. In fact, append([a,b],X, [a,blX])€
ML, and 6 is simply-local wrt. the query above.

On the other hand, we can also say that the query append (X, [a,b],Y) has
no successful input-consuming derivations. In fact, for every A € M35, we have
that the first input position of A is filled in by a non-variable term. Therefore
there is no simply-local @ such that append (X, [a,b],Y)# € M35 This shows
that this semantics allows us to model correctly deadlocking derivations.

However, append (X, [a,b],Y) has instances in M35, and successful deriva-
tions, if the requirement of simply-local substitutions, resp. input-consuming
derivations, is ignored.

4.2 Modelling Partial Derivations

Dynamic scheduling also allows for parallelism. In this context it is important
to be able to model the result of partial derivations. That is to say, instead
of considering computed answer substitutions for complete derivations, we now
consider computed answer substitutions for partial derivations. As we will see,
this will be essential in order to prove termination of the programs.

Let SM p be the set of all simply-moded atoms of the extended Herbrand
universe of P. In analogy to Theorem 4.4, we have the following theorem.

Theorem 4.7. Let P be simply-moded. Then T5* 1 w(SMp) is the least
simply-local model of P containing SM p. O

We denote the least simply-local model of P containing SM p by PM pr , for
partial model. We now show correctness, fully abstractness and compositionality
of this semantics for partial derivations.

Theorem 4.8. Let the program P and the query A be simply-moded. The
following statements are equivalent;:

(i) there exists an input-consuming derivation A p A ,
(ii) there exists a substitution 6, simply-local wrt. A, such that Af € PM}SDL,

where Af is a variant of Ad. O
Note that the derivation in point (i) ends in A’, which might be non-empty.

Ezample 4.9. Consider again APPEND. First, PM EP%END contains M35 as a sub-
set (see Ex. 4.6). Note that M35y is obtained by starting from the fact clause
append([1,Ys,Ys) and repeatedly applying the TﬁL operator using the recur-
sive clause of APPEND. Now to obtain the remaining atoms in PM jsgyp, We must



repeatedly apply the T'5% operator, starting from any simply moded atom, i.e.,
an atom of the form append(s, t,xz) where s and ¢ are arbitrary terms but = does
not occur in s or t. It is easy to see that we thus have to add SM p together with

{append([t1,...,tnls],t, [t1, .., tnlz]) | t1,...,tn,s,t are arbitrary terms,
x is a fresh variable}.

Using Thm. 4.8, we can conclude that the query append([a,b|X],Y,Z) has a

partial derivation with computed answer @ = {Z/[a, b|Z']}, and indeed, append([a, b|X], Y, [a,b|Z']) €
PM3Eep, and @ is simply-local wrt. the query above. Notice that, following the

same reasoning, one can also conclude that the query also has a partial derivation

with computed answer § = {Z/[a|Z']}.

5 Termination

Input-consuming derivations were originally conceived as an abstract and “rea-
sonably strong” assumption about the selection rule in order to prove termi-
nation [18]. The first result in this area was a sufficient criterion applicable to
well- and nicely-moded programs. This was improved upon by dropping the re-
quirement of well-modedness, which means that one also captures termination
by deadlock [6]. In this section, we only consider simply moded programs and
queries (simply-moded and well-moded programs form two largely overlapping,
but distinct classes), and we provide a criterion for termination which is suffi-
cient and necessary, and hence an exact characterisation of termination. We first
define our notion of termination.

Definition 5.1. A program is input terminating iff all its input-consuming
derivations started in a simply-moded query are finite. O

In order to prove that a program is input terminating we need the concept
of moded level mapping [10].

Definition 5.2. A function | | is a moded level mapping iff it maps atoms into
N and such that for any s, t and u, |p(s,t)| = |p(s, u)|. O

The condition |p(s,t)| = |p(s, u)| states that the level of an atom is indepen-
dent from the terms in its output positions.

Note that programs without recursion terminate trivially. In this context, we
need the following standard definitions [2].

Definition 5.3. Let P be a program, p and g be relations. We say that

— p refers to q iff there is a clause in P with p in the head and ¢ in the body.

— p depends on ¢ iff (p, q) is in the reflexive and transitive closure of the relation
refers to.

— p and ¢ are mutually recursive, written p ~ ¢, iff p and ¢ depend on each
other. O



We now define simply-acceptability, which is in analogy to acceptability [5],
but defined to deal with simply-moded and input-consuming programs.

Definition 5.4. Let P be a program and M a simply-local model of P con-
taining SM p. A clause H < A, B, C is simply-acceptable wrt. the moded level
mapping | | and M iff for every substitution 6 simply-local wrt. it,

if A6 € M and Rel(H) ~ Rel(B) then |H8| > |Bf)|.

The program P is simply-acceptable wrt. M iff there exists a moded level map-
ping | | such that each clause of P is simply-acceptable wrt. | | and M.

We also say that P is simply-acceptable if it is simply acceptable wrt. some
M. We can now show that this concept allows to characterize the class of input
terminating programs.

Theorem 5.5. A simply-moded program P is simply-acceptable iff it is input
terminating. In particular, if P is input terminating, then it is simply-acceptable
wrt. PM I§L. a

Let us compare simply-acceptability to acceptability, used to prove left-
termination [5]. Acceptability is based on a (classical) model M of the pro-
gram, and for a clause H <+ A;,...,A,, one requires |[Hf| > |A;0| only if
M = (Ay,...,A;_1)0. The reason is that for LD-derivations, A4y,..., A;_1; must
be completely resolved before A; is selected. By the correctness of LD resolu-
tion [2], it turns out that the c.a.s. 6, just before A; is selected, is such that
M E (A1,...,A;—1)0. It has been argued previously that it is difficult to use
a similar argument for input-consuming derivations [18]. Using the results of
the previous section, we have overcome this problem. We exploited that pro-
vided that programs and queries are simply-moded, we know that even though
Ay,...,A; 1 may not be resolved completely, Ay,...,A; 16 will be in any “par-
tial model” of the program.

Ezample 5.6. Figure 1 shows program 15.3 from [19]: quicksort using a form of
difference lists (we permuted two body atoms for the sake of clarity). This pro-
gram is simply-moded, and when used in combination with dynamic scheduling,
the standard delay declarations for it are the following:

delay quicksort(Xs, _) until nonvar(Xs)
delay quicksortdl(Xs, _, _) until nonvar (Xs)
delay partition(Xs, _, _, -) until nonvar (Xs)
delay =<(X,Y) until ground(X) and ground(Y)
delay >(X,Y) until ground(X) and ground(Y)

The last two declarations fall out of the scope of Lemma 3.5. Nevertheless, if
we think of the built-ins > and =< as being conceptually defined by a program
containing infinitely many ground facts of the form >(n,m), with n and m being
two appropriate integers, the derivations respecting the above delay declarations



% quicksort(Xs, Ys) < Ys is an ordered permutation of Xs.
quicksort(Xs,Y¥s) < quicksort_dl(Xs,Ys,[]).

quicksort_dl1([X|Xs],Ys,Zs) < partition(Xs,X,Littles,Bigs),
quicksort_dl(Bigs,Ys1,Zs).
quicksort_dl(Littles,Ys, [X|Ys1]),
quicksort_d1([],Xs,Xs).

partition([X|Xs],Y,[X|Ls],Bs) ¢ X =< Y, partition(Xs,Y,Ls,Bs).
partition([X|Xs],Y,Ls,[XIBs]) <X > Y, partition(Xs,Y,Ls,Bs).
partition([1,Y,[1,[1).

mode quicksort(In,Out).

mode quicksort_dl(In,Out,In).
mode partition(In,In,Out,Out).
mode =<(In,In).

mode >(In,In).

Fig. 1. The quicksort program

are exactly the input-consuming ones. We can prove that the program is input
terminating. Define len as

len([h|t]) = 1 + len(t),
len(a) =0 if @ is not of the form [h|t].

We use the following moded level mapping (positions with _ are irrelevant)

|quicksort dl(l, ., )| = len(l),
|partition(l,, ., )| = len(l).

The level mapping of all other atoms can be set to 0. Concerning the model, the
simplest solution is to use the model that expresses the dependency between the
list lengths of the arguments of partition, i.e., M should contain all atoms of
the form partition(l;,z,l2,l3) where len(l;) > len(lz) and len(ly) > len(l3).

6 Benchmarks

In order to assess how realistic the conditions of Lemma 3.5 are, we have looked
into three collections of logic programs, and we have checked whether those
programs were simply moded (SM), input-consistent (IC) and whether they
satisfied both sides of Lemma 3.5 (L). Notice that programs which are not input-
consistent do not satisfy the conditions of Lemma 3.5. For this reason, some L
columns are left blank. The results, reported in Tables 1 to 3, show that our re-
sults apply to the majority of the programs considered. We considered in Table 1
the programs from Apt’s collection [2,5], in Table 2 those of the DPPD’s col-
lection, (http://dsse.ecs.soton.ac.uk/~mal/systems/dppd.html), and in Table 3
some programs of Lindenstrauss’s collection (http://www.cs.huji.ac.il/~naomil).



SM|IC| L SM|IC| L
append(In,In,Out) yes |yes|yes|mergesort (In,Out) yes | no
append (Out,Out,In) yes |yes| no ||mergesort (Out,In) no
append3(In,In,In,Out)|yes |yes|yes|mergesort_variant (In,Out,In)|yes|yes|no
color_map (In,Out) yes | no ordered (In) yes | no
color_map(Out,In) yes |yes|yes| overlap(In,In) yes | no
dcsolve(In,_) yes |yes|yes||loverlap(In,Out) yes |yes|yes
even(In) yes | no overlap(Out,In) yes |yes|yes
fold(In,In,Out) yes |yes|yes| perm_select (In,Out) yes |yes| no
list(In) yes |yes|yes| perm_select (Out,In) yes |yes| no
lte(In,In) yes |yes| no ||gsort (In,Out) yes |yes|yes
1lte(In,Out) yes |yes|yes||qsort (Out,In) no
1te(Out,In) yes |yes| no ||reverse (In,0ut) yes |yes|yes
map (In,In) yes |yes|yes||reverse (Out,In) yes |yes|yes
map (In,Out) yes |yes|yes||select (In,In,0Out) yes|no
map (Out,In) yes |yes|yes|select (Out,In,Out) yes |yes|yes
member (In,In) yes | no subset (In,In) yes | no
member (In,Out) yes |yes|yes||subset (Out,In) yes |yes|yes
member (Out, In) yes |yes|yes|/sum(In,In,0Out) yes |yes|yes
type(In,In,Out) no sum(Out,Out,In) yes |yes|yes

Table 1. Programs from Apt’s Collection

7 Conclusion

In this paper, we have proven a result that demonstrates — for a large class
of programs — the equivalence between delay declarations and input-consuming
derivations. This was only speculated in [6,7]. In fact, even though the class
of programs we are considering here (simply-moded programs) is only slightly
smaller than the one of nicely-moded programs considered in [6, 7], for the latter
a result such as Lemma 3.5 does not hold.

We have provided a denotational semantics for input-consuming derivations
using a variant of the well-known T’p-operator. Our semantics follows the s-semantics
approach [9] and thus enjoys the typical properties of semantics in this class. This
semantics improves on the one introduced in [7] in two respects: The semantics of
this paper models (within a uniform framework) both complete and incomplete
derivations, and there is no requirement that the program must be well-moded.

Falaschi et al. [11] have defined a denotational semantics for CLP programs
with dynamic scheduling of a somewhat different kind: the semantics of a query
is given by a set of closure operators; each operator is a function modelling a
possible effect of resolving the query on a program state (i.e., constraint on the
program variables). However, we believe that our approach is more suited to
termination proofs.

As mentioned in Sec. 4.2, in the context of parallelism and concurrency [17],
one can have derivations that never succeed, and yet compute substitutions.



SM|IC| L SMI|IC| L
applast(In,In,Out) yes |yes|yes||relative (In,Out) yes |yes|yes
depth(In,Out) yes| no relative (Out,In) yes|yes|yes
flipflip(In,Out) yes |yes|yes||rev_acc(In,In,0Out) yes|yes|yes
flipflip(Out,In) yes |yes|yes||rotate(In,Out) yes |yes|yes
generate (In,In,0ut) |yes|no rotate (Out,In) yes|yes|yes
liftsolve(In,In) yes |yes|yes||solve(In,In,Out) ) yes| no
liftsolve(In,0Out) yes |yes|yes||square_square (In,Out)|yes |yes|yes
match(In,In) yes| no squretr (In,Out) yes|yes|yes
match_app (In,In) yes |yes| no ||ssupply(In,In,Out) yes|yes|yes
match_app(In,0Out) yes |yes| no ||trace(In,In,Out) yes| no
max_lenth(In,Out,Out)|yes|yes|yes|/trace(In,Out,Out) no
memo_solve (In,Out) yes| no transpose (In,Out) yes| no
prune (In,Out) yes | no transpose (Out,In) yes |yes|yes
prune (Out,In) yes| no unify(In,In,Out) yes| no

Table 2. Programs from DPPD’s Collection

SM|IC| L SM|IC| L
ack(In,In,_) yes|yes| no ||huffman(In,Out) no
concatenate (In,In,Out)|yes |yes|yes|huffman(In,Out) no
credit (In,Out) yes |yes|yes|/normal_form(_,In) yes| no
deep(In,Out) yes |yes|yes|/queens (In,0ut) yes|yes|yes
deep(Out,In) no queens (Out,In) yes |yes| no
descendant (In,0Out) yes |yes|yes||rewrite (In,Out) yes| no
descendant (Out,In) yes |yes|yes||transform(In,In,In,0Out)|yes|yes|yes
holds(In,0Out) yes |yes|yes||twoleast (In,Out) | no

Table 3. Programs from Lindenstrauss’s Collection

Moreover, input-consuming derivations essentially correspond to the execution
mechanism of (Moded) FGHC [20]. Thus we have provided a model-theoretic
semantics for such programs/programming languages, which go beyond the usual
success-based SLD resolution mechanism of logic programming.

On a more practical level, our semantics for partial derivations is used in order
to prove termination. We have provided a necessary and sufficient criterion for
termination, applicable to a wide class of programs, namely the class of simply-
moded programs. For instance, we can now prove the termination of QUICKSORT,
which is not possible with the tools of [18,6] (which provided only a sufficient
condition). In the termination proofs, we exploit that any selected atom in an
input-consuming derivation is in a model for partial derivations, in a similar way
as this is done for proving left-termination. It is only on the basis of the semantics
that we could present a characterisation of input-consuming termination for
simply-moded programs.
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