
Semanti
s of Input-Consuming Logi
 ProgramsAnnalisa Bossi1, Sandro Etalle2, and Sabina Rossi11 Dipartimento di Informati
a, Universit�a di Venezia, Italyfbossi,srossig�dsi.unive.it2 Universiteit Maastri
ht, The Netherlandsetalle�
s.unimaas.nlAbstra
t. Input-
onsuming programs are logi
 programs with an ad-ditional restri
tion on the sele
tability (a
tually, on the resolvability)of atoms. This
lass of programs arguably allows to model logi
 pro-grams employing a dynami
 sele
tion rule and
onstru
ts su
h as delayde
larations: as shown also in [5℄, a large number of them are a
tuallyinput-
onsuming.In this paper we show that { under some synta
ti
 restri
tions { theS-semanti
s of a program is
orre
t and fully abstra
t also for input-
onsuming programs. This allows us to
on
lude that for a large
lassof programs employing delay de
larations there exists a model-theoreti
semanti
s whi
h is equivalent to the operational one.Keywords: logi
 programming, dynami
 s
heduling, semanti
s.1 Introdu
tionMost implementations of logi
 programming languages allow the possibility ofemploying a dynami
 sele
tion rule: a sele
tion rule whi
h is not bound to the�xed left-to-right order of PROLOG. While this allows for more
exibility, it
aneasily yield to nontermination or to an ineÆ
ient
omputation. For instan
e, ifwe
onsider the standard program APPENDapp([℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄) app(Xs,Ys,Zs).we have that the query q1: app([1,2℄,[3,4℄,Xs), app(Xs,[5,6℄,Ys).mighteasily loop in�nitely (one just has to keep resolving the rightmost atom togetherwith the se
ond
lause). To avoid this, most implementations use
onstru
ts su
has delay de
larations. In the
ase of APPEND when used for
on
atenating twolists the natural delay de
laration isd1: delay app(Xs, ,) until nonvar(Xs).This statement forbids the sele
tion of an atom of the form app(s,t,u) unless sis a non-variable term, whi
h is pre
isely what we need in order to run the queryq1 without overhead. Delay de
larations, advo
ated by van Emden and de Lu-
ena [16℄ and introdu
ed expli
itly in logi
 programming by Naish [13℄, providethe programmer with a better
ontrol over the
omputation and allow one to

improve the eÆ
ien
y of programs (wrt unrestri
ted sele
tion rule), to preventrun-time errors, to enfor
e termination and to express some degree of syn
hro-nization among di�erent pro
esses (i.e., atoms) in a program, whi
h allows tomodel parallelism (
oroutining).This extra
ontrol
omes at a pri
e: Many
ru
ial results of logi
 programmingdo not hold in this extended setting. In parti
ular, the equivalen
e between thede
larative and operational semanti
s does not apply any longer. For instan
e,while the Herbrand semanti
s of APPEND is non-empty, the query app(X,Y,Z)has no su

essful derivation, as the
omputation starting in it deadlo
ks1.In this paper we address the problem of providing a model-theoreti
 seman-ti
s to programs using dynami
 s
heduling. In order to do so, we need a de
lar-ative way of modeling
onstru
t su
h as delay de
larations: for this we restri
tour attention to input-
onsuming programs. The de�nition of input-
onsumingprogram employs the
on
ept of mode: We assume that programs are moded,that is, that the positions of ea
h atom are partitioned into input and outputones. Then, input-
onsuming derivation steps are pre
isely those in whi
h theinput arguments of the sele
ted atom will not be instantiated by the uni�
a-tion with the
lause's head. For example, the standard mode for the programAPPEND when used for
on
atenating two lists is app(In,In,Out). Noti
e thatin this
ase, for queries of the form app(ts,us,X) (X is variable disjoint fromts and us, whi
h
an be any possibly non-ground terms) the delay de
larationd1 guarantees pre
isely that if an atom is sele
table and resolvable, then it isso via an input-
onsuming derivation step;
onversely, in every input-
onsumingderivation the resolved atom satis�es the d1, thus it would have been sele
tablealso in presen
e of the delay de
laration. This reasoning applies for a large
lassof queries (among whi
h q1), and is a
tually not a
oin
iden
e: In the sequelwe argue that in most situations delay de
larations are employed pre
isely forensuring that the derivation is input-
onsuming (modulo renaming, i.e. modulo�, as explained later). Be
ause of this, we are interested in providing a model-theoreti
 semanti
s for input-
onsuming programs. Clearly, most diÆ
ulties onehas in doing this for programs with delay de
larations apply to input-
onsumingprograms as well. Intuitively speaking, the
ru
ial problem here lies in the fa
tthat
omputations may deadlo
k: i.e., rea
h a state in whi
h no atom is resolv-able (e.g., the query app(X,Y,Z)). Be
ause of this the operational semanti
s is
orre
t but not
omplete wrt the de
larative one.We prove that, if a program is well- and ni
ely-moded, then, for ni
ely-modedqueries the operational semanti
s provided by the input-
onsuming resolutionrule is
orre
t and
omplete wrt the S-semanti
s [11℄ for logi
 programs. TheS-semanti
s is a denotational semanti
s whi
h { for programs without delay de
-larations { intuitively
orresponds to the set of answer substitutions to the mostgeneral atomi
 queries, i.e., queries of the form p(x1; : : : ; xn) where x1; : : : ; xnare distin
t variables. Moreover, the S-semanti
s is
ompositional, it enjoys a1 A deadlo
k o

urs when the
urrent query
ontains no atom whi
h
an be sele
tedfor resolution.

model-theoreti
 reading, and it
orresponds to the least �xpoint of a
ontinuousoperator.Summarizing, we show that the S-semanti
s of a program is
ompositional,
orre
t and fully abstra
t also for input-
onsuming programs, provided that theprograms
onsidered are well- and ni
ely-moded, and that the queries are ni
ely-moded. It is important to noti
e that the queries we are
onsidering don't haveto be well-moded. Be
ause of this, they might also deadlo
k. For instan
e, thequery app(X,Y,Z) is ni
ely-moded, thus our results are appli
able to it. One ofthe interesting aspe
ts of the results we will present is that in some situationsone
an determine, purely from the de
larative semanti
s of a program, that aquery does (or does not) yield to deadlo
k.This paper is organized as follows. The next se
tion
ontains the preliminarynotations and de�nitions. In the one whi
h follows we introdu
e the S-semanti
stogether with the key
on
epts of moded and of input-
onsuming program. Se
-tion 4
ontains the main results, and some examples of their appli
ations. Se
tion5
on
ludes the paper. Some proofs are omitted for spa
e reasons, and
an befound in [7℄.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi
 resultsof the semanti
s of logi
 programs [1, 2, 12℄. Here we adopt the notation of [2℄ inthe fa
t that we use boldfa
e
hara
ters to denote sequen
es of obje
ts; thereforet denotes a sequen
e of terms while B is a query (noti
e that { following [2℄ {queries are simply
onjun
tions of atoms, possibly empty). We denote atoms byA;B;H; : : : ; queries by Q;A;B;C; : : : ;
lauses by
; d; : : : ; and programs by P .For any synta
ti
 obje
t o, we denote by Var(o) the set of variables o

urringin o. We also say that o is linear if every variable o

urs in it at most on
e.Given a substitution � = fx1=t1; :::; xn=tng we say that fx1; : : : ; xng is its domain(denoted by Dom(�)) and that Var(ft1; :::; tng) is its range (denoted by Ran(�)).Further, we denote by Var(�) = Dom(�) [Ran(�). If ft1; :::; tng
onsists ofvariables then � is
alled a pure variable substitution. If, in addition, t1; :::; tn isa permutation of x1; :::; xn then we say that � is a renaming. The
ompositionof substitutions is denoted by juxtaposition (��(X) = �(�(X))). We say that aterm t is an instan
e of t0 i� for some �, t = t0�, further t is
alled a variant oft0, written t � t0 i� t and t0 are instan
es of ea
h other. A substitution � is auni�er of terms t and t0 i� t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0. An mgu � of terms t and t0 is
alled relevant i�Var(�) � Var(t)[Var (t0). The de�nitions above are extended to other synta
ti
obje
ts in the obvious way.Computations are sequen
es of derivation steps. The non-empty query q :A; B;C and a
lause
 : H B (renamed apart wrt q) yield the resolvent(A;B;C)�, provided that � = mgu(B;H). A derivation step is denoted byA; B;C �=)P;
 (A;B;C)�.
 is
alled its input
lause, and B is
alled thesele
ted atom of q. A derivation is obtained by iterating derivation steps. A

maximal sequen
e Æ := Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � � ofderivation steps is
alled an SLD derivation of P [fQ0g provided that for everystep the standardization apart
ondition holds, i.e., the input
lause employed atea
h step is variable disjoint from the initial query Q0 and from the substitutionsand the input
lauses used at earlier steps. If the program P is
lear from the
ontext and the
lauses
1; : : : ;
n+1; : : : are irrelevant, then we drop the referen
eto them. An SLD derivation in whi
h at ea
h step the leftmost atom is resolvedis
alled a LD derivation. Derivations
an be �nite or in�nite. If Æ := Q0 �1=)P;
1� � � �n=)P;
n Qn is a �nite pre�x of a derivation, also denoted Æ := Q0 ��! Qn with� = �1 � � � �n, we say that Æ is a partial derivation of P [fQ0g. If Æ is maximaland ends with the empty query then the restri
tion of � to the variables of Qis
alled its
omputed answer substitution (
.a.s., for short). The length of a(partial) derivation Æ, denoted by len(Æ), is the number of derivation steps in Æ.We re
all the notion of similar SLD derivations and some related properties.De�nition 1 (Similar Derivations). We say that two SLD derivations Æ andÆ0 are similar (Æ � Æ0) if (i) their initial queries are variants of ea
h other; (ii)they have the same length; (iii) for every derivation step, atoms in the samepositions are sele
ted and the input
lauses employed are variants of ea
h other.Lemma 2. Let Æ := Q1 ��!Q2 be a partial SLD derivation of P [fQ1g and Q01be a variant of Q1. Then, there exists a partial SLD derivation Æ0 := Q01 �0�!Q02of P [fQ01g su
h that Æ and Æ0 are similar.Lemma 3. Consider two similar partial SLD derivations Q ��!Q0 and Q �0�!Q00.Then Q� and Q�0 are variants of ea
h other.3 Basi
 De�nitionsIn this se
tion we introdu
e the basi
 de�nitions we need: The ones of input-
onsuming derivations and of the S-semanti
s. Then we introdu
e the
on
eptsof well- and ni
ely-moded programs.Input-Consuming Derivations We start by re
alling the notion of mode,whi
h is a fun
tion that labels as input or output the positions of ea
h predi
atein order to indi
ate how the arguments of a predi
ate should be used.De�nition 4 (Mode). Consider an n-ary predi
ate symbol p. By a mode forp we mean a fun
tion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) positionof p (with respe
t to mp). We assume that ea
h predi
ate symbol has a uniquemode asso
iated to it; multiple modes may be obtained by simply renaming thepredi
ates. We denote by In(Q) (resp. Out(Q)) the sequen
e of terms �llingin the input (resp. output) positions of Q. Moreover, when writing an atom asp(s; t), we are indi
ating with s the sequen
e of terms �lling in its input positions

and with t the sequen
e of terms �lling in its output positions. The notion ofinput-
onsuming derivation was introdu
ed in [14℄ and is de�ned as follows.De�nition 5 (Input-Consuming).{ A derivation step A; B;C �=)
 (A;B;C)� is
alled input-
onsuming i�In(B)� = In(B).{ A derivation is
alled input-
onsuming i� all its derivation steps are input-
onsuming.Thus, a derivation step is input
onsuming if the
orresponding mgu doesnot a�e
t the input positions of the sele
ted atom. Clearly, be
ause of this ad-ditional restri
tion, there exist queries in whi
h no atom is resolvable via aninput-
onsuming derivation step. In this
ase we say that the query suspends.Example 6. Consider the following program REVERSE using an a

umulator.reverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).When used for reversing a list, the natural mode for this program is2 the follow-ing one: reverse(In,Out), reverse a

(In,Out,In). Consider now the queryreverse([X1,X2℄,Zs). The following derivation is input-
onsuming.reverse([X1,X2℄,Zs)) reverse a

([X1,X2℄,Zs,[℄))) reverse a

([X2℄,Zs,[X1℄)) reverse a

([℄,Zs,[X2,X1℄)) �As usual,� denotes the empty query. Noti
e also that a natural delay de
larationfor this program would bedelay reverse(X,) until nonvar(X).delay reverse a

(X, ,) until nonvar(X).Now, it is easy to see that for queries of the form reverse(t,X), where t isany term and X any variable disjoint from t, the above delay de
larations guar-antee pre
isely that the resulting derivations are input-
onsuming (modulo �).Furthermore, for the same
lass of queries it holds that in any input-
onsumingderivation the sele
ted atom satis�es the above delay de
larations. utDelay de
larations vs. input-
onsuming derivations As suggested in theabove example, and stated in the introdu
tion, we believe that the
on
ept ofinput-
onsuming program allows one to model programs employing delay de
-larations in a ni
e way: we
laim that in most programs delay de
larations areused to enfor
e that the derivations are input-
onsuming (modulo �). We haveaddressed this topi
 already in [5℄. We now borrow a
ouple of arguments fromit, and extend them.2 The other possible modes are reverse(Out,In) (whi
h is symmetri
 and equivalentto the above one) and reverse(In,In) whi
h might be used for
he
king if a list isa palindrome.

Generally, delay de
larations are employed to guarantee that the interpreterwill not use an \inappropriate"
lause for resolving an atom (the other, perhapsless prominent use of delay de
larations is to ensure absen
e of runtime errors, wedon't address this issue in this paper). In fa
t, if the interpreter always sele
tedthe appropriate
lause, by the independen
e from the sele
tion rule one wouldnot have to worry about the order of the sele
tion of the atoms in the query.In pra
ti
e, delay de
larations prevent the sele
tion of an atom until a
ertaindegree of instantiation is rea
hed. This degree of instantiation ensures that theatom is uni�able only with the heads of the \appropriate"
lauses. In presen
e ofmodes, we
an reasonably assume that this degree of instantiation is the one ofthe input positions. Now, take an atom p(s; t), that it is resolvable with a
lause
 by means of an input-
onsuming derivation step. Then, for every instan
e s0of s, we have that the atom p(s0; t) is as well resolvable with
 by means ofan input-
onsuming derivation step. Thus, no further instantiation of the inputpositions of p(s; t)
an rule out
 as a possible
lause for resolving it, and
 mustthen be one of the \appropriate"
lauses for resolving p(s; t) and we
an say thatp(s; t) is \suÆ
iently instantiated" in its input positions to be resolved with
.On the other hand, following the same reasoning, if p(s; t) is resolvable with
but not via an input-
onsuming derivation step, then there exists an instan
es0 of s, su
h that p(s0; t) is not resolvable with
. In this
ase we
an say thatp(s; t) is not instantiated enough to know whether
 is one of the \appropriate"
lauses for resolving it.We
on
lude this se
tion with a result stating that also when
onsideringinput-
onsuming derivations, it is not restri
tive to assume that all mgu's usedin a derivation are relevant. The proof
an be found in [7℄.Lemma 7. Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � ofp(s; t) and p(u;v) su
h that s� = s then there exists a relevant mgu # of p(s; t)and p(u;v) su
h that s# = s.From now on, we assume that all mgu's used in the input-
onsuming deriva-tion steps are relevant.The S-semanti
s The aim of the S-semanti
s approa
h (see [8℄) is modelingthe observable behaviors for a variety of logi
 languages. The observable we
onsider here is the
omputed answer substitutions. The semanti
s is de�ned asfollows:S(P) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distin
t variables andp(x1; : : : ; xn) ��!P � is an SLD derivationg:This semanti
s enjoys all the valuable properties of the least Herbrand model.Te
hni
ally, the
ru
ial di�eren
e is that in this setting an interpretation might
ontain non-ground atoms. To present the main results on the S-semanti
s weneed to introdu
e two further
on
epts: Let P be a program, and I be a set ofatoms. The immediate
onsequen
e operator for the S-semanti
s is de�ned as:TSP (I) = f H� j 9 H B 2 P9 C 2 I; renamed apart3 wrt H;B� = mgu(B;C) g:

Moreover, a set of atoms I is
alled an S-model of P if TSP (I) � I . Falas
hi etal. [11℄ showed that TSP is
ontinuous on the latti
e of term interpretations, thatis sets of possibly non-ground atoms, with the subset-ordering. They proved thefollowing:{ S(P) = least S-model of P = TSP " !.Therefore, the S-semanti
s enjoys a de
larative interpretation and a bottom-up
onstru
tion, just like the Herbrand one. In addition, we have that the S-semanti
s re
e
ts the observable behavior in terms of
omputed answer substi-tutions, as shown by the following well-known result.Theorem 8. [11℄ Let P be a program, A be a query, and � be a substitution.The following statements are equivalent.{ There exists an SLD derivation A #�!P�, where A# � A�.{ There exists A0 2 S(P) (renamed apart wrt A), su
h that � = mgu(A;A0)and A� � A�.Let us see this semanti
s applied to the programs so far en
ountered.S(APPEND) = f app([℄,X,X),app([X1℄,X,[X1|X℄),app([X1,X2℄,X,[X1,X2|X℄), : : : g.S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a

([℄,X,X),reverse a

([X1℄,X,[X1|X℄),reverse a

([X1,X2℄,X,[X2,X1|X℄), : : : g.Well and Ni
ely-Moded Programs Even in presen
e of modes, the S-semanti
s does not re
e
t the operational behavior of input-
onsuming programs(and thus of programs employing delay de
larations). In fa
t, if we extend APPENDby adding to it the
lause q app(X,Y,Z). we have that q belongs to the se-manti
s but the query q will not su

eed (it suspends). In order to guaranteethat the semanti
s is fully abstra
t (wrt the
omputed answer substitutions)we need to restri
t the
lass of allowed programs and queries. To this end weintrodu
e the
on
epts of well-moded [10℄ and of ni
ely-moded programs.De�nition 9 (Well-Moded).{ A query p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i 2 [1; n℄Var(si) � i�1[j=1Var(tj):3 Here and in the sequel, when we write \C 2 I, renamed apart wrt some expressione", we naturally mean that I
ontains a set of atoms C01; : : : ; C0n, and that C is arenaming of C01; : : : ; C0n su
h that C shares no variable with e and that two distin
tatoms of C share no variables with ea
h other.

{ A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for alli 2 [1; n+ 1℄ Var(si) � i�1[j=0Var(tj):{ A program is well-moded if all of its
lauses are well-moded.Thus a query is well-moded if every variable o

urring in an input positionof an atom o

urs in an output position of an earlier atom in the query. A
lauseis well-moded if (1) every variable o

urring in an input position of a body atomo

urs either in an input position of the head, or in an output position of anearlier body atom; (2) every variable o

urring in an output position of the heado

urs in an input position of the head, or in an output position of a body atom.The
on
ept of ni
ely-moded programs was �rst introdu
ed by Chadha andPlaisted [9℄.De�nition 10 (Ni
ely-Moded).{ A query p1(s1; t1); : : : ; pn(sn; tn) is
alled ni
ely-moded if t1; : : : ; tn is alinear sequen
e of terms and for all i 2 [1; n℄Var(si) \ n[j=iVar(tj) = ;:{ A
lause p(s0; t0) p1(s1; t1); : : : ; pn(sn; tn) is ni
ely-moded if its body isni
ely-moded and Var(s0) \ n[j=1Var(tj) = ;:{ A program P is ni
ely-moded if all of its
lauses are ni
ely-moded.Note that an atomi
 query p(s; t) is ni
ely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 11. Programs APPEND and REVERSE are both well- and ni
ely-moded.Furthermore, Consider now the following program PALINDROMEpalindrome(Xs) reverse(Xs,Xs).Together with REVERSE. With the mode palindrome(In), this program is well-moded but not ni
ely-moded (Xs o

urs both in an input and in an outputposition of the same body atom). Nevertheless, it be
omes both well-modedand ni
ely-moded if the adopted modes of REVERSE are the following ones:reverse(In,In), reverse a

(In,In,In). ut

4 Semanti
s of Input-Consuming ProgramsIn this se
tion we are going to make the link between input-
onsuming program-s, well- and ni
ely-moded programs and the S-semanti
s: We show that theS-semanti
s of a program is
ompositional,
orre
t and fully abstra
t also forinput-
onsuming programs, provided that the programs are well- and ni
ely-moded and that only ni
ely-moded queries are
onsidered.Properties of Well-Moded Programs We start by demonstrating some im-portant features of well-moded programs. For this, we need additional notations:First, the following notion of renaming for a term t from [2℄ will be used.De�nition 12. A substitution � := fx1=y1; : : : ; xn=yng is
alled a renaming fora term t if Dom(�) � Var(t), y1; : : : ; yn are di�erent variables, and (Var(t) �fx1; : : : ; xng)\ fy1; : : : ; yng = ; (� does not introdu
e variables whi
h o

ur in tbut are not in the domain of �).Observe that terms s and t are variants i� there exists a renaming � for s su
hthat t = s�. Then, we need the following: Let Q := p1(s1; t1); : : : ; pn(sn; tn). Wede�ne{ VIn�(Q) = Sni=1fxj x 2 Var(si) and x 62 Si�1j=1 Var(tj)gThus, VIn�(Q) denotes the set of variables o

urring in an input position of anatom of Q but not o

urring in an output position of an earlier atom. Note alsothat if Q is well-moded then VIn�(Q) = ;.We now need the following te
hni
al result
on
erning well-moded programs.Be
ause of la
k of spa
e, the proof is omitted, and
an be found in [7℄.Lemma 13. Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD derivation of P [fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-
onsuming partial (LD) derivation.We
an now prove our
ru
ial result
on
erning well-moded programs. Basi-
ally, it states the
orre
tness of the S-semanti
s for well-moded, input-
onsumingprograms. This
an be regarded as \one half" of the main result we are going topropose.Proposition 14. Let P be a well-moded program, A be an atomi
 query and �be a substitution.{ If there exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0) su
hthat(i) In(A)� � In(A),(ii) A� � A�,{ then there exists an input-
onsuming (LD) derivation Æ := A #�!P�, su
hthat A# � A�.

Proof. Let A0 2 S(P) (renamed apart wrt A) and � be su
h that the hypothesisare satis�ed. By Theorem 8, there exists a su

essful SLD derivation of P [fAgwith
.a.s. #0 su
h that A#0 � A�. By the Swit
hing Lemma [2℄, there exists asu

essful LD derivation Æ0 of P [fAg with
.a.s. #0. From the hypothesis, itfollows that #0jIn(A) is a renaming for A. By Lemma 13, there exists an input-
onsuming derivation A #�!P� similar to Æ0. The thesis follows by Lemma 3. utProperties of Ni
ely-Moded Programs Now, we need to establish someproperties of ni
ely-moded programs. First, we re
all the following from [5, 6℄.Lemma 15. Let the program P and the query Q be ni
ely moded. Let Æ :=Q ��! Q0 be a partial input-
onsuming derivation of P [fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Note that if Q is ni
ely-moded then x 2 Var(Q) and x 62 Var(Out(Q))i� x 2 VIn�(Q). Now, we
an prove that the S-semanti
s is fully abstra
t forinput-
onsuming, ni
ely-moded programs and queries. This
an be regarded asthe
ounterpart of Proposition 14.Proposition 16. Let P be a ni
ely-moded program, A be a ni
ely-moded atomi
query and � be a substitution.{ If there exists an input-
onsuming SLD derivation Æ := A #�!P�, su
h thatA# � A�,{ then there exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0)su
h that(i) In(A)� � In(A),(ii) A� � A�.Proof. By Theorem 8, there exist A0 2 S(P) (renamed apart wrt A) and asubstitution � su
h that � = mgu(A;A0) and (ii) holds. Sin
e Æ is an input-
onsuming derivation, by Lemma 15, it follows that #jIn(A) is a renaming for A.Hen
e (i) follows by the hypothesis and (ii). utSemanti
s of Input-Consuming Derivations We now put together theabove propositions and extend them
ompositionally to arbitrary (non-atomi
)queries. For this, we need the the following simple result.Lemma 17. Let the program P be well and ni
ely-moded and the query Q beni
ely-moded. Then, there exists a well- and ni
ely-moded program P 0 and ani
ely-moded atomi
 query A su
h that the following statements are equivalent.{ There exists an input-
onsuming su

essful derivation Æ of P [fQg with
.a.s. �.{ There exists an input-
onsuming su

essful derivation Æ0 of P 0 [fAg with
.a.s. �.

Proof. (sket
h). This is done in a straightforward way by letting P 0 be the pro-gram P [f
 : new(x;y) Qg where x = VIn�(Q), y = Var(Out(Q)), new isa fresh predi
ate symbol and A = new(x;y). utWe are now ready for the main result of this paper, whi
h asserts thatthe de
larative semanti
s S(P) is
ompositional and fully abstra
t for input-
onsuming programs, provided that programs are well- and ni
ely-moded andthat queries are ni
ely-moded.Theorem 18. Let P be a well- and ni
ely-moded program, A be a ni
ely-modedquery and � be a substitution. The following statements are equivalent.(i) There exists an input-
onsuming derivation A #�!P�, su
h that A# � A�.(ii) There exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0) su
hthat(a) �jVIn�(A) is a renaming for A,(b) A� � A�.Proof. It follows immediately from Propositions 14, 16 and Lemma 17. utNote that in
ase of an atomi
 query A := A, we might substitute
ondition(a) above with the somewhat more attra
tive
ondition (a') In(A)� � In(A).Let us immediately see some examples.Example 19.{ app([X,b℄,Y,Z) has an input-
onsuming su

essful derivation, with
.a.s.� � fZ=[X; bjY℄g. This
an be
on
luded by just looking at S(APPEND), fromthe fa
t that A = app([X1,X2℄,X3,[X1,X2|X3℄) 2 S(P). Noti
e thatapp([X,b℄,Y,Z) is { in its input position { an instan
e of A.{ app(Y,[X,b℄,Z) has no input-
onsuming su

essful derivations. This is be-
ause there is no A 2 S(P) su
h that In(app(Y; [X; b℄; Z) is an instan
e of Ain the input position. This a
tually implies that in presen
e of delay de
lara-tions app(Y,[X,b℄,Z) will eventually either deadlo
k or run into an in�nitederivation; we are going to talk more about this in the next se
tion. utNote that Theorem 18 holds also in the
ase that programs are permutationwell- and ni
ely-moded and queries are permutation ni
ely-moded [15℄, i.e., pro-grams whi
h would be well- and ni
ely-moded after a permutation of the atomsin the bodies and queries whi
h would be ni
ely-moded through a permutationof their atoms.Deadlo
k We now
onsider again programs employing delay de
larations. Animportant
onsequen
e of Theorem 18 is that when the delay de
larations implythat the derivations are input-
onsuming (modulo �), then one
an determinefrom the model-theoreti
 semanti
s whether a query is bound to deadlo
k or not.Let us establish some simple notation. In this se
tion we assume that programsare augmented with delay de
larations, and we say that a derivation respe
ts thedelay de
larations i� every sele
ted atom satis�es the delay de
larations.

Notation 20. Let P be a program and A be a query.{ We say that P [fAg is input-
onsuming
orre
t i� every SLD derivationof P [fAg whi
h respe
ts the delay de
larations is similar to an input-
onsuming derivation.{ We say that P [fAg is input-
onsuming
omplete i� every input-
onsumingderivation of P [fAg respe
ts the delay de
larations.{ We say that P [fAg is bound to deadlo
k if(i) every SLD derivation of P [fAg whi
h respe
ts the delay de
larationseither fails or deadlo
ks4, and(ii) there exists at least one non-failing SLD derivation of P [fAg whi
hrespe
ts the delay de
larations. utFor example,
onsider the program REVERSE (in
luding delay de
larations).{ REVERSE[reverse(s,Z) is input-
onsuming
orre
t and
omplete providedthat Z is a variable disjoint from s.Consider now the program APPEND augmented with the delay de
laration d1 ofthe introdu
tion.{ APPEND[app(s,t,Z) is input-
onsuming
orre
t and
omplete providedthat Z is a variable disjoint from the possibly non-ground terms s and t.{ Now, following up on Example 19, sin
e APPEND[app([X,b℄,Y,Z) is input-
onsuming
omplete, we
an state that APPEND[app([X,b℄,Y,Z) is notbound to deadlo
k.In order to say something about the other query of Example 19 (app(Y,[X,b℄,Z))we need a further reasoning: Consider for the moment the ni
ely-moded queryapp(X,Y,Z). Sin
e S(APPEND)
ontains instan
es of it, by Theorem 8, app(X,Y,Z)has at least one su

essful SLD derivation. Thus, it does not fail. On the otherhand, every atom in S(APPEND) is in its input positions a proper instan
e ofapp(X,Y,Z). Thus by Theorem 18, app(X,Y,Z) has no input-
onsuming su
-
essful derivations. Therefore, sin
e APPEND[app(X,Y,Z) is input-
onsuming
orre
t, we
an state that app(X,Y,Z) either has an in�nite input-
onsumingderivation or it is bound to deadlo
k. This fa
t
an be ni
ely
ombined with thefa
t that APPEND is input-terminating [5℄: i.e., all its input-
onsuming derivationsstarting in a ni
ely-moded query are �nite. In [5℄ we provided
onditions whi
hguaranteed that a program is input-terminating; these
onditions easily allowone to show that APPEND in input-terminating. Be
ause of this, we
an
on
ludethat the query app(X,Y,Z) is bound to deadlo
k.By simply formalizing this reasoning, we obtain the following.Theorem 21. Let P be a well- and ni
ely-moded program, and A be ni
ely-moded atomi
 query. If4 A derivation deadlo
ks if its last query
ontains no sele
table atom, i.e., no atomwhi
h satis�es the delay de
larations

1. 9 B 2 S(P), su
h that A uni�es with B,2. 8 B 2 S(P), if A uni�es with B, then In(A) is not an instan
e of In(B),3. P [fAg is input-
onsuming-
orre
t,then A either has an in�nite SLD derivation respe
ting the delay de
larations orit is bound to deadlo
k.If in addition P is input-terminating then A is bound to deadlo
k.This result
an be immediately generalized to non-atomi
 queries, as done forour main result. Let us see more examples:{ APPEND[app(Y,[X,b℄,Z) either has an in�nite derivation or it is bound todeadlo
k.{ Sin
e APPEND is input terminating, we have that APPEND[app(Y,[X,b℄,Z)is bound to deadlo
k.One might wonder why in order to talk about deadlo
k we went ba
k toprograms using delay de
larations. The
ru
ial point here lies in the di�eren
ebetween resolvability - via an input-
onsuming derivation step - (used in input-
onsuming programs) and sele
tability (used in programs using delay de
lara-tions). When resolvability does not redu
e to sele
tability, we
annot talk about(the usual de�nition of) deadlo
king derivation. Consider the following program,where all atom's positions are moded as input.p(X) q(a). p(a). q(b).The derivation starting in p(X) does not su

eed, does not fail, but it also doesnot deadlo
k in the usual sense: in fa
t, p(X)
an be resolved with the �rst
lause, whi
h however yields to failure. We
an say that ea
h input-
onsumingSLD tree starting in p(X) is in
omplete, as it
ontains a bran
h whi
h
annot befollowed. In the moment that the program is input-
onsuming
orre
t, we
anrefer to the usual de�nition of deadlo
king derivation.Counterexamples The following examples demonstrate that the synta
ti
restri
tions used in Theorem 18 are ne
essary. Consider the following program.p(X,Y) equal lists(X,Y), list of zeroes(Y).equal lists([℄,[℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list of zeroes([℄).list of zeroes([0|T℄) list of zeroes(T).With the modes: p(In,Out), equal lists(In,Out), list of zeroes(Out). The�rst
lause is not ni
ely-moded be
ause of the double o

urren
e of Y in thebody's output positions. Here, there exists a su

essful input-
onsuming deriva-tion starting in p([X1℄; Y), and produ
ing the
.a.s. fX1=0; Y=[X1℄g. Nevertheless,there exists no
orresponding A0 2 S(P) (in fa
t, S(P)jp
ontains all and onlyall the atoms of the form p(list0; list0) where list0 is a list
ontaining onlyzeroes). This shows that if the program is well-moded but not ni
ely-modedthen the impli
ation (i)) (ii) in Theorem 18 does not hold. Now
onsider thefollowing program:

p(X) list(Y), equal lists(X,Y).equal lists([℄, [℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list([℄).list([HH|T℄) list(T).With the modes p(In), equal lists(In, In), list(Out). This program isni
ely-moded, but not well-moded: The variable HH in the output position of thehead o

urs neither in an output position of the body nor in an input positionof the head. It is easy to
he
k that there does not exist any su

essful input-
onsuming derivation for the query p([a℄); at the same time, p([X1℄) 2 S(P).Thus, if the program is ni
ely-moded but not well-moded then the impli
ation(ii)) (i) in Theorem 18 does not hold.5 Con
luding RemarksWe have shown that { under some synta
ti
 restri
tions { the S-semanti
s re-
e
ts the operational semanti
s also when programs are input-
onsuming. The S-semanti
s is a denotational semanti
s whi
h enjoys a model-theoreti
al reading.The relevan
e of the results is due to the fa
t that input-
onsuming programsoften allow to model the behavior of programs employing delay de
larations;hen
e for a large part of programs employing dynami
 s
heduling there exists ade
larative semanti
s whi
h is equivalent to the operational one.As related work we want to mention Apt and Luitjes [3℄. The
ru
ial di�eren
ewith it is that in [3℄
onditions whi
h ensure that the queries are deadlo
k-free areemployed. Under these
ir
umstan
es the equivalen
e between the operationaland the Herbrand semanti
s follows. On the other hand, the
lass of queries we
onsider here (the ni
ely-moded ones) in
ludes many whi
h would \deadlo
k"(e.g., app(X,Y,Z)): Theorem 18 proves that in many
ases one
an tell by thede
larative semanti
s for instan
e if a query is \suÆ
iently instantiated" to yielda su

ess or if it is bound to deadlo
k.Con
erning the restri
tiveness of the synta
ti

on
epts we use here (well-and ni
ely-moded programs and ni
ely-moded queries) we want to mention that[4, 5℄ both
ontain mini-surveys of programs with the indi
ation whether theyare well- and ni
ely-moded or not. From them, it appears that most \usual"programs satisfy both de�nitions. It is important to stress that under this re-stri
tion one might still want to employ a dynami
 sele
tion rule. Consider forinstan
e a query of the form read tokens(X), modify(X,Y), write tokens(Y),where the modes are read tokens(Out), modify(In,Out), write tokens(Out).If read tokens
annot read the input stream all at on
e, it makes sense thatmodify and write tokens be
alled in order to pro
ess and display the tokensthat are available, even if read tokens has not �nished reading the input. This
an be done by using dynami
 s
heduling, using either delay de
larations or aninput-
onsuming resolution rule in order to avoid nontermination and ineÆ
ien-
ies.

Referen
es[1℄ K. R. Apt. Introdu
tion to Logi
 Programming. In J. van Leeuwen, editor, Hand-book of Theoreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,pages 495{574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.[2℄ K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.[3℄ K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
lara-tions. In A. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of the FourthInternational Conferen
e on Algebrai
 Methodology and Software Te
hnology,(AMAST'95), Le
ture Notes in Computer S
ien
e, Berlin, 1995. Springer-Verlag.[4℄ K. R. Apt and A. Pellegrini. On the o

ur-
he
k free Prolog programs. ACMToplas, 16(3):687{726, 1994.[5℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-
onsumingderivations. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 30(1),1999. http://www.elsevier.nl/lo
ate/ent
s, temporarily available athttp://www.
s.unimaas.nl/�etalle/papers/index.htm.[6℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-
onsuming derivations.Te
hni
al Report CS 99-06, Universiteit Maastri
ht, 1999.[7℄ A. Bossi, S. Etalle, and S. Rossi. Semanti
s of input-
onsuming programs. Te
h-ni
al Report CS 00-01, Universiteit Maastri
ht, 2000.[8℄ Annalisa Bossi, Maurizio Gabrielli, Giorgio Levi, and Maurizio Martelli. The S-semanti
s approa
h: Theory and appli
ations. The Journal of Logi
 Programming,19 & 20:149{198, May 1994.[9℄ R. Chadha and D.A. Plaisted. Corre
tness of uni�
ation without o

ur
he
k inProlog. Te
hni
al report, Department of Computer S
ien
e, University of NorthCarolina, Chapel Hill, N.C., 1991.[10℄ P. Dembinski and J. Maluszynski. AND-parallelism with intelligent ba
ktra
kingfor annotated logi
 programs. In Pro
eedings of the International Symposium onLogi
 Programming, pages 29{38, Boston, 1985.[11℄ M. Falas
hi, G. Levi, M. Martelli, and C. Palamidessi. De
larative modelingof the operational behavior of logi
 languages. Theoreti
al Computer S
ien
e,69(3):289{318, 1989.[12℄ J. W. Lloyd. Foundations of Logi
 Programming. Symboli
 Computation { Arti-�
ial Intelligen
e. Springer-Verlag, Berlin, 1987. Se
ond edition.[13℄ L. Naish. An introdu
tion to mu-prolog. Te
hni
al Report 82/2, The Universityof Melbourne, 1982.[14℄ J. G. Smaus. Proving termination of input-
onsuming logi
 programs. In D. DeS
hreye, editor, 16th International Conferen
e on Logi
 Programming. MIT press,1999.[15℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programs withblo
k de
larations running in several modes. In C. Palamidessi, editor, Pro
eed-ings of the 10th Symposium on Programming Language Implementations and Logi
Programming, LNCS. Springer-Verlag, 1998.[16℄ M.H. van Emden and G.J. de Lu
ena. Predi
ate logi
 as a language for parallelprogramming. In K.L. Clark and S.-A. T�arnlund, editors, Logi
 Programming,London, 1982. A
ademi
 Press.

