
Analysis of ECN/RED and SAP-LAW with

simultaneous TCP and UDP traffic

Armir Bujaria, Andrea Marinb, Claudio E. Palazzia, Sabina Rossib

aUniversità degli Studi di Padova, Italy
bUniversità Ca’ Foscari Venezia, Italy

Abstract

Internetworking often requires a large amount of users to share a common

gateway to obtain connectivity to the Internet. Congestion avoidance mech-

anisms are used to prevent the saturation of the gateway which represents

a bottleneck of the system. The most popular congestion avoidance mecha-

nisms are the Explicit Congestion Notification (ECN) and the Random Early

Detection (RED). Recently, a new method for the congestion avoidance has

been proposed: the Smart Access Point with Limited Advertised Window

(SAP-LAW). The main idea is to hijack the acknowledge packets in the TCP

connections in order to artificially reduce the advertised destination window

according to some bandwidth allocation policy. Therefore, the flux control

mechanism is artificially exploited to control the congestion at the bottle-

neck. The advantage of this approach is that it does not require any modifi-

cation in the TCP implementations at the clients. In this paper, we propose

stochastic models for the ECN/RED and SAP-LAW mechanisms in order

Email addresses: abujari@math.unipd.it (Armir Bujari), marin@dais.unive.it
(Andrea Marin), cpalazzi@math.unipd.it (Claudio E. Palazzi),
srossi@dais.unive.it (Sabina Rossi)

Preprint submitted to Computer Networks October 3, 2017

to compare their performances under different scenarios. The models are

studied in mean field regime, i.e., under a great number of TCP connections

and UDP based transmissions. Augmenting previous work on ECN/RED,

we consider the presence of UDP traffic with bursts, and short lived TCP

connections. The models for SAP-LAW are totally new. The comparison is

performed in terms of different performance indices including average queue

length, system throughput and expected queuing time.

Keywords: ECN/RED; SAP-LAW; queueing theory; stochastic processes;

congestion control; transport protocols

1. Introduction

The explosive growth of computer networks has made the analysis of pro-

tocols designed to share one gateway among many devices more and more

important. Differently from the early usage of the Internet, now the require-

ments in terms of bandwidth and responsiveness of many applications is very

high and it is often the case that if these requirements are not met then the

application usability is not acceptable. A popular and remarkable example

is given by online games whose requirements in terms of response time are

very strict.

When several devices share the same gateway, we have to address the

problem of allocating the resources, i.e., the bandwidth. The mechanisms

that are implemented to this end and that we consider in this paper are

based on the transport protocols TCP and UDP. As it is well known [1],

TCP is used mainly for reliable data transfer (including web browsing), and

UDP in multimedia traffic or for applications with stringent requirements

2

on responsiveness such as online gaming (obviously there are exceptions).

The reason why real time applications usually prefer UDP, is that it is a

connectionless protocol, and it does not manage the retransmission of lost

packets, guaranteeing minimum delays in data arrivals. On the contrary,

TCP is a connection-oriented transport protocol: it provides reliable delivery

and high throughput. For this reason it is particularly suited for applications

whose predominant activity is the downloading or the uploading of content,

as their main requirement is the complete and correct arrival of data.

TCP and UDP do not have an intrinsic mechanism to regulate the band-

width when a gateway is shared, but the TCP (in its various versions) admits

congestion and flux controls, while the UDP does not implement any of them.

Every TCP connection keeps track of two window sizes: its own sending win-

dow and the destination window. Congestion control is obtained by allowing

the sender window size to increase when packets are properly sent and to de-

crease when the resources are not enough to satisfy the bandwidth request.

Flux control is obtained by choosing a sending rate which is given by the

minimum between the sender window size and the destination window size.

Popular approaches that use the built-in congestion mechanism to reg-

ulate the TCP transmission rates across a gateway are the Random Early

Detection (RED) [2, 3] and the Explicit Congestion Notification (ECN) [4, 5]

while the Smart Access Point with Limited Advertised Window (SAP-LAW)

[6, 7] is based on a flux control mechanism.

The SAP-LAW has been introduced in the context of integrated home

server with shared access point. Indeed, due to the rapid evolution of com-

mercial mobile devices, as well as the development of more and more ad-

3

vanced home entertainment systems, ensuring good performances to the ap-

plications sharing the same bottleneck has become a hard challenge [8].

In this paper, we study what happens when TCP and UDP are sharing the

same link whose congestion is regulated by one of the mechanisms mentioned

above: the ECN/RED and the SAP-LAW. On one side, the UDP-based

flows seem to be aggressive towards the TCP-based ones since UDP does

not provide any flux or congestion control mechanism. However, it has been

shown that the TCP’s congestion control mechanism causes serious problems

to the critical deterioration of UDP-based applications [6, 7].

Even if a larger and larger bandwidth is offered today to the user, the

coexistence of TCP and UDP continues to present problems: due to its

congestion control functionality, TCP continuously probes for higher data

rates, queuing packets on the buffer associated with the bottleneck of the

connection and, consequently, causing delays for real-time applications. In

literature we can find different solutions proposed to overcome the problem,

and, in particular, different TCP variants have been proposed, since the

UDP is simpler and there are not many variable aspects [9, 10, 11, 12, 13].

A large number of papers have studied the performance of TCP and ECN,

see [14, 15, 16, 17, 18, 19] as a not exhaustive list, but the main focus is on the

behaviour of a single TCP connection under various scenarios. More similar

to the analysis carried out here is that proposed in [20] where the authors

consider the overall system performance in the mean field approximation for

ECN/RED. The theoretical results are then extended in [21]. Starting from

these two papers we extend the considered model in several directions, as

discussed later on, and we propose new ones for SAP-LAW. The mean field

4

theory [21, 22, 23] is an important approach to study large stochastic models

with a deterministic approximation thus overcoming the well-known problem

of the state space explosion.

From the modelling point of view, the contributions of this paper are:

• The extension of the mean field model presented in [20] in order to

encompass the presence of UDP traffic.

• The introduction of a totally new model to analyse the SAP-LAW

congestion mechanism. This model is completely different from those

previously known in the literature such as [20, 21] since, according to

SAP-LAW, each TCP connections does not necessary use its full con-

gestion window size for each time slot. Therefore, a more detailed state

representation is required that poses some computational challenges

that we address by resorting to a state space aggregation.

• Another novelty is the relaxation of the common assumption [6, 20, 21]

that TCP connections are greedy, i.e., they always have packets to

send so that the sender window is always completely used at each time

slot. We will study models that allow TCP connections to send a geo-

metrically distributed random number of packets and then finish their

life-cycle. We show that this extension is substantial for comparing

the ECN/RED and SAP-LAW algorithms since the latter may allocate

some bandwidth to TCP connections that are still in the slow start

phase hence cause a waste of bandwidth. We show that our model

is able to estimate the throughput reduction given a certain level of

greediness of the TCP connections for the SAP-LAW.

5

Finally, we use these models to compare the performances of ECN/RED

and SAP-LAW in the presence of UDP traffic. We consider both the cases of

bursty and smooth UDP traffic, and the cases of greedy or non-greedy TCP

connections.

The paper is structured as follows. Section 2 explains the ECN/RED and

the SAP-LAW congestion mechanisms and Section 3 gives some background

about the mean field theory. In Section 4 we introduce our models and

give the iterative schemes for the computation of the performance indices.

Section 5 briefly discusses the validation of the models and in Section 6 we

compare the performance indices of the two congestion mechanisms under

different scenarios. Finally, Section 7 concludes the paper.

2. ENC/RED and SAP-LAW congestion control mechanisms

In this section we review the two congestion control mechanisms that we

study in this paper: the ECN/RED and the SAP-LAW.

2.1. ECN/RED

ECN [4] is an extension of TCP that avoids packet drops due to channel

congestion. This scheme is used in conjunction with RED (Random Early

Detection) gateways, marking the packets instead of dropping them, when

the queue size is inside a given interval. In particular, RED fixes a minimum

and a maximum queue threshold: when the number of packets in the queue

is less then the minimum, the packets are not marked, when it is between the

minimum and the maximum threshold, it marks the packets with a probabil-

ity that depends on the queue length. Finally, if the number of the packets

is larger than the maximum, all arriving packets are marked or dropped. In

6

this paper we approximate this behaviour by using an exponential law to

decide the packet marking probability [24]. The weak point of this strat-

egy is that it does not take into consideration the different requirements of

real time applications, for whom packet arrival delays may have catastrophic

effects on the usability (e.g., for video streaming or online gaming).

2.2. SAP-LAW

SAP-LAW is a solution proposed in [6] with the specific aim of reduc-

ing the problems caused by the simultaneous presence of both TCP-based

and UDP-based applications. The basic idea is to find a trade-off between

throughput and time delays by working on a dynamic modification of the

TCP flow sending rate, in order to avoid the over utilization of the buffer

while at the same time guaranteeing a full utilization of the bandwidth. The

key factor is to determine the upper bound for the TCP flow sending rate

as a function of the amount of UDP traffic. In this way, we are always sure

to reserve enough bandwidth to the real time applications activity, without

limiting too much the TCP flows. The general formula proposed in [6] is:

maxTCPtraffic(t) =
(C∗ − UDPtraffic(t))

#TCPflows(t)
,

where UDPtraffic(t) is the amount of bandwidth occupied by the real time ap-

plications at time t, C∗ is the capacity of the bottleneck link, and #TCPflows(t)

is the number of TCP connections at time t. It is noteworthy to point out,

that the formula above computes the maximum amount of bandwidth share

that can be allocated to a TCP connection while the resulting amount of

data is computed by multiplying the computed bandwidth share with the

7

flows current round trip time (RTT) measurement [25, 26, 27]. Work [25]

proposes an extension to SAP-LAW, addressing the RTT fairness problem

amongst TCP flows. We do not contemplate for this feature in the modelling

for SAP-LAW and leave it as a potential future work.

3. Theoretical background

The results presented in this paper are based on models for interacting

objects, with individual states and global memory, which are defined in the

spirit of the one proposed by Le Boudec et al. in [21].

According to [21], we consider a heterogeneous population of N objects

whose states have the form (c, i), where c ∈ Γ is the class of the object, and

i ∈ εc = {1, ..., Sc} is its internal state. At each time epoch the objects in-

teract with the environment and they can undergo a state transition (in this

paper we do not consider the possibility that an object changes its class).

XN
n (t) indicates the state of the n-th object at time slot t, while KN

(c,i),(c,j)(~r)

describes the probability that an object of class c goes from state i to state

j depending on a certain quantity ~r that we describe hereafter. The ob-

ject state transitions depend on the current state of the objects and on the

memory ~RN(t) ∈ RP where P is the dimension of the vector. ~MN(t) is the

occupancy measure, i.e., the row vector where each component MN
c,i(t) is the

proportion of objects that are in state (c, i) at time t, i.e.,

MN
c,i(t) =

1

N

∑N

n=1
1{XN

n (t)=(c,i)} ,

where 1x=(c,i) = 1 when x = (c, i) and 0 otherwise. If we want to consider the

single classes of objects, the proportion of class c objects in state i at time

8

t is
1

pc
MN

c,i(t), where pc =
∑Sc

i=1Mc,i(t) at some time slot t. Function g is a

deterministic continuous function g : RP × P(ε) 7→ R such that, for t ≥ 0:

~RN(t+ 1) = g(~RN(t), ~MN(t+ 1)) , (1)

where P(ε) is the set of vectors whose size is the number of possible states for

one object S =
∑

c∈Γ Sc with non negative components summing to 1. The

role of function g is that of governing the evolution of the model’s memory.

Hence, ∀n we have:

P{XN
n (t + 1) = (c, j) | ~RN(t) = ~r,XN

n (t) = (c, i)} = KN
(c,i),(c,j)(~r) , (2)

For each class c, the Sc × Sc matrix KN
c (~r) is the transition matrix for

an individual object of class c, and may depend on the population N and

on the value ~r of the global memory. KN
(c,i),(c,j)(~r) is the transition prob-

ability from state i to state j, therefore we assume KN
(c,i),(c,j)(~r) ≥ 0 and∑Sc

j=1K
N
(c,i),(c,j)(~r) = 1 for all 1 ≤ i ≤ Sc. We assume that:

Assumption 3.1. ∀c ∈ Γ,∀i, j ∈ εc, for N → ∞, KN
(c,i),(c,j)(~r) converges

uniformly in ~r to some K(c,i),(c,j)(~r), which is a continuous function of ~r.

A sufficient condition for this assumption to be satisfied is that the transition

matrix KN(~r) does not depend on the number of objects N and that it is

continuous on ~r, which is always the case in our models.

Theorem 3.1 has been introduced and proved in [21]. Informally, it states

that, as N → ∞, ~MN(t) and ~RN(t) can be replaced by deterministic ap-

proximations if the initial state is known. The proof of the correctness of the

9

models that we propose in this paper widely depends on this theorem.

Theorem 3.1. Assume that the initial occupancy measure ~MN(0) and mem-

ory ~RN(0) converge almost surely to deterministic limits ~µ(0) and ~ρ(0) and

for t ≥ 0:

~µ(t+ 1) = ~µ(t)K(~ρ(t)) (3)

~ρ(t+ 1) = g(~ρ(t), ~µ(t+ 1)) (4)

Then for any fixed time t, almost surely:

lim
N→∞

~MN(t) = ~µ(t) and lim
N→∞

R
N

(t) = ~ρ(t) .

4. Models for ECN/RED and SAP-LAW congestion mechanisms

In this section we propose different models for the ECN/RED and SAP-

LAW congestion control mechanisms. Differently from other approaches pre-

viously addressed by the literature, we consider:

• the presence of UDP traffic as well as TCP. Specifically, we will be able

to model both the case in which UDP traffic is smooth and the case in

which it is bursty;

• the case in which the TCP connections are not greedy, i.e., in case

of an infinite capacity gateway, their windows would not tend to be

at their maximum size. In practice this is a frequent scenario which

approximates the situation in which TCP connections are closed and

new ones are newly opened maintaining the total number of active

connections approximatively constant.

10

4.1. Modelling ECN/RED with UDP traffic and greedy TCP

In this section we propose a mean field model for TCP and UDP con-

nections sharing the same gateway. We assume that TCP connections are

greedy, i.e., the process associated with the connection fills the entire win-

dow with data to be sent at each time slot. We assume the time slot to be

a round trip time as in [20, 21]. As a consequence, the unit of measure that

we consider is normalised for one RTT, e.g., the window sizes are measured

in packets for RTT and the bandwidth in number of packets which can be

sent in one RTT.

According to the methodology described in Section 3, we annotate each

object with a class c ∈ {p, u} where p denotes the TCP connections and

u the UDP agents. Analogously to [21] each TCP connection has a state

i ∈ Sp, where Sp = {1, . . . , Ip} and Ip is the maximum number of states for a

TCP connection. At state i, the sending rate is sp(i) ∈ N and, without loss

of generality we assume i′ > i′′ =⇒ sp(i
′) > sp(i

′′). Although UDP trans-

missions are stateless, we model them by using a probabilistic automaton

whose transition probabilities are independent of the rest of the model (in

particular of the queue length). This choice allows us to use the automata

to model different behaviours of the transmission of a UDP agent, e.g., with

smooth or bursty traffic. In practice, the transition probabilities may be de-

cided with a model-fitting approach such as those proposed in [28, 29]. The

set of states associated with a process using a UDP transmission is denoted

by Su = {1, . . . , Iu}, where Iu is the maximum number of states modelling

a UDP agent, and the sending rate at state i ∈ Su is su(i). Notice that

the flexibility of this modelling choice is very high: it allows us to represent

11

synchronised or partially synchronised UDP transmissions (such as those oc-

curring during online gaming), the autocorrelation and the periodicity in

the transmission bursts, as well as a simple smooth transmission of packets.

Thus the state of an object is denoted by a pair (c, i) where c ∈ {p, u} and

i ∈ {1, . . . , Ip} if c = p and i ∈ {1, . . . , Iu} otherwise. To avoid trivialities we

assume Ip > 1 and Iu ≥ 1.

Let N ∈ N be the number of objects and C ∈ R the bottleneck capacity

for every connection. Since we do not admit class switching during the system

activity (TCP connections can not turn into UDP connections, and vice-

versa) we define Np as the number of TCP connections and Nu the number

of UDP transmissions, i.e., for all t ≥ 0:

Np =
N∑
n=1

1XN
n (t)=(p,i) for some i ∈ Sp

Nu =
N∑
n=1

1XN
n (t)=(u,i) for some i ∈ Su

where ~XN(t) is the stochastic process underlying the model and XN
n (t) is the

state of object n at time t. Clearly, N = Np + Nu. Let pp (pu respectively)

be the proportion of TCP (respectively UDP) connections, then we have:

pp =
Np

N
=

Ip∑
i=1

MN
p,i(t) ∀t ≥ 0

pu =
Nu

N
=

Iu∑
i=1

MN
u,i(t) ∀t ≥ 0 ,

where MN
c,i(t) is the occupancy vector defined in Section 3. The proportion

12

of TCP connections in state i at time t is then p−1
p MN

p,i(t) and for UDP we

have p−1
u MN

u,i(t). The average normalised sending rate of TCP connections

at time t is hence SNp (t) =
∑Ip

i sp(i)M
N
p,i(t), while for UDP connection it is

SNu (t) =
∑Iu

i su(i)M
N
u,i(t).

We now define the memory of the system, ~RN(t) = (RN
c (t), RN

e (t)), that

consists of a pair of real numbers that represents the normalised population

of packets enqueued at the bottleneck at the end of time slot t and t − 1,

respectively. The update equation is:

RN
c (t+ 1) = max

(
RN
c (t) + SNp (t+ 1) + SNu (t+ 1)− C, 0

)
RN
e (t+ 1) = RN

c (t) . (5)

We approximate the behaviour of the ECN/RED mechanisms as proposed

in [20]: as soon as a packet arrives at the bottleneck it is marked for being

discarded or sent. The marking of each packet is independent of the others

arriving during the same time slot, and cannot be changed. The marking of

packets at time slot t depends only on the queue length seen by the packets

immediately before their arrival, i.e., on the memory at time t via function

q(~RN(t)). According to [2, 4, 24] we define function q as follows:

q(RN
e (t)) = 1− exp(−γRN

e (t)) , (6)

i.e., the probability of discarding a packet grows exponentially with the total

queue length. Observe that the marking policy is coherent with that proposed

in [20] where the packets are marked according to the queue length that they

find at their arrival epoch, while in [21] the queue length after their departure

13

is used. Parameter γ is a positive real number whose value will be specified

in the following sections. Finally, the transition matrix for each object is:

K(p,i),(p,i+1)(~r) = (1− q(rp))sp(i)1i<Ip (7)

K(p,Ip),(p,Ip)(~r) = (1− q(rp))sp(Ip)

K(p,i),(p,d(i))(~r) = 1− (1− q(rp))sp(i)

K(u,i),(u,j)(~r) = κ(u,i),(u,j), 1 ≤ i, j ≤ Iu

where ~r = (rc, rp) is a value of ~RN(t), κ(u,i),(u,j) ∈ [0, 1] and for all i ∈ [1, Iu]:

Iu∑
j=1

κ(u,i),(u,j) = 1 .

Function d(i) is used to model the destination state in case of a marked

packet. We may have d(i) = 1 for all i or as in [20] d(i) = bi/2c (and the

number of packets sent sp(i) is proportional to i). Generally speaking, we

require that d(i) = i only for i = 1, while for i > 1 we have that d(i) < i.

Remark 4.1. The model we propose for ECN/RED is novel with respect

to the one presented in [20] since it takes into account different classes of

traffic, not only TCP. In [21] the authors propose a solution for different

types of TCP connection. However, in their model the probability of a TCP

connection to reduce its window size depends only on the queue length, i.e., is

the same for connections with a large and already small windows. Differently,

our approach takes into account that a TCP connection with a large window

sends more packets than one with a small window and hence has higher

probability to be selected for being slowed down.

14

µp,i(t+ 1) = (1− q(ρe(t)))sp(i−1)µp,i−1(t)1{i>1}

+
∑

j:d(j)=i

(
1− (1− q(ρe(t)))sp(j)

)
µp,j(t) 1 ≤ i < Ip

µp,Ip(t+ 1) = (1− q(ρp(t)))sp(Ip−1)µp,Ip−1(t) + (1− q(ρp(t)))sp(Ip)µp,Ip(t)

µu,i(t+ 1) =

Iu∑
j=1

κ(u,j),(u,i)µu,j(t)

σp(t+ 1) =

Ip∑
i=1

µp,i(t+ 1)sp(i)

σu(t+ 1) =

Iu∑
i=1

µu,i(t+ 1)su(i)

ρc(t+ 1) = max
(
ρe(t) + σp(t+ 1) + σu(t+ 1)− C, 0

)
ρe(t+ 1) = ρc(t)

Table 1: Iteration system for ECN/RED model with greedy TCP connections.

Proposition 4.1. If ~MN(0) and ~RN(0) converge almost surely to ~µ(0) and

~ρ(0), respectively, as N →∞ then for any finite horizon t we have that:

lim
N→∞

~MN(t) = ~µ(t) and lim
N→∞

~RN(t) = ~ρ(t)

almost surely, where ~µ(t) and ~ρ(t) are defined by the iterative scheme depicted

in Table 1.

Proof. The proof follows from the fact that Assumption 3.1 is satisfied and

from Theorem 3.1. 2

Table 1 should be read interpreting µp,i(t) and µu,j(t) as the proportion of

TCP connections and UDP agents in state i and j, respectively. σp(t) and

15

σu(t) represent the normalised traffic generated by TCP and UDP, respec-

tively. Finally, ρc(t) and ρe(t) are the functions describing the limits of RN
c (t)

and RN
r (t). The right-hand side of the equations defining µ describe the fluxes

arriving into a certain state. Let us consider the first equation defining the

proportion of TCP connections in state i at time t + 1 for 1 ≤ i < Ip. The

term (1 − q(ρe(t)))sp(i−1)µp,i−1(t)1{i>1} denotes the flux incoming from state

i − 1 which is given by the proportion of TCP connections in state i − 1,

i.e., µp,i−1(t) multiplied by the probability of not having any packet marked.

Since q(ρe(t)) is the probability of marking a packet and from state i− 1 the

connection has sent sp(i− 1) packets, then the probability of not having any

marked packet is (1− q(ρe(t)))sp(i−1). The second term of the right hand side

of the first equation models the flow into state i due to a packet dropping.

The sum is over all the TCP object states that sends the window state to i

in case of packet marking and the flow is computed in a similar way of what

we have just described for the first term. The second equation is similar to

the first and model the behaviour of the last state of the TCP connections.

It cannot be reached due to a packet dropping and in case of not having any

marked packet it stays in Ip. The third equation models the state transi-

tions for UDP agents and finally the remaining ones follow the rules for the

memory update previously described in this section.

4.2. Modelling SAP-LAW with UDP traffic and greedy TCP

The Smart Access Point with Limited Advertised Window (SAP-LAW) is

a solution to the problem of congestion at the bottleneck proposed in [6] with

the specific aim of reducing the problems caused by the simultaneous presence

of both TCP-based and UDP-based applications. The key aspect of this

16

scheme is the manipulation of the TCP acknowledgement packet forwarded

by the gateway. The idea is to artificially reduce the value of the receiving

window size of the destination in the acknowledgement packet. Basically, if

the ECN/RED uses the TCP congestion detection and resolution algorithm

to handle the bottleneck, the SAP-LAW uses the flux control algorithm that

imposes the sender to use a window which is the minimum between its sending

window and the destination’s receiving window (see, e.g., [30]). According

to [6] the gateway counts the arrived UDP packets in a time interval and

hence estimates the total instantaneous UDP arrival rate at time t, ξ(t). Let

NC be the total capacity of the gateway, and Np(t) the number of TCP

connections at time t, then the maximum window size which is sent back to

the TCP transmitters is the same for all the TCP connections and equal to:

maxTCP (t) =
NC − ξ(t)
Np(t)

. (8)

In our setting, we assume Np(t) = Np, N = Np + Nu and the time in-

terval that we use to estimate the instantaneous arrival rate for the UDP

packets to be equal to a multiple Y of the round trip time, i.e., ξ(t) =

y(SNu (t− Y), . . . SNu (t− 1)), where y is a function which estimates the band-

width need of UDP traffic based on the latest Y + 1 time slots. Function y is

arbitrary although we expect to weight the needs of recent time slots more

than the older ones and compute a mean. The notation, unless differently

specified, is that of Section 4.1. The packets sent by each TCP connection

at each time slot depend on its state and on Equation (8) and the granu-

larity of the model. For the sake of simplicity, we assume that sp(i) = αi

for some α ∈ N, i.e., the maximum number of packets sent in a time slot

17

by a TCP connection grows linearly with the state numbering. The memory

~RN(t) = (RN
c (t), RN

e (t), ~RN
u (t)) is a pair of real numbers (rc, re) followed by

a vector of reals ~ru where rc denotes the normalised queue length at the bot-

tleneck (counting both TCP and UDP packets) at a given time slot, re is the

normalised queue length at the previous time slot and ~ru = (ru0, . . . , ruY)

denotes the normalised counting of the arrived UDP packets at the latest

(Y + 1) > 1 time slots.

The transitions for UDP objects are the same of those shown in Sec-

tion 4.1. Each TCP connection has a state represented by a pair of numbers

(i, j) ∈ N2, where i denotes the state corresponding to the sender window

size sp(i), while j takes into account the number of received acknowledges.

Indeed, the SAP-LAW mechanism does not allow the sender to use its full

window size and consequently the growth of the sender window size is in

general slower than what would be observed with a gateway with infinite

capacity. In fact, this is due to the computation of the minimum between

the congestion window size and the advertised window size. Formally, the

state of each object in our model is (`, ~x) where ` ∈ {p, u} (where p stands

for TCP and u for UDP) and:

~x =

(i, j) : 1 ≤ i ≤ Ip ∧ 0 ≤ j < i if l = p

i : 1 ≤ i ≤ Iu if l = u .

18

The dynamic of the memory is specified by the following equation:

RN
c (t+ 1) = max

(
RN
c (t) + SNp (t+ 1) + SNu (t+ 1)− C, 0

)
,

RN
e (t+ 1) = RN

c (t) ,

RN
ui(t+ 1) = RN

u(i−1)(t) 1 ≤ i ≤ Y

RN
u0(t+ 1) = SNu (t+ 1) .

Function SNu (t) is specified as shown in Section 4.1, while SNp is defined as:

SNp (t) =

Ip∑
i=1

i−1∑
j=0

Mp,i,j(t) ·min
(
sp(i), sp(h(~RN

u (t)))
)
,

where

h(~ru) = arg max
j

(
sp(j), sp(j) ≤ (C − ỹ(~ru))

1

pp
∨ j = 1

)
, (9)

and ỹ(~ru) = y(ru1, . . . , ruY). Given a state (i, j) of a TCP connection, and the

state z corresponding to the maximum sending window obtained by Equa-

tion (9), the following state of the connection is f(i, j, z) defined as follows:

f(i, j, z) =


(i, j + min(z, i)) if j + min(z, i) < i

(i+ 1, j + min(z, i)− i) if j + min(z, i) ≥ i ∧ i < Ip

(Ip, Ip − 1) otherwise .

(10)

We can now give the mean field approximation for N →∞.

Proposition 4.2. If ~MN(0) and RN(0) converge almost surely to ~µ(0) and

19

µp,i,j(t+ 1) =

Ip∑
i′=1

i−1∑
j′=0

µp,i′,j′(t)1f(i′,j′,h(~ρu(t)))=(i,j)

µu,i(t+ 1) =

Iu∑
j=1

κ(u,j),(u,i)µu,j(t)

σp(t+ 1) =

Ip∑
i=1

i−1∑
j=1

µp,i,j(t+ 1) min(sp(i), sp(h(~ρu(t))))

σu(t+ 1) =

Iu∑
i=1

µu,i(t+ 1)su(i)

ρc(t+ 1) = max
(
ρc(t) + σp(t+ 1) + σu(t+ 1)− C, 0

)
ρp(t+ 1) = ρc(t)

ρui(t+ 1) = ρu(i−1)(t), 1 ≤ i ≤ Y
ρu0(t+ 1) = σu(t+ 1)

Table 2: Iteration system for SAP-LAW model with greedy TCP connections.

~ρ(0), respectively, as N →∞ then for any finite horizon t we have that:

lim
N→∞

~MN(t) = ~µ(t) and lim
N→∞

~RN(t) = ~ρ(t)

almost surely, where ~µ(t) and ~ρ(t) are defined by the iterative scheme depicted

in Table 2.

Proof. The proof follows straightforwardly from Theorem 3.1 after verify-

ing Assumption 3.1. 2

4.3. Modelling ECN/RED with UDP and temporary TCP connections

When comparing the SAP-LAW and the ECN/RED congestion avoid-

ance mechanisms we should take into account that the former tends to work

20

better when the TCPs sending windows are very large. Intuitively, if all the

TCP connections are willing to send an infinite queue of packets then the

SAP-LAW allows them to constantly increase their sending window (possibly

slower than what happens with ECN/RED). In the long run, all the windows

will be at their maximum size and the SAP-LAW decides which actual rate

they can send according to the estimated UDP traffic. However, the SAP-

LAW is fair with respect to the distribution of the bandwidth to each TCP

connection as shown by Equation (8), therefore it may happen that part of

the bandwidth is allocated to a TCP connection whose sending window is

still small causing a waste of the resources.

In this and in the following section, we modify the previous models in

order to take into account that a TCP connection has a random amount of

packets to send. Once they are sent, we assume that the connection is closed

and a new one restarts from the minimum window size.

We assume that once the connection is established it has to send an

amount of packets which is geometrically distributed with parameter w ∈

(0, 1), i.e, the probability of sending exactly ξ packets is w(1−w)ξ−1, with an

expected value of 1/w. We modify the model presented in Section 4.1 in order

to take into account this aspect as follows (when not differently specified, the

notation is inherited by the previous sections). Let Lf (t) for 1 ≤ f ≤ Np and

t ≥ 0 be a set of independent and identically distributed geometric random

variables with parameter w ∈ (0, 1) that represent the number of packets

that TCP connection i has still to send at time t. The event of closure of

TCP connection f occurs at time t0 if the number of packets that it sends

at t0 is equal to Lf (t0). Notice that due to the memoryless property of the

21

geometric random variable, the distribution of the number of packets sent by

a TCP connection from its opening to its closing epoch is still geometric.

The state (i, s) of each TCP object consists of an integer i ∈ [1, Ip] that

denotes the connection state and an integer s ∈ [1, sp(Ip)+1] that denotes the

number of packets that have still to be sent. So the transition probabilities

are given by the equations:

τ(s′) = w(1− w)s
′−11s′≤sp(Ip) + (1− w)sp(Ip)1s′=Sp(Ip)+1

K(p,i,s),(p,i+1,s′)(~r) = (1− q(rp))sp(i)1i<Ip,s>sp(i)τ(s′)

K(p,i,s),(p,1,s′)(~r) = 1s≤sp(i)τ(s′) (11)

K(p,Ip,s),(p,Ip,s′) = (1− q(rp))sp(Ip)1s>sp(i)τ(s′)

K(p,i,s),(p,d(i),s′) = (1− (1− q(rp))sp(i)) 1s>sp(i)τ(s′) .

Note that Equation (11) is the key point to decide when a TCP connection

finishes its transmission and a new one is created. Function τ is the den-

sity function of a truncated geometric random variable, where the probability

mass of outcomes greater that sp(Ip) is concentrated in the last state, sp(Ip)+ 1.

Proposition 4.3. The number of packets which are sent from two consec-

utive observations of the transition given by Equation (11) is geometrically

distributed with mean 1/w.

Proof. The proof follows from the memoryless property of the geometric

random variable and by the observation that the transition given by Equati-

on (11) occurs with probability 1 from each state (i, s) with s ≤ sp(i). 2

The memory of the system is still a pair of reals ~RN(t) = (Rc(t), Re(t))

22

that denotes the normalised queue length at the gateway at epoch t and t−1,

respectively. The update rule for the memory is:

RN
c (t+ 1) = max

(
RN
c (t) + SNp (t+ 1) + SNu (t+ 1)− C, 0

)
RN
e (t+ 1) = RN

c (t) ,

where:

SNp (t+ 1) =

Ip∑
i=1

sp(Ip)+1∑
s=1

Mp,i,s(t+ 1) min(sp(i), s) .

Proposition 4.4 gives the mean field approximation for this model. Notice

that the state space of each TCP object is rather large but we are inter-

ested only in the normalised population of a connection state, i.e., µ̃p,i(t) =∑sp(Ip)+1
s=1 µp,j,s(t).

Proposition 4.4. If ~MN(0) and ~RN(0) converge almost surely to ~µ(0) and

~ρ(0), respectively, and ∀i = 1, . . . , Ip it holds that MN
p,i,s(0)/

∑sp(Ip)+1
s′=1 Mp,i,s′

converge almost surely to τ(s), as N → ∞, then for any finite horizon t we

have that:

lim
N→∞

sp(Ip)+1∑
s=1

MN
p,i,s(t) = µ̃p,i(t)

lim
N→∞

MN
u,i(t) = µu,i(t)

lim
N→∞

~RN(t) = ~ρ(t)

almost surely, where µ̃p,i(t), µu,i(t) and ρ(t) are defined by the iterative

scheme depicted in Table 3.

Notice that Theorem 3.1 is applicable to obtain the mean field approximation

23

µ̃p,1(t+ 1) =
∑

j:d(j)=1

(
1− (1− q(ρp(t)))sp(j)

)
µ̃j(t)(1− w)sp(j) (12)

+

Ip∑
j=1

µ̃p,j(t)(1− (1− w)sp(j)) (13)

µ̃p,i(t+ 1) =
∑

j:d(j)=i

(
1− (1− q(ρp(t)))sp(j)

)
µ̃j(t)(1− w)sp(j)

+ (1− q(ρp(t)))sp(i−1)µ̃p,i−1(t)(1− w)sp(i−1) 1 < i < Ip

µ̃p,Ip(t+ 1) = (1− q(ρp(t)))sp(Ip−1)µ̃p,Ip−1(t)(1− w)sp(Ip−1) (14)

+ (1− q(ρp(t)))sp(Ip)µ̃p,Ip(t)(1− w)sp(Ip)

µu,i(t+ 1) =

Iu∑
j=1

κ(u,j),(u,i)µu,j(t)

σp(t+ 1) =

Ip∑
i=1

µ̃p,i(t+ 1)
1− (1− w)sp(i)

w
(15)

σu(t+ 1) =

Iu∑
i=1

µu,i(t+ 1)su(i)

ρc(t+ 1) = max
(
ρc(t) + σp(t+ 1) + σu(t+ 1)− C, 0

)
ρe(t+ 1) = ρc(t) (16)

(17)

Table 3: Iteration system for ECN/RED model with temporary TCP connections.

24

for ~µ, however the number of states of each component may grow very quickly

and make the computation of the iterative model inefficient. In order to

derive the interesting performance indices we can use the iterative scheme of

Table 3 which aggregates the TCP object states that share the same window

size. We now prove its correctness.

Proof. Let Xp
i (t) be the random variables describing the state of TCP

object i at time slot t. The support of Xp
i (t) is [1, Ip] × [1, Sp(Ip) + 1]. Let

Xp
i1(t) = j if and only if Xp

i (t) = (j, s) for s ∈ [1, Sp(Ip) + 1] and Xp
i2(t) = s

if and only if Xp
i (t) = (j, s) for some j ∈ [1, Ip]. By definition we have:

µp,i,s(t) = lim
N→∞

1

N

Np∑
j=1

1Xp
j (t)=(i,s) .

Notice that the random variables Xp
j (t) are asymptotically independent (the

proof is analogue to that of [20, Theorem 1]) and are identically distributed,

therefore for the law of large numbers we have that for N →∞, µp,i,s almost

surely converges to ppE[1Xp
j (t)=(i,s)] = ppP{Xp

j (t) = (i, s)} for some j. Noting

that by model definition Xp
j1(t) and Xp

j2(t) are independent, we have:

µp,i,s(t) = ppP{Xp
j1(t) = i}P{Xp

j2(t) = s} = µ̃p,i(t)P{Xp
j2(t) = s} , a.s. (18)

We now prove the correctness of Equation (13), the other proofs follow the

25

same line. By definition of µ̃p,i(t) and by Theorem 3.1 we have:

µ̃p,1(t) =

sp(Ip)+1∑
s=1

µp,1,s(t)

=

sp(Ip)+1∑
s=1

(∑
j:d(j)=1

sp(Ip)+1∑
s′=1

(1− (1− q(ρp(t)))sp(j))

· τ(s)µp,j,s′(t)1s′>sp(j) +

Ip∑
j=1

sp(Ip)+1∑
s′=1

τ(s)µp,j,s′(t)1s′≤sp(j)

)
,

that by Equation (18) becomes:

sp(Ip)+1∑
s=1

τ(s)
∑

j:d(j)=1

(1− (1− q(ρp(t)))sp(j))µ̃p,j(t)

·
sp(Ip)+1∑
s′=sp(j)+1

τ(s′) +

sp(Ip)+1∑
s=1

τ(s)µ̃p,j(t)

sp(j)∑
s′=1

τ(s′) .

Now, Equation (13) follows after some algebraic simplifications. 2

4.4. Modelling SAP-LAW with UDP and temporary TCP connections

The last model we propose considers the SAP-LAW mechanism with tem-

porary TCP connections. We start from the basic model of Section 4.2,

and maintain the definition of the memory ~RN(t) and the transition matrix

K(u,i),(u,j)(~r) for UDP objects (see the last equation of (7)). The state of an

object associated with a TCP connection has the form (p, ~x, s) where p marks

the TCP object, ~x has the same meaning given in Section (4.2) and s denotes

the number of packets that has to be sent. Similarly to what we proposed in

Section 4.3, we assume that the number of packets sent by a TCP connec-

26

tion before being closed and restarted is geometrically distributed with mean

1/w and hence, by exploiting the memoryless property of geometric random

variables (see Proposition 4.3), we obtain the following transition matrix for

TCP objects:

K(p,i,j,s),(p,i′,j′,s′)(~r) = 1f(i,j,h(~ru))=(i′,j′) · 1s>sp(h(~ru))τ(s′)

K(p,i,j,s),(p,1,1,s′)(~r) = 1s≤sp(h(~ru))τ(s′)

where ~r = (rp, rc, ru0, ~ru) = (rp, rc, ru0, ru1, . . . , ruY) is a value of the memory

at a certain time slot, τ(s′) is defined in (11) and f(i, j, z) in (10). We can

now state the mean field result that, similarly to that proposed by Proposi-

tion (4.4) gives an iterative scheme whose computation is more efficient than

that straightforwardly obtained by the application of Theorem 3.1 since it

considers an aggregation of states for the TCP objects.

Proposition 4.5. If ~MN(0) and ~RN(0) converge almost surely to ~µ(0) and

~ρ(0), respectively, and ∀i = 1, . . . , Ip it holds thatMN
p,i,j,s(0)/

∑sp(Ip)+1
s′=1 Mp,i,j,s′

converge almost surely to τ(s), as N → ∞, then for any finite horizon t we

have that:

lim
N→∞

sp(Ip)+1∑
s=1

MN
p,i,j,s(t) = µ̃p,i,j(t)

lim
N→∞

MN
u,i(t) = µu,i(t)

lim
N→∞

~RN(t) = ~ρ(t)

almost surely, where µ̃p,i,j(t), µu,i(t) and ~ρ(t) are defined by the iterative

scheme of Table 4 and function h is defined by Equation (9).

27

The proof follows the lines of that of Proposition 4.4.

µ̃p,1,1(t+ 1) =

Ip∑
i′=1

i∑
j′=1

µ̃p,i′,j′(t)(1− (1− w)min(sp(i′),sp(h(~ρu(t)))))

µ̃p,i,j(t+ 1) =

Ip∑
i′=1

i∑
j′=1

µ̃p,i′,j′(t)1f(i′,j′,h(~ρu(t)))=(i,j)(1− w)min(sp(i′),sp(h(~ρu(t))))

σp(t+ 1) =

Ip∑
i=1

µ̃p,i,j(t+ 1)
1− (1− w)min(sp(i),sp(h(~ρu(t))))

w

σu(t+ 1) =

Iu∑
i=1

µu,i(t+ 1)su(i)

ρc(t+ 1) = max
(
ρc(t) + σp(t+ 1) + σu(t+ 1)− C, 0

)
ρe(t+ 1) = ρc(t)

ρui(t+ 1) = ρu(i−1)(t), 1 ≤ i ≤ Y
ρu0(t+ 1) = σu(t+ 1)

Table 4: Iteration system for SAP-LAW model with temporary TCP connections.

Remark 4.2. Notice that there are some equivalence relations among the

models specified in this section. Specifically the ECN/RED, with greedy or

temporary TCP connections is equivalent to the corresponding SAP-LAW

model when C ≥ max{sp(i), 1 ≤ i ≤ Ip} ∪ {su(j), 1 ≤ j ≤ Iu}. In fact, in

this case none of the two congestion mechanisms is applied and hence the

gateway is not a bottleneck for the system. Another interesting relation is

that the model presented in Section 4.1 (Section 4.2) can be derived as the

limit for w → 0+ of the model presented in Section 4.3 (Section 4.4). In

fact when w is very small, the amount of data that each TCP connection

sends is so high that its behaviour resembles the one of a greedy connection.

28

Nevertheless, we think that having presented and described the four models

should have helped the clarity of the exposition.

5. Validation of the model

We validate the proposed modelling methodology in two ways:

• We compare the trace of the queue length at the AP obtained by the

Network Simulator (NS2);

• We show the convergence rate to the mean field model by comparing

the stochastic model with a finite number of objects to the deterministic

limiting model.

The network simulator scenario is the following: we considered 10 TCP con-

nections (Reno) with maximum rate of 10Mb/s and transmitting through

a bottleneck with capacity 10Mbps. For the sake of brevity, we show the

comparison obtained with the ECN/RED model with thresholds set at 30

and 70 packets, with each packet size of 1KB. The dropping probability

function is chosen as:

maxp
ql −minth

maxth −minth
,

with maxp = 0.1 [31]. The round trip time of the topology is 100ms. The

comparison between the mean field model and the simulation trace of the

queue length is shown in Figure 1.

The models for ECN/RED have been validated with that proposed in [20]

by setting pp = 1 and pu = 0. In Figure 2 we show the convergence to the

mean field of the ECN/RED model with increasing number of objects. The

parameters for the TCP connections and the gateway used for the simulation

29

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200

Q
u

eu
e

le
n

gt
h

[p
k
ts

]

time [s]

Queue length under TCP traffic

NS simulation
Mean field model

Figure 1: Model validation against NS simulation: queue length.

are: Ip = 100, sp(i) = 10 · i, pp = 0.7, C = 600, γ = 5 ·10−8, function d halves

the size of the windows.

We assume a bursty behaviour of UDP traffic. We model the state of each

UDP object as a periodic Descrete Time Marchov Chain (DTMC) consisting

of Iu = 15 such that κ(ui),(u,i+1) = 1 for 1 ≤ i < Iu, and κ(u,Iu),(u,1) = 1. Vector

su(i) = (0, . . . , 700, 800, 700). The initial state of the TCP connections is

chosen with uniform probability between 1 and Ip, while all the UDP objects

start from state 1. Figure 2 shows a comparison between the mean field

approximation and a simulation trace obtained with different numbers of

objects in terms of normalised queue length. Notice the effects of the periodic

bursts on the queue length and the reaction of the ECN/RED mechanism to

contain the queue length. Analogously the SAP-LAW mean field model has

been validated against simulation.

30

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

Q
u
eu
e
le
n
gt
h

t

Comparison of the traces of the queue length vs. time

Mean Field
50 objects
100 objects
1000 objects

Figure 2: Convergence to mean field of greedy ECN/RED: queue length trace plot.

6. Performance evaluation

In this section we use the mean field models presented in Section 4 to

compare the ECN/RED, SAP-LAW mechanisms in terms of expected queue

length Q (expressed in normalised number of packets) and system’s through-

put T (expressed in normalised sent packets per time slot). Assuming that no

packet is discarded, i.e., the control mechanism for ECN/RED is performed

by sending notification packets rather than by discarding some random pack-

ets, we also indirectly derive the expected queuing time using Little’s law

W = Q/T (expressed in time slots) and assuming a simulation time horizon

long enough to stabilise these values. Notice that W denotes the expected

number of time slots that a packet has to wait in the queue before being

sent. In all the models of our experiments we use for SAP-LAW Y = 1 and

function ỹ is the identity, i.e., we use a time window of one round trip time

31

SAP-LAW ECN γ = 5E − 6 ECN γ = 5E − 7
T 591.27 585.69 594.23
Q 0 5.73 53.72
W 0 0.098 0.0901

Table 5: Comparison of ECN/RED with SAP-LAW under greedy TCP and smooth UDP.
Parameters: Ip = 100, Iu = 10, sp(i) = 10 ∗ i, C = 600 su = (0, . . . , 1000, 3000, 1000).

to estimate the UDP traffic. Function d(i) for ECN/RED simply halves the

size of the current window. The percentage of TCP objects is 70% of the

total. The finite horizon is fixed at 800 time slots.

6.1. Greedy TCP connections and smooth UDP traffic

In this section we study the models for ECN/RED and SAP-LAW under

the scenario of greedy TCP connections, i.e., they tend to use all the size

of their sending windows, and smooth UDP traffic. The behaviour of each

UDP connection is that described in Section 5 but in order to smooth the

UDP packet sending we set the initial state of a connection with uniform

probability on the object’s state. The results of the experiment and its

parameters are shown in Table 5. Figure 3 shows the queue length trace for

the two ECN/RED models obtained with different values of γ. This scenario

is ideal especially for the SAP-LAW mechanism. In fact, the smoothness of

the UDP traffic (in the limit it tends to become constant) allows the gateway

to accurately predict the bandwidth to reserve for UDP. On the other hand,

the greedy behaviour of TCP connections prevents the SAP-LAW mechanism

to over-estimate the bandwidth needed by each connection since, after some

time all the sending windows will be opened at their maximum sizes. For

this reason, in this ideal scenario, SAP-LAW gives the best performances by

32

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

Q
u
eu
e
le
n
gt
h

t

Comparison of the traces of the queue length

γ = 5 · 10−6

γ = 5 · 10−7

Figure 3: Traces of the queue length for ECN/RED models with greedy TCP and smooth
UDP connections.

obtaining a high throughput with no waiting time.

6.2. Greedy TCP connections and bursty UDP traffic

In this part we compare the ECN/RED and the SAP-LAW congestion

control mechanisms under bursty UDP. We still use the models presented in

Sections 4.1 and 4.2. In this case the SAP-LAW model shows an instable

behaviour that proves that this mechanism alone is not sufficient to safely

prevent the congestion in any scenario. This issue is presented when the

UDP traffic is very bursty and the monitor window is small as in our case.

The SAP-LAW policy does not take into account the actual queue length

but only estimates the instantaneous UDP traffic. Therefore, this parameter

must be chosen carefully when implementing this congestion control mech-

anism. Figure 4 shows the traces of the queue lengths in the ECN/RED

33

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160

Q
u
eu
e
le
n
gt
h

t

Comparison of the traces of the queue length

ECN/RED γ = 5 · 10−6

ECN/RED γ = 5 · 10−7

SAP-LAW

Figure 4: Instability of SAP-LAW model under bursty UDP traffic.

and SAP-LAW. The graphs have been obtained with the same parameters

of the experiment run in Section 6.1 but with all identical UDP objects’ ini-

tial states. Table 6 shows the performance measures for ECN. It is worth

of notice that the burstiness of the UDP activity strongly deteriorates the

performance measures of TCP traffic. In Table 7 we show the behaviour of

the two congestion mechanisms under bursty UDP traffic but in stability. We

can see that although the throughput of SAP-LAW is much higher than that

of ECN, also the queue length tends to be higher, so reducing the benefits

SAP-LAW ECN γ = 5E − 6 ECN 5E − 7
T n/a 276.00 428.85
Q n/a 64.52 155.34
W n/a 0.234 0.3622

Table 6: Comparison of ECN/RED with SAP-LAW under greedy TCP and bursty UDP.
Parameters: Ip = 100, Iu = 10, sp(i) = 10 ∗ i, C = 600 su = (0, . . . , 1000, 3000, 1000).

34

SAP-LAW ECN γ = 5 ·1 0−6 ECN γ = 5 · 10−7

T 713.27 333.29 529.4077
Q 153.95 35.20 83.79
W 0.2000 0.1056 0.1583

Table 7: Comparison of ECN/RED with SAP-LAW under greedy TCP and bursty UDP.
Parameters: Ip = 100, Iu = 10, sp(i) = 10 ∗ i, C = 800 su = (0, . . . , 1000, 3000, 1000).

that we observed in the scenario with smooth UDP.

6.3. Temporary TCP connections

In this section we assume that each TCP connection has to send a number

of packets modelled by an independent geometric random variable with mean

w−1. After sending this amount of packets, the connection restarts from state

1. The models that are studied have been presented in Sections 4.3 and 4.4.

The results of the analysis are shown in Table 8. The table shows that SAP-

LAW pays a reduction of the throughput because the mechanism is fair in

dividing the residual bandwidth among the TCP connections not considering

that some of them may be in their initial phase. This does not happen for

ECN/RED since it tends to reduce the window size of fast connections and

allows the new ones to grow.

This is even more evident when we introduce UDP burstiness. Figure 5

and 6 compare the queue length and the bottleneck’s throughput for different

sizes of w. We assume w(ω) = 1032ω, and C = 300, Ip = 100, sp(i) =

10i, Iu = 15, su = (0, 0, . . . , 500, 600, 500). Notice that for low values of w

ECN/RED shows its benefits in the queue length control policy as discussed

above, whereas when w grows SAP-LAW takes advantage of being more

aggressive in the bandwidth usage and this compensates the assignment of

35

SAP-LAW ECN γ = 5E − 6 ECN γ = 5E − 7
T 219.17 300.06 295.50
Q 0.2160 361.1346 39.335
W 0.85E − 4 1.2035 0.133

Table 8: Comparison of ECN/RED with SAP-LAW under greedy TCP and smooth UDP.
Parameters: Ip = 100, Iu = 10, sp(i) = 10 ∗ i, C = 800 su = (0, . . . , 1000, 3000, 1000),
w = 104.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Q
u
eu
e
le
n
gt
h

ω

Comparison of the queue length

ECN/RED
SAP-LAW

Figure 5: Comparison of the queue lengths with UDP burstiness and temporary TCP
conncetions.

bandwidth to slow connections.

7. Conclusion

In this paper we have compared the performance of two mechanisms for

the congestion control at a shared gateway in a TCP/IP based network: the

ECN/RED and the SAP-LAW. The comparison is performed assuming a

large number of TCP and UDP transmissions and considering two different

36

50

100

150

200

250

300

0 2 4 6 8 10 12 14

T
h
ro
u
g
h
p
u
t

ω

Comparison of the throughput

ECN/RED
SAP-LAW

Figure 6: Comparison of the gateway throughput with UDP burstiness and temporary
TCP conncetions.

behaviours for the TCP connections (greedy or temporary) and for the UDP

traffic (smooth or bursty). We showed, according to the mean field models,

that the SAP-LAW gives better performance (in terms of expected queue

length and throughput) than ECN/RED in case of greedy TCP connections

and smooth UDP traffic. If the TCP connections are not greedy, SAP-LAW

shows worse performance because it allocates part of the available bandwidth

to TCP connections that are in their initial phases. The impact of burstiness

on SAP-LAW can be dangerous: we showed that a wrong choice of the time

interval used to estimate the intensity of the UDP traffic may lead to insta-

bility. As for the ECN/RED mechanism, the performance of its congestion

control mechanism is not affected by temporary TCP connections since when

a potential congestion is detected, the fastest TCP connections are those with

highest probability of being slowed down. On the other hand, the impact

37

of burstiness on the UDP traffic can strongly reduce the throughput. This

happens because during the peak of UDP traffic, the ECN/RED marks the

packets with high probability thus reducing the associated connections’ win-

dow size, not taking into account that the burst is a short-time phenomenon

(if there where only TCP connections, it would be correct to expect that a

high queue length at time t is followed by a worse situation at time t + 1

if countermeasures are not adopted). It worth of mentioning that the mean

field analysis supports the fast simulation that allows to study the detailed

performance indices associated with a single object in the mean field regime

in a very efficient way.

Table of notation

In this section we summarise the essential notation that we have used

along the paper. Some general rules are that letter p is associated with TCP

variables while letter u is associated with UDP variables. When passing to

the mean field approximation the meaning of the Greek letters is inherited

by the Latin ones according to the following schema: M is associated with

µ, S with σ and R with ρ.

38

Symbol Meaning

Sp, Su Set of states of a TCP connection

Ip Number of possible window sizes of a TCP connection

Iu Number of states of a UDP agent

sp(i) Number of packets sent by a TCP conn. in state i

su(i) Number of packets sent by a UDP agent in state i

Np, Nu, N Number of TCP conn., UDP agents, and their

pp, pu Proportion of TCP and UDP objects

MN
p,ν(t) Proportion of TCP conn. in state ν for N objects at time t

MN
u,ν(t) Proportion of UDP agents in state ν for N objects at time t

SNp (t) Expected number of packets sent by each TCP conn. at time

t with N objects

SNu (t) Expected number of packets sent by each UDP agent at time

t with N objects

q(·) Packet marking function for the ECN/RED

K(c,ν),(c,ν′)(~r) Transition probability for an object of class c from state ν to

ν ′ depending on the bottleneck state ~r

1/w Expected number of packets sent by a TCP connection before

terminating the transmissions

y(·) Function used to compute the estimation of the UDP needs

for the SAP-LAW model

d(j) Congestion window size in case of packet dropping at size j

T Throughput

Q Expected queue length

W Expected waiting time

39

References

[1] J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Ap-

proach, 6th Edition, Pearson, USA, 2013.

[2] S. Floyd, V. Jacobson, Random Early Detection Gateways for Conges-

tion Avoidance, IEEE/ACM Trans. on Networking 1 (4) (1995) 397–413.

[3] S. H. Low, F. Pananini, J. Wang, J. C. Doyle, Linear Stability of

TCP/RED and a Scalable Control, Computer Networks 43 (5) (2003)

633–647.

[4] S. Floyd, TCP and Explicit Congestion Notification, SIGCOMM Com-

put. Commun. Rev. 24 (5) (1994) 8–23.

[5] J. H. Salim, U. Ahmed, Performance Evaluation of Explicit Congestion

Notification (ECN) in IP Networks, RFC Editor.

[6] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, What’s in

that Magic Box? The Home Entertainment Center’s Special Protocol

Potion, Revealed, IEEE Trans. on Consumer Electronics 52 (4) (2006)

1280–1288.

[7] C. E. Palazzi, S. Ferretti, M. Roccetti, Smart Access Points on the Road

for Online Gaming in Vehicular Networks, Entertainment Computing

1 (1) (2009) 17–26.

[8] G. Marfia, M. Roccetti, TCP at Last: Reconsidering TCP’s Role for

Wireless Entertainment Centers at Home, IEEE Trans. on Consumer

Electronics 56 (4) (2010) 2233–2240.

40

[9] C. Barakat, E. Altman, W. Dabbous, On TCP Performance in a Het-

erogeneous Network: A Survey, IEEE Communications Magazine 38 (1)

(2000) 40 – 46.

[10] J. Widmer, R. Denda, M. Mauve, A Survey on TCP-Friendly Conges-

tion Control, IEEE Network 15 (3) (2001) 28 – 37.

[11] S. Liu, T. Başar, R. Srikant, TCP-Illinois: A Loss- and Delay-based

Congestion Control Algorithm for High-Speed Networks, Performance

Evaluation 65 (6–7) (2008) 417 – 440.

[12] S. Ha, I. Rhee, L. Xu, CUBIC: A New TCP-Friendly High-Speed TCP

variant, ACM SIGOPS Operating Systems Review - Research and de-

velopments in the Linux kernel 42 (5) (2008) 64 – 74.

[13] L. A. Grieo, S. Mascolo, Performance Evaluation and Comparison of

Westwood+, New Reno, and Vegas TCP Congestion Control, Computer

Communication Review 34 (2) (2004) 25 – 38.

[14] E. Altman, K. Avrachenkov, C. Barakat, TCP in Presence of Bursty

Losses, in: Proc. of SIGMETRICS, 2000, pp. 124–133.

[15] G. Chatranon, M. A. Labrador, S. Banerjee, A Survey of TCP-Friendly

Router-Based AQM Schemes, Computer Communications 27 (15) (2004)

1424 – 1440.

[16] W. Kang, F. Kelly, N. H. Lee, R. R.J. Williams, Fluid and Brownian

Approximations for an Internet Congestion Control Model, in: Proc. of

CDC 2004, Vol. 4, 2004, pp. 3938–3943.

41

[17] A. Chydzinski, A. Brachman, Performance of AQM Routers in the Pres-

ence of New TCP Variants, in: Proc. of 2nd Intl. Conf. on Advances in

Future Internet (AFIN 2010), 2010, pp. 88–93.

[18] T. Bonald, M. May, J.-C. Bolot, Analytic Evaluation of RED Perfor-

mance, in: Proc. of INFOCOM 2000, Vol. 3, 2000, pp. 1415–1424.

[19] H. Rahman, K. Giridhar, G. Raina, Performance Analysis of Compound

TCP with AQM, in: Proc. of 11th International Symposium on Model-

ing and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt

2013), 2013, pp. 492–499.

[20] P. Tinnakornsrisuphap, A. Makowski, Limit Behavior of ECN/RED

Gateways Under a Large Number of TCP flows, in: Proc. of INFO-

COM 2003, Vol. 2, 2003, pp. 873–883.

[21] J.-Y. Le Boudec, D. McDonald, J. Mundinger, A Generic Mean Field

Convergence Result for Systems of Interacting Objects, in: Proc. of

QEST 2007, IEEE, 2007, pp. 3–18.

[22] A. Bobbio, M. Gribaudo, M. Telek, Analysis of Large Scale Interacting

Systems by Mean Field Method, in: Proc. of QEST 2008, 2008, pp.

215–224.

[23] F. Baccelli, M. Lelarge, D. McDonald, Mestable Regimes for Multiplexed

TCP Flows, in: 42nd Annual Allerton Conference on Communication

Control, and Computing, University of Illinois at Urbana-Champaign,

Allerton House, Monticello, Illinois, USA, 2004, pp. 1005–1011.

42

[24] R. Srikant, The Mathematics of Internet Congestion Control, Springer,

2004.

[25] C. E. Palazzi, N. Stievano, M. Roccetti, A Smart Access Point Solution

for Heterogeneous Flows, in: International Conference on Ultra Modern

Telecommunications Workshops, 2009, pp. 1–7.

[26] M. Gerla, R. Locigno, S. Mascolo, W. Weng, Generalized Window

Advertising for TCP Congestion Control, European Transactions on

Telecommunications (6) (2002) 549–562.

[27] M. Barbera, A. Lombardo, C. Panarello, G. Schembra, Active Window

Management: An Efficient Gateway Mechanism for TCP Traffic Con-

trol, in: IEEE International Conference on Communications, 2007, pp.

6141–6148.

[28] L. Rabiner, A tutorial on hidden Markov models and selected appli-

cations in speech recognition, Proceedings of the IEEE 77 (2) (1989)

257–286.

[29] G. Casale, E. Zhang, E. Smirni, KPC-Toolbox: Simple yet effective trace

fitting using Markovian Arrival Processes, in: Proc. of QEST 2008, 2008,

pp. 83–92.

[30] A. S. Tanenbaum, Computer Networks, Prentice-Hall, 2003.

[31] C. V. Hollot, V. Misra, D. Towsley, W. bo Gong, A control theoretic

analysis of RED, in: Proc. of INFOCOM 2001, IEEE, 2001, pp. 1510–

1519.

43

