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tWe study information 
ow se
urity properties whi
h are persistent, in the sensethat if a system is se
ure then all of its rea
hable states are se
ure too. We present auniform 
hara
terization of these properties in terms of a general unwinding s
hema.This unwinding 
hara
terization allows us to prove several 
ompositionality proper-ties of the 
onsidered se
urity 
lasses. Moreover, we exploit the unwinding 
onditionto di
tate the form of the rules we 
an use to in
rementally develop se
ure pro
essesand to re
tify inse
ure pro
esses.1 Introdu
tionInformation 
ow se
urity properties have been proposed as a means to ensure
on�dentiality of 
lassi�ed information in multilevel systems. These propertiesimpose 
onstraints on information 
ow among di�erent groups of entities withdi�erent se
urity levels. Often only two groups are 
onsidered and are labelledwith the se
urity levels high (H) and low (L). The 
ondition is that noinformation should 
ow from H to L.The ne
essity of 
ontrolling information 
ow as a whole (both dire
t andindire
t) motivated Goguen and Meseguer in introdu
ing the notion of Non-interferen
e [19,20℄. Non-Interferen
e formalizes the absen
e of information
ow within deterministi
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high level) and publi
 (i.e., low level) informationmay 
oexist, non-interferen
erequires that 
on�dential inputs never a�e
t the outputs on the publi
 inter-fa
e of the system, i.e., never interfere with the low level users. If su
h aproperty holds, one 
an 
on
lude that no information 
ow is ever possiblefrom high to low level.Starting from Sutherland [36℄, many de�nitions extending the 
on
ept ofnon-interferen
e to non-deterministi
 systems have been proposed in the litera-ture. They are developed in di�erent settings su
h as programming languages[4,33,34,35℄, tra
e models [25,26℄, pro
ess 
al
uli [11,14,22,30,31,32℄, proba-bilisti
 models [2,12℄, timed models [15,21℄, 
ryptographi
 proto
ols [1,5,16℄.In [13℄, Fo
ardi and Gorrieri express the 
on
ept of non-interferen
e in theSe
urity Pro
ess Algebra (SPA) language, in terms of bisimulation semanti
s.In parti
ular, inspired by [37℄, they introdu
e the notion of Bisimulation-based non Dedu
ibility on Compositions (BNDC ): a system E is BNDC ifwhat a low level user sees of the system is not modi�ed (in the sense of thebisimulation semanti
s) by 
omposing any high level pro
ess � with E. Themain advantage of BNDC with respe
t to tra
e-based properties is that itis powerful enough to dete
t information 
ows due to the possibility, for ahigh level mali
ious pro
ess, to blo
k or unblo
k a system. In parti
ular, in[13,14℄, it is shown that a mali
ious pro
ess may build a 
hannel from high tolow, by suitably blo
king and unblo
king some system servi
es a

essible bylow level users. The system used to build this 
overt 
hannel turns out to bese
ure with respe
t to tra
e-based properties. This motivates the use of moredis
riminating equivalen
es su
h as bisimulation.Although Martinelli [24℄ has shown that a 
lass of BNDC -like properties isde
idable over �nite state pro
esses, the problem of eÆ
iently verifying BNDCis still open. Indeed, de
idability of BNDC is an open problem. The maindiÆ
ulty 
onsists of getting rid of the universal quanti�
ation on high levelpro
esses �. Another drawba
k of BNDC is that it is not 
ompositional withrespe
t to the main SPA operators, su
h as the parallel 
omposition and thenondeterministi
 
hoi
e. Compositionality results are useful sin
e they help indesigning eÆ
ient veri�
ation algorithms and in de�ning proof systems whi
hallow one to in
rementally build systems whi
h are se
ure by 
onstru
tion.For these reasons many de
idable and 
ompositional suÆ
ient 
onditionsfor BNDC have been studied in the literature. In [9℄ it has been provedthat four of these suÆ
ient 
onditions, namely Persistent BNDC (P BNDC ),Strong BNDC (SBNDC ), Compositional P BNDC (CP BNDC ), and Pro-gressing P BNDC (PP BNDC ), 
an be 
hara
terized in terms of unwinding
onditions.Unwinding 
onditions demand properties of individual a
tions: they aimat \distilling" the lo
al e�e
t of performing high level a
tions. As observed bymany authors (see [31,29,23,32℄) they are easier to handle and more amenable2



to automated proof with respe
t to global 
onditions.In this paper we bridge the gap between unwinding 
onditions and 
om-positionality. In parti
ular, we introdu
e a parametri
 notion of unwindingwhi
h generalizes the unwinding 
hara
terizations 
onsidered in [9℄. We ex-ploit the parametri
 unwinding 
ondition to formulate general 
omposition-ality results. Su
h results aim at establishing a link between the semanti
sof the operator with respe
t to whi
h we want to ensure 
ompositionalityand the relations involved in the unwinding 
ondition. The 
ompositionalityproperties of P BNDC, SBNDC, CP BNDC, and PP BNDC are just spe
ialinstan
es of our general results. In the same spirit, we analize how to preserveunwinding 
onditions under re�nement (see [8℄). By exploiting the parametri
unwinding 
ondition and its general 
ompositionality properties, we 
an alsode�ne proof systems (see [7℄) whi
h allow us to build pro
esses whi
h are se-
ure by 
onstru
tion. Finally we suggest methods to re
tify (see [6℄) inse
urepro
esses in order to obtain pro
esses whi
h satisfy the unwinding 
onditions
hara
terizing spe
i�
 se
urity properties.The paper is organized as follows. In Se
tion 2, we re
all the syntax andthe semanti
s of the SPA language. In Se
tion 3 we introdu
e the se
urityproperties BNDC and P BNDC. Moreover, in Se
tion 3.1 we de�ne a generalunwinding s
hema and give a uniform presentation of the se
urity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC as di�erent instan
es of thegeneral s
hema. In Se
tion 4 we analize the relationships between unwind-ing 
onditions and 
ompositionality with respe
t to the SPA operators andre�nement. We exploit these results to develop proof systems for properties
hara
terized through unwinding. In Se
tion 5 we exploit the general unwind-ing s
hema to present a method for re
tifying inse
ure pro
esses. Finally, inSe
tion 6 we draw some 
on
lusions.This paper surveys previous work by the authors [6,7,8,9,10℄. The abovementioned general framework is an original 
ontribution whi
h allows us touniformly present our results and also to generalize some of them.2 PreliminariesIn this se
tion we report the syntax and semanti
s of the pro
ess algebrawe 
onsider. It is a variation of Milner's CCS [27℄, similar to the Se
urityPro
ess Algebra (SPA, for short) language [14℄, where the set of visible a
tionsis partitioned into high level a
tions and low level ones in order to spe
ifymultilevel systems. In addition to 
onstant de�nitions, we allow one to usethe repli
ation (!) operator for de�ning re
ursive systems.The syntax of our pro
ess algebra is based on the same elements as CCSthat is: a set L of visible a
tions su
h that L = I [ O where I = fa; b; : : :gis a set of input a
tions and O = f�a;�b; : : :g is a set of output a
tions; a3



spe
ial a
tion � whi
h models internal 
omputations, i.e., not visible outsidethe system; a 
omplementation fun
tion �� : L ! L, su
h that ��a = a, for alla 2 L. A
t = L [ f�g is the set of all a
tions. The set of visible a
tions ispartitioned into two sets, H and L, of high and low a
tions su
h that H = Hand L = L.The syntax of SPA terms 6 (or pro
esses) is de�ned as follows:E ::= 0 j a:E j E + E j EjE j E n v j E[f ℄ j Z j !Ewhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�), f(�) = � ,f(H) � H [ f�g, and f(L) � L [ f�g, and Z is a 
onstant that must beasso
iated with a de�nition Z def= E.Intuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
essthat 
an perform an a
tion a and then behaves as E; E1 + E2 represents thenondeterministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is theparallel 
omposition of E1 and E2, where exe
utions are interleaved, possiblysyn
hronized on 
omplementary input/output a
tions, produ
ing an internala
tion � ; E n v is a pro
ess E prevented from performing a
tions in v; E[f ℄is the pro
ess E whose a
tions are renamed via the relabelling fun
tion f ; !E(bang E) is the pro
ess EjEj : : :, i.e., the parallel 
omposition of as many 
opyas needed of the pro
ess E.We say that a pro
ess E is guarded if it 
an be built by using the rulea:E + a:E instead of E + E in the syntax of SPA terms above.We denote by E the set of all SPA pro
esses and by EH the set of all highlevel pro
esses, i.e., those 
onstru
ted only using a
tions in H [ f�g.The operational semanti
s of SPA agents is given in terms of LabelledTransition Systems (LTS, for short). A LTS is a triple (S;A;!) where S is aset of states, A is a set of labels (a
tions), !� S � A� S is a set of labelledtransitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) meansthat the system 
an move from the state S1 to the state S2 through the a
tiona. The operational semanti
s of SPA is the LTS (E ;A
t ;!), where the statesare the terms of the algebra and the transition relation !� E � A
t � E isde�ned by stru
tural indu
tion as the least relation generated by the inferen
erules depi
ted in Figure 1. We use also the notion of rooted labelled transitionsystem whi
h is a LTS augmented with a distinguish node, the root. Given apro
ess E we denote by LTS(E) = (SE; E;A
t ;!) the rooted LTS 
onstitutedof the subpart of the SPA LTS rea
hable from E. E is a �nite-state pro
essif LTS(E) has a �nite number of nodes, that is SE is �nite.The 
on
ept of observation equivalen
e is used to establish equalities among6 A
tually, the SPA syntax does not in
lude the ! operator. We maintain the name SPAfor our language sin
e adding ! does not in
rease the expressive power of the language.4



Pre�x �a:E a! ESum E1 a! E 01E1 + E2 a! E 01 E2 a! E 02E1 + E2 a! E 02Parallel E1 a! E 01E1jE2 a! E 01jE2 E2 a! E 02E1jE2 a! E1jE 02E1 a! E 01 E2 �a! E 02E1jE2 �! E 01jE 02 a 2 LRestri
tion E a! E 0E n v a! E 0 n v if a 62 vRelabelling E a! E 0E[f ℄ f(a)! E 0[f ℄Constant E a! E 0Z a! E 0 if Z def= ERepli
ation E a! E 0!E a! E 0j!E E a! E 0 E �a! E 00!E �! E 0jE 00j!E a 2 L
Fig. 1. The operational rules for SPApro
esses and it is based on the idea that two systems have the same semanti
sif and only if they 
annot be distinguished by an external observer. This isobtained by de�ning an equivalen
e relation over E . The strong bisimulationrelation [27℄ equates two pro
esses if they are able to mutually simulate theirbehavior step by step.We will use the following auxiliary notations. A
t� denotes the set of(possibly empty) sequen
es of a
tions, while A
t+ denotes the set of nonemptysequen
es of a
tions. If t = a1 � � �an 2 A
t� and E a1! � � � an! E 0, then we writeE t! E 0. We also write E t=) E 0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E 0 where( �!)� denotes a (possibly empty) sequen
e of � labelled transitions. If t 2 A
t�,then t̂ 2 L� is the sequen
e gained by deleting all o

urren
es of � from t. Asa 
onsequen
e, E â=) E 0 stands for E a=) E 0 if a 2 L, and for E( �!)�E 05



if a = � (note that �=) requires at least one � labelled transition while �̂=)means zero or more � labelled transitions). We say that E 0 is rea
hable fromE when there exists t 2 A
t� su
h that E t! E 0. We denote by Rea
h(E) theset of all sates rea
hable from E.The notion of strong bisimulation 
an be de�ned through the simulationpreorder as follows.De�nition 2.1 (Simulation) A binary relation R � E � E over agents is asimulation if (E; F ) 2 R implies, for all a 2 A
t,� if E a! E 0, then there exists F 0 su
h that F a! F 0 and (E 0; F 0) 2 R.An agent E is simulated by another agent F , denoted by E � F , if thereexists a simulation R 
ontaining the pair (E; F ).The relation � is the largest simulation and it is a preorder relation, i.e.,it is re
exive and transitive.De�nition 2.2 (Strong Bisimulation) A binary relation R � E � E overagents is a strong bisimulation if both R and R�1 are simulations.Two agents E; F 2 E are strongly bisimilar, denoted by E �B F , if thereexists a strong bisimulation R 
ontaining the pair (E; F ).The relation �B is the largest strong bisimulation and it is an equivalen
erelation.In many appli
ations strong bisimulation is too demanding, i.e., it is too�ne. In parti
ular, the internal transitions are treated as all the other a
tions.The weak bisimulation relation is similar to strong bisimulation, but it doesnot 
are about internal � a
tions.De�nition 2.3 (Weak Bisimulation) A binary relation R � E � E overagents is a weak bisimulation if (E; F ) 2 R implies, for all a 2 A
t,� if E a! E 0, then there exists F 0 su
h that F â=) F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 su
h that E â=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar, denoted by E �B F , if there existsa weak bisimulation R 
ontaining the pair (E; F ).The relation �B is the largest weak bisimulation and it is an equivalen
erelation [27℄.In our se
urity properties we need the notions of weak bisimulation on lowa
tions, whi
h equates pro
esses whi
h are bisimilar from the low level userpoint of view, and progressing bisimulation on low a
tions, whi
h also requiresthat ea
h � a
tion is simulated by at least one � .De�nition 2.4 (Weak Bisimulation on Low A
tions) A binary relationR � E � E over agents is a weak bisimulation on low a
tions if (E; F ) 2 R6



implies, for all ` 2 L [ f�g,� if E !̀ E 0, then there exists F 0 su
h that F ^̀=) F 0 and (E 0; F 0) 2 R;� if F !̀ F 0, then there exists E 0 su
h that E ^̀=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar on low a
tions, denoted by E �lB F ,if there exists a weak bisimulation R 
ontaining the pair (E; F ).It is immediate to prove that E �lB F is equivalent to E n H �B F n F .Progressing bisimulation on low a
tions is similar to weak bisimulation on lowa
tions, but it is based on the notion of progressing bisimulation introdu
edin [28℄.De�nition 2.5 (Progressing Bisimulation on Low A
tions) A binaryrelation R � E � E over agents is a progressing bisimulation on low a
tionsif (E; F ) 2 R implies, for all ` 2 L [ f�g,� if E !̀ E 0, then there exists F 0 su
h that F `=) F 0 and (E 0; F 0) 2 R;� if F !̀ F 0, then there exists E 0 su
h that E `=) E 0 and (E 0; F 0) 2 R.Two agents E; F are progressing bisimilar on low a
tions, denoted by E �lP F ,if there exists a weak bisimulation R 
ontaining the pair (E; F ).3 Bisimulation Based Se
urity PropertiesIn [13℄, Fo
ardi and Gorrieri express the 
on
ept of non-interferen
e in terms ofbisimulation semanti
s through the notion of Bisimulation-based non Dedu
ibili-ty on Compositions (BNDC ). Property BNDC is based on the idea of 
he
kingthe system against all high level potential intera
tions, representing every pos-sible high level mali
ious program. In parti
ular, a system E is BNDC if forevery high level pro
ess � a low level user 
annot distinguish E from (Ej�),i.e., if � 
annot interfere with the low level exe
ution of the system E. Inother words, a system E is BNDC if what a low level user sees of the systemis not modi�ed by 
omposing any high level pro
ess � to E.De�nition 3.1 (BNDC) Let E 2 E. E 2 BNDC if8 � 2 EH ; E �lB (Ej�)Example 3.2 Let us 
onsider an abstra
t spe
i�
ation M x of a binary mem-ory 
ell. M x 
ontains the binary value x and is a

essible, by high and lowusers, through the four operations rh; wh; rl; wl representing a high read, a highwrite, a low read and a low write, respe
tively. Ea
h operation is implementedthrough two di�erent a
tions, one for ea
h binary value. For example wh 0and wh 1 indi
ate a high level user writing value 0 and 1, respe
tively. 7 The7 The following expression forM x is indeed a de�nition s
heme: the a
tual pro
essesM 07



Fig. 2. The LTS of the memory 
ell M x.LTS of pro
ess M x is depi
ted in Figure 2.M x def= rh x : M x+ wh 0 : M 0 + wh 1 : M 1+ rl x : M x + wl 0 : M 0 + wl 1 : M 1Noti
e that read (write) operations are modelled as outputs (inputs). Pro
essM x 
an send the stored value x through the two output a
tions rh x and rl x.Moreover, write operations are performed by a

epting an input wh y and wl y(with y 2 f0; 1g) and moving to M y, i.e., storing y into the memory 
ell.Noti
e that M 0 and M 1 are totally inse
ure pro
esses. As a matter offa
t, a high level user may use the memory 
ell to dire
tly send 
on�dentialinformation to the low level. Using BNDC we dete
t that M 0 and M 1 areinse
ure. In fa
t, 
onsidering the pro
ess � � wh 1:0 we get that (M0j�)nH ��:M1 n H whi
h is not weak bisimilar to M0 n H, sin
e in �:M1 n H the lowlevel user reads 1, while in M0 nH he reads 0.In [14℄, Fo
ardi and Gorrieri observe that the BNDC property is diÆ-
ult to use in pra
ti
e: its de
idability is still an open problem. It wouldbe desirable to have an alternative formulation of BNDC whi
h avoids theuniversal quanti�
ation on high level pro
esses and exploits lo
al informationonly. One of the main diÆ
ulty in �nding su
h an alternative 
hara
terization
omes from the fa
t that BNDC is not persistent and thus the requirementson the pro
esses rea
hable from a BNDC pro
ess E should be di�erent fromthe requirements on E itself. In [17℄, it is introdu
ed a se
urity property 
alledPersistent BNDC (P BNDC, for short), in whi
h persisten
e is imposed byde�nition.De�nition 3.3 (P BNDC) Let E 2 E. E 2 P BNDC if8 E 0 2 Rea
h(E); E 0 2 BNDC :The de
idability of P BNDC over �nite state pro
esses has been provedin [17℄ by exploiting a bisimulation based 
hara
terization.and M 1 are obtained by repla
ing x with 0 and 1, respe
tively.8



Fig. 3. The LTS of the memory 
ell Mh x.A standard way to prote
t 
on�dential data is to apply the multilevel se-
urity model of [3℄. First, we need to assign a se
urity level to any information
ontainers (
alled obje
ts); then the following a

ess 
ontrol rules are imposed:(i) no low level user 
an read from high level obje
ts; (ii) no high user 
anwrite into low level obje
ts. Indeed, these are the only two (dire
t) waysfor leaking 
on�dential information. Sometimes they are suÆ
ient to ensurese
urity as des
ribed in the following example.Example 3.4 The memory 
ell of Example 3.2 is neither BNDC nor P BNDC.In order to prote
t 
on�dential data we 
an transform M x into both a highlevel 
ellMh x (see Figure 3), by eliminating any low level read operation (rule(i) above),Mh x def= rh x : Mh x+ wh 0 : Mh 0 + wh 1 : Mh 1+ wl 0 : Mh 0 + wl 1 : Mh 1and a low level 
ell M l x, by eliminating any high level write operation (rule(ii) above):M l x def= rh x : M l x+ rl x : M l x+ wl 0 : M l 0 + wl 1 : M l 1We 
an prove that both Mh x and M l x are P BNDC.Other bisimulation based persistent se
urity properties have been studiedin the literature. We re
all here the following: Strong BNDC (SBNDC, forshort), introdu
ed in [13℄, Compositional P BNDC (CP BNDC, for short),introdu
ed in [8℄, and Progressing P BNDC (PP BNDC, for short), introdu
edin [9℄. All these properties are in
luded in the BNDC 
lass, i.e., if a pro
esssatis�es one of them, then it is BNDC. In the next subse
tion we introdu
ethem through a uniform unwinding de�nition.3.1 Unwinding De�nitionsThe idea behind the notion of unwinding is to introdu
e some 
onstraints onthe transitions of the system (see [32℄) whi
h imply some global properties. In9



parti
ular, when an unwinding 
ondition is used to de�ne a non-interferen
eproperty it usually requires that ea
h high level a
tion 
an be \simulated" insu
h a way that it is impossible for the low level user to infer whi
h high levela
tions have been performed (see [29℄).In this se
tion we give a uniform presentation of the se
urity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC by introdu
ing a generalizedunwinding 
ondition. Our unwinding is parametri
 with respe
t to two binaryrelations on pro
esses: an equivalen
e relation, vl, whi
h represents the lowlevel indistinguishability and a transition relation, 9 9 K, whi
h 
hara
terizesthe lo
al 
onne
tivity required by the unwinding 
ondition.De�nition 3.5 (Generalized Unwinding) Let vl be a binary equivalen
erelation on E and 9 9 K be a binary relation on E. We de�ne the unwinding
lass W(vl; 9 9 K) asW(vl; 9 9 K) def= fE 2 E j 8 F;G 2 Rea
h(E) and 8 h 2 Hif F h! G then 9G0 su
h that F 9 9 KG0 and G vl G0g:The unwinding 
ondition 
hara
terizing an unwinding 
lass 
learly im-plies persisten
e. Moreover, any pro
ess E whi
h does not perform high levela
tions belongs to any unwinding 
lass W(vl; 9 9 K), sin
e the unwinding 
on-dition is trivially satis�ed.The following theorem follows from the unwinding 
hara
terizations ofP BNDC studied in [7℄ and of PP BNDC studied in [9℄, and from the originalde�nitions of SBNDC in [13℄ and of CP BNDC in [8℄.Theorem 3.6 (Unwinding) Let E 2 E be a pro
ess.� E 2 P BNDC i� E 2 W(�lB ; �̂=));� E 2 SBNDC i� E 2 W(�lB ;�);� E 2 CP BNDC i� E 2 W(�lB ; �=));� E 2 PP BNDC i� E 2 W(�lP ; �=));where � is the synta
ti
 equality between pro
esses.The above theorem helps us to understand the lo
al meaning of our se
urityproperties. Let F be a pro
ess rea
hable from a P BNDC pro
ess E. If F
an perform a high level transition rea
hing a pro
ess G, then F 
an alsosimulate su
h a move rea
hing, through a (possible empty) sequen
e of silenttransitions, a pro
ess G0 whi
h is undistinguishable from G from a low levelview. In the 
ase of SBNDC the sequen
e of silent transitions is repla
edby no transitions, i.e., G0 is F itself, while in the 
ase of CP BNDC andPP BNDC the silent sequen
e 
annot be empty. Moreover, in PP BNDCweak bisimulation on low a
tions is repla
ed by progressing bisimulation on10



Fig. 4. The LTS of the memory 
ell Nh x.low a
tions.Example 3.7 Consider the memory 
ells Mh x and M l x des
ribed in Ex-ample 3.4. Exploiting the unwinding 
hara
terization of P BNDC given inTheorem 3.6 it is easy to see that both Mh 0 and Mh 1 are P BNDC. First,noti
e that Mh 0 �lB Mh 1, sin
e there is no way for a low level user to dis-tinguish between the two states. As a matter of fa
t, the only possible low levela
tions are the two write operations wl 0; wl 1 whi
h, both in Mh 0 and inMh 1, move the system into the same states. The fa
t that M l 0 and M l 1are P BNDC is even easier to prove: the only high level a
tions rh 0; rh 1 donot 
hange the system state. Moreover, sin
e neither Mh x nor M l x performany � transition, one 
an infer that they are also SBNDC. Finally, one 
annoti
e that Mh x andM l x are neither CP BNDC nor PP BNDC, sin
e thereare not � moves exe
utable by the two pro
esses.Consider now the pro
esses Nh x (see Figure 4) and N l x obtained byadding a time-out realized by a � -loop in the initial state of both Mh x andM l x, i.e.,Nh x def= rh x : Nh x + wh 0 : Nh 0 + wh 1 : Nh 1+ wl 0 : Nh 0 + wl 1 : Nh 1 + � : Nh xN l x def= rh x : N l x + rl x : N l x+ wl 0 : N l 0 + wl 1 : N l 1 + � : N l x:The pro
esses Nh x and N l x are both CP BNDC and PP BNDC.The unwinding 
hara
terizations allow us to easily prove that PP BNDC �CP BNDC � P BNDC, SBNDC � P BNDC, and the pro
esses 
ontainingonly low level a
tions satisfy all of them. The situation is summarized inFigure 5.4 How to In
rementally Build Se
ure Pro
essesCompositionality is useful for both veri�
ation and synthesis. On one hand,if a property is preserved when systems are 
omposed, then the analysis pro-11
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urity Properties.
ess 
an be de
omposed and applied to subsystems in order to prove that thesystem as a whole satis�es the desired property. On the other hand, in thesynthesis of a system, 
ompositionality makes it possible to deal with all thesub
omponents in a uniform way. In this se
tion we analyze the relations be-tween the unwinding 
onditions and 
ompositionality results. We show thatall the se
urity properties we 
onsidered are 
ompositional with respe
t to theparallel operator, while not all of them are fully 
ompositional. In parti
ular,P BNDC and SBNDC are not preserved by the nondeterministi
 
hoi
e op-erator. In general, when we build a system that may (nondeterministi
ally)
hoose to behave as one of two se
ure subsystems, we 
ould obtain an inse-
ure system. As also observed in [18℄, this seems to be 
ounterintuitive. Onthe 
ontrary, PP BNDC and CP BNDC are fully 
ompositional, i.e., they are
ompositional also with respe
t to the nondeterministi
 
hoi
e.Besides standard algebra operators, we also 
onsider re�nement operatorswhi
h are useful for the stepwise development of se
ure pro
esses. Indeed, oneusually starts from a very abstra
t spe
i�
ation of the desired system whi
h isthen re�ned and de
omposed until one arrives at a 
on
rete spe
i�
ation that
an dire
tly be implemented. If properties are preserved under ea
h re�nementstep then those properties whi
h have been already investigated in some phaseneed not to be re-investigated in later phases.Given an unwinding 
lass W(�l; 9 9 K) and a partial fun
tion f : Ek �! E ,we say that W(�l; 9 9 K) is 
ompositional with respe
t to f if E1; : : : ; Ek 2W(�l; 9 9 K) implies that either f(E1; : : : ; Ek) 2 W(�l; 9 9 K) or f(E1; : : : ; Ek)is not de�ned (denoted by f(E1; : : : ; Ek) ").To study 
ompositionality properties of unwinding 
lasses we �rst intro-du
e the following notions of preservation and re
e
tion.De�nition 4.1 (Preservation and Re
e
tion) Let f : Ek �! E be a par-tial fun
tion and � � E � E be a relation.The fun
tion f preserves � if the following 
ondition holds. Let I ℄ J be anypartition of f1; : : : ; kg with I 6= ;. If 8i 2 I (Gi �G0i) and 8j 2 J (Gj � G0j)12



thenf(G1; : : : ; Gk)� f(G01; : : : ; G0k) or (f(G1; : : : ; Gk) " and f(G01; : : : ; G0k) ")The fun
tion f re
e
ts � if the following 
ondition holds. If f(G1; : : : ; Gk)�M , then 9 I; J , I ℄ J = f1; : : : ; kg and I 6= ; su
h that8i 2 I (Gi �G0i) and 8j 2 J (Gj � G0j) and M � f(G01; : : : ; G0k)The 
ondition I 6= ; in the above de�nition has the aim of 
onsidering alsonon re
exive relations, e.g. the relation h!.Example 4.2 Let � be the weak bisimulation relation, i.e., E�F if and onlyif E �B F . It holds that the parallel 
omposition operator preserves weakbisimulation [27℄. On the other hand, the nondetermisti
 
hoi
e operator doesnot preserve weak bisimulation. In fa
t, 0 �B �:0, but a:0 + 0 6�B a:0 + �:0.Let � be the rea
hability relation, i.e., f(E; F ) j E 2 E and F 2 Rea
h(E)g.The parallel operator re
e
ts �. In fa
t, if G1jG2 rea
hes M , i.e., M 2Rea
h(G1jG2) thenM � G01jG02 with both G01 2 Ra
h(G1) and G02 2 Ra
h(G2).Compositionality of an unwinding 
lass 
an be proved by means of thefollowing theorem.Theorem 4.3 (Re
e
tion-Preservation Composition) Let f : Ek �! Ebe a partial fun
tion re
e
ting h! and the rea
hability relation and preserving9 9 Kand �l. Then W(�l; 9 9 K) is 
ompositional with respe
t to f .Proof. It is not restri
tive to assume k = 2.Let E; F 2 W(�l; 9 9 K). We have to prove that f(E; F ) 2 W(�l; 9 9 K).If f(E; F ) rea
hes M , then, sin
e f re
e
ts the rea
hability relation 8 , thereexist G;K (one of them possibly equal to E or F , respe
tively) su
h that Erea
hes G, F rea
hes K, andM � f(G;K). If M h!M 0, then, sin
e f re
e
tsh!, three 
ases are possible:� G h! G0 and M 0 � f(G0; K);� K h! K 0 and M 0 � f(G;K 0);� G h! G0, K h! K 0, and M 0 � f(G0; K 0).In the �rst 
ase G 9 9 KG00 and G00 �l G0. Hen
e, sin
e f preserves 9 9 K and�l we have M 9 9 Kf(G00; K) and f(G00; K) �l f(G0; K). The se
ond and thethird 
ases are similar. Hen
e, f(E; F ) 2 W(�l; 9 9 K). 2As we will see in the next subse
tion, the hypotheses of the above theo-rem are satis�ed when we deal with operators whose semanti
s is re
ursively8 Note that the rea
hability relation is re
exive.13



de�ned on subpro
esses (e.g., the parallel operator j). Other operators have asemanti
s whi
h is a \union" of the semanti
s of subpro
esses (e.g., the nonde-terministi
 
hoi
e operator). To deal with su
h kind of operators we introdu
ethe notions of propagation and proje
tion.De�nition 4.4 (Propagation and Proje
tion) Let f : Ek �! E be a par-tial fun
tion and � � E � E be a relation.The fun
tion f propagates � if the following 
ondition holds. If 9i su
h that(Gi �G0i), then f(G1; : : : ; Gk)�G0i or f(G1; : : : ; Gk) ".The fun
tion f proje
ts � if the following 
ondition holds. If f(G1; : : : ; Gk)�M , then 9i su
h that Gi �M .Example 4.5 Let � be the relation a! and f be the nondetermisti
 
hoi
eoperator +. It holds that + propagates a!. In fa
t, if G1 a! G01 then G1+G2 a!G01. Moreover, + proje
ts a!, sin
e if G1 +G2 a! M then either G1 a! M orG2 a!M .We say that a pro
ess E positively rea
hes a pro
ess E 0 if there exists apro
ess E 00 and an a
tion a su
h that E a! E 00 and E 00 rea
hes E 0.Theorem 4.6 (Proje
tion-Propagation Composition) Let f : Ek �! Ebe a partial fun
tion proje
ting h! and the positive rea
hability relation andpropagating 9 9 K. Then W(�l; 9 9 K) is 
ompositional with respe
t to f .Proof. It is not restri
tive to assume k = 2.Let E; F 2 W(�l; 9 9 K). We have to prove that f(E; F ) 2 W(�l; 9 9 K). Iff(E; F ) rea
hes M , then, two 
ases are possible:� M � f(E; F );� f(E; F ) positively rea
hes M .In the �rst 
ase we have to prove that if f(E; F ) h!M 0, then f(E; F ) 9 9 KM 00and M 00 �l M 0. If f(E; F ) h! M 0, sin
e f proje
ts h!, it is not restri
tive toassume that E h! M 0. Sin
e E 2 W(�l; 9 9 K), by de�nition, E 9 9 KM 00 andM 00 �l M 0. From the fa
t that f propagates 9 9 Kwe get that f(E; F ) 9 9 KM 00,i.e., the thesis.In the se
ond 
ase, sin
e f proje
ts the positive rea
hability relation, we
an safely assume that E rea
hes M . Sin
e E 2 W(�l; 9 9 K) and E rea
hesM , we immediately get the thesis. 24.1 Compositionality with respe
t to the Algebra OperatorsThe following result is an immediate 
onsequen
e of Theorem 4.3, sin
e allthe operators it deals with re
e
t h! and the rea
hability relation.Corollary 4.7 (Restri
tion, Renaming, Parallel, De�nition) Consider14



an unwinding 
lass of pro
esses W(�l; 9 9 K).� Let v � L. If the fun
tion restv : W(�l; 9 9 K) �! E de�ned as restv(E) =E n v preserves 9 9 K and �l, then W(�l; 9 9 K) is 
ompositional with respe
tto the v-restri
tion;� Let g be a renaming. If the fun
tion reng : W(�l; 9 9 K) �! E de�ned asreng(E) = E[g℄ preserves 9 9 K and �l, then W(�l; 9 9 K) is 
ompositionalwith respe
t to the g-renaming;� If the fun
tion par : W(�l; 9 9 K)2 �! E de�ned as par(E; F ) = EjF pre-serves 9 9 K and �l, then W(�l; 9 9 K) is 
ompositional with respe
t to theparallel 
omposition j;� If the fun
tion def :W(�l; 9 9 K) �! E de�ned as def(E) = Z, with Z def= E,preserves 9 9 Kand �l, then W(�l; 9 9 K) is 
ompositional with respe
t to the
onstant de�nition def= .The following result is a 
onsequen
e of Theorem 4.6, sin
e the nondeter-ministi
 
hoi
e operator proje
ts h! and the positive rea
hability relation.Corollary 4.8 (Non Deterministi
 Choi
e) LetW(�l; 9 9 K) be an unwind-ing 
lass of pro
esses. If the fun
tion sum : W(�l; 9 9 K)2 �! E de�ned assum(E; F ) = E + F propagates 9 9 K, then W(�l; 9 9 K) is 
ompositional withwith respe
t to the nondeterministi
 
hoi
e operator +.Theorem 4.9 (Low Pre�x) Let W(�l; 9 9 K) be an unwinding 
lass of pro-
ess. If l 2 L is a low level a
tion, then W(�l; 9 9 K) is 
ompositional withrespe
t to the low pre�x operator whi
h maps E into l:E.Proof. We have to prove that if E 2 W(�l; 9 9 K) and l 2 L, then l:E 2W(�l; 9 9 K). If l:E rea
hes E 0, then two 
ases are possible:� E 0 � l:E;� E 0 2 Rea
h(E).In the �rst 
ase E 0 
annot perform any high level a
tion, hen
e we have noth-ing to prove. In the se
ond 
ase by the hypothesis that E 2 W(�l; 9 9 K) weimmediately get the thesis. 2The repli
ation operator needs an ad-ho
 theorem sin
e it does not re-
e
ts h! and the rea
hability relation. In fa
t, if !E rea
hes E 0 this does not
orrespond to the fa
t that E rea
hes E 00 and E 0 �!E 00. In parti
ular, if !Erea
hes E 0 we 
an prove that E 0 is of the form E1j : : : jEnj!E where all theEi's are rea
hed by E. The following theorem allows us to exploit this formof `re
e
tion' of the rea
hability relation to obtain suÆ
ient 
onditions for the
ompositionality with respe
t to the repli
ation operator.Theorem 4.10 (Repli
ation) LetW(�l; 9 9 K) be an unwinding 
lass of pro-15




esses. If it holds that(1) 9 9 K is in
luded in the rea
hability relation, i.e., if E 9 9 KF then E rea
hesF ,(2) for ea
h F 2 W(�l; 9 9 K) and k � 0 the fun
tion fFk : W(�l; 9 9 K)k �! Ede�ned as fFk (E1; : : : ; Ek) = E1j : : : jEkj!F preserves �l,(3) for ea
h k � 0 the fun
tion gk : Ek �! E su
h that gk(E1; : : : ; Ek) =E1j : : : jEk preserves 9 9 K,(4) if F 9 9 KF 0, then !F 9 9 KF 0j!F ,then W(�l; 9 9 K) is 
ompositional with respe
t to the repli
ation operator !.Proof. First we prove the following 
laim.Claim 1. If !F rea
hes F 0, then there exist n � 0 and F1; : : : ; Fn su
h that Frea
hes Fi, for i = 1; : : : ; n and F 0 � F1jF2j : : : jFnj!F:Sin
e !F rea
hes F 0, there exists t 2 A
t� su
h that !F t! F 0. We pro
eedby indu
tion on the length ln of t.If ln = 0, then F 0 �!F , hen
e we have the thesis with n = 0.Let us assume that we have proved the thesis for all the ln � m. Letln = m+1. This means that there exists F 00 su
h that !F t0! F 00, t0 has lengthm, and F 00 a! F 0. By indu
tive hypothesis there exist n � 0 and F1; : : : ; Fnsu
h that F rea
hes Fi, for i = 1; : : : ; n and F 00 � F1jF2j : : : jFnj!F: If thea
tion a is performed by one of the Fi's, say F1, we have the thesis, sin
e Frea
hes F1 and F1 a! F 01 and F 0 � F 01jF2j : : : jFnj!F: Similarly we obtain thethesis if a = � is a syn
hronization between two of the Fi's. If the a
tion ais performed by !F applying the �rst rule of Repli
ation, then F a! Fn+1 andF 0 � F1jF2j : : : jFnjFn+1j!F: Similarly we obtain the thesis in the remainingtwo 
ases, i.e. if a is performed by !F applying the se
ond rule of Repli
ationor if a is a syn
hronization between one of the Fi's and !F .Now we have to prove that if F 2 W(�l; 9 9 K), then !F 2 W(�l; 9 9 K), i.e.,if !F rea
hes F 0 and F 0 h! G, then F 0 9 9 KG0 with G0 �l G.If !F rea
hes F 0, by Claim 1, we have that F 0 is of the form F1j : : : jFnj!F .If n = 0, then F 0 �!F . If !F h! G, then F h! G00 and G � G00j!F . Sin
eF 2 W(�l; 9 9 K), we have that F 9 9 KK and K �l G00. By hypothesis (4),!F 9 9 KKj!F . Moreover, by hypothesis (1), we have that K 2 W(�l; 9 9 K),hen
e sin
e, by hypothesis (2), fF1 preserves �l, we get Kj!F �l G00j!F .If n > 0, then F 0 � F1j : : : jFnj!F . If F 0 h! G, then two 
ases are possible:� there exists i su
h that Fi h! F 0i and G � F1j : : : jF 0i j : : : jFnj!F ;� F h! F 00 and G � F1j : : : jFnjF 00j!F .
16



In the �rst 
ase, sin
e F 2 W(�l; 9 9 K) rea
hes Fi we have that Fi 9 9 KKwith K �l F 0i . Sin
e, by hypotheses (3) and (2), gn+1 preserves 9 9 K and fFnpreserves �l we get that F 0 9 9 KG0 � F1j : : : jKj : : : jFnj!F and G0 �l G.In the se
ond 
ase, sin
e F 2 W(�l; 9 9 K), F 9 9 KK with K �l F 00. Hen
e,by hypothesis (4), we get that !F 9 9 KKj!F . Sin
e, by hypothesis (3), gn+1preserves 9 9 Kwe have that F 0 9 9 KG0 � F1j : : : jFnjKj!F . By hypothesis (1)we obtain K 2 W(�l; 9 9 K), hen
e we 
an exploit the fa
t that fFn+1 preserves�l to get G0 �l G. 2We are now ready to apply our general results to the se
urity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC.Corollary 4.11 P BNDC, SBNDC, CP BNDC, PP BNDC are 
ompositionalwith respe
t to the following operators:� the l-pre�x operator, for ea
h l 2 L;� the v-restri
tion operator, for ea
h v � L;� the g-renaming operator, for ea
h renaming g;� the parallel 
omposition j;� the 
onstant de�nition def= ;� the repli
ation operator !.CP BNDC, PP BNDC are 
ompositional with respe
t to the nondeterministi

hoi
e operator +.Proof. As far as the �rst 5 operators are 
on
erned, the 
ompositionality
an be proved by observing that the hypothesis of Theorem 4.9 and Corollary4.7 hold.To prove the 
ompositionality with respe
t to the repli
ation operator weneed to prove that the hypothesis of Theorem 4.10 hold.(1) The relations ( �!)�; ( �!)0; ( �!)+ are in
luded in the rea
hability.(2) We prove that the fFk 's preserve �l. In the 
ase of P BNDC the fa
tthat ea
h fFk preserves �lB 
an be proved by proving thatR = f(E1j : : : jEkj!F;E 01j : : : jE 0kj!F ) j Ei; E 0i; F 2 P BNDC and Ei �lB E 0igis a weak bisimulation on low a
tions (see Lemma 5 of [10℄). In the 
ase ofSBNDC and CP BNDC the thesis follows from the 
ase of P BNDC, sin
ethey are both in
luded in P BNDC and they use �lB, as P BNDC does. Inthe 
ase of PP BNDC the proof 
an be obtained similarly by proving thatR = f(E1j : : : jEkj!F;E 01j : : : jE 0kj!F ) j Ei; E 0i; F 2 PP BNDC and Ei �lP E 0igis a progressing bisimulation on low a
tions.17



(3) The fa
t that ea
h gk preserves ( �!)�; ( �!)0; ( �!)+ is a 
onsequen
e ofthe semanti
s of the parallel operator.(4) Also the last hypothesis, i.e., F 9 9 K F 0 implies !F 9 9 K F 0j!F , 
anbe easily proved for our se
urity properties (modulo the use of stru
tural
ongruen
e in the 
ase of SBNDC and P BNDC ).To prove that CP BNDC and PP BNDC are 
ompositional with respe
tto the nondeterministi
 
hoi
e operator we 
an apply Corollary 4.8. 2Example 4.12 Consider the parallel 
omposition of the high and low memory
ells Mh x and M l x de�ned in Example 3.4, i.e.,Mhjl x def= Mh xjM l x:Sin
e bothMh 0 andM l 0 are P BNDC, by Corollary 4.11,Mhjl 0 is P BNDCtoo. Similarly an unbounded number of high memory 
ells de�ned asM !h x def=!Mh x:is P BNDC.Consider now the non-deterministi
 
omposition of Mh x and M l x. Inparti
ular, 
onsider the memory 
ell Mh+l x that behaves as either Mh x orM l x, i.e., Mh+l x def= Mh x +M l x:We know that Mh x and M l x are P BNDC, however their non-deterministi

omposition, i.e., Mh+l x, is not. Indeed, 
onsider the exe
ution of a highlevel write a
tion wh 0. This moves the whole Mh+l 0 system to Mh 0 (noti
ethat M l 0 does not a

ept the high level input wh 0). The problem is that alow level user 
an observe this move by trying to write some value into thememory 
ell. As a matter of fa
t, sin
e Mh 0 does not a

ept low level inputs,the low level user 
an dedu
e that some high level a
tion has been performed.This indire
t information 
ow 
an be exploited to build a so 
alled 
overt-
hannel (see, e.g., [14℄ for more detail). Formally, we 
an prove that Mh+l 0is neither P BNDC, SBNDC, CP BNDC nor PP BNDC by observing thatthe move Mh+l 0 wh 0! Mh 0 
annot be simulated by Mh+l 0.Consider now the the memory 
ell Nh+l x obtained as non-deterministi

omposition of the 
ells Nh x and N l x of Example 3.7, i.e.,Nh+l x def= Nh x +N l x:Sin
e we have already showed that Nh x and N l x are both CP BNDC andPP BNDC, by 
ompositionality results we obtain that Nh+l x is both CP BNDCand PP BNDC. Noti
e that the problem of simulating the move Nh+l 0 wh 0!Nh 0 is now solved by performing the � of the added � : Nh 0 bran
h in the18



de�nition of Nh 0. In parti
ular we have that Nh+l 0 �! Nh 0.4.2 Compositionality with respe
t to Re�nementIn [8℄ we introdu
ed a new notion of re�nement for SPA pro
esses. Intuitively,an abstra
t spe
i�
ation (given here as a SPA system) de�nes the set of pos-sible (allowed) behaviors of a system. Re�ning a spe
i�
ation 
orresponds to
hoosing among these allowed behaviors, the ones that will be a
tually imple-mented. The idea is that a re�ned spe
i�
ation should never show behaviorsthat were not foreseen in the initial spe
i�
ation. To formalize this idea, werequire that (i) ea
h state of the abstra
t spe
i�
ation is re�ned to, at most,one state of the more 
on
rete (i.e., re�ned) spe
i�
ation; (ii) the behaviorof the re�ned states is simulated by the abstra
t states, i.e., it should alwaysbe possible to simulate an a
tion performed by a re�ned state by the 
orre-sponding abstra
t state, and the two rea
hed states should be still one there�nement of the other.Re�nement is formalized as a partial fun
tion from pro
esses.De�nition 4.13 (Re�nement) A binary relation R � E �E over pro
essesis a re�nement if� R�1 is a simulation and� R is a partial fun
tion from E to E.We say that E is a re�nement of F , denoted by E � F , if there exists are�nement R su
h that R(F ) = E.The following theorem has been proved in [8℄ but it is easy to see that it isalso a 
onsequen
e of Theorem 4.3. Just note that any re�nement R re
e
tsh! and the rea
hability relation sin
e, by de�nition, R�1 is a simulation.Theorem 4.14 Let W(�l; 9 9 K) be an unwinding 
lass of pro
esses and R bea re�nement. If R preserves 9 9 K and �l, then W(�l; 9 9 K) is 
ompositionalwith respe
t to R.Example 4.15 Consider the pro
esses Mh x and M l x introdu
ed in Exam-ple 3.4. We have seen that they are both P BNDC. It is now interesting tostudy how this property is preserved by further re�ning the pro
esses. To thisaim we apply Theorem 4.14. Noti
e that neither Mh 0 nor M l 0 performany � transitions, thus the only 
ondition that we should 
are about is thatthe re�nement preserves �lB. As a 
onsequen
e, removing high level a
tionsdoes not a�e
t the se
urity of the two systems. For example, if we allow thehigh level user to only reset the 
ell value to 0 (by removing the wh 1 : Mh 1bran
h), the resulting pro
ess is still P BNDC.On the other hand, modi�
ations of low behavior should be performed 
o-herently in all equivalent states. For example, the re�nement19



Fig. 6. The LTS of the memory 
ell P h x.P h 0 def= rh 0 : P h 0 + wh 0 : P h 0 + wh 1 : P h 1P h 1 def= rh 1 : P h 1 + wh 0 : P h 0 + wh 1 : P h 1 + wl 0 : P h 0in whi
h the low level user 
an reset to 0 the high level 
ell, only when the 
ell
ontains value 1 (noti
e that in P h 0 no low level write operations are allowed)is not preserving �lB. The LTS of P h 0 is depi
ted in Figure 6.It is easy to see that P h 0 62 P BNDC. The fa
t that P h 0 is not P BNDCreveals a slightly subtle information 
ow due to the fa
t that a low level usermay tra
k the 
ontent of the high level 
ell by trying to reset it: every timethe reset su

eeds the low level user 
an 
on
lude that the 
ell 
ontains value1. A 
orre
t re�nement a
hieving the same low level reset behavior des
ribedabove, should in
lude the bran
h wl 0 : P h 0 also in P h 0.4.3 Proof Systems for Unwinding 
lassesUnwinding 
onditions are also useful for giving eÆ
ient proof te
hniques. In-deed, we used them to de�ne proof systems whi
h allow us to stati
ally provethat a pro
ess is se
ure, i.e., by just inspe
ting its syntax [7,10℄. These sys-tems o�er a means to build pro
esses whi
h are se
ure by 
onstru
tion, in anin
remental way. They extend the one given in [24℄ for �nite pro
esses, i.e.,pro
esses that may only perform �nite sequen
es of a
tions. In parti
ular, weare able to deal also with re
ursive pro
esses whi
h may perform unboundedsequen
es of a
tions. Here we provide a general s
heme for the 
onstru
tionof 
orre
t proof rules for unwinding 
lasses of pro
esses whi
h generalize theproof rules proposed in [7,10℄.Theorem 4.16 Let W(�l; 9 9 K) be an unwinding 
lass of pro
esses. Let Sysbe a proof system whose rules are of the following formE1; : : : ; Ek 2 W(�l; 9 9 K)f(E1; : : : ; Ek) 2 W(�l; 9 9 K)where W(�l; 9 9 K) is 
ompositional with respe
t to f , or the rule20



E 2 ELE 2 W(�l; 9 9 K)Then Sys is 
orre
t, i.e., if there exists a derivation of E 2 W(�l; 9 9 K) inSys, then E 2 W(�l; 9 9 K).By Theorem 4.16 and Corollary 4.11 we get for instan
e the following ruleE1; E2 2 P BNDCE1jE2 2 P BNDCHowever, by 
onsidering the proof system obtained exploiting only to theoperators in Corollary 4.11 we 
an only prove that the pro
esses in EL areP BNDC ; SBNDC ;CP BNDC ;PP BNDC . In fa
t, we have no way to in-trodu
e high level a
tions. In the 
ase of P BNDC we have that P BNDC is
ompositional with respe
t to the fun
tions of the form f : Ep+q �! E de�nedas f(F1; : : : ; Fp; G1; : : : ; Gq) = X1�i�p li:Fi + X1�j�q(hj:Gj + �:Gj)where li 2 L for all i = 1; : : : ; p and hj 2 H for all j = 1; : : : ; q (see alsoTheorem 5.2). Hen
e we 
an add to the proof system the rules of the formF1; : : : ; Fk; G1; : : : ; Gh 2 P BNDCP1�i�p li:Fi +P1�j�q(hj:Gj + �:Gj) 2 P BNDCwhi
h allows use to build se
ure pro
esses not in EL. These rules 
an be usedalso in the 
ases of CP BNDC and PP BNDC, while in the 
ase of SBNDCwe 
an prove the 
orre
tness of the ruleE 2 SBNDCE + h:E 2 SBNDC5 How to Re
tify Inse
ure Pro
essesIn [6℄ we propose a general method for re
tifying non P BNDC pro
esses. Theidea is to automati
ally transform a pro
ess E into a P BNDC pro
ess E� andto identify a large 
lass of pro
esses for whi
h the transformation preservesthe low level observational semanti
s, i.e., for the low level user E and E� arenot distinguishable. This transformation 
an be used to 
onstru
t \se
ure"pro
esses from a �rst possibly \inse
ure" de�nition. Here we generalize thetransformation presented in [6℄ to deal with any unwinding 
lass of pro
essesand sequen
es s of a
tions. Given a pro
ess E and a sequen
e of a
tionss = s1 : : : sn 2 A
t+, we denote by s:E the pro
ess s1: : : : :sn:E.21



De�nition 5.1 (Es) LetW(�l; 9 9 K) be an unwinding 
lass of pro
esses 
om-positional with respe
t to the v-restri
tion, for ea
h v � L�, the g-renaming,for ea
h renaming g, the parallel 
omposition operator j, the 
onstant de�ni-tion def= , the repli
ation operator !. Given a guarded pro
ess E and s 2 A
t+with n > 0 we indu
tively de�ne Es as follows:0s = 0 (E n v)s = Es n v (E[g℄)s = Es[g℄(E1jE2)s = Es1jEs2 Zs def= F s !Es =!(Es)(Pi li:Fi +Pj hj:Gj)s =Pi li:F si +Pj(hj:Gsj + s:Gsj)where li 2 L [ f�g, hj 2 H, and Z was asso
iated to Z def= F .Theorem 5.2 (Re
ti�
ations) LetW(�l; 9 9 K) be an unwinding 
lass of pro-
esses 
ompositional with respe
t to the v-restri
tion, for ea
h v � L�, theg-renaming, for ea
h renaming g, the parallel 
omposition operator j, the 
on-stant de�nition def= , the repli
ation operator !. Let E 2 E be a guarded pro
ess.If s 2 A
t+ is a sequen
e of a
tions and su
h that E s! F implies E9 9 KF ,then Es 2 W(�l; 9 9 K):Proof. By indu
tion on E. If E � 0, then Es � 0 2 W(�l; 9 9 K).If E � E1nv, then by indu
tive hypothesis on E1, Es1 2 W(�l; 9 9 K), hen
e,sin
eW(�l; 9 9 K) is 
ompositional with respe
t to the v-restri
tion, we get thethesis. The 
ases of renaming, parallel 
omposition, 
onstant de�nition, andrepli
ation are similar.If E � Pli2L[f�g li:Fi +Phj2H hj:Gj and Es rea
hes E 0 two 
ases arepossible:� E 0 is Es;� one of the F si ; Gsj's rea
hes E 0.In the �rst 
ase if Es h! E 00 we have that there exists j su
h that E 00 � Gj.Hen
e, Es 9 9 KGj and Gj �l Gj, sin
e �l is an equivalen
e relation.In the se
ond 
ase the thesis follows by indu
tive hypothesis on the F si ; Gsj's.2Corollary 5.3 Let E 2 E be a guarded pro
ess.E� 2 P BNDC ;CP BNDC ;PP BNDC :Example 5.4 The memory 
ell M x presented in Example 3.2 was not se-
ure. We transformed it into two memory 
ells, a high level one and a lowlevel one. Sin
e the low level user 
annot read from the high memory 
ell andthe high level user 
annot write on the low memory 
ell we obtain that thetwo memory 
ell are se
ure. Imagine now that we want to model the low levelmemory 
ell in su
h a way that ea
h value 
an be read at most on
e. At the22



Fig. 7. The LTS of the memory 
ell Ql e� .beginning the 
ell Ql e is empty, when a low level user writes a value x the
ell is moved in the state Ql x in whi
h it remains until either a high or a lowlevel user read the value. After a reading the 
ell is reset in the state Ql e.Ql e def= wl x : Ql xQl x def= rl x : Ql e+ rh x : Ql eIn parti
ular, with this implementation ea
h value is read exa
tly on
e. How-ever, Ql e is not P BNDC. In fa
t, if any user reads the value the low leveluser 
annot write a new value, i.e., the system is blo
ked. Applying to Ql eour re
ti�
ation we getQl e� def= wl x : Ql x�Ql x� def= rl x : Ql e� + rh x : Ql e� + �:Ql e�In this 
ase the re
ti�
ation 
orresponds to the modelling of a timeout: if thevalue is not read within a 
ertain amount of time, the system reset the 
ell.Now ea
h value is read at most on
e.The LTS's of Ql e� is depi
ted in Figure 7.The above theorem does not requires the 
ompositionality with respe
tto the non-deterministi
 
hoi
e operator. As a 
onsequen
e the 
orre
tion
an be applied only to guarded pro
esses. In the 
ase we deal with a fully
ompositional unwinding 
lass we 
an extend the 
orre
tion to non guardedpro
esses.De�nition 5.5 (Es) Let W(�l; 9 9 K) be an unwinding 
lass of pro
esses 
om-positional with respe
t to the v-restri
tion, for ea
h v � L�, the g-renaming,for ea
h renaming g, the parallel 
omposition operator j, the 
onstant de�ni-tion def= , the repli
ation operator ! and the nondeterministi
 
hoi
e operator +.Given a pro
ess E and s 2 A
t+ we indu
tively de�ne Es as follows:0s = 0 (l:E)s = l:Es (h:E)s = h:Es + s:Es(E n v)s = Es n v (E[g℄)s = Es[g℄ (E1jE2)s = (E1)sj(E2)sZs def= Fs !Es =!(Es) (E1 + E2)s = (E1)s + (E2)s23



where l 2 L [ f�g, h 2 H, and Z was asso
iated to Z def= F .Theorem 5.6 (Re
ti�
ations) LetW(�l; 9 9 K) be an unwinding 
lass of pro-
esses 
ompositional with respe
t to the v-restri
tion, for ea
h v � L�, theg-renaming, for ea
h renaming g, the parallel 
omposition operator j, the 
on-stant de�nition def= , the repli
ation operator !, and the nondeterministi
 
hoi
eoperator +. Let E 2 E be a pro
ess. If s 2 A
t+ is a sequen
e of a
tions andsu
h that E s! F implies E9 9 KF , thenEs 2 W(�l; 9 9 K):Proof. The result 
an be proved by indu
tion on E exploiting the fa
tthat all the unwinding 
lasses are 
ompositional with respe
t to the low pre�xoperator. 2Corollary 5.7 Let E 2 E be a pro
ess.E� 2 CP BNDC ;PP BNDC :6 Con
lusionsIn this paper we 
onsider information 
ow se
urity properties of SPA pro-
esses expressed in terms of unwinding 
onditions. The aim of the presentwork is to bridge the gap between unwinding 
onditions and 
omposition-ality results. This is done by exploiting a generalized unwinding 
onditionW(�l; 9 9 K), parametri
 with respe
t to a low level behavioral equivalen
e �land a transition relation 9 9 K. To prove the 
ompositionality of a 
lass ofse
ure pro
esses, expressed as an instan
e of W(�l; 9 9 K), with respe
t to anoperator f we need to establish 
onne
tions between the semanti
s of f andthe relations �l and 9 9 K. By instantiating f as one of the algebra operators weredis
over already proved 
ompositionality results (e.g., the 
ompositionalityof P BNDC with respe
t to the parallel operator). Moreover, by instantiat-ing f as a re�nement operator, whi
h solves the non-deterministi
 
hoi
es,we obtain results 
on
erning the preservation of the se
urity properties un-der re�nement. Unwinding 
onditions 
an be also exploited for de�ning proofsystems whi
h provide eÆ
ient te
hniques for the veri�
ation and the develop-ment of se
ure pro
esses. Proof systems allow us to verify whether a pro
essis se
ure just by inspe
ting its syntax, and thus avoiding the state-explosionproblem. Moreover, they also allow us to build pro
esses whi
h are se
ureby 
onstru
tion in an in
remental way. Finally 
ompositionality of unwinding
onditions 
an be easily exploited to re
tify inse
ure pro
esses.24
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