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Abstract

We study the properties of input-consuming derivations of moded logic programs.
Input-consuming derivations do not employ a fixed selection rule, and can be used
to model the behavior of logic programs using dynamic scheduling and employing
constructs such as delay declarations.

We counsider the class of Nicely-Moded programs and queries. We show that for
these programs one part of the well-known Switching Lemma holds. Furthermore,
we provide conditions which guarantee that all input-consuming derivations starting
in a Nicely-Moded query are finite. The method presented here is easy to apply
and generalizes other related works.

1 Introduction

Most of the recent logic programming languages provide the possibility of em-
ploying a dynamic selection rule, that is, a selection rule which is more flexible
than Prolog’s standard left-to-right one. In fact, dynamic selection rules have
proven to be useful in a number of applications; among other things they al-
low the coroutining of different “processes” and thus to model parallelism by
means of interleaving.

Clearly, even a dynamic selection rule must be restricted in some way.
Should one not do so, the computation could easily diverge. To this end,
different languages use different mechanisms. For instance, in Godel [12] and
in Eclipse [21], delay declarations are used to ensure that only atoms which
are ground in their input arguments are selected. In GHC [19] programs are
augmented with guards in order to control the selection of atoms dynamically
(moreover, moded flat GHC [20] uses an extra condition on the input posi-
tions, which is extremely similar to the one we’ll adopt in the sequel). block
declarations that check the partial instantiation of the input arguments of calls
are used in SICStus. The common underlying idea of all the above solutions is
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to allow one to “delay” the selection of certain atoms in the query until their
arguments become sufficiently instantiated.

The additional flexibility introduced by the adoption of a dynamic selection
mechanism has the disadvantage that the most of the literature on termination
of logic programs (see [15] for a survey on the subject) does not apply when
a dynamic selection rule is employed. Notable exceptions are Bezem’s [7] and
and Cavedon’s [8], which provide results for unrestricted selection rules.

We know of few authors who tackled the specific problem of termination
of logic programs with a dynamic selection rule. Apt and Luitjes’s [3] exploits
properties of a restricted class of SLD-derivations to prove termination of
logic programs augmented with delay declarations that imply determinacy
and matching. Marchiori and Teusink’s [14] introduces the class of delay
recurrent programs and proves that programs in this class terminate for all
local delay selection rule. More recently, Smaus’s [16] studies the termination
of input-consuming derivations of well and nicely moded programs.

Goal of this paper is to study the dynamic behavior of programs using
dynamic scheduling, and to provide sufficient conditions which guarantee their
termination.

The first obstacle we encounter is of providing an “algebraic” way of repre-
senting delay declarations. For this purpose, we follow here the same approach
of [16] and we substitute the use of delay declarations by the restriction to
input-consuming derivations.

The definition of input-consuming derivation is done in two phases: first
we give the program a mode, that is, we partition the positions of each atom
occurring in input and output positions. Then, in presence of modes, input-
consuming derivations are precisely those in which only atoms whose input
arguments will not be instantiated by the unification are allowed to be selected.

We claim that in most “usual” moded programs using a dynamic selec-
tion rule, delay declarations are employed precisely for ensuring the input-
consumedness of the derivations. Clearly, this thesis cannot be proven, yet
it is for instance substantiated by the fact that concept of input-consuming
resolution is very similar to the selection mechanism employed in Moded Flat
GHC [20], and by the arguments in [16]. In Section 3 we provide further
technical arguments sustaining this thesis.

In this paper we study some properties of input-consuming derivations. We
show that if we restrict to programs and queries which are nicely-moded, then
a one way switching-lemma holds and a simple method for proving termination
can be applied.

In order to study termination properties, we define the class of input termi-
nating programs which characterizes programs whose input-consuming deriva-
tions are finite. In order to prove that a program is input terminating we use
the concept of weakly semi-recurrent program which is much less restrictive
than the similar concept of semi-recurrent program introduced by Apt and Pe-
dreschi in [4]. We show that if P is nicely-moded and weakly semi-recurrent
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then all its input-consuming derivations starting from a nicely-moded query
terminate.

Our work generalizes the method described by Smaus in [16] for proving
the termination of input-consuming derivations of well and nicely-moded pro-
grams and queries. First, as opposed to [16], we do not require programs and
queries to be well-moded; we only assume that they are nicely-moded. Sec-
ond, our concept of weak semi-recurrency provides a condition to hold for all
instances of a clause while the notion of ICD-acceptability proposed by Smaus
only considers clause ground instances. This small generalization allows us to
prove termination of input-consuming derivations of queries where the input
arguments are not necessarily ground. For example, we can prove termination
of all the input-consuming derivations of the program APPEND starting from
a query append(s,t,u) provided that u is linear and variable disjoint from
s and t. With the method of [16] one can only prove termination of those
input-consuming derivations where the initial query satisfies the additional
condition that s and ¢ are ground.

We show that the results presented in this paper can be extended to pro-
grams and queries which are permutation nicely-moded [17].

We apply our method to many benchmarks from well-known collections to
show applicability and effectiveness of the results presented in this paper.

The paper is organized as follows. Section 2 contains some preliminary
notations and definitions. In Section 3 input-consuming derivations are in-
troduced and some properties of them are proved. In Section 4 a method for
proving termination of programs is presented, first in a non-modular way, then
for modular programs. Section 5 reports the results obtained by applying our
method to various benchmarks. Finally, Section 6 concludes the paper.

2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results
of the semantics of logic programs [1,2,13].

2.1 Terms and Substitutions

Let T be the set of terms built on a finite set of data constructors C and a
denumerable set of variable symbols V. A substitution € is a mapping from
V to T such that Dom(f) = {X| 6(X) # X} is finite. For any syntactic
object o, we denote by Var(o) the set of variables occurring in 0. A syntactic
object is linear if every variable occurs in it at most once. We denote by €
the empty substitution. The composition 8o of the substitutions # and o is
defined as the functional composition, i.e., fo(X) = o(6(X)). We consider
the pre-ordering < (more general than) on substitutions such that 6 < o iff
there exists v such that 8y = 0. The result of the application of a substitution
f to a term ¢ is said an instance of ¢t and it is denoted by tf. We also consider
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the pre-ordering < (more general than) on terms such that ¢t < ¢ iff there
exists # such that t6 = t'. We denote by & the associated equivalence relation
(variance). A substitution € is a unifier of terms ¢ and ¢’ iff t0 = 6. We
denote by mgu(t = t') any most general unifier (mgu, in short) of t and t'. An
mgu 6 of terms ¢ and ¢’ is called relevant iff Var(0) C Var(t) U Var(t').

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form
p(ti,...,t,) where p € P is an n-ary predicate symbol and t¢y,...,t, € T.
Given an atom A, we denote by Rel(A) the predicate symbol in A. A query
is a possibly empty finite sequence of atoms Ai,..., A,,. The empty query
is denoted by O. Following the convention adopted by Apt in [2], we use
bold characters to denote (possibly empty) sequences of atoms. A clause is a
formula H <— B where H is an atom (the head) and B is a query (the body).
When B is empty, H < B is written H < and is called a unit clause. A
program is a finite set of clauses. We denote atoms by A, B, H, ..., queries by
Q,A,B,C,..., clauses by ¢,d, ..., and programs by P.

Computations are constructed as sequences of “basic” steps. Consider a
non-empty query A, B, C and a clause c. Let H < B be a variant of ¢ variable
disjoint from A, B, C. Let B and H unify with mgu 6. The query (A, B, C)d
is called a resolvent of A, B,C and ¢ with respect to B, with an mgu 6. A
derivation step is denoted by

A,B,C =%, (A,B,C).

H < B is called its input clause. The atom B is called the selected atom
of A,B,C. If P is clear from the context or ¢ is irrelevant then we drop a
reference to them. A derivation is obtained by iterating derivation steps. A
maximal sequence

0 0 On 41
d:= QO :1>P,cl Ql :2>P,C2 T Qn n:>P,cn+1 Qn—i—l T

of derivation steps is called a derivation of P U{Qy} provided that for every
step the standardization apart condition holds, i.e., the input clause employed
is variable disjoint from the initial query )y and from the substitutions and
the input clauses used at earlier steps.

.. . P 0 0, .
Derivations can be finite or infinite. If § := Qo == p,, "+ =>pc, Qn is a

finite prefix of a derivation, also denoted ¢ := Qg N Q, withf =60,---0,, we
say that ¢ is a partial derivation and 6 is a partial computed answer substitution
(p.c.a.s., for short) of PU{Qy}. If 0 is maximal and ends with the empty query
then @ is called computed answer substitution (c.a.s., for short). The length of
a (partial) derivation ¢, denoted by len(d), is the number of derivation steps
in 9. We call B-step any derivation step in a derivation ¢ of A, B, C in which
the selected atom is B or any other atom obtained by resolving B.
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3 Input-Consuming Derivations

3.1 Basic Definitions

Let us first recall the notion of mode. A mode is a function that labels as
input or output the positions of each predicate in order to indicate how the
arguments of a predicate should be used.

Definition 3.1 [Mode| Consider an n-ary predicate symbol p. By a mode for
p we mean a function m, from {1,...,n} to {In, Out}.

If m,(i) = In (resp. Out), we say that ¢ is an input (resp. output) position of
p (with respect to m,). We assume that each predicate symbol has a unique
mode associated to it; multiple modes may be obtained by simply renaming
the predicates.

If @ is a query, we denote by In(Q) (resp. Out(Q)) the set of terms filling
in the input (resp. output) positions of predicates in (). Moreover, when
writing an atom as p(s,t), we are indicating with s the sequence of terms
filling in the input positions of p and with t the sequence of terms filling in
the output positions of p.

The notion of input-consuming derivation was introduced in [16] and is
defined as follows.

Definition 3.2 [Input-Consuming]

e An atom p(s,t) is called input-consuming resolvable wrt a clause ¢ :=
p(u,v) < Q and a substitution 0 iff § = mgu(p(s,t) = p(u,v)) and s = sb.
e A derivation step
A,B,C=%.(A,B,C)
is called input-consuming iff the selected atom B is input-consuming resolv-
able wrt the input clause ¢ and the substitution 6.

e A derivation is called input-consuming iff all its derivation steps are input-
consuming.

The following Lemma states that we are allowed to restrict our attention
to input-consuming derivations with relevant mgu’s.

Lemma 3.3 Let p(s,t) and p(u,v) be two atoms. If there exists an mgu 6
of p(s,t) and p(u,v) such that s6 = s then there ezists a relevant mgu U of
p(s,t) and p(u,v) such that sv = s.

Proof. Since p(s,t) and p(u,v) are unifiable, there exists a relevant mgu
O of them (cfr. [2], Theorem 2.16). Now, 6, is a renaming of §. Thus
s is a variant of s. Then there exists a renaming p such that Dom(p) C
Var(s,t,u,v) and sf,,p =s. Now, take 0 = O,p. O

From now on, we assume that all mgu’s used in the input-consuming
derivation steps are relevant.
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Example 3.4 Consider the program REVERSE with accumulator in the modes
defined below.

mode reverse(In,Out).
mode reverse acc(In,Out, In).

reverse(Xs,Ys) < reverse acc(Xs,Ys,|[]).
reverse_acc(| |, Ys, Ys).
reverse_acc([X|Xs], Ys, Zs) < reverse_acc(Xs, Vs, [X|Zs]).

Consider also the query reverse([X1,X2],Zs). The derivation ¢ of REVERSEU
{reverse([X1,X2|,Zs)} depicted below is input-consuming.

§ := reverse([X1,X2],Zs) = reverse_acc([X1,X2],Zs,[]) =
reverse_acc([X2], Zs, [X1]) = reverse_acc(] |, Zs, [X2,X1]) = 0O.

Input-Consuming vs. Delay Declarations

In the introduction we have stated the claim that in most “usual” moded
programs using a dynamic selection rule, delay declarations are employed pre-
cisely for ensuring the input-consumedness of the derivations. As we have
already mentioned, this thesis is already substantiated by the fact that con-
cept of input-consuming resolution is very similar to the selection mechanism
employed in Moded Flat GHC [20], and by the arguments in [16].

We now want to add another argument sustaining it.

First, as a large body of literature shows, the vast majority of “usual”
programs are actually moded (see for example [5,6] or consider for instance
the strictly moded logic programming language Mercury [18]).

Secondly, it is clear that the scope of a delay declaration is to guarantee
that the interpreter will not select the “wrong” clause to resolve a goal. In
fact, if the interpreter always selected the “right” clause, by the known results
over independence from the selection rule one would not have to worry about
the order of the selection of the atoms in the query. Typically, delay decla-
rations are used to prevent the selection of an atom until a certain degree of
instantiation is reached. This degree of instantiation ensures that the atom
is unifiable only with the heads of the “right” clauses. In presence of modes,
the degree of instantiation we are interested in is clearly the one of the input
positions, which are the one carrying the information.

Now, take an atom p(s,t) and suppose that it is resolvable with a clause
¢ by means of an input-consuming derivation step. Then, for every instance
s’ of s, we have that the atom p(s’,t) is as well resolvable with a clause ¢
by means of an input-consuming derivation step. In other words, no further
instantiation of the input positions of p(s, t) can rule out ¢ as a possible clause
for resolving it. Thus ¢ must be one of the “right” clauses for resolving p(s, t)
and we can say that p(s,t) is in its input positions “sufficiently instantiated”
to be resolved with c.
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On the other hand, following the same reasoning, it is easy to see that if
p(s, t) is resolvable with ¢ but not via an input-consuming derivation step,
then there exists an instance s’ of s, such that p(s’, t) is not resolvable via c.
In this case we can say that p(s, t) is not instantiated enough to know whether
c is one of the “right” clauses for resolving it.

3.2 Nicely-Moded Programs

In this the sequel of the paper we’ll restrict to programs and queries which
are Nicely-Moded. We report here the definition of this concept together with
some important properties of nicely-moded programs.

Definition 3.5 [Nicely-Moded]

e A query Q :=pi(s1,t1),- .., Pn(Sn, tn) is nicely-moded if t1, ... t, is a linear
vector of terms and for all i € {1,...,n}

Var(s;) N LnJ Var(t;) = 0.

j=i

e A clause ¢ = p(sg, to) « Q is nicely-moded if Q) is nicely-moded and
Var(sg) N U Var(t;) = 0.
j=1

e A program P is nicely-moded if all of its clauses are nicely-moded.

Note that a one-atom query p(s, t) is nicely-moded if and only if t is linear
and Var(s) N Var(t) = 0.

Example 3.6

e The program REVERSE with accumulator in the modes depicted in the Ex-
ample 3.4 is nicely-moded.

e The following program MERGE is nicely-moded.

mode merge(In, In,Out).

merge(Xs, [ ], Xs).

], Xs, Xs).

X|Xs], [Y|Ys], [Y|Zs]) < Y < X, merge([X|Xs], Ys, Zs).
X|Xs], [Y|Ys], [X|Zs]) < Y > X, merge(Xs, [Y|Ys], Zs).
X|Xs], [X|Ys], [X|Zs]) < merge(Xs, [X|Ys], Zs).

merge
merge
merge

N N N N

[
[
[
[

merge

We now start investigating the properties of nicely-moded programs em-
ploying input-consuming selection rules.

7



ASVVVYL 4 [,

The following result is due to Smaus [16], and states that the class of
programs and queries we are considering is closed under resolution.

Lemma 3.7 [16] Every resolvent of a nicely-moded query () and a nicely-
moded clause ¢, where the derivation step is input-consuming and Var(Q) N
Var(c) = 0, is nicely-moded.

The following Remark (also in [16]) is an immediate consequence of the
definition of input-consuming derivation step and the fact that the mgu’s we
consider are relevant.

Remark 3.8 [16] Let the program P and the query @ := A, p(s,t),C be

nicely-moded. If A, p(s,t),C N A, B, C is an input-consuming derivation
step with selected atom p(s,t), then Af = A.

We now need one technical result, stating that the only variables of a query
that can be “affected” in the derivation process are those occurring in some
output positions.

Lemma 3.9 Let the program P and the query ) be nicely-moded. Let § :=

Q N Q' be a partial input-consuming derivation of P U{Q}. Then, for all
z € Var(Q) and x & Var(Out(Q)), x6 = x.

Proof. Let us first establish the following claim.

Claim 3.10 Let z and w be two variable disjoint sequences of terms such that
w is linear and 6 = mgu(z = w). If s; and sy are two variable disjoint terms
occurring in z then s10 and ss@ are variable disjoint terms.

Proof. The result follows from Lemmata 11.4 and 11.5 in [4]. O

We proceed with the proof of the lemma by induction on len(d).

Base Case. Let len(d) = 0. In this case @ = @' and the result follows
trivially.

Induction step. Let len(d) > 0. Suppose that @) := A, p(s,t),C and

§:=A,p(s,t),C =25 (A,B,C); 25 Q'

where p(s, t) is the selected atom of @, ¢ := p(u,v) < B is the input clause
used in the first derivation step, 6 is a relevant mgu of p(s,t) and p(u, v) and
9 — 0192.

Let z € Var(A,p(s,t),C) and ¢ Var(Out(A,p(s,t),C)). We first show
that

(1) z6, = =x.
We distinguish two cases.

(a) x € Var(s). In this case, property (1) follows from the hypothesis that
0 is input-consuming.
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(b) = ¢ Var(s). Then, by the choice of z, © ¢ Var(p(s,t)). In this case,
property (1) follows from the standardization apart condition and relevance
of 91 .

Now we show that
(2) 26y = x.

Again, we distinguish two cases:
() © ¢ Var((A,B,C)#;). In this case, because of the standardization

apart condition, z will never occur in (A, B, C)6; 2y Q'. Hence, x ¢ Dom/(6s)
and x0y = x.

(d) z € Var((A,B,C)6;). In this case, in order to prove (2) we show
that © ¢ Var(Out((A,B,C)#,)). The result then follows by the inductive
hypothesis.

From the standardization apart condition, relevance of #; and (1), it follows
that Dom(0;) N Var(Q) C Var(t).

From the hypothesis that @ is nicely-moded, Var(t) N Var(Out(A, C)) = 0.
Hence, Var(Out(A,C))0; = Var(Out(A,C)). Since z ¢ Var(Out(A,C)),
this proves that x & Var(Out((A, C)b,)).

It remains to prove that x ¢ Var(Out(B#;). We distinguish two further cases.

(d1) = ¢ Var(s). In this case, © ¢ Var(Out(B6,) follows immediately by
the standardization apart condition and the relevance of 6.

(d2) x € Var(s). By known results (see [2], Corollary 2.25), there exists
two relevant mgu o, and oy such that

o 0 = 0,09,
e 0 = mgu(s = u),
e 0y = mgu(to; = voy).

From relevance of oy and the fact that, by nicely-modedness of @, Var(s) N
Var(t) = (0, we have that to; = t, and by the standardization apart con-
dition Var(t) N Var(voy) = 0. Now by nicely-modedness of ¢, Var(u) N
Var(Out(B)) = (. Since oy is relevant and by the standardization apart
condition it follows that

(3) Var(uoy) N Var(Out(Boy)) = 0.

The proof proceeds now by contradiction. Suppose that z € Var(Out(Bo,0y)).
Since by hypothesis z € Var(s), and s = uoy0,, we have that Var(uoyo,) N
Var(Out(Boyoz)) # 0. By (3), this means that there exist two distinct vari-
ables z; and zy in Var(o2) such that z; € Var(Out(Boy)), 2o € Var(uoy)
and

(4) Var(zi0o2) N Var(ze0oz) # 0.

Since, by the standardization apart condition and relevance of the mgu’s,
Var(o2) C Var(voy) U Var(t) and (Var(Out(Boy)) U Var(uoy)) N Var(t) = 0,
we have that z; and 2, are two disjoint subterms of vo;. Since 0y = mgu(t =
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voy), t is linear and disjoint from voy, (4) contradicts Claim 3.10. O

The following corollary is an immediate consequence of the above lemma
and the definition of nicely-moded program.

Corollary 3.11 Let the program P and the one-atom query A be nicely-

moded. Let § := A s Q' be a partial input-consuming derivation of PU{A}.
Then, for all x € Var(In(A)), z0 = x.

The Left-Switching Lemma

Next is the main result of this section, showing that for input-consuming
nicely-moded programs one half of the well-known switching lemma holds.
This shows that it is always possible to proceed left-to-right to resolve the
selected atoms?!.

Lemma 3.12 (Left-Switching) Let the program P and the query Qo be
nicely-moded. Let § be a partial input-consuming derivation of P U {Qy} of

the form

0

[4 0n+1 n+2
0= QO :1>cl Ql te Qn :>cn+1 Qn—l—l :>cn+2 Qn+2

where

e (Q, is a query of the form A, A, B, B, C,
® (Qni1 ts a resolvent of Q,, and c,y1 wrt B,
® Quio is a resolvent of Qny1 and cpyo wrt Al .

Then, there exists Q, .1, 0,1, 0,5 and a derivation §' such that
On+16n12 = 9;+19:z+2

and
/ 01 9;1+1 ! 041+2
0 = QO — Ql T Qn :>cn+2 Qn+1 :>cn+1 Qn+2

where

0" is input-consuming,
0 and 0" coincide up to the resolvent @,
i1 15 a resolvent of @, and c,9 wrt A,
Qn+2 is a resolvent of Q) and ¢, wrt BO, .
0 and ¢ coincide after the resolvent QQ,, yo.

Proof. Let A := p(s,t), B := q(u,Vv), ¢,y1 = q(u',v') < D and ¢,,2 =
p(s',t') < E. Hence, 6,11 = mgu(q(u,v) = ¢(u’,v')) and

(1) ub,+1 = u, since 0 is input-consuming.

1 Notice that this is however different than saying that the leftmost atom of a query should
always be resolvable: it can very well be the case that the leftmost atom is resolvable and
the one next to it is resolvable.

10
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By (1) and the fact that @, is nicely-moded and 6, is relevant, we have
p(s,t)0,11 = p(s,t). Then, 0,2 = mgu(p(s,t)0,11 = p(s',t')) = mgu(p(s, t) =
p(s',t')) and

(2) sb,42 =s, since ¢ is input-consuming.

Moreover,

(3) 9n+19n+2 - mgu{p(s, t) - p(sla t,)a q(u, V) - Q(ula V,)}
= 9n+29%+2

where

9;1,—}-2 = mgU(q(u, v)0n+2 = Q(ula Vl)gn—I—Q)
= mgu(q(u,v)b,2 = q(u’,v'))
We construct the derivation ¢’ as follows.

0 0! 0 ..
o' = QO :1>c1 Ql T Qn n:+$cn+2 Q;HJ n:+§cn+1 Qn+2

where
(4) 01 = Onio.

0!
By (2), Qn ==, ., Q. is an input-consuming derivation step.

Observe now that

uy, 10545 = ubpiab; o, (by (4))

= bp110n12, (by (3))

=ubhy,  (by (1))

=ub,,, (by (4))
This proves that also @, ‘9%:+§C” .1 @49 is an input-consuming derivation
step. O

It is important to notice that if we drop the nicely-modedness condition
the above Lemma would not hold any longer: it is not difficult to write a
classical coroutining program which is not nicely-moded for which the above
lemma does not apply (see for instance the program reader-writer in [11]).

Corollary 3.13 Let the program P and the query (Q :== A, B be nicely-moded.
Suppose that

§:=A B+’ C,,C,

is a partial input-consuming derivation of P U {Q} where C; and Cy are
obtained by partially resolving A and B, respectively.

11
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Then there exists a partial input-consuming derivation
& :=A,B" C,,Bo 2 LG,

where all the A-steps are performed in the prefiv A, B o C,,B0; of &' and
9 — 0192.

4 Termination

In this section we study the termination of input-consuming derivations of logic
programs. To this end we refine the ideas of Bezem [7] and Cavedon [8] who
studied the termination of logic programs in a very strong sense, namely with
respect to all selection rules, and of Smaus [16] who carachterized terminating
input-consuming derivations of well and nicely-moded programs.

4.1 Input Terminating Programs

We first introduce the key notion of this section.

Definition 4.1 [Input Termination] A program is called input terminating
iff all its input-consuming derivations started with a nicely-moded query are
finite.

The method we are going to use in order to prove that a program is input-
terminating is based on the following concept of moded level mapping intro-
duced by Etalle et al. in [10].

Definition 4.2 [Moded Level Mapping] Let P be a program and B% be the
extended Herbrand Base for the language associated with P. A function | | is
a moded level mapping for P iff:

e it is a function | | : B — N from atoms to natural numbers;

e for any t and u, |p(s,t)| = |p(s, u)|.
For A € B%, |A| is the level of A.

The condition |p(s,t)| = |p(s,u)| states that the level of an atom is in-
dependent from the terms filling in its output positions. There is actually
a small yet important difference between this definition and the one in [10]:
in [10] the level mapping is defined on ground atoms only. Therefore this is
actually an extension of the definition of [10].

Example 4.3 Let us denote by TSize(t) the term size of a term ¢, that is
the number of function and constant symbols that occur in ¢. A moded level
mapping for the program REVERSE with accumulator of the Example 3.4 is

|reverse(Xs, Ys)| = T\Size(Xs)
|reverse_acc(Xs, Ys, Zs)| = T'Size(Xs)

where Xs is the first input argument.

12
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4.2 Weak Semi-Recurrency

In order to give a sufficient condition for termination, we are going to employ
a generalization of the concept of semi-recurrent program defined by Apt and
Pedreschi in [4]. First, we need a preliminary definition.

Definition 4.4 Let P be a program, p and ¢ be relations. We say that p
refers to q in P iff there is a clause in P with p in the head and ¢ in the body.
We say that p depends on g and write p C ¢ in P iff (p,¢) is in the reflexive
and transitive closure of the relation refers to.

According to the above definition, p ~ ¢ = p C ¢ A p J ¢ means that p
and ¢ are mutually recursive, and p ¢ = p 2 ¢ A p % g means that p calls ¢
as a subprogram. Notice that 1 is a well-founded ordering.

Finally, we can provide the key concept we are going to use in order to
prove input-termination.

Definition 4.5 [Weak Semi-Recurrency] Let P be a program and | |: 85 — N
be a moded level mapping.

e A clause of P is called weakly semi-recurrent with respect to | | iff for every
instance of it, H < A, B,C

if Rel(H) ~ Rel(B) then |H| > |B].

e A program P is called weakly semi-recurrent with respect to | | iff all its
clauses are. P is called weakly semi-recurrent iff it is weakly semi-recurrent
with respect to some moded level mapping | | : B5 — N.

The notion of weak semi-recurrency differs from the concept of semi-
recurrency introduced by Apt and Pedreschi in [4] in two ways. First, our
definition provides a condition to hold for every instance of a program clause
not only for ground instances as in [4]. Second, we do not require any de-
creasing neither non increasing of the level mapping between the head H of
a rule instance and every corresponding non recursive body atom B: indeed,
the additional condition |H| > |B]| is required in [4] for any body atom B such
that Rel(H) # Rel(B).

We can now state our first basic result on termination, in the case of non-
modular programs.

Theorem 4.6 Let P be a nicely-moded program. If P is weakly semi-recurrent
then P s input-terminating.

Proof. Tt will be obtained from the proof of Theorem 4.10 by setting R = ().0

Example 4.7 Consider the program MERGE defined in the Example 3.6. Let
| | be the moded level mapping for MERGE defined by

lmerge(Xs, Ys, Zs)| = TSize(Xs) + T'Size(Ys).
13
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It is easy to prove that MERGE is weakly semi-recurrent with respect to the
moded level mapping above. By Theorem 4.6, all input-consuming derivations
of the program MERGE started with a query merge(u, s,t) where ¢ is linear and
variable disjoint from u and s are terminating.

4.8  Modular Termination

This section contains a generalization of Theorem 4.6 to the modular case, as
well as the complete proofs for it.
The following lemma is a crucial one.

Lemma 4.8 Let the program P and the query QQ = Aq,..., A, be nicely-
moded. Suppose that there exists an infinite input-consuming derivation § of
PU{Q}. Then, there exist i € {1,...,n} and substitution 6 such that

e there exists an input-consuming derivation §' of P U{Q} of the form
§ = Ap, . Ay ms C (A, A —

e there erists an infinite input-consuming derivation of P U {A;0}.

Proof. Let 0 := A;,..., A, — - - - be an infinite input-consuming derivation
of PU{Q®}. Then 0 contains an infinite number of A-steps for some k €
{1,...,n}. Let ¢ be the minimum of such k. Hence § contains a finite number
of Aj-steps for j € {1,...,i— 1} and there exists C and D such that

§:=Ap,... A+ CD—s -

where Aq,..., A, BN C,D is a finite prefix of 0 which comprises all the
Aj-steps for j € {1,...,i— 1} and C results from their resolution. By Corol-
lary 3.13, there exists an infinite input-consuming derivation ¢’ such that

5= A, Ay C (AL A CD s -

where ¥ = 0¢'. Let 6" := C, (A, ..., 4,)0 +s C,D > ---. Note that
in " the atoms of C will never be selected and, by Remark 3.8, will never
be instantiated. Hence there exists an infinite input-consuming derivation 6"
of PU{(A4,,...,A,)0} where an infinite number of A;#-steps are performed.
Again, By Remark 3.8, for every finite prefix of 6" of the form

Aifl, (Ait1,..., Ay)0 ¥ Dy, Dy =% D}, D,

where D; and D, are obtained by partially resolving A;60 and (441, ..., A,)0,
respectively, and Dy, Dy == D}, D}, is an A;-step for some j € {i+1,...,n},
we have that D] = D;. Hence, from the hypothesis that there is an infi-
nite number of A;f-steps in ", it follows that there exists an infinite input-
consuming derivation of P U {A4;0}. O

14
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The importance of the above lemma is shown by the following corollary of
it, which will allow us to concentrate our attention on queries containing only
one atom.

Corollary 4.9 Let P be a nicely-moded program. P is input-terminating iff
for each nicely-moded one-atom query A all input-consuming derivations of

P U{A} are finite.

We can now state the main result of this section. Here and in what follows
we say that a relation p is defined in the program P if p occurs in a head of
a clause of P, and that P extends the program R iff no relation defined in P
occurs in R.

Theorem 4.10 Let P and R be two programs such that P extends R. Suppose
that

(i) R is input-terminating,
(17) P is nicely-moded and weakly semi-recurrent with respect to a moded level
mapping | | : BS — N.

Then P U R is input-terminating.

Proof. First, for each predicate symbol p, we define depp(p) to be the number
of predicate symbols it depends on. More formally, depp(p) is defined as the
cardinality of the set {q| ¢ is defined in P and p J ¢}. Clearly, depp(p) is
always finite. Further, it is immediate to see that if p ~ ¢ then depp(p) =
depp(q) and that if p 1 ¢ then depp(p) > depp(q).

We can now prove our theorem. By Corollary 4.9, it is sufficient to prove
that for every nicely-moded one-atom query A, all input-consuming deriva-
tions of P U {A} are finite.

First notice that if A is defined in R then the result follows immediately
from the hypothesis that R is input-terminating and that P is an extension
of R. So we can assume that A is defined in P.

Let § be an infinite input-consuming derivation of P U R U { A} such that
A is defined in P. Then

§:= AL (By,... B = .-

where H < By, ..., B, is the input clause used in the first derivation step and
6, = mgu(A = H). Clearly, (By,...,B,)f; has an infinite input-consuming
derivation in P U R. By Lemma 4.8, for some 7 € {1,...,n} and for some
substitution s,

(1) there exists an infinite input-consuming derivation of P U R U {A} of the
form
A= (B, ..., B0 v C,(Biy..., By)0ibs -+
(2) there exists an infinite input consuming derivation of P U {B;6,0,}.
We proceed by proving that (2) is a contradiction.

15
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Let 6 = 6,0,. Note that Hf < (By,...,B,)f is an instance of a clause of P.
The proof follows by induction on (depp(Rel(A)),|Al) with respect to the
ordering > defined by: (m,n) = (m/,n') iff either m > m' or m = m’ and
n>n'.

Base. Let depp(Rel(A)) =0 and |A| = 0. In this case, A does not depend
on any predicate symbol of P, thus all the B; as well as all the atoms occurring
in its descendents in any input-consuming derivation are defined in R. The
hypothesis that R is input-terminating contradicts point (2) above.

Induction step. Let depp(Rel(A)) > 0 and |A| > 0. We distinguish two
cases:

(a) Rel(H) O Rel(B;),

(b) Rel(H) ~ Rel(B;).
In case (a) we have that depp(Rel(A)) = depp(Rel(HO)) > depp(Rel(B;0)).
So, (depp(Rel(A)), |Al) = (depp(Rel(H0)), |HO[) > (depp(Rel(Bif)), |Bib]).
In case (b), from the hypothesis that P is weakly semi-recurrent w.r.t. | |, it
follows that |[H@| > |B;#|. Consider the partial input-consuming derivation
AL c, (Bi,...,By)8, by Corollary 3.11 and the fact that | | is a moded
level mapping, we have that |A| = |Af| = |H6|. Hence, (depp(Rel(A)),|A|) =
(depp(Rel(HO)), |HO|) > (depp(Rel(B;h)), |Bif)]).
In both cases, the contradiction follows by the inductive hypothesis. a

Example 4.11 The program FLATTEN using difference-lists is nicely-moded
in the modes described below (with “\” replaced by “”).

mode flatten(In,Out).

mode flatten_dl(In,Out, In).
mode constant(In).

mode # (In,In).

flatten(Xs,Ys) « flatten d1(Xs,Ys\ []).

flatten dl([],¥s\ Ys).

flatten dl(X,[X|Xs] \ Xs) < constant(X),X #[].

flatten d1([X|Xs],¥s \ Zs) < flatten d1(Xs,Y1s )\ Zs),
flatten dl(X,Ys \ Yis).

Consider the moded level mapping for FLATTEN defined by

|flatten(Xs,Ys)| = TSize(Xs
|flatten_ d1l(Xs,Ys \ Zs)| = TSize(Xs).

It is easy to see that the program FLATTEN is weakly semi-recurrent with
respect to the moded level mapping above. Hence, all input-consuming deriva-
tions of FLATTEN starting from a query flatten(u,s) where s is linear and
variable disjoint from u are terminating.

16
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Permutation Nicely-Moded

At this point it is worth noticing that, since the programs we are considering
do not use a fixed selection rule the result we have provided (Theorems 4.6 and
4.10) hold also in the case that programs and queries are permutation nicely-
moded [17], that is programs and queries for which would be nicely-moded
after a permutation of the atoms in the bodies. Therefore, for instance, we
can treat the program FLATTEN as it is presented in [2], i.e.,

flatten(Xs,Ys) < flatten dl(Xs,¥s\[]).

flatten dl([],¥s\ Ys).

flatten d1(X,[X|Xs] \ Xs) < constant(X),X #[].

flatten d1l([X|Xs],¥s \ Zs) < flatten d1(X,Ys \ Yis),
flatten dl(Xs,Yis \ Zs).

where the atoms in the body of the last clause are permuted with respect to
the version of the Example 4.11.

5 Applicability

In this section we report the results that we obtained by applying the termina-
tion criterion presented in this paper to several benchmarks from well-known
collections.

In Table 1 benchmarks from Apt’s collection are considered (see [2] and
[4]). Benchmarks from the DPPD’s collection, maintained by Leuschel and
available at the URL: http://dsse.ecs.soton.ac.uk/ mal/systems/dppd.html,
are referred to in Table 2. Table 3 considers various benchmarks from Linden-
strauss’s collection (see the URL: http://www.cs.huji.ac.il/ naomil). Finally,
Table 4 concerns with benchmarks from F. Bueno, M. Garcia de la Banda and
M. Hermenegildo that can be found at the URL: http://www.clip.dia.fi.upm.es.

For each benchmark we specify the name and the modes of the main proce-
dure. In the tables below NM stays for nicely-moded and the corresponding
entry is yes when we can find some modes for the subprocedures with respect
to which the whole program is nicely moded. The next to columns refer to
such a modes: IT stays for input terminating and WSR stays for weakly
semi-recurrent.

6 Conclusion

We presented a method for proving termination of programs and queries which
are (permutation) nicely-moded. Since input-consuming derivations do not
use any fixed selection rule, our method can be applied for proving termina-
tion of programs which employ a dynamic selection rule. Our results strictly
improve on [16] in the fact that we drop the condition that programs and

17
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NM IT WSR NM IT WSR
append(In,_,_) yes | yes | yes ordered(In) yes | yes | yes
append(_,_,In) yes | yes | yes overlap(_,In) yes | yes | yes
append(Out, In,0Out) yes no overlap(In,Out) yes | yes no
append3(In,In,In,Out) yes | yes | yes perm(_,In) yes | yes | yes
color_map(In,Out) yes no perm(In,QOut) yes | no
color_map(Qut,In) yes no gsort(In,.) yes | yes | mo
color_map(In,In) yes | yes | yes gsort(OQut,In) yes | no
dcsolve(In,._) yes no reverse(In,_) yes | yes | yes
even(In) yes | yes | yes reverse(Out,In) yes no
fold(In,In,0Out) yes | yes | yes select(_,In,.) yes | yes | yes
list(In) yes | yes | yes select(_,_,In) yes | yes | yes
lte(In,_) yes | yes | yes select(In,Qut,0ut) | yes | no
lte(_,In) yes | yes | yes subset(In,In) yes | yes | yes
map(In,_) yes | yes | yes subset (In,Out) yes no
map(_,In) yes | yes | yes subset (Out,In) yes no
member(_,In) yes | yes | yes sum(_,In,_) yes | yes | yes
member (In,QOut) yes | yes | mno sum(_,_,In) yes | yes | yes
mergesort (In,_) yes | yes no sum(In,Out,Out) yes no
mergesort (Out,In) yes no type(In,In,Out) no yes no
mergesort_variant(_,_,In) | yes | yes | yes type(In,Out,Out) no no

Table 1

Benchmarks from Apt’s Collection

queries have to be well-moded. This is particularly important in the formu-
lation of the queries: for instance, in the above program flatten, our results
show that every input-consuming derivation starting in a query of the form
flatten(t,s) terminates provided that t is linear and disjoint from s, while
the results of [16] apply only if t is a ground term.

As side-effect of our investigation, we also showed that for this class of
programs one side of the well-known Switching Lemma holds.

Applicability and effectiveness of our approach has been demonstrated by
applying it to several benchmarks for most of which we can prove weakly
semi-recurrency.

Automatization of our method depends on the capability of automatically
inferring moded level mappings. It is well-known the relation between norms,
which define the size of terms, and level mappings: roughly, level mappings
are obtained by extending norms to function from atoms to natural numbers.
Decorte, De Schreye and Fabris’s [9] presents two techniques for the automatic
inference of norms. We argue that the same techniques can be applied to
automatize termination proofs based on our approach.

18
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NM IT WSR NM IT WSR
applast(In,In,Out) yes | yes | yes || match_app(_,In) yes | yes | yes
applast(Out,_,_) yes no match_app(In,QOut) yes no
applast(_,0ut,_) yes no max_lenth(In,Out,0ut) | yes | yes | yes
contains(_,In) yes | yes | yes meno_solve(In,Out) yes | yes no
contains(In,Out) yes no power(In,In,In,Out) yes | yes | yes
depth(In,In) yes | yes | yes || prune(In,.) yes | yes | yes
depth(In,0Out) yes | yes | mno prune(_,In) yes | yes | yes
depth(Out,In) yes no relative (In,.) yes no
duplicate(In,Out) yes | yes | yes relative(_,In) yes no
duplicate(Out,In) yes | yes | yes rev_acc(In,In,0Out) yes | yes | yes
flipflip(In,QOut) yes | yes | yes rotate(In,.) yes | yes | yes
flipflip(Out,In) yes | yes | yes rotate(_,In) yes | yes | yes
generate(In,In,Out) yes no solve(_,_,_) yes no
liftsolve(In,Out) yes no ssupply(In,In,Out) yes | yes | yes
liftsolve(Out,In) yes no trace(In,In,0Out) yes | yes | yes
liftsolve(In,In) yes | yes | yes transpose(_,In) yes | yes | yes
match(In,_) yes no transpose(In,QOut) yes | no
match(_,In) yes | yes no unify(In,In,Out) yes no

Table 2

Benchmarks from DPPD’s Collection

NM IT WSR NM IT WSR
ack(In,In,_) yes | yes no least(In,_) yes | yes | yes
concatenate(In,_,.) | yes | yes | yes least(_,In) yes | yes | yes
concatenate(_,_,In) | yes | yes | yes || normal_form(In,_) yes no
concatenate(_,In,_) yes no normal_form(_,In) yes no
descendant(In,.) yes no queens (_,0ut) yes | yes no
descendant(_,In) yes no queens(_,In) yes | yes | yes
deep(In,_) yes | yes | yes poss(In) yes | yes | yes
deep(Out,.) yes no poss(Out) yes no
credit(In,_) yes | yes | yes || rewrite(In,_) yes | yes | yes
credit(_,In) yes | yes | yes || rewrite(_,In) yes | yes | yes
holds(_,0ut) yes no transform(_,_,_,0ut) yes no
holds(_,In) yes | yes | yes transform(_,_,_, In) | yes | yes | yes
huffman(In,_) yes | yes no twoleast(In,_) yes | yes | yes
huffman(_,In) yes no twoleast(_,In) yes | yes | yes

Table 3

Benchmarks from Lindenstrauss’s Collection
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