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Abstract

We draw concrete and abstract operational semantics towards the analysis of logic
programs with delay declarations. This is the basis to generalize the abstract in-
terpreter GAIA to deal with logic programs employing dynamic scheduling. The
concrete and abstract semantics are introduced explicitly and express both deadlock
information and qualified answers. Sure deadlock and sure no deadlock information
might be eventually inferred by the resulting analysis.

1 Introduction

Most of the logic programming languages in use (e.g., Sictus-Prolog [10],
Prolog-111, CHIP, SEPIA, etc.) do not force the user to follow the Prolog
left-to-right scheduling rule; instead, in order to gain efficiency, they provide
dynamic scheduling: atom calls are delayed until their arguments are suffi-
ciently instantiated, and procedures are augmented with delay declarations.
The analysis of logic programs with dynamic scheduling was first investigated
by Marriott et al. in [15,9]. A more general (denotational) semantics of this
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class of programs, extended to the general case of CLP, has been presented
by Falaschi et al. in [8], while verification and termination issues have been
investigated by Apt and Luitjes in [2] and by Marchiori and Teusink in [14],
respectively.

In this paper, we discuss an alternative, strictly operational approach to
the definition of concrete and abstract semantics for logic programs with delay
declarations.

The main intuitions behind our proposal can be summarized as follows:

- to define in a uniform way concrete, collecting, and abstract semantics, in
the spirit of [11]: this allows us to easily derive correctness proofs of the
whole analyses;

- to define the analysis as an extension of the framework depicted in [11]:
this allows us to reuse existing code for program analysis, with minimal
additional effort;

- to explicitly derive deadlock information (definite deadlock, possible dead-
lock, deadlock freeness), producing as a result of the analysis an approxi-
mation of concrete qualified answers;

- to apply the reexecution technique developed in [12], that plays a crucial
role here: at each step, an atom a whose delay declaration is satisfied by the
activation substitution is executed; if its computation fully succeeds, some of
the delayed atoms may be awakened by the resulting answer substitutions; if
this is not the case (i.e., if during the computation of a a sequence of atoms,
such that each of them do not satisfies the corresponding delay declaration,
is reached), then atom a is added to the list of delayed atoms that will be
reconsidered during the next reexecution step. This strategy allows us to
avoid call state explosions.

The main difference between our approach and the ones already presented
in literature is that we are mainly focused on analysis issues, in particular on
deadlock analysis. This motivates the choice of a strictly operational approach,
where deadlock information is explicitly maintained.

This paper illustrates the crucial steps toward the definition and imple-
mentation of an extension of the GATA abstract interpreter [11] to deal with
dynamic scheduling. It mainly focuses on the (concrete and abstract) seman-
tics, and we believe that this work, even though it can be clearly considered to
be just in the preliminaries of the picture above, represents in itself a valuable
contribution.

The rest of the paper is organized as follows. Section 2 recalls basic notions
about logic programs with delay declarations. Section 3 depicts the concrete
semantics transition rules. Section 4 sketches the main features of the col-
lecting and abstract semantics, and discusses our generic fixpoint algorithm.
Section 5 concludes the paper.
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2 Logic Programs with Delay Declarations

Logic programs with delay declarations consist of two parts: a logic program
and a set of delay declarations, one for each of its predicate symbols.
A delay declaration associated for an n-ary predicate symbol p has the form

DELAY p(x1,...,2,) UNTIL Cond(xy,...,2,)

where Cond(x1,...,2z,) is a formula in some assertion language. We are
not concerned here with the syntax of this language since it is irrelevant
for our purposes. The meaning of such a delay declaration is that an atom
p(t1,...,t,) can be selected in a query only if the condition Cond(t,...,t,)
is satisfied. In this case we say that the atom p(ty,...,%,) satisfies its delay
declaration.

A derivation ¢ of a program augmented with delay declarations can be
finite or infinite. Let & be finite. We say that & succeeds if it ends with the
empty goal; & fails if it ends with a non-empty goal the selected atom of
which satisfies its delay declaration but does not unify with the head of any
clause in the program; & deadlocks if it ends with a non-empty goal no atom
of which satisfies its delay declaration. A finite non-failing derivation £ of a
program with delay declarations computes a qualified answer which is a pair
(0, d) where d is the last goal (that is a sequence of delayed atoms) and 6 is the
substitution obtained by concatenating the computed mgu’s from the initial
goal. Notice that if £ is successful then d is the empty goal and 6 restricted
to the variables of the initial goal is its computed answer substitution. We
denote by gansp(g) the set of qualified answers for a goal g and a program P.

We restrict our attention to delay declarations which are closed under
instantiation, i.e., if an atom satisfies its delay declaration then also all its
instances do. Notice that this is the choice of most of the logic programming
systems dealing with delay declarations such as IC-Prolog, NU-Prolog, Prolog-
I1, Sicstus-Prolog, Prolog-I11, CHIP, Prolog M, SEPTA, etc.

Example 2.1 Consider the programs APPEND and IN_ORDER defined below

% append(Xs,Ys,Zs) < Zs is the result of concatenating the lists Xs and Ys
append([H|Xs],Ys, [H|Zs]) < append(Xs,Ys,Zs).
append([],Ys,Ys).

% in_order(Tree,List) < List is an ordered list of the nodes of Tree
in_order(tree(Label,Left,Right) ,Xs) < in_order(Left,Ls),
in_order (Right,Rs), append(Ls, [Label|Rs],Xs).
in_order(void, [1).

together with the query
(@ := read_tree(Tree), in_order(Tree,List), write_list(List).

where the predicates read_tree and write_list are defined elsewhere in the
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program. If read_tree cannot read the whole tree at once it would be nice to
be able to run in_order and write_list on the available input. This can only
be done if one uses a dynamic selection rule (Prolog’s rule would call in_order
only when read _tree had finished, while other fixed rules would immediately
diverge). In order to avoid nontermination one should adopt appropriate delay
declarations, namely,

DELAY in_order(T,_) UNTIL nonvar(T).
DELAY append(Ls, _, _) UNTIL nonvar(Ls).
DELAY write_list(Ls,_) UNTIL nonvar(Ls).

These declarations avoid that in_order, append and write_list be selected
“too early”. Notice that with these declarations IN_ORDER enjoys a parallel
execution by means of interleaving.

Under the assumption that delay declarations are closed under instanti-
ation, the following result, which is a variant of Theorem 4 in Yelick and
Zachary [18], holds.

Theorem 2.2 Let P be a program augmented with delay declarations, g be a
goal and g' be a permutation of g. Then qansp(g) and qansp(g’) are equals
modulo the ordering of delayed atoms.

It follows that both successful and deadlocked derivations are “indepen-
dent” from the choice of the selection rule. Moreover, Theorem 2.2 allows us
to treat goals as multisets instead of sequences of atoms.

3 Concrete Semantics

In this section we describe a concrete semantics for pure Prolog augmented
with delay declarations. The concrete semantics is the link between the stan-
dard semantics of the language and the abstract one.
We assume a preliminary knowledge of logic programming (see, [1,13]).
Programs are assumed to be normalized according to the abstract syntax
given in Fig. 1. The variables occurring in a literal are distinct; distinct
procedures have distinct names; all clauses of a procedure have exactly the
same head; if a clause uses m different program variables, these variables are
€ T1,.--,Tm-
If g :==ay,...,a, we denote by ¢\ a; the goal ¢’ :==ay,...,a;—1,0i41,...,a,.

3.1 Basic Semantic Domains

The basic semantic domains of substitutions are defined as follows.

We assume the existence of two disjoint and infinite sets of variables, de-
noted by PV and SV. Elements of PV are called program variables and are
denoted by z1, x9, ..., x;, .... The set PV is totally ordered; z; is the i-th
element of PV . Elements of SV are called standard variables and are denoted

4
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P € Programs P :=pry...,pr, (n>0)

pr € Procedures prooui=ciy...,0 (n>0)

¢ € Clauses c u=h:—g.

h € ClauseHeads h == p(x1,...,2,) (n>0)

g € AtomSequences g t=ai,...,a, (n>0)

g € DelayedAtomSequences g t=ay,...,a, (n>0)

Il € Literals I u==alb

a € Atoms a == p(Tiy,...,2,) (n>0)

b € Built-ins b ==, | iy = f(Tiy, .-, %i,)

p € ProcedureNames
f € Functors
x; € ProgramVariables (PV)

Fig. 1. Abstract Syntax of Normalized Programs

by letters y and z (possibly subscripted). Terms are built using standard
variables only.

Standard substitutions are substitutions in the usual sense [1,13] which use
standard variables only. The set of standard substitutions is denoted by S5S.
Renamings are standard substitutions that define a permutation of standard
variables. The domain and the codomain of a standard substitution o are
denoted by dom(o) and codom(c), respectively. We denote by mgu(tq,t2) the
set of standard substitutions that are a most general unifier of terms ¢; and
to.

A program substitution is a set {x;, /t1,...,z;, [ty}, where z;,, ..., x; are
distinct program variables and %;, ..., ¢, are terms. Program substitutions
are not substitutions in the usual sense; they are best understood as a form
of program store which expresses the state of the computation at a given
program point. It is meaningless to compose them as usual substitutions
or to use them to express most general unifiers. The domain of a program
substitution 6 = {z;, /t1,...,z;, /t.}, denoted by dom(#), is the set of pro-
gram variables {z;,,...,z;, }. The codomain of 6, denoted by codom(0), is
the set of standard variables occurring in t,...,¢,. Program and standard
substitutions cannot be composed. Instead, standard substitutions are ap-
plied to program substitutions. The application of a standard substitution o
to a program substitution = {x;, /t1,...,z;, /t,} is the program substitution
Oo = {x; /tio,...,x; [tao}. The set of program substitutions is denoted by
PS. The application x;0 of a program substitution # to a program variable x;
is defined only if x; € dom(6); it denotes the term bound to z; in 6. Let D be
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a finite subset of PV and 6 be a program substitution such that D C dom(6).
The restriction of 6 to D, denoted by 0,p, is the program substitution such
that dom(0,p) = D and z;(0,p) = 0, for all z; € D. We denote by PSp the
set of program substitutions whose domain is D.

We consider also the possible states that an output state may enjoy with
respect to deadlock. An atom in the body of a clause may belong to three
(successive) states: non-activable (when its activation substitution does not
satisfies its delay declaration), or reexecutable (when its activation substitu-
tion satisfies its delay declaration, but in its derivation tree a deadlock is en-
countered that forces the atom to be reconsidered afterwards), or executable.
Of course, its computation may get stuck at each stage, giving raise to a dead-
lock detection. We represent the deadlock information explicitly, by means of
a deadlock state. A deadlock state is an element in the set {6, v}, where § de-
notes definite deadlock, and v denotes no deadlock. This set will be extended
in the collecting (and abstract) semantics by introducing an additional state
i (standing for may deadlock).

3.2 Concrete Behaviors

The notion of concrete behavior provides a mathematical model for the in-
put/output behavior of programs. To simplify the presentation, we do not
parameterize the semantics with respect to programs. Instead, we assume
given a fixed underlying program P augmented with delay declarations.

We define a concrete behavior as a relation from input states to output
states as defined below. The input states have the form

- (#,p), where p is the name of a procedure and 6 is a program substitu-
tion also called activation substitution. Moreover, 8 € PS¢, . ..1, where
x1,-..,%, are the variables occurring in the head of every clause of p.

The output states have the form

- (¢, k), where 0" € PSy;, . ..1 and & is a deadlock state, i.e., K € {,v}. In
case of no deadlock (i.e., kK = v) @' restricted to the variables {zy,...,z,}
is a computed answer substitution (the one corresponding to a successful
derivation), while in case of definite deadlock (i.e., Kk = §) @' is the substi-
tution part of a qualified answer to p and coincides with a partial answer
substitution for it.

We use the relation symbol — to represent concrete behaviors, i.e., we
write (6, p) — (¢, k): this notation emphasizes the similarities between this
concrete semantics and the structural operational semantics for logic programs
defined in [12]. Concrete behaviors are intended to model finite non-failing
derivations of atomic queries.
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3.3 Concrete Semantics Rules

The concrete semantics of an underlying program P with delay declarations
is the least fixpoint of a continuous transformation on the set of concrete
behaviors. This transformation is defined in terms of ten semantic rules that
naturally extend concrete behaviors in order to deal with clauses and atoms.

In particular, a concrete behavior is extended through intermediate states
of the form (6, c) and (6, g, g), where ¢ is a clause and g, g are subsets of a
body of a clause of P, in such a way that

* each pair (0, c), where c is a clause, § € PS(,, . .} and z1,...,2, are the
variables occurring in the head of ¢, is related to an output state (¢', k),
where 0" € PS(;,, . 2,3 and & € {J,v} is a deadlock state;

* each triplet (6, g,g), where g is a set of atoms not considered yet or whose
activation state does not satisfy the delay declaration, g is a set of delayed
atoms that have been recognized to be reexecutable, 8 € PS(,, . ., and
Z1,..., Ty are the variables occurring in (g, g), is related to an output state
(¢, k), where 0' € PS¢, . 0.} and & € {§, v} is a deadlock state;

We briefly recall here the concrete operations which are used in the defi-
nition of the concrete semantics. The reader may refer to [11] for a complete
description of all operations but the last two, DELAY and EQUIV, that are brand
new.

- EXTC is used at clause entry: it extends a substitution on the set of variables
occurring in the body of the clause.

- RESTRC is used at clause exit: it restricts a substitution on the set of variables
occurring in the head of the clause.

- RETRG is used when a literal [ occurring in the body of a clause is analyzed.
Let {z;,.-.,x;, } be the set of variables occurring in /. This operation
expresses a substitution in terms of the formal parameters x4, ..., z,.

- EXTG it is used to combine the analysis of a built-in or a procedure call (ex-
pressed in terms of parameters 1, ..., z,) with the activating substitution.

- UNIF-FUNC and UNIF-VAR are the operations that actually perform the unifi-
cation of equations of the form z; = z; or z;, = f(z,, ..., xi,), respectively.

- DELAY is the operation that verifies whether the delay declaration associated
to an atom is satisfied or not. Let a be an atom in the body of a clause c,
D be the set of all the variables occurring in ¢ and # € PSp. DELAY(a, ) is
true if af does not satisfy its delay declaration, false otherwise.

- EQUIV is used to verify whether two program substitutions with the same
domain are equal modulo renaming of range variables.

The concrete semantic rules are depicted in Fig. 2. The definition proceeds
by induction on the syntactic structure of P. The semantics of a program P
with delay declarations can be defined as a fixpoint of this transition system.
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* Rule R; defines the result of executing a procedure call. This is obtained
by executing any clause defining it.

* Rule R defines the result of executing a clause. This is obtained by exe-
cuting its body under the same activation substitution. Notice that, at the
beginning, all literals in the body of the clause have to be considered and
there are no delayed atoms (i.e., g is the body of ¢ and g is the empty goal
denoted by < >).

* Rules R3 and R, specify the execution of built-ins: the usual unification
operations are applied. Notice that built-ins can only occur in the g part
of the goal, i.e., the subset of literals in the current goal that have not been
considered yet.

* Rules R5 and Rg define the execution of an atom a in the case that a
has not yet been considered and the activation substitution € satisfies the
corresponding delay declaration. The first rule applies when the execution
of a is deadlock free. The second rule applies when the execution of a with
the current activation substitution falls into deadlock: in this case, a is
moved in the delayed atoms list, waiting for a reexecution step.

* Rules R; and Rg are the reexecution rules. Atoms that have been delayed
and that might be executable without falling into deadlock now are recon-
sidered. Notice that, by the assumption that delay declarations are closed
under instantiation, we do not need to check whether an atom in the delayed
list verifies its delay declaration, as the activation substitution is possibly
more instantiated now. Operation EQUIV in rule Rg guarantees that only
atoms whose reexecution produces a more instantiated result are allowed to
be reexecuted.

e Rule Rg defines a deadlock situation: the activation substitution 8 satisfies
none of the delay declarations of atoms in g, and all atoms in g deadlock.

* Rule R defines the result of executing the empty goal, generating a suc-
cessful output substitution.

4 Collecting and Abstract Semantics

In this section we briefly describe how to define abstract semantics for logic
programs with delay declarations that are based on the concrete semantics
defined in the previous section.

As usual in the Abstract Interpretation literature [6,7], we proceed in three
steps. First, we depict a collecting semantics, by lifting the concrete seman-
tics to deal with sets of substitutions. Then, any abstract semantics will be
defined as an abstraction of the collecting semantics: it is sufficient to provide
an abstract domain that enjoys a Galois connection with the concrete domain
©(Subst), and a suite of abstract operations that safely approximate the con-
crete ones. Finally, we draw an algorithm to compute a (post-)fixpoint of an

8



c is a clause defining p

(6,¢) (0", k)
R1

D

(0,p) = (0", K)

b is a built-in of g
g ==g\b
bi=z; =z;
01 = RESTRG(b, 0)
6o = UNIF_VAR(61)
63 = EXTG(b, 6, 62)

(03,9",3) — (6", K)
R3

(6,9,3) — (6", k)

a is a literal of g
g i=g\a
a:=p(Tiy, s Tip)
—DELAY(a, 6)

01 = RESTRG(a, §)
(01, p) — (02, v)
63 = EXTG(a, d,02)

(03,9",3) — (6", K)
R5

{0,9,3) — (8", k)

a is a literal of §
g'=g\a
a:=p(Tiy,- - Tip)
61 = RESTRG(a, 0)
(01, p) — (02, v)
03 = EXTG(a,6,62)

(03,9,3") = (6", k)
R7

(0,9,9) — (6", k)

g:=ai,...,an and Va; : DELAY(a;, 6);

§:=ai,...,am and Va; :
a; :=p(mil,...,mi")
61 = RESTRG(a;, 6)
(01, p) — (62,6)

EQUIV(61,62)
RY9

(6,9,3) — (6, 9)

L. LAld.

c:i=h:—g
61 = EXTC(c, 0)
(01,9,< >) — (02, k)
6’ = RESTRC(c, 02)

(0,¢) = (6", k)

b is a built-in of g
g i=g\b
br=x; = f(ziy,---,24,)
61 = RESTRG (b, 0)
6o = UNIF_FUNC(b,61)
03 = EXTG(b, 0, 62)
(03,9",3) — (6", k)

(6,9,3) — (6", r)

a is a literal of g
g =g\a
@ :=p(Tig,--) Tip)
—DELAY(a, 6)
01 = RESTRG(a, 0)
(61,p) — (02,96)
63 = EXTG(a, 6, 62)
(63,9',g U {a}) — (6',r)

(6,9,3) — (6", &)

a is a literal of g
g ==g\a
@ =p(Lig,- -, Tiy)
61 = RESTRG(a, 6)
(01,p) — (02, 6)
—EQUIV(Aq,62)
63 = EXTG(a, §,62)

(63,9,3) — (8", k)
RS

(6,9,9) — (6", k)

R10

0,<>,<>)— (8,v)

Fig. 2. Concrete Semantic Rules

abstract semantics defined this way. This third step gives the developers the
key ideas on how to implement a practical analyser, and can be actually seen

as an extension of GAIA [11].

In the rest of the section we describe the main features of these steps.
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4.1 Collecting Semantics

In the case of logic programs with delay declarations, the collecting semantics
cannot be obtained trivially from the concrete one. Fig. 3 contains its rules,
whose main differences can be summarized by:

- an additional deadlock state p (may deadlock) is introduced, therefore in
all rules k € {6, v, u};

- an additional transition rule —' is introduced to compute qualified answers
even when the p deadlock state is reached, i.e., when precision about dead-
lock is definitely lost. If this is the case, the computation may continue
exactly as in the GAIA framework, by completely disregarding the dead-
lock information, that will be stationary.

Let us try to briefly motivate these features. Rules Ry, Rg and Rg of the
concrete semantics require precision when dealing with delay declarations. It
is clear that these rules have to be properly extended in order to deal with
sets of substitutions whose elements may have opposite behavior with respect
to the same declaration. This situation is tackled by rules Ri9 and R11, the
only ones that, in fact, may produce and propagate, respectively, the new
deadlock state p. Rule Rqo applies when there are no literals in g which are
surely selectable, i.e., there not exist some a € ¢ such that for all § € ©:
—DELAY(a, f), but for some literal a in g (the literals that have not to be
reconsidered), there exists 6,6y such that DELAY(a, 61) A “DELAY(a, 65). Rule
R11 behave the same way, but it applies when imprecision arises during the
inner computation of a literal. Finally, observe that rules Ry and R; force the
reexecution of the analysis of some literals, in order to improve the precision of
the whole analysis. This is achieved through the use of the auxiliary transition
rule —'.

4.2 From the Collecting to the Abstract Semantics

Once the collecting semantics is fixed, deriving abstract semantics is almost
an easy job.

- Any domain abstracting substitutions can be used to describe abstract ac-
tivation states. Similarly to the concrete case, we distinguish among input
states and output states. Clearly, the accuracy of deadlock analysis will
depend on the matching between delay declarations and the information
represented by the abstract domains.

- It is easy to understand, by looking at the collecting semantics defined
above, that very few additional operations should be implemented on an
abstract substitution domain like the ones in [11,4,5], while a great amount
of existing specification and coding can be reused for free.

At each step, in the abstract semantics, only an atom in the goals that
surely satisfies the corresponding delay declarations is selected. If the empty

10



R3

R5

RT

D

c is a clause defining p
(©,¢) — (®, k)

(©,p) = (O', k)

bi=z; =x;
g :==g\b
©1 = RESTRG(b, ©)
©2 = UNIF_VAR(O1)
©3 = EXT6(b, ©, ©3)
(93,9',3) = (O', k)

(©,9,3) — (©, k)

a:=p(Tiy,-->Tip)
g ==g\a
V6 € © : —DELAY(a, 6)
©; = RESTRG(a, ©)
(©1,p) = (O2,v)
©3 = EXT6(a, ©, O3)
(@3,9",g) — (@, k)

(©,9,3) — (®, k)

@ :=p(Tiqg,---5Tiy)
g i=g\a
©; = RESTRG(a, ©)
(©1,p) —> (O2,v)
©3 = ExT6(a, ©, O3)
(03,9,g') — (@, k)

(©,9,3) — (®, k)

Va € g and V6 € ©: DELAY(a,f)
a ::p(z:il,...,avin)
©1 = RESTRG(a, ©)
(©1,p) = (O02,4)
EQUIV(©1, O2)

Va € g:

(©,9,3) — (©,86)

Va € g, 30 € ©: DELAY(a,0)

a:=p(@iy,. -, Ti,)

©; = RESTRG(a, ©)

(©1,p) — (O2, k)

2%

EQUIV(©q, O2)

3a € §: (©1,p) — (O2, u)
(©,(g,9)) —' ©'

(©,9,3) = (©', 1)

L. Ay

c:=h:—g
©1 = EXTC(c, ©)
(©1,9,< >) > (O2, k)
©' = RESTRC(c, ©2)

(©,¢) = (©, k)

br=w; = f(@ig,---5Tiyp)
g’ :=g\b
©71 = RESTRG(b, ©)
©5 = UNIF_FUNC(b, ©1)
©3 = EXTG(b, ©, O2)

(©3,9",3) = (O, k)

(©,9,3) — (©', r)
= p(Tig, .-, Tiy)
g i=g\a
V8 € © : —DELAY(a,6)
©1 = RESTRG(a, ©)
(©1,p) — (O2,r')
K #v
©3 = EXTG(a, ©, ©2)
(@3,9",g U {a}) — (©', k)
R6

(©,9,3) = (O, k)

@ :=p(@iy,-- > Tip)
©1 = RESTRG(a, ©)
(©1,p) — (O2, )
K #v
—EQUIV(©;, O3)
©3 = EXTG(a, ©, O3)
(©3,9,9) = (©', k)

RS
(0,9,9) — (®', k)
Ya € g, 30 € ©: DELAY(a,0)
Ja € g and § € ©: —DELAY(a, 0)
a=p(2iy,. - iy,)
©; = RESTRG(a, ©)
(©1,p) = (@2, k)
KF# v
EQUIV(©1, O2)
(©,(g,9)) +—' ©

R10
(©,9,§) — (O, )

R12

(0,< >,< >)— (O,v)

11
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c:i=h:—g
©; = EXTC(c, ®)

¢ is a clause defining p (©1,9) —' ©9
(©,¢c) —' O ©' = RESTRC(c, @2)
R13 R14
(©,p) —' O (@,c) —' ©

a is a literal of g
g =g\a
a:=p(@iy,--, in)
©1 = RESTRG(a, ©)
(©1,p) —' ©2
©3 = EXTG(a, ©, O2)

©3,9") —' ©
R15 (©3.,9")

R16

0,<>)—'©
¢ ) (©,g) —' ©'

Fig. 3. Collecting Semantic Rules

goal is reached, then the interpretation stops and returns an abstraction of
the corresponding concrete qualified answers together with no deadlock infor-
mation. Otherwise, a goal of the form (g, ) is reached, where for all atoms a
occurring in g, the activation substitutions (possibly) does not satisfy its de-
lay declaration, and for all atoms a occurring in g, a reexecution process may
not refine the corresponding activation substitution. If the abstract domain
is accurate enough to infer that a definite deadlock occurs, then the execu-
tion ends and returns an abstraction of concrete qualified answers together
with definite deadlock information. If this is not the case, then the abstract
computation continues by disregarding the deadlock information. In particu-
lar, atoms whose activation substitution may satisfy the corresponding delay
declaration are selected. In this way we improve the computed abstraction of
the corresponding concrete qualified answers while we return the information
that the concrete computation may deadlock.

4.8 The Fizpoint Algorithm

Fig. 4 reports the final step in the Abstract Interpretation picture described
above: an algorithm that computes a post-fixpoint of a given abstract seman-
tics that abstracts the collecting one.

As already observed before, most of the operations that are used in the
algorithm are simply inherited from the GAIA framework [11]. The only
exception is DELAY, the satisfiability test of a delay declaration by an ab-
stract substitution, whose specification as three-value function is as follows:
DELAY(a, ) is true if for all § described by 3, DELAY(a, §) is true; DELAY(a, 3)
is false if for all # described by (3, DELAY(a, 0) is false; otherwise, DELAY(a, )
is mayobe.

The operator T'(f, g, sat) in Fig. 4 is defined exactly as 7T, in [11] and
corresponds to the auxiliary rules of the collecting semantics defining —'.

12
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TAB(sat) = {(8,p, (8, %)) : (B,p) is an input state and (8', k) = Ty(B, p, sat)}.

Tp(B,p, sat) = UNION((B1,K1) ..., (Bn,kn))

where

</3ia Kfi) = TC(/Ba Ci, Sat):

c1,...,Cn are the clauses defining p.

Te(B, ¢, sat) = (RESTRC(c, B'), k)
where
b is the body of c.

Tb(ﬂ7< >, < >’Sa’t) = (ﬂ:l/>‘

Tb(/By lg,g, Sat) = Tb(ﬂ37 9,9, sat)
where f3 = EXTG(lHB:/BZ)a
B2 = UNIF-VAR(,Bl)
UNIF_FUNC(I, 1)
B1 = RESTRG(l,ﬂ).

Tb(ﬁyl'gyga Sat) = Tb(/BS’gags Sat)
Tb(ﬂ3’gyl'ga sat)
where f3 = EXTG((, 3, 82),
</825K'> = Sat(ﬂlal’):
B1 = RESTRG(l,ﬂ).

Tb(ﬂzgal'gﬂ Sat) = Tb(ﬂ3agyg7 Sat)
Tb(ﬁS:gal'ga sat)
where f3 = EXTG((, 3, 82),
(/B25’€> = Sat(ﬁlap)
B1 = RESTRG(l,,B).

Ty(B,9,9,5at) = (B,0)

(T'(B,(9-9), sat), u)

SUSPEND(f,g,g) = true

false

(B, k) = Ty (EXTC(c, B), b, < >, sat),

if I is a built-in

if [ is Ti = Tj,

iflis @y = f(--),

if I is p(---) and DELAY(l, 8) = false and k = v
if I is p(---) and DELAY(I, B) = false and k # v

if I is p(---) and DELAY(l, B) € {true, maybe} and k = v
if I is p(---) and DELAY(l, B) € {true, maybe} and k # v, B1 # B2

if SUSPEND(A, g, §)
otherwise.

if Va € g: DELAY(a, 3)
and Va € g: f1 = P2
where 1is p(---),
(B2,0) = sat(B1,p),
B1 = RESTRG(a, B),
if none of the above cases applies.

Fig. 4. The abstract transformation

The correctness of the algorithm in Fiig. 4 can be proven the same way as in
[11] and [12]. What about termination ? We may observe that in the collecting
semantics the reexecution rule Rg may introduce infinite loops. However, this
problem does not arise in the abstract semantics as

1. the abstract domain is required to be a complete lattice (when this is not
the case, and it is just a cpo, an additional widening operation is usually

provided by the domain),

2. the derivation — produces a decreasing chain in its first argument.

Example 4.1 Consider the program PERMUTE discussed by Naish in [16].

% perm(Xs,Ys) <« Ys
perm(Xs,Y¥s) < Xs

Ys = [1].
perm(Xs,Y¥s) < Xs
delete(X,Ys,Zs),

is a permutation of the lists Xs

L1,

[X|X1s],

13
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perm(X1s,Zs) .

% delete(X,Ys,Zs) < Zs is the list obtained by removing X from the list Ys
delete(X,Ys,Zs) <+ Ys = [X|Zs].
delete(X,Ys,Zs) <+ Ys = [X|Yis],
Zs = [X|Z1s],
delete(X,Y1s,Z1s).

Clearly, the relation declaratively given by perm is symmetric. Unfortu-
nately, the behavior of the program with Prolog (using the leftmost selection
rule) is not. In fact, given the query

Q1 :=+ pern(Xs, [a,b]).

Prolog will correctly backtrack through the answers Xs = [a, b] and Xs = [b, a].
However, for the query

Q9 := + pern([a,b], Xs).

Prolog will first return the answer Xs = [a, b] and on subsequent backtracking
will fall into an infinite derivation without returning answers anymore.

For languages with delay declarations the program PERMUTE behaves sym-
metrically. In particular, if we consider the delay declarations:

DELAY perm(Xs,_) UNTIL nonvar(Xs).
DELAY delete(_,_,Zs) UNTIL nonvar(Zs).

the query ()2 above does not fall into a deadlock.

Using one of our domains for abstract susbtitutions, like Prop (see [3,17]),
and starting from an activation state of the form perm(ground,var) our anal-
ysis returns the abstract qualified answer (perm(ground, ground),r). which
provides the information that any corresponding concrete execution is dead-
lock free.

5 Conclusions

The semantics that has been discussed in these pages belongs to the foundation
part of a project aimed at integrating most of the work (both theoretical
and practical) on abstract interpretation of logic programs developed by the
authors in the last years. The goal is to get a practical tool that tackles a
variety of problems raised by the recent research and development directions
in declarative programming. Dynamic scheduling is an interesting example in
that respect. In the next future, we plan to adapt the existing implementations
of GAIA systems in order to practically evaluate the accuracy and efficiency
of these seminal ideas.
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