
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 30 No. 1 (1999)URL: http://www.elsevier.nl/lo
ate/ent
s/volume30.html 21 pagesProperties of Input-Consuming DerivationsA. Bossi a, S. Etalle b and S. Rossi aa Dipartimento di Informati
a, Universit�a di Venezia30173 Venezia, Italyb Department of Computer S
ien
e,University of Maastri
ht6200 MD Maastri
ht, The NetherlandsAbstra
tWe study the properties of input-
onsuming derivations of moded logi
 programs.Input-
onsuming derivations do not employ a �xed sele
tion rule, and
an be usedto model the behavior of logi
 programs using dynami
 s
heduling and employing
onstru
ts su
h as delay de
larations.We
onsider the
lass of Ni
ely-Moded programs and queries. We show that forthese programs one part of the well-known Swit
hing Lemma holds. Furthermore,we provide
onditions whi
h guarantee that all input-
onsuming derivations startingin a Ni
ely-Moded query are �nite. The method presented here is easy to applyand generalizes other related works.1 Introdu
tionMost of the re
ent logi
 programming languages provide the possibility of em-ploying a dynami
 sele
tion rule, that is, a sele
tion rule whi
h is more
exiblethan Prolog's standard left-to-right one. In fa
t, dynami
 sele
tion rules haveproven to be useful in a number of appli
ations; among other things they al-low the
oroutining of di�erent \pro
esses" and thus to model parallelism bymeans of interleaving.Clearly, even a dynami
 sele
tion rule must be restri
ted in some way.Should one not do so, the
omputation
ould easily diverge. To this end,di�erent languages use di�erent me
hanisms. For instan
e, in G�odel [12℄ andin E
lipse [21℄, delay de
larations are used to ensure that only atoms whi
hare ground in their input arguments are sele
ted. In GHC [19℄ programs areaugmented with guards in order to
ontrol the sele
tion of atoms dynami
ally(moreover, moded
at GHC [20℄ uses an extra
ondition on the input posi-tions, whi
h is extremely similar to the one we'll adopt in the sequel). blo
kde
larations that
he
k the partial instantiation of the input arguments of
allsare used in SICStus. The
ommon underlying idea of all the above solutions is

1999 Published by Elsevier S
ien
e B. V.

Bossi et al.to allow one to \delay" the sele
tion of
ertain atoms in the query until theirarguments be
ome suÆ
iently instantiated.The additional
exibility introdu
ed by the adoption of a dynami
 sele
tionme
hanism has the disadvantage that the most of the literature on terminationof logi
 programs (see [15℄ for a survey on the subje
t) does not apply whena dynami
 sele
tion rule is employed. Notable ex
eptions are Bezem's [7℄ andand Cavedon's [8℄, whi
h provide results for unrestri
ted sele
tion rules.We know of few authors who ta
kled the spe
i�
 problem of terminationof logi
 programs with a dynami
 sele
tion rule. Apt and Luitjes's [3℄ exploitsproperties of a restri
ted
lass of SLD-derivations to prove termination oflogi
 programs augmented with delay de
larations that imply determina
yand mat
hing. Mar
hiori and Teusink's [14℄ introdu
es the
lass of delayre
urrent programs and proves that programs in this
lass terminate for alllo
al delay sele
tion rule. More re
ently, Smaus's [16℄ studies the terminationof input-
onsuming derivations of well and ni
ely moded programs.Goal of this paper is to study the dynami
 behavior of programs usingdynami
 s
heduling, and to provide suÆ
ient
onditions whi
h guarantee theirtermination.The �rst obsta
le we en
ounter is of providing an \algebrai
" way of repre-senting delay de
larations. For this purpose, we follow here the same approa
hof [16℄ and we substitute the use of delay de
larations by the restri
tion toinput-
onsuming derivations.The de�nition of input-
onsuming derivation is done in two phases: �rstwe give the program a mode, that is, we partition the positions of ea
h atomo

urring in input and output positions. Then, in presen
e of modes, input-
onsuming derivations are pre
isely those in whi
h only atoms whose inputarguments will not be instantiated by the uni�
ation are allowed to be sele
ted.We
laim that in most \usual" moded programs using a dynami
 sele
-tion rule, delay de
larations are employed pre
isely for ensuring the input-
onsumedness of the derivations. Clearly, this thesis
annot be proven, yetit is for instan
e substantiated by the fa
t that
on
ept of input-
onsumingresolution is very similar to the sele
tion me
hanism employed in Moded FlatGHC [20℄, and by the arguments in [16℄. In Se
tion 3 we provide furtherte
hni
al arguments sustaining this thesis.In this paper we study some properties of input-
onsuming derivations. Weshow that if we restri
t to programs and queries whi
h are ni
ely-moded, thena one way swit
hing-lemma holds and a simple method for proving termination
an be applied.In order to study termination properties, we de�ne the
lass of input termi-nating programs whi
h
hara
terizes programs whose input-
onsuming deriva-tions are �nite. In order to prove that a program is input terminating we usethe
on
ept of weakly semi-re
urrent program whi
h is mu
h less restri
tivethan the similar
on
ept of semi-re
urrent program introdu
ed by Apt and Pe-dres
hi in [4℄. We show that if P is ni
ely-moded and weakly semi-re
urrent2

Bossi et al.then all its input-
onsuming derivations starting from a ni
ely-moded queryterminate.Our work generalizes the method des
ribed by Smaus in [16℄ for provingthe termination of input-
onsuming derivations of well and ni
ely-moded pro-grams and queries. First, as opposed to [16℄, we do not require programs andqueries to be well-moded; we only assume that they are ni
ely-moded. Se
-ond, our
on
ept of weak semi-re
urren
y provides a
ondition to hold for allinstan
es of a
lause while the notion of ICD-a

eptability proposed by Smausonly
onsiders
lause ground instan
es. This small generalization allows us toprove termination of input-
onsuming derivations of queries where the inputarguments are not ne
essarily ground. For example, we
an prove terminationof all the input-
onsuming derivations of the program APPEND starting froma query append(s; t; u) provided that u is linear and variable disjoint froms and t. With the method of [16℄ one
an only prove termination of thoseinput-
onsuming derivations where the initial query satis�es the additional
ondition that s and t are ground.We show that the results presented in this paper
an be extended to pro-grams and queries whi
h are permutation ni
ely-moded [17℄.We apply our method to many ben
hmarks from well-known
olle
tions toshow appli
ability and e�e
tiveness of the results presented in this paper.The paper is organized as follows. Se
tion 2
ontains some preliminarynotations and de�nitions. In Se
tion 3 input-
onsuming derivations are in-trodu
ed and some properties of them are proved. In Se
tion 4 a method forproving termination of programs is presented, �rst in a non-modular way, thenfor modular programs. Se
tion 5 reports the results obtained by applying ourmethod to various ben
hmarks. Finally, Se
tion 6
on
ludes the paper.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi
 resultsof the semanti
s of logi
 programs [1,2,13℄.2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data
onstru
tors C and adenumerable set of variable symbols V. A substitution � is a mapping fromV to T su
h that Dom(�) = fXj �(X) 6= Xg is �nite. For any synta
ti
obje
t o, we denote by Var(o) the set of variables o

urring in o. A synta
ti
obje
t is linear if every variable o

urs in it at most on
e. We denote by �the empty substitution. The
omposition �� of the substitutions � and � isde�ned as the fun
tional
omposition, i.e., ��(X) = �(�(X)). We
onsiderthe pre-ordering � (more general than) on substitutions su
h that � � � i�there exists
 su
h that �
 = �. The result of the appli
ation of a substitution� to a term t is said an instan
e of t and it is denoted by t�. We also
onsider3

Bossi et al.the pre-ordering � (more general than) on terms su
h that t � t0 i� thereexists � su
h that t� = t0. We denote by � the asso
iated equivalen
e relation(varian
e). A substitution � is a uni�er of terms t and t0 i� t� = t0�. Wedenote by mgu(t = t0) any most general uni�er (mgu, in short) of t and t0. Anmgu � of terms t and t0 is
alled relevant i� Var(�) � Var(t) [Var(t0).2.2 Programs and DerivationsLet P be a �nite set of predi
ate symbols. An atom is an obje
t of the formp(t1; : : : ; tn) where p 2 P is an n-ary predi
ate symbol and t1; : : : ; tn 2 T .Given an atom A, we denote by Rel(A) the predi
ate symbol in A. A queryis a possibly empty �nite sequen
e of atoms A1; : : : ; Am. The empty queryis denoted by 2. Following the
onvention adopted by Apt in [2℄, we usebold
hara
ters to denote (possibly empty) sequen
es of atoms. A
lause is aformula H B where H is an atom (the head) and B is a query (the body).When B is empty, H B is written H and is
alled a unit
lause. Aprogram is a �nite set of
lauses. We denote atoms by A;B;H; : : : ; queries byQ;A;B;C; : : : ;
lauses by
; d; : : : ; and programs by P .Computations are
onstru
ted as sequen
es of \basi
" steps. Consider anon-empty query A; B;C and a
lause
. Let H B be a variant of
 variabledisjoint from A; B;C. Let B and H unify with mgu �. The query (A;B;C)�is
alled a resolvent of A; B;C and
 with respe
t to B, with an mgu �. Aderivation step is denoted byA; B;C �=)P;
 (A;B;C)�:H B is
alled its input
lause. The atom B is
alled the sele
ted atomof A; B;C. If P is
lear from the
ontext or
 is irrelevant then we drop areferen
e to them. A derivation is obtained by iterating derivation steps. Amaximal sequen
eÆ := Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �of derivation steps is
alled a derivation of P [fQ0g provided that for everystep the standardization apart
ondition holds, i.e., the input
lause employedis variable disjoint from the initial query Q0 and from the substitutions andthe input
lauses used at earlier steps.Derivations
an be �nite or in�nite. If Æ := Q0 �1=)P;
1 � � � �n=)P;
n Qn is a�nite pre�x of a derivation, also denoted Æ := Q0 �7�! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation and � is a partial
omputed answer substitution(p.
.a.s., for short) of P[fQ0g. If Æ is maximal and ends with the empty querythen � is
alled
omputed answer substitution (
.a.s., for short). The length ofa (partial) derivation Æ, denoted by len(Æ), is the number of derivation stepsin Æ. We
all B-step any derivation step in a derivation Æ of A; B;C in whi
hthe sele
ted atom is B or any other atom obtained by resolving B.4

Bossi et al.3 Input-Consuming Derivations3.1 Basi
 De�nitionsLet us �rst re
all the notion of mode. A mode is a fun
tion that labels asinput or output the positions of ea
h predi
ate in order to indi
ate how thearguments of a predi
ate should be used.De�nition 3.1 [Mode℄ Consider an n-ary predi
ate symbol p. By a mode forp we mean a fun
tion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) position ofp (with respe
t to mp). We assume that ea
h predi
ate symbol has a uniquemode asso
iated to it; multiple modes may be obtained by simply renamingthe predi
ates.If Q is a query, we denote by In(Q) (resp. Out(Q)) the set of terms �llingin the input (resp. output) positions of predi
ates in Q. Moreover, whenwriting an atom as p(s; t), we are indi
ating with s the sequen
e of terms�lling in the input positions of p and with t the sequen
e of terms �lling inthe output positions of p.The notion of input-
onsuming derivation was introdu
ed in [16℄ and isde�ned as follows.De�nition 3.2 [Input-Consuming℄� An atom p(s; t) is
alled input-
onsuming resolvable wrt a
lause
 :=p(u;v) Q and a substitution � i� � = mgu(p(s; t) = p(u;v)) and s = s�.� A derivation step A; B;C �=)
 (A;B;C)�is
alled input-
onsuming i� the sele
ted atom B is input-
onsuming resolv-able wrt the input
lause
 and the substitution �.� A derivation is
alled input-
onsuming i� all its derivation steps are input-
onsuming.The following Lemma states that we are allowed to restri
t our attentionto input-
onsuming derivations with relevant mgu's.Lemma 3.3 Let p(s; t) and p(u;v) be two atoms. If there exists an mgu �of p(s; t) and p(u;v) su
h that s� = s then there exists a relevant mgu # ofp(s; t) and p(u;v) su
h that s# = s.Proof. Sin
e p(s; t) and p(u;v) are uni�able, there exists a relevant mgu�rel of them (
fr. [2℄, Theorem 2.16). Now, �rel is a renaming of �. Thuss�rel is a variant of s. Then there exists a renaming � su
h that Dom(�) �Var(s; t;u;v) and s�rel� = s. Now, take # = �rel�. 2From now on, we assume that all mgu's used in the input-
onsumingderivation steps are relevant. 5

Bossi et al.Example 3.4 Consider the program REVERSE with a

umulator in the modesde�ned below.mode reverse(In; Out):mode reverse a

(In; Out; In):reverse(Xs; Ys) reverse a

(Xs; Ys; [℄):reverse a

([℄; Ys; Ys):reverse a

([XjXs℄; Ys; Zs) reverse a

(Xs; Ys; [XjZs℄):Consider also the query reverse([X1; X2℄; Zs). The derivation Æ of REVERSE[freverse([X1; X2℄; Zs)g depi
ted below is input-
onsuming.Æ := reverse([X1; X2℄; Zs)) reverse a

([X1; X2℄; Zs; [℄))reverse a

([X2℄; Zs; [X1℄)) reverse a

([℄; Zs; [X2; X1℄)) 2:Input-Consuming vs. Delay De
larationsIn the introdu
tion we have stated the
laim that in most \usual" modedprograms using a dynami
 sele
tion rule, delay de
larations are employed pre-
isely for ensuring the input-
onsumedness of the derivations. As we havealready mentioned, this thesis is already substantiated by the fa
t that
on-
ept of input-
onsuming resolution is very similar to the sele
tion me
hanismemployed in Moded Flat GHC [20℄, and by the arguments in [16℄.We now want to add another argument sustaining it.First, as a large body of literature shows, the vast majority of \usual"programs are a
tually moded (see for example [5,6℄ or
onsider for instan
ethe stri
tly moded logi
 programming language Mer
ury [18℄).Se
ondly, it is
lear that the s
ope of a delay de
laration is to guaranteethat the interpreter will not sele
t the \wrong"
lause to resolve a goal. Infa
t, if the interpreter always sele
ted the \right"
lause, by the known resultsover independen
e from the sele
tion rule one would not have to worry aboutthe order of the sele
tion of the atoms in the query. Typi
ally, delay de
la-rations are used to prevent the sele
tion of an atom until a
ertain degree ofinstantiation is rea
hed. This degree of instantiation ensures that the atomis uni�able only with the heads of the \right"
lauses. In presen
e of modes,the degree of instantiation we are interested in is
learly the one of the inputpositions, whi
h are the one
arrying the information.Now, take an atom p(s; t) and suppose that it is resolvable with a
lause
 by means of an input-
onsuming derivation step. Then, for every instan
es0 of s, we have that the atom p(s0; t) is as well resolvable with a
lause
by means of an input-
onsuming derivation step. In other words, no furtherinstantiation of the input positions of p(s; t)
an rule out
 as a possible
lausefor resolving it. Thus
 must be one of the \right"
lauses for resolving p(s; t)and we
an say that p(s; t) is in its input positions \suÆ
iently instantiated"to be resolved with
. 6

Bossi et al.On the other hand, following the same reasoning, it is easy to see that ifp(s; t) is resolvable with
 but not via an input-
onsuming derivation step,then there exists an instan
e s0 of s, su
h that p(s0; t) is not resolvable via
.In this
ase we
an say that p(s; t) is not instantiated enough to know whether
 is one of the \right"
lauses for resolving it.3.2 Ni
ely-Moded ProgramsIn this the sequel of the paper we'll restri
t to programs and queries whi
hare Ni
ely-Moded. We report here the de�nition of this
on
ept together withsome important properties of ni
ely-moded programs.De�nition 3.5 [Ni
ely-Moded℄� A query Q := p1(s1; t1); : : : ; pn(sn; tn) is ni
ely-moded if t1; : : : ; tn is a linearve
tor of terms and for all i 2 f1; : : : ; ngVar(si) \ n[j=iVar(tj) = ;:� A
lause
 = p(s0; t0) Q is ni
ely-moded if Q is ni
ely-moded andVar(s0) \ n[j=1Var(tj) = ;:� A program P is ni
ely-moded if all of its
lauses are ni
ely-moded.Note that a one-atom query p(s; t) is ni
ely-moded if and only if t is linearand Var(s) \ Var(t) = ;.Example 3.6� The program REVERSE with a

umulator in the modes depi
ted in the Ex-ample 3.4 is ni
ely-moded.� The following program MERGE is ni
ely-moded.mode merge(In; In; Out):merge(Xs; [℄; Xs):merge([℄; Xs; Xs):merge([XjXs℄; [YjYs℄; [YjZs℄) Y < X; merge([XjXs℄; Ys; Zs):merge([XjXs℄; [YjYs℄; [XjZs℄) Y > X; merge(Xs; [YjYs℄; Zs):merge([XjXs℄; [XjYs℄; [XjZs℄) merge(Xs; [XjYs℄; Zs):We now start investigating the properties of ni
ely-moded programs em-ploying input-
onsuming sele
tion rules.7

Bossi et al.The following result is due to Smaus [16℄, and states that the
lass ofprograms and queries we are
onsidering is
losed under resolution.Lemma 3.7 [16℄ Every resolvent of a ni
ely-moded query Q and a ni
ely-moded
lause
, where the derivation step is input-
onsuming and Var(Q) \Var(
) = ;, is ni
ely-moded.The following Remark (also in [16℄) is an immediate
onsequen
e of thede�nition of input-
onsuming derivation step and the fa
t that the mgu's we
onsider are relevant.Remark 3.8 [16℄ Let the program P and the query Q := A; p(s; t);C beni
ely-moded. If A; p(s; t);C �=) A;B;C is an input-
onsuming derivationstep with sele
ted atom p(s; t), then A� = A.We now need one te
hni
al result, stating that the only variables of a querythat
an be \a�e
ted" in the derivation pro
ess are those o

urring in someoutput positions.Lemma 3.9 Let the program P and the query Q be ni
ely-moded. Let Æ :=Q �7�! Q0 be a partial input-
onsuming derivation of P [fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Proof. Let us �rst establish the following
laim.Claim 3.10 Let z and w be two variable disjoint sequen
es of terms su
h thatw is linear and � = mgu(z = w). If s1 and s2 are two variable disjoint termso

urring in z then s1� and s2� are variable disjoint terms.Proof. The result follows from Lemmata 11.4 and 11.5 in [4℄. 2We pro
eed with the proof of the lemma by indu
tion on len(Æ).Base Case. Let len(Æ) = 0. In this
ase Q = Q0 and the result followstrivially.Indu
tion step. Let len(Æ) > 0. Suppose that Q := A; p(s; t);C andÆ := A; p(s; t);C �1=) (A;B;C)�1 �27�! Q0where p(s; t) is the sele
ted atom of Q,
 := p(u;v) B is the input
lauseused in the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and� = �1�2.Let x 2 Var(A; p(s; t);C) and x 62 Var(Out(A; p(s; t);C)). We �rst showthat(1) x�1 = x.We distinguish two
ases.(a) x 2 Var(s). In this
ase, property (1) follows from the hypothesis thatÆ is input-
onsuming. 8

Bossi et al.(b) x 62 Var(s). Then, by the
hoi
e of x, x 62 Var(p(s; t)). In this
ase,property (1) follows from the standardization apart
ondition and relevan
eof �1.Now we show that(2) x�2 = x.Again, we distinguish two
ases:(
) x 62 Var((A;B;C)�1). In this
ase, be
ause of the standardizationapart
ondition, x will never o

ur in (A;B;C)�1 �27�! Q0. Hen
e, x 62 Dom(�2)and x�2 = x.(d) x 2 Var((A;B;C)�1). In this
ase, in order to prove (2) we showthat x 62 Var(Out((A;B;C)�1)). The result then follows by the indu
tivehypothesis.From the standardization apart
ondition, relevan
e of �1 and (1), it followsthat Dom(�1) \ Var(Q) � Var(t).From the hypothesis that Q is ni
ely-moded, Var(t) \ Var(Out(A;C)) = ;.Hen
e, Var(Out(A;C))�1 = Var(Out(A;C)). Sin
e x 62 Var(Out(A;C)),this proves that x 62 Var(Out((A;C)�1)).It remains to prove that x 62 Var(Out(B�1). We distinguish two further
ases.(d1) x 62 Var(s). In this
ase, x 62 Var(Out(B�1) follows immediately bythe standardization apart
ondition and the relevan
e of �1.(d2) x 2 Var(s). By known results (see [2℄, Corollary 2.25), there existstwo relevant mgu �1 and �2 su
h that� �1 = �1�2,� �1 = mgu(s = u),� �2 = mgu(t�1 = v�1).From relevan
e of �1 and the fa
t that, by ni
ely-modedness of Q, Var(s) \Var(t) = ;, we have that t�1 = t, and by the standardization apart
on-dition Var(t) \ Var(v�1) = ;. Now by ni
ely-modedness of
, Var(u) \Var(Out(B)) = ;. Sin
e �1 is relevant and by the standardization apart
ondition it follows that(3) Var(u�1) \ Var(Out(B�1)) = ;.The proof pro
eeds now by
ontradi
tion. Suppose that x 2 Var(Out(B�1�2)).Sin
e by hypothesis x 2 Var(s), and s = u�1�2, we have that Var(u�1�2) \Var(Out(B�1�2)) 6= ;. By (3), this means that there exist two distin
t vari-ables z1 and z2 in Var(�2) su
h that z1 2 Var(Out(B�1)), z2 2 Var(u�1)and(4) Var(z1�2) \ Var(z2�2) 6= ;.Sin
e, by the standardization apart
ondition and relevan
e of the mgu's,Var(�2) � Var(v�1)[Var(t) and (Var(Out(B�1))[Var(u�1))\Var(t) = ;,we have that z1 and z2 are two disjoint subterms of v�1. Sin
e �2 = mgu(t =9

Bossi et al.v�1), t is linear and disjoint from v�1, (4)
ontradi
ts Claim 3.10. 2The following
orollary is an immediate
onsequen
e of the above lemmaand the de�nition of ni
ely-moded program.Corollary 3.11 Let the program P and the one-atom query A be ni
ely-moded. Let Æ := A �7�! Q0 be a partial input-
onsuming derivation of P [fAg.Then, for all x 2 Var(In(A)), x� = x.The Left-Swit
hing LemmaNext is the main result of this se
tion, showing that for input-
onsumingni
ely-moded programs one half of the well-known swit
hing lemma holds.This shows that it is always possible to pro
eed left-to-right to resolve thesele
ted atoms 1 .Lemma 3.12 (Left-Swit
hing) Let the program P and the query Q0 beni
ely-moded. Let Æ be a partial input-
onsuming derivation of P [fQ0g ofthe form Æ := Q0 �1=)
1 Q1 � � �Qn �n+1=)
n+1 Qn+1 �n+2=)
n+2 Qn+2where� Qn is a query of the form A; A;B; B;C,� Qn+1 is a resolvent of Qn and
n+1 wrt B,� Qn+2 is a resolvent of Qn+1 and
n+2 wrt A�n+1.Then, there exists Q0n+1, �0n+1, �0n+2 and a derivation Æ0 su
h that�n+1�n+2 = �0n+1�0n+2and Æ0 := Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where� Æ0 is input-
onsuming,� Æ and Æ0
oin
ide up to the resolvent Qn,� Q0n+1 is a resolvent of Qn and
n+2 wrt A,� Qn+2 is a resolvent of Q0n+1 and
n+1 wrt B�0n+1.� Æ and Æ0
oin
ide after the resolvent Qn+2.Proof. Let A := p(s; t), B := q(u;v),
n+1 := q(u0;v0) D and
n+2 :=p(s0; t0) E. Hen
e, �n+1 = mgu(q(u;v) = q(u0;v0)) and(1) u�n+1 = u, sin
e Æ is input-
onsuming.1 Noti
e that this is however di�erent than saying that the leftmost atom of a query shouldalways be resolvable: it
an very well be the
ase that the leftmost atom is resolvable andthe one next to it is resolvable. 10

Bossi et al.By (1) and the fa
t that Qn is ni
ely-moded and �n+1 is relevant, we havep(s; t)�n+1 = p(s; t). Then, �n+2 = mgu(p(s; t)�n+1 = p(s0; t0)) = mgu(p(s; t) =p(s0; t0)) and(2) s�n+2 = s, sin
e Æ is input-
onsuming.Moreover,(3) �n+1�n+2 = mgufp(s; t) = p(s0; t0); q(u;v) = q(u0;v0)g= �n+2�0n+2where�0n+2 = mgu(q(u;v)�n+2 = q(u0;v0)�n+2)= mgu(q(u;v)�n+2 = q(u0;v0))We
onstru
t the derivation Æ0 as follows.Æ0 := Q0 �1=)
1 Q1 � � �Qn �0n+1=)
n+2 Q0n+1 �0n+2=)
n+1 Qn+2where(4) �0n+1 = �n+2.By (2), Qn �0n+1=)
n+2 Q0n+1 is an input-
onsuming derivation step.Observe now thatu�0n+1�0n+2 = u�n+2�0n+2; (by (4))= u�n+1�n+2; (by (3))= u�n+2; (by (1))= u�0n+1; (by (4))This proves that also Q0n+1 �0n+2=)
n+1 Q0n+2 is an input-
onsuming derivationstep. 2It is important to noti
e that if we drop the ni
ely-modedness
onditionthe above Lemma would not hold any longer: it is not diÆ
ult to write a
lassi
al
oroutining program whi
h is not ni
ely-moded for whi
h the abovelemma does not apply (see for instan
e the program reader-writer in [11℄).Corollary 3.13 Let the program P and the query Q := A;B be ni
ely-moded.Suppose that Æ := A;B �7�! C1;C2is a partial input-
onsuming derivation of P [fQg where C1 and C2 areobtained by partially resolving A and B, respe
tively.11

Bossi et al.Then there exists a partial input-
onsuming derivationÆ0 := A;B �17�! C1;B�1 �27�! C1;C2where all the A-steps are performed in the pre�x A;B �17�! C1;B�1 of Æ0 and� = �1�2.4 TerminationIn this se
tion we study the termination of input-
onsuming derivations of logi
programs. To this end we re�ne the ideas of Bezem [7℄ and Cavedon [8℄ whostudied the termination of logi
 programs in a very strong sense, namely withrespe
t to all sele
tion rules, and of Smaus [16℄ who
ara
hterized terminatinginput-
onsuming derivations of well and ni
ely-moded programs.4.1 Input Terminating ProgramsWe �rst introdu
e the key notion of this se
tion.De�nition 4.1 [Input Termination℄ A program is
alled input terminatingi� all its input-
onsuming derivations started with a ni
ely-moded query are�nite.The method we are going to use in order to prove that a program is input-terminating is based on the following
on
ept of moded level mapping intro-du
ed by Etalle et al. in [10℄.De�nition 4.2 [Moded Level Mapping℄ Let P be a program and BEP be theextended Herbrand Base for the language asso
iated with P . A fun
tion j j isa moded level mapping for P i�:� it is a fun
tion j j : BEP ! N from atoms to natural numbers;� for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.The
ondition jp(s; t)j = jp(s;u)j states that the level of an atom is in-dependent from the terms �lling in its output positions. There is a
tuallya small yet important di�eren
e between this de�nition and the one in [10℄:in [10℄ the level mapping is de�ned on ground atoms only. Therefore this isa
tually an extension of the de�nition of [10℄.Example 4.3 Let us denote by TSize(t) the term size of a term t, that isthe number of fun
tion and
onstant symbols that o

ur in t. A moded levelmapping for the program REVERSE with a

umulator of the Example 3.4 isjreverse(Xs; Ys)j = TSize(Xs)jreverse a

(Xs; Ys; Zs)j = TSize(Xs)where Xs is the �rst input argument.12

Bossi et al.4.2 Weak Semi-Re
urren
yIn order to give a suÆ
ient
ondition for termination, we are going to employa generalization of the
on
ept of semi-re
urrent program de�ned by Apt andPedres
hi in [4℄. First, we need a preliminary de�nition.De�nition 4.4 Let P be a program, p and q be relations. We say that prefers to q in P i� there is a
lause in P with p in the head and q in the body.We say that p depends on q and write p v q in P i� (p; q) is in the re
exiveand transitive
losure of the relation refers to.A

ording to the above de�nition, p ' q � p v q ^ p w q means that pand q are mutually re
ursive, and p A q � p w q ^ p 6' q means that p
alls qas a subprogram. Noti
e that A is a well-founded ordering.Finally, we
an provide the key
on
ept we are going to use in order toprove input-termination.De�nition 4.5 [Weak Semi-Re
urren
y℄ Let P be a program and j j :BEP ! Nbe a moded level mapping.� A
lause of P is
alled weakly semi-re
urrent with respe
t to j j i� for everyinstan
e of it, H A; B;Cif Rel(H) ' Rel(B) then jHj > jBj.� A program P is
alled weakly semi-re
urrent with respe
t to j j i� all its
lauses are. P is
alled weakly semi-re
urrent i� it is weakly semi-re
urrentwith respe
t to some moded level mapping j j : BEP ! N.The notion of weak semi-re
urren
y di�ers from the
on
ept of semi-re
urren
y introdu
ed by Apt and Pedres
hi in [4℄ in two ways. First, ourde�nition provides a
ondition to hold for every instan
e of a program
lausenot only for ground instan
es as in [4℄. Se
ond, we do not require any de-
reasing neither non in
reasing of the level mapping between the head H ofa rule instan
e and every
orresponding non re
ursive body atom B: indeed,the additional
ondition jHj � jBj is required in [4℄ for any body atom B su
hthat Rel(H) 6' Rel(B).We
an now state our �rst basi
 result on termination, in the
ase of non-modular programs.Theorem 4.6 Let P be a ni
ely-moded program. If P is weakly semi-re
urrentthen P is input-terminating.Proof. It will be obtained from the proof of Theorem 4.10 by setting R = ;.2Example 4.7 Consider the program MERGE de�ned in the Example 3.6. Letj j be the moded level mapping for MERGE de�ned byjmerge(Xs; Ys; Zs)j = TSize(Xs) + TSize(Ys):13

Bossi et al.It is easy to prove that MERGE is weakly semi-re
urrent with respe
t to themoded level mapping above. By Theorem 4.6, all input-
onsuming derivationsof the program MERGE started with a query merge(u; s; t) where t is linear andvariable disjoint from u and s are terminating.4.3 Modular TerminationThis se
tion
ontains a generalization of Theorem 4.6 to the modular
ase, aswell as the
omplete proofs for it.The following lemma is a
ru
ial one.Lemma 4.8 Let the program P and the query Q := A1; : : : ; An be ni
ely-moded. Suppose that there exists an in�nite input-
onsuming derivation Æ ofP [fQg. Then, there exist i 2 f1; : : : ; ng and substitution � su
h that� there exists an input-
onsuming derivation Æ0 of P [fQg of the formÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� 7�! � � � ;� there exists an in�nite input-
onsuming derivation of P [fAi�g.Proof. Let Æ := A1; : : : ; An 7�! � � � be an in�nite input-
onsuming derivationof P [fQg. Then Æ
ontains an in�nite number of Ak-steps for some k 2f1; : : : ; ng. Let i be the minimum of su
h k. Hen
e Æ
ontains a �nite numberof Aj-steps for j 2 f1; : : : ; i� 1g and there exists C and D su
h thatÆ := A1; : : : ; An #7�! C;D 7�! � � �where A1; : : : ; An #7�! C;D is a �nite pre�x of Æ whi
h
omprises all theAj-steps for j 2 f1; : : : ; i� 1g and C results from their resolution. By Corol-lary 3.13, there exists an in�nite input-
onsuming derivation Æ0 su
h thatÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� �07�! C;D 7�! � � �where # = ��0. Let Æ00 := C; (Ai; : : : ; An)� �07�! C;D 7�! � � �. Note thatin Æ00 the atoms of C will never be sele
ted and, by Remark 3.8, will neverbe instantiated. Hen
e there exists an in�nite input-
onsuming derivation Æ000of P [f(Ai; : : : ; An)�g where an in�nite number of Ai�-steps are performed.Again, By Remark 3.8, for every �nite pre�x of Æ000 of the formAi�; (Ai+1; : : : ; An)� �17�! D1;D2 �2=) D01;D02where D1 and D2 are obtained by partially resolving Ai� and (Ai+1; : : : ; An)�,respe
tively, and D1;D2 �2=) D01;D02 is an Aj-step for some j 2 fi+1; : : : ; ng,we have that D01 = D1. Hen
e, from the hypothesis that there is an in�-nite number of Ai�-steps in Æ00, it follows that there exists an in�nite input-
onsuming derivation of P [fAi�g. 214

Bossi et al.The importan
e of the above lemma is shown by the following
orollary ofit, whi
h will allow us to
on
entrate our attention on queries
ontaining onlyone atom.Corollary 4.9 Let P be a ni
ely-moded program. P is input-terminating i�for ea
h ni
ely-moded one-atom query A all input-
onsuming derivations ofP [fAg are �nite.We
an now state the main result of this se
tion. Here and in what followswe say that a relation p is de�ned in the program P if p o

urs in a head ofa
lause of P , and that P extends the program R i� no relation de�ned in Po

urs in R.Theorem 4.10 Let P and R be two programs su
h that P extends R. Supposethat(i) R is input-terminating,(ii) P is ni
ely-moded and weakly semi-re
urrent with respe
t to a moded levelmapping j j : BEP ! N.Then P [R is input-terminating.Proof. First, for ea
h predi
ate symbol p, we de�ne depP (p) to be the numberof predi
ate symbols it depends on. More formally, depP (p) is de�ned as the
ardinality of the set fqj q is de�ned in P and p w qg. Clearly, depP (p) isalways �nite. Further, it is immediate to see that if p ' q then depP (p) =depP (q) and that if p A q then depP (p) > depP (q).We
an now prove our theorem. By Corollary 4.9, it is suÆ
ient to provethat for every ni
ely-moded one-atom query A, all input-
onsuming deriva-tions of P [fAg are �nite.First noti
e that if A is de�ned in R then the result follows immediatelyfrom the hypothesis that R is input-terminating and that P is an extensionof R. So we
an assume that A is de�ned in P .Let Æ be an in�nite input-
onsuming derivation of P [R [fAg su
h thatA is de�ned in P . ThenÆ := A �1=) (B1; : : : ; Bn)�1 �2=) � � �where H B1; : : : ; Bn is the input
lause used in the �rst derivation step and�1 = mgu(A = H). Clearly, (B1; : : : ; Bn)�1 has an in�nite input-
onsumingderivation in P [R. By Lemma 4.8, for some i 2 f1; : : : ; ng and for somesubstitution �2,(1) there exists an in�nite input-
onsuming derivation of P [R [fAg of theform A �1=) (B1; : : : ; Bn)�1 �27�! C; (Bi; : : : ; Bn)�1�2 � � � ;(2) there exists an in�nite input
onsuming derivation of P [fBi�1�2g:We pro
eed by proving that (2) is a
ontradi
tion.15

Bossi et al.Let � = �1�2. Note that H� (B1; : : : ; Bn)� is an instan
e of a
lause of P .The proof follows by indu
tion on hdepP (Rel(A)); jAji with respe
t to theordering � de�ned by: hm;ni � hm0; n0i i� either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 and jAj = 0. In this
ase, A does not dependon any predi
ate symbol of P , thus all the Bi as well as all the atoms o

urringin its des
endents in any input-
onsuming derivation are de�ned in R. Thehypothesis that R is input-terminating
ontradi
ts point (2) above.Indu
tion step. Let depP (Rel(A)) > 0 and jAj > 0. We distinguish two
ases:(a) Rel(H) A Rel(Bi),(b) Rel(H) ' Rel(Bi).In
ase (a) we have that depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)).So, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In
ase (b), from the hypothesis that P is weakly semi-re
urrent w.r.t. j j, itfollows that jH�j � jBi�j. Consider the partial input-
onsuming derivationA �7�! C; (Bi; : : : ; Bn)�, by Corollary 3.11 and the fa
t that j j is a modedlevel mapping, we have that jAj = jA�j = jH�j. Hen
e, hdepP (Rel(A)); jAji =hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In both
ases, the
ontradi
tion follows by the indu
tive hypothesis. 2Example 4.11 The program FLATTEN using di�eren
e-lists is ni
ely-modedin the modes des
ribed below (with \n" repla
ed by \,").mode flatten(In; Out):mode flatten dl(In; Out; In):mode
onstant(In):mode 6= (In; In):flatten(Xs; Ys) flatten dl(Xs; Ys n [℄):flatten dl([℄; Ys n Ys):flatten dl(X; [XjXs℄ n Xs)
onstant(X); X 6= [℄:flatten dl([XjXs℄; Ys n Zs) flatten dl(Xs; Y1s n Zs);flatten dl(X; Ys n Y1s):Consider the moded level mapping for FLATTEN de�ned byjflatten(Xs; Ys)j = TSize(Xsjflatten dl(Xs; Ys n Zs)j = TSize(Xs):It is easy to see that the program FLATTEN is weakly semi-re
urrent withrespe
t to the moded level mapping above. Hen
e, all input-
onsuming deriva-tions of FLATTEN starting from a query flatten(u; s) where s is linear andvariable disjoint from u are terminating.16

Bossi et al.Permutation Ni
ely-ModedAt this point it is worth noti
ing that, sin
e the programs we are
onsideringdo not use a �xed sele
tion rule the result we have provided (Theorems 4.6 and4.10) hold also in the
ase that programs and queries are permutation ni
ely-moded [17℄, that is programs and queries for whi
h would be ni
ely-modedafter a permutation of the atoms in the bodies. Therefore, for instan
e, we
an treat the program FLATTEN as it is presented in [2℄, i.e.,flatten(Xs; Ys) flatten dl(Xs; Ys n [℄):flatten dl([℄; Ys n Ys):flatten dl(X; [XjXs℄ n Xs)
onstant(X); X 6= [℄:flatten dl([XjXs℄; Ys n Zs) flatten dl(X; Ys n Y1s);flatten dl(Xs; Y1s n Zs):where the atoms in the body of the last
lause are permuted with respe
t tothe version of the Example 4.11.5 Appli
abilityIn this se
tion we report the results that we obtained by applying the termina-tion
riterion presented in this paper to several ben
hmarks from well-known
olle
tions.In Table 1 ben
hmarks from Apt's
olle
tion are
onsidered (see [2℄ and[4℄). Ben
hmarks from the DPPD's
olle
tion, maintained by Leus
hel andavailable at the URL: http://dsse.e
s.soton.a
.uk/ mal/systems/dppd.html,are referred to in Table 2. Table 3
onsiders various ben
hmarks from Linden-strauss's
olle
tion (see the URL: http://www.
s.huji.a
.il/ naomil). Finally,Table 4
on
erns with ben
hmarks from F. Bueno, M. Gar
ia de la Banda andM. Hermenegildo that
an be found at the URL: http://www.
lip.dia.�.upm.es.For ea
h ben
hmark we spe
ify the name and the modes of the main pro
e-dure. In the tables below NM stays for ni
ely-moded and the
orrespondingentry is yes when we
an �nd some modes for the subpro
edures with respe
tto whi
h the whole program is ni
ely moded. The next to
olumns refer tosu
h a modes: IT stays for input terminating and WSR stays for weaklysemi-re
urrent.6 Con
lusionWe presented a method for proving termination of programs and queries whi
hare (permutation) ni
ely-moded. Sin
e input-
onsuming derivations do notuse any �xed sele
tion rule, our method
an be applied for proving termina-tion of programs whi
h employ a dynami
 sele
tion rule. Our results stri
tlyimprove on [16℄ in the fa
t that we drop the
ondition that programs and17

Bossi et al.NM IT WSR NM IT WSRappend(In, ,) yes yes yes ordered(In) yes yes yesappend(, ,In) yes yes yes overlap(,In) yes yes yesappend(Out,In,Out) yes no overlap(In,Out) yes yes noappend3(In,In,In,Out) yes yes yes perm(,In) yes yes yes
olor map(In,Out) yes no perm(In,Out) yes no
olor map(Out,In) yes no qsort(In,) yes yes no
olor map(In,In) yes yes yes qsort(Out,In) yes nod
solve(In,) yes no reverse(In,) yes yes yeseven(In) yes yes yes reverse(Out,In) yes nofold(In,In,Out) yes yes yes sele
t(,In,) yes yes yeslist(In) yes yes yes sele
t(, ,In) yes yes yeslte(In,) yes yes yes sele
t(In,Out,Out) yes nolte(,In) yes yes yes subset(In,In) yes yes yesmap(In,) yes yes yes subset (In,Out) yes nomap(,In) yes yes yes subset (Out,In) yes nomember(,In) yes yes yes sum(,In,) yes yes yesmember(In,Out) yes yes no sum(, ,In) yes yes yesmergesort(In,) yes yes no sum(In,Out,Out) yes nomergesort(Out,In) yes no type(In,In,Out) no yes nomergesort variant(, ,In) yes yes yes type(In,Out,Out) no noTable 1Ben
hmarks from Apt's Colle
tionqueries have to be well-moded. This is parti
ularly important in the formu-lation of the queries: for instan
e, in the above program flatten, our resultsshow that every input-
onsuming derivation starting in a query of the formflatten(t,s) terminates provided that t is linear and disjoint from s, whilethe results of [16℄ apply only if t is a ground term.As side-e�e
t of our investigation, we also showed that for this
lass ofprograms one side of the well-known Swit
hing Lemma holds.Appli
ability and e�e
tiveness of our approa
h has been demonstrated byapplying it to several ben
hmarks for most of whi
h we
an prove weaklysemi-re
urren
y.Automatization of our method depends on the
apability of automati
allyinferring moded level mappings. It is well-known the relation between norms,whi
h de�ne the size of terms, and level mappings: roughly, level mappingsare obtained by extending norms to fun
tion from atoms to natural numbers.De
orte, De S
hreye and Fabris's [9℄ presents two te
hniques for the automati
inferen
e of norms. We argue that the same te
hniques
an be applied toautomatize termination proofs based on our approa
h.
18

Bossi et al.NM IT WSR NM IT WSRapplast(In,In,Out) yes yes yes mat
h app(,In) yes yes yesapplast(Out, ,) yes no mat
h app(In,Out) yes noapplast(,Out,) yes no max lenth(In,Out,Out) yes yes yes
ontains(,In) yes yes yes meno solve(In,Out) yes yes no
ontains(In,Out) yes no power(In,In,In,Out) yes yes yesdepth(In,In) yes yes yes prune(In,) yes yes yesdepth(In,Out) yes yes no prune(,In) yes yes yesdepth(Out,In) yes no relative (In,) yes nodupli
ate(In,Out) yes yes yes relative(,In) yes nodupli
ate(Out,In) yes yes yes rev a

(In,In,Out) yes yes yesflipflip(In,Out) yes yes yes rotate(In,) yes yes yesflipflip(Out,In) yes yes yes rotate(,In) yes yes yesgenerate(In,In,Out) yes no solve(, ,) yes noliftsolve(In,Out) yes no ssupply(In,In,Out) yes yes yesliftsolve(Out,In) yes no tra
e(In,In,Out) yes yes yesliftsolve(In,In) yes yes yes transpose(,In) yes yes yesmat
h(In,) yes no transpose(In,Out) yes nomat
h(,In) yes yes no unify(In,In,Out) yes noTable 2Ben
hmarks from DPPD's Colle
tionNM IT WSR NM IT WSRa
k(In,In,) yes yes no least(In,) yes yes yes
on
atenate(In, ,) yes yes yes least(,In) yes yes yes
on
atenate(, ,In) yes yes yes normal form(In,) yes no
on
atenate(,In,) yes no normal form(,In) yes nodes
endant(In,) yes no queens(,Out) yes yes nodes
endant(,In) yes no queens(,In) yes yes yesdeep(In,) yes yes yes poss(In) yes yes yesdeep(Out,) yes no poss(Out) yes no
redit(In,) yes yes yes rewrite(In,) yes yes yes
redit(,In) yes yes yes rewrite(,In) yes yes yesholds(,Out) yes no transform(, , ,Out) yes noholds(,In) yes yes yes transform(, , , In) yes yes yeshuffman(In,) yes yes no twoleast(In,) yes yes yeshuffman(,In) yes no twoleast(,In) yes yes yesTable 3Ben
hmarks from Lindenstrauss's Colle
tionReferen
es[1℄ Apt, K. R., Introdu
tion to Logi
 Programming, in J. van Leeuwen, editor,Handbook of Theoreti
al Computer S
ien
e, volume B: Formal Models and19

Bossi et al.NM IT WSRaiakl.pl init vars(In,In,Out,Out) yes yes yesann.pl analyze all(In,Out) yes yes yesbid.pl bid(In,Out,Out,Out) yes yes yesboyer.pl tautology(In) yes nobrowse.pl investigate(In,Out) yes yes yesfib.pl fib(In,Out) yes nofib add.pf fib(In,Out) yes yes yeshanoiapp.pl shanoi(In,In,In,In,Out) yes nohanoiapp su
.pl shanoi(In,In,In,In,Out) yes yes yesmmatrix.pl mmultiply(In,In,Out) yes yes yeso

ur.pl o

urall(In,In,Out) yes yes yespeephole.pl peephole opt(In,Out) yes yes yesprogeom.pl pds(In,Out) yes yes yesrdtok.pl read tokens(In,Out) yes noread.pl parse(In,Out) yes noserialize.pl sarialize(In,Out) yes yes notak.pl tak(In,In,in,Out) yes noti
ta
toe.pl play(In) yes nowarplan.pl plans(In,In) yes noTable 4Ben
hmarks from Hermenegildo's Colle
tionSemanti
s, Elsevier, Amsterdam and The MIT Press, Cambridge, (1990), 495{574[2℄ Apt, K. R., \From Logi
 Programming to Prolog", Prenti
e Hall, 1997[3℄ Apt, K. R. and Luitjes, I., Veri�
ation of logi
 programs with delay de
larations,in A. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of the FourthInternational Conferen
e on Algebrai
 Methodology and Software Te
hnology,(AMAST'95), Le
ture Notes in Computer S
ien
e, Berlin, 1995[4℄ Apt, K. R. and Pedres
hi, D., Modular termination proofs for logi
 and pureProlog programs in G. Levi, editor, Advan
es in Logi
 Programming Theory,pages 183{229. Oxford University Press, 1994[5℄ Apt, K. R. and Pellegrini, A., On the o

ur-
he
k free Prolog programs, ACMToplas, 16(3) (1994) 687{726[6℄ Apt, K. R., and Mar
hiori, E., Reasoning about Prolog programs: from Modesthrough Types to Assertions, Formal Aspe
ts of Computing, 6(6A) (1994) 743{765[7℄ Bezem, M., Strong termination of logi
 programs, Journal of Logi
Programming, 15(1&2) (1993) 79{9720

Bossi et al.[8℄ Cavedon, L., Continuity,
onsisten
y and
ompleteness properties for logi
programs, in G. Levi and M. Martelli, editors, International Conferen
e on Logi
Programming, pages 571{584. MIT press, 1989[9℄ De
orte, S. and De S
hreye, D. and Fabris, M., Automati
 inferen
e of norms: amissing link in automati
 termination analysis, in D. Miller, editor, Pro
. TenthInternational Logi
 Programming Symposium, number 526 in Le
ture Notes inComputer S
ien
e, pages 420{436. Springer-Verlag, 1993[10℄ Etalle, S. and Bossi, A. and Co

o, N., Termination of well-moded programs,Journal of Logi
 Programming, 38(2) (1999) 243{257[11℄ Etalle, S., and Gabbrielli, M., and Mar
hiori, E., A Transformation System forCLP with Dynami
 S
heduling and CCP, in C. Consel, editor, ACM{SIGPLANSymposium on Partial Evaluation and Semanti
 Based Program Manipulation.ACM Press, 1997[12℄ Hill, P. M., and Lloyd, J. W., \The G�odel programming language" The MITPress, 1994[13℄ Lloyd, J. W., \Foundations of Logi
 Programming", Symboli
 Computation {Arti�
ial Intelligen
e. Springer-Verlag, Berlin, 1987, Se
ond edition[14℄ Mar
hiori, E. and Teusink, F., Proving termination of logi
 programs with delayde
larations, in J. Lloyd, editor, Pro
. Twelfth International Logi
 ProgrammingSymposium. MIT Press, 1995.[15℄ De S
hreye, D. and De
orte, S., Termination of logi
 programs: the never-endingstory, Journal of Logi
 Programming, 19-20 (1994) 199{260[16℄ Smaus, J. G., Proving termination of input-
onsuming logi
 programs, in D. DeS
hreye, editor, 16th International Conferen
e on Logi
 Programming. MITpress, 1999.[17℄ Smaus, J. G. and Hill, P. M. and King, A. M., Termination of logi
 programswith blo
k de
larations running in several modes, in C. Palamidessi, editor,PLILP/ALP. Springer-Verlag, 1998[18℄ Somogyi, Z., Henderson, F. and Conway, T., Mer
ury: an eÆ
ient purelyde
larative logi
 programming language, in Australian Computer S
ien
eConferen
e, 1995. available at http://www.
s.mu.oz.au/mer
ury/papers.html[19℄ Ueda, K., Guarded Horn Clauses, a parallel logi
 programming language with the
on
ept of a guard, in M. Nivat and K. Fu
hi, editors, Programming of FutureGeneration Computers, pages 441{456. North Holland, Amsterdam, 1988[20℄ Ueda, K. and Morita, M., Moded
at gh
 and its message-orientedimplementation te
hnique, New Generation Computing, 13(1) (1994) 3{43[21℄ Walla
e, M. and Veron, A., Two problems { two solutions: One system {ECLiPSe, in Pro
eedings IEE Colloquium on Advan
ed Software Te
hnologiesfor S
heduling, London, April 1993 21

