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Abstract. Input-consuming programs are logic programs with an ad-
ditional restriction on the selectability (actually, on the resolvability)
of atoms. This class of programs arguably allows to model logic pro-
grams employing a dynamic selection rule and constructs such as delay
declarations: as shown also in [5], a large number of them are actually
input-consuming.

In this paper we show that — under some syntactic restrictions — the
S-semantics of a program is correct and fully abstract also for input-
consuming programs. This allows us to conclude that for a large class
of programs employing delay declarations there exists a model-theoretic
semantics which is equivalent to the operational one.
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1 Introduction

Most implementations of logic programming languages allow the possibility of
employing a dynamic selection rule: a selection rule which is not bound to the
fixed left-to-right order of PROLOG. While this allows for more flexibility, it can
easily yield to nontermination or to an inefficient computation. For instance, if
we consider the standard program APPEND

app([ 1,Ys,Ys).
app([H|Xs],Ys,[H|Zs]) < app(Xs,Ys,Zs).

we have that the query q1: app([1,2],[3,4],Xs), app(Xs,[5,6],Ys). might
easily loop infinitely (one just has to keep resolving the rightmost atom together
with the second clause). To avoid this, most implementations use constructs such
as delay declarations. In the case of APPEND when used for concatenating two
lists the natural delay declaration is

dl: delay app(Xs,_,-) until nonvar(Xs).

This statement forbids the selection of an atom of the form app(s,t,u) unless s
is a non-variable term, which is precisely what we need in order to run the query
ql without overhead. Delay declarations, advocated by van Emden and de Lu-
cena [16] and introduced explicitly in logic programming by Naish [13], provide
the programmer with a better control over the computation and allow one to



improve the efficiency of programs (wrt unrestricted selection rule), to prevent
run-time errors, to enforce termination and to express some degree of synchro-
nization among different processes (i.e., atoms) in a program, which allows to
model parallelism (coroutining).

This extra control comes at a price: Many crucial results of logic programming
do not hold in this extended setting. In particular, the equivalence between the
declarative and operational semantics does not apply any longer. For instance,
while the Herbrand semantics of APPEND is non-empty, the query app(X,Y,Z)
has no successful derivation, as the computation starting in it deadlocks'.

In this paper we address the problem of providing a model-theoretic seman-
tics to programs using dynamic scheduling. In order to do so, we need a declar-
ative way of modeling construct such as delay declarations: for this we restrict
our attention to input-consuming programs. The definition of input-consuming
program employs the concept of mode: We assume that programs are moded,
that is, that the positions of each atom are partitioned into input and output
ones. Then, input-consuming derivation steps are precisely those in which the
input arguments of the selected atom will not be instantiated by the unifica-
tion with the clause’s head. For example, the standard mode for the program
APPEND when used for concatenating two lists is app(In,In,Out). Notice that
in this case, for queries of the form app(ts,us,X) (X is variable disjoint from
ts and us, which can be any possibly non-ground terms) the delay declaration
d1 guarantees precisely that if an atom is selectable and resolvable, then it is
so via an input-consuming derivation step; conversely, in every input-consuming
derivation the resolved atom satisfies the d1, thus it would have been selectable
also in presence of the delay declaration. This reasoning applies for a large class
of queries (among which q1), and is actually not a coincidence: In the sequel
we argue that in most situations delay declarations are employed precisely for
ensuring that the derivation is input-consuming (modulo renaming, i.e. modulo
~, as explained later). Because of this, we are interested in providing a model-
theoretic semantics for input-consuming programs. Clearly, most difficulties one
has in doing this for programs with delay declarations apply to input-consuming
programs as well. Intuitively speaking, the crucial problem here lies in the fact
that computations may deadlock: i.e., reach a state in which no atom is resolv-
able (e.g., the query app(X,Y,Z)). Because of this the operational semantics is
correct but not complete wrt the declarative one.

We prove that, if a program is well- and nicely-moded, then, for nicely-moded
queries the operational semantics provided by the input-consuming resolution
rule is correct and complete wrt the S-semantics [11] for logic programs. The
S-semantics is a denotational semantics which — for programs without delay dec-
larations — intuitively corresponds to the set of answer substitutions to the most
general atomic queries, i.e., queries of the form p(zi,...,z,) where z1,...,z,
are distinct variables. Moreover, the S-semantics is compositional, it enjoys a

L' A deadlock occurs when the current query contains no atom which can be selected
for resolution.



model-theoretic reading, and it corresponds to the least fixpoint of a continuous
operator.

Summarizing, we show that the S-semantics of a program is compositional,
correct and fully abstract also for input-consuming programs, provided that the
programs considered are well- and nicely-moded, and that the queries are nicely-
moded. It is important to notice that the queries we are considering don’t have
to be well-moded. Because of this, they might also deadlock. For instance, the
query app(X,Y,Z) is nicely-moded, thus our results are applicable to it. One of
the interesting aspects of the results we will present is that in some situations
one can determine, purely from the declarative semantics of a program, that a
query does (or does not) yield to deadlock.

This paper is organized as follows. The next section contains the preliminary
notations and definitions. In the one which follows we introduce the S-semantics
together with the key concepts of moded and of input-consuming program. Sec-
tion 4 contains the main results, and some examples of their applications. Section
5 concludes the paper. Some proofs are omitted for space reasons, and can be
found in [7].

2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results
of the semantics of logic programs [1, 2, 12]. Here we adopt the notation of [2] in
the fact that we use boldface characters to denote sequences of objects; therefore
t denotes a sequence of terms while B is a query (notice that — following [2] —
queries are simply conjunctions of atoms, possibly empty). We denote atoms by
A, B H, ..., queries by Q,A,B,C, ..., clauses by ¢,d, ..., and programs by P.

For any syntactic object o, we denote by Var(o) the set of variables occurring
in 0. We also say that o is linear if every variable occurs in it at most once.
Given a substitution 0 = {1 /t1, ..., T, [ty } we say that {z1,...,x,} is its domain
(denoted by Dom(o)) and that Var({ti,...,t,}) is its range (denoted by Ran(o)).
Further, we denote by Var(oc) = Dom(o)U Ran(c). If {t1,...,t,} consists of
variables then o is called a pure variable substitution. If, in addition, ti,...,t, is
a permutation of z1, ..., z, then we say that ¢ is a renaming. The composition
of substitutions is denoted by juxtaposition (fo(X) = 0(6(X))). We say that a
term ¢ is an instance of ¢’ iff for some o, t = t'o, further ¢ is called a variant of
t', written ¢t ~ t' iff t and ¢' are instances of each other. A substitution € is a
unifier of terms ¢t and ¢’ iff t0 = t'6. We denote by mgu(t,t') any most general
unifier (mgu, in short) of t and ¢'. An mgu 6 of terms ¢ and t' is called relevant iff
Var(0) C Var(t)U Var(t'). The definitions above are extended to other syntactic
objects in the obvious way.

Computations are sequences of derivation steps. The non-empty query ¢ :
A,B,C and a clause ¢ : H < B (renamed apart wrt ¢) yield the resolvent
(A, B,C)0, provided that 8 = mgu(B,H). A derivation step is denoted by

A B,C égc (A,B,C)f. c is called its input clause, and B is called the
selected atom of q. A derivation is obtained by iterating derivation steps. A



maximal sequence § := Q) :gé>p7c1 Q1 %p@ - Qn 02"511’,0“1 Qny1 - of
derivation steps is called an SLD derivation of PU{Qo} provided that for every
step the standardization apart condition holds, i.e., the input clause employed at
each step is variable disjoint from the initial query @y and from the substitutions
and the input clauses used at earlier steps. If the program P is clear from the
context and the clauses ¢y, ..., Cpt1,. .. are irrelevant, then we drop the reference
to them. An SLD derivation in which at each step the leftmost atom is resolved

is called a LD derivation. Derivations can be finite or infinite. If § := Qg %p,cl

e %p,cn (), is a finite prefix of a derivation, also denoted § := Qo LN Q. with
6 =6;---0,, we say that J is a partial derivation of P U {Qo}. If 4 is maximal
and ends with the empty query then the restriction of 6 to the variables of @
is called its computed answer substitution (c.a.s., for short). The length of a
(partial) derivation d, denoted by len(d), is the number of derivation steps in 4.

We recall the notion of similar SLD derivations and some related properties.

Definition 1 (Similar Derivations). We say that two SLD derivations § and
0" are similar (§ ~ &') if (i) their initial queries are variants of each other; (ii)
they have the same length; (iii) for every derivation step, atoms in the same
positions are selected and the input clauses employed are variants of each other.

Lemma 2. Let 6 := @ SN Q2 be a partial SLD derivation of PU{Q1} and Q)

be a variant of Q1. Then, there ezists a partial SLD derivation ¢' := Q] N Q4
of PU{Q\} such that § and &' are similar.

Lemma 3. Consider two similar partial SLD derivations QL)Q’ and QLI)Q”.
Then Q8 and Q8" are variants of each other.

3 Basic Definitions

In this section we introduce the basic definitions we need: The ones of input-
consuming derivations and of the S-semantics. Then we introduce the concepts
of well- and nicely-moded programs.

Input-Consuming Derivations We start by recalling the notion of mode,
which is a function that labels as input or output the positions of each predicate
in order to indicate how the arguments of a predicate should be used.

Definition 4 (Mode). Consider an n-ary predicate symbol p. By a mode for
p we mean a function m, from {1,...,n} to {In, Out}.

If my,(i) = In (resp. Out), we say that ¢ is an input (resp. output) position
of p (with respect to m,). We assume that each predicate symbol has a unique
mode associated to it; multiple modes may be obtained by simply renaming the
predicates. We denote by In(Q) (resp. Out(Q)) the sequence of terms filling
in the input (resp. output) positions of (). Moreover, when writing an atom as
p(s,t), we are indicating with s the sequence of terms filling in its input positions



and with ¢ the sequence of terms filling in its output positions. The notion of
input-consuming derivation was introduced in [14] and is defined as follows.

Definition 5 (Input-Consuming).

— A derivation step A,B,C :9>c (A, B,C)0 is called input-consuming iff
In(B)# = In(B).

— A derivation is called input-consuming iff all its derivation steps are input-
COnsSuming.

Thus, a derivation step is input consuming if the corresponding mgu does
not affect the input positions of the selected atom. Clearly, because of this ad-
ditional restriction, there exist queries in which no atom is resolvable via an
input-consuming derivation step. In this case we say that the query suspends.

Ezample 6. Consider the following program REVERSE using an accumulator.

reverse(Xs,Ys) ¢ reverse.acc(Xs,Ys,[ 1).
reverse_acc([ 1,Ys,Y¥s).
reverse_acc([X|Xs],Ys,Zs) < reverse_acc(Xs,Ys, [X|Zs]).

When used for reversing a list, the natural mode for this program is? the follow-
ing one: reverse(In,Qut), reverse_acc(In,Qut,In). Consider now the query
reverse ([X1,X2],Zs). The following derivation is input-consuming.

reverse([X1,X2],Zs) = reverse_acc([X1,X2],Zs,[ 1) =
= reverse_acc([X2],Zs,[X1]) = reverse.acc([ 1,Zs,[X2,X1]) = O
As usual, [0 denotes the empty query. Notice also that a natural delay declaration
for this program would be

delay reverse(X,.) until nonvar(X).
delay reverse_acc(X,_,_) until nonvar (X).

Now, it is easy to see that for queries of the form reverse(t,X), where t is
any term and X any variable disjoint from t, the above delay declarations guar-
antee precisely that the resulting derivations are input-consuming (modulo ~).
Furthermore, for the same class of queries it holds that in any input-consuming
derivation the selected atom satisfies the above delay declarations. O

Delay declarations vs. input-consuming derivations As suggested in the
above example, and stated in the introduction, we believe that the concept of
input-consuming program allows one to model programs employing delay dec-
larations in a nice way: we claim that in most programs delay declarations are
used to enforce that the derivations are input-consuming (modulo ~). We have
addressed this topic already in [5]. We now borrow a couple of arguments from
it, and extend them.

2 The other possible modes are reverse (Out,In) (which is symmetric and equivalent
to the above one) and reverse(In,In) which might be used for checking if a list is
a palindrome.



Generally, delay declarations are employed to guarantee that the interpreter
will not use an “inappropriate” clause for resolving an atom (the other, perhaps
less prominent use of delay declarations is to ensure absence of runtime errors, we
don’t address this issue in this paper). In fact, if the interpreter always selected
the appropriate clause, by the independence from the selection rule one would
not have to worry about the order of the selection of the atoms in the query.
In practice, delay declarations prevent the selection of an atom until a certain
degree of instantiation is reached. This degree of instantiation ensures that the
atom is unifiable only with the heads of the “appropriate” clauses. In presence of
modes, we can reasonably assume that this degree of instantiation is the one of
the input positions. Now, take an atom p(s,t), that it is resolvable with a clause
¢ by means of an input-consuming derivation step. Then, for every instance s’
of s, we have that the atom p(s’,t) is as well resolvable with ¢ by means of
an input-consuming derivation step. Thus, no further instantiation of the input
positions of p(s,t) can rule out ¢ as a possible clause for resolving it, and ¢ must
then be one of the “appropriate” clauses for resolving p(s,t) and we can say that
p(s,t) is “sufficiently instantiated” in its input positions to be resolved with c.
On the other hand, following the same reasoning, if p(s,t) is resolvable with ¢
but not via an input-consuming derivation step, then there exists an instance
s' of s, such that p(s',t) is not resolvable with c. In this case we can say that
p(s,t) is not instantiated enough to know whether c is one of the “appropriate”
clauses for resolving it.

We conclude this section with a result stating that also when considering
input-consuming derivations, it is not restrictive to assume that all mgu’s used
in a derivation are relevant. The proof can be found in [7].

Lemma 7. Let p(s,t) and p(u,v) be two atoms. If there exists an mgu 0 of
p(s,t) and p(u,v) such that s6 = s then there exists a relevant mgu ¥ of p(s,t)
and p(u,v) such that s¥ = s.

From now on, we assume that all mgu’s used in the input-consuming deriva-
tion steps are relevant.

The S-semantics The aim of the S-semantics approach (see [8]) is modeling
the observable behaviors for a variety of logic languages. The observable we
consider here is the computed answer substitutions. The semantics is defined as
follows:

S(P)={p(x1,...,x,)0 | 1,..., 2, are distinct variables and
p(x1, ..., xy,) i)p O is an SLD derivation}.

This semantics enjoys all the valuable properties of the least Herbrand model.
Technically, the crucial difference is that in this setting an interpretation might
contain non-ground atoms. To present the main results on the S-semantics we
need to introduce two further concepts: Let P be a program, and I be a set of
atoms. The immediate consequence operator for the S-semantics is defined as:
TS(I)={HO|3H < BeP
3 C € I,renamed apart® wrt H, B
6 = mgu(B,C) }.



Moreover, a set of atoms [ is called an S-model of P if T§(I) C I. Falaschi et
al. [11] showed that TS is continuous on the lattice of term interpretations, that
is sets of possibly non-ground atoms, with the subset-ordering. They proved the
following:

— S(P) = least S-model of P =T§ 1 w.

Therefore, the S-semantics enjoys a declarative interpretation and a bottom-
up construction, just like the Herbrand one. In addition, we have that the S-
semantics reflects the observable behavior in terms of computed answer substi-
tutions, as shown by the following well-known result.

Theorem 8. [11] Let P be a program, A be a query, and 6 be a substitution.
The following statements are equivalent.

— There exists an SLD derivation ALPD, where AY ~ A6,
— There exists A" € S(P) (renamed apart wrt A), such that o0 = mgu(A, A')
and Ao ~ Af.

Let us see this semantics applied to the programs so far encountered.

S(APPEND) = { app([],X,X),
app([X1],X, [X11X1),
app([X1,X2],X, [X1,X2]X]1), }
S(REVERSE) = { reverse([1, [1),
reverse ([X1], [X1]),
reverse ([X1,X2], [X2,X1]),
reverse_acc([],X,X),
reverse_acc([X1],X, [X11X]1),
reverse_acc([X1,X2],X, [X2,X11X]), ... }.

Well and Nicely-Moded Programs Even in presence of modes, the S-
semantics does not reflect the operational behavior of input-consuming programs
(and thus of programs employing delay declarations). In fact, if we extend APPEND
by adding to it the clause q < app(X,Y,Z). we have that q belongs to the se-
mantics but the query q will not succeed (it suspends). In order to guarantee
that the semantics is fully abstract (wrt the computed answer substitutions)
we need to restrict the class of allowed programs and queries. To this end we
introduce the concepts of well-moded [10] and of nicely-moded programs.

Definition 9 (Well-Moded).
— A query p1(s1,t1),...,pn(8Sn,ty) is well-moded if for all i € [1,n]

i—1
Var(s;) C U Var(t;).
j=1

3 Here and in the sequel, when we write “C € I, renamed apart wrt some expression
e”, we naturally mean that I contains a set of atoms Cf1,...,C,, and that C is a
renaming of C1,...,C) such that C shares no variable with e and that two distinct
atoms of C share no variables with each other.



— A clause p(to, Snt1) < p1(81,t1),---,pn(Sn, tr) is well-moded if for all
i€l,n+1]

i—1
Var(s;) C U Var(t;).
=0

— A program is well-moded if all of its clauses are well-moded.

Thus a query is well-moded if every variable occurring in an input position
of an atom occurs in an output position of an earlier atom in the query. A clause
is well-moded if (1) every variable occurring in an input position of a body atom
occurs either in an input position of the head, or in an output position of an
earlier body atom; (2) every variable occurring in an output position of the head
occurs in an input position of the head, or in an output position of a body atom.

The concept of nicely-moded programs was first introduced by Chadha and
Plaisted [9].

Definition 10 (Nicely-Moded).

— A query p1(s1,t1),-.-,pn(Sn,tn) is called nicely-moded if ¢1,...,t, is a
linear sequence of terms and for all i € [1,n]

Var(s;) N U Var(t;) = 0.
j=i

— A clause p(so,to) < p1(s1,t1),...,Pn(Sn,trn) is nicely-moded if its body is
nicely-moded and

Var(sg) N U Var(t;) = 0.
j=1

— A program P is nicely-moded if all of its clauses are nicely-moded.

Note that an atomic query p(s,t) is nicely-moded if and only if ¢ is linear and
Var(s) N Var(t) = 0.

Ezample 11. Programs APPEND and REVERSE are both well- and nicely-moded.
Furthermore, Consider now the following program PALINDROME

palindrome(Xs) ¢ reverse(Xs,Xs).

Together with REVERSE. With the mode palindrome(In), this program is well-
moded but not nicely-moded (Xs occurs both in an input and in an output
position of the same body atom). Nevertheless, it becomes both well-moded
and nicely-moded if the adopted modes of REVERSE are the following ones:
reverse(In,In), reverse_.acc(In,In,In). a



4 Semantics of Input-Consuming Programs

In this section we are going to make the link between input-consuming program-
s, well- and nicely-moded programs and the S-semantics: We show that the
S-semantics of a program is compositional, correct and fully abstract also for
input-consuming programs, provided that the programs are well- and nicely-
moded and that only nicely-moded queries are considered.

Properties of Well-Moded Programs We start by demonstrating some im-
portant features of well-moded programs. For this, we need additional notations:
First, the following notion of renaming for a term t from [2] will be used.

Definition 12. A substitution 6 := {x1/y1,...,%n/yn} is called a renaming for
a term ¢ if Dom(6) C Var(t), v1,...,yn are different variables, and (Var(t) —
{z1,. .,z })N{y1,...,yn} =0 (6 does not introduce variables which occur in t
but are not in the domain of 0).

Observe that terms s and ¢ are variants iff there exists a renaming 6 for s such
that ¢ = sf. Then, we need the following: Let @ := p1(81,%1),-- ., pn(Sn,tr). We
define

— VIn*(Q) = U {z| z € Var(s;) and = ¢ U;;ll Var(t;)}

Thus, VIn*(Q) denotes the set of variables occurring in an input position of an
atom of ) but not occurring in an output position of an earlier atom. Note also
that if @ is well-moded then VIn*(Q) = 0.

We now need the following technical result concerning well-moded programs.
Because of lack of space, the proof is omitted, and can be found in [7].

Lemma 13. Let P be a well-moded program, @ be a query and § := @ AN Q'
be a partial LD derivation of PU{Q}. If 0)vin=(q) is a renaming for Q then §
is similar to an input-consuming partial (LD) derivation.

We can now prove our crucial result concerning well-moded programs. Basi-
cally, it states the correctness of the S-semantics for well-moded, input-consuming
programs. This can be regarded as “one half” of the main result we are going to
propose.

Proposition 14. Let P be a well-moded program, A be an atomic query and 6
be a substitution.

— If there exists A' € S(P) (renamed apart wrt A), and o = mgu(A, A') such
that
(i) In(A)o ~ In(A),
(i) Ao ~ A6,

— then there exists an input-consuming (LD) derivation ¢ := Ai>p|:l, such
that A9 =~ Af.



Proof. Let A" € S(P) (renamed apart wrt A) and o be such that the hypothesis
are satisfied. By Theorem 8, there exists a successful SLD derivation of PU {A}
with c.a.s. ¥ such that AY¥' ~ Af. By the Switching Lemma [2], there exists a
successful LD derivation ¢’ of P U {A} with c.a.s. ¥¥'. From the hypothesis, it
follows that 191 In(A) is a renaming for A. By Lemma 13, there exists an input-

consuming derivation A7 p similar to 0’. The thesis follows by Lemma 3. O

Properties of Nicely-Moded Programs Now, we need to establish some
properties of nicely-moded programs. First, we recall the following from [5, 6].

Lemma 15. Let the program P and the query @ be nicely moded. Let § :=

Q LN Q' be a partial input-consuming derivation of P U {Q}. Then, for all
z € Var(Q) and x ¢ Var(Out(Q)), =0 = z.

Note that if @ is nicely-moded then x € Var(Q) and z ¢ Var(Out(Q))
ifft z € VIn*(Q). Now, we can prove that the S-semantics is fully abstract for
input-consuming, nicely-moded programs and queries. This can be regarded as
the counterpart of Proposition 14.

Proposition 16. Let P be a nicely-moded program, A be a nicely-moded atomic
query and 0 be a substitution.

— If there exists an input-consuming SLD derivation ¢ := Ai)pD, such that
AV ~ Ab,

— then there exists A' € S(P) (renamed apart wrt A), and 0 = mgu(A, A"
such that
(i) In(A)o ~ In(A),
(i) Ao =~ Af.

Proof. By Theorem 8, there exist A’ € S(P) (renamed apart wrt A) and a
substitution o such that 0 = mgu(A, A’) and (ii) holds. Since ¢ is an input-
consuming derivation, by Lemma 15, it follows that ¥, (4) is a renaming for A.
Hence (i) follows by the hypothesis and (ii). |

Semantics of Input-Consuming Derivations We now put together the
above propositions and extend them compositionally to arbitrary (non-atomic)
queries. For this, we need the the following simple result.

Lemma 17. Let the program P be well and nicely-moded and the query @ be
nicely-moded. Then, there exists a well- and nicely-moded program P' and a
nicely-moded atomic query A such that the following statements are equivalent.

— There ezists an input-consuming successful derivation 6 of P U {Q} with
c.a.s. 6.

— There exists an input-consuming successful derivation §' of P' U {A} with
c.a.s. 6.



Proof. (sketch). This is done in a straightforward way by letting P’ be the pro-
gram PU {c: new(x,y) + Q} where x = VIn*(Q), y = Var(Out(Q)), new is
a fresh predicate symbol and A = new(x, y). O

We are now ready for the main result of this paper, which asserts that
the declarative semantics S(P) is compositional and fully abstract for input-
consuming programs, provided that programs are well- and nicely-moded and
that queries are nicely-moded.

Theorem 18. Let P be a well- and nicely-moded program, A be a nicely-moded
query and 0 be a substitution. The following statements are equivalent.

(i) There ezists an input-consuming derivation ALPEI, such that AY ~ A6.
(ii) There exists A' € S(P) (renamed apart wrt A), and 0 = mgu(A, A’) such
that
(a) 0|vm=(a) s a renaming for A,
(b) Ao ~ AS.

Proof. Tt follows immediately from Propositions 14, 16 and Lemma 17. O

Note that in case of an atomic query A := A, we might substitute condition
(a) above with the somewhat more attractive condition (a’) In(A)o =~ In(A).
Let us immediately see some examples.

Ezample 19.

— app([X,bl,Y,Z) has an input-consuming successful derivation, with c.a.s.
0 =~ {Z/[X,b|Y]}. This can be concluded by just looking at S(APPEND), from
the fact that A = app([X1,X2]1,X3,[X1,X2]1X3]) € S(P). Notice that
app([X,bl,Y,Z) is — in its input position — an instance of A.

— app (¥, [X,bl,Z) has no input-consuming successful derivations. This is be-
cause there is no A € S(P) such that In(app(Y, [X,b],Z) is an instance of A
in the input position. This actually implies that in presence of delay declara-
tions app (Y, [X,bl,Z) will eventually either deadlock or run into an infinite
derivation; we are going to talk more about this in the next section. O

Note that Theorem 18 holds also in the case that programs are permutation
well- and nicely-moded and queries are permutation nicely-moded [15], i.e., pro-
grams which would be well- and nicely-moded after a permutation of the atoms
in the bodies and queries which would be nicely-moded through a permutation
of their atoms.

Deadlock We now consider again programs employing delay declarations. An
important consequence of Theorem 18 is that when the delay declarations imply
that the derivations are input-consuming (modulo ~), then one can determine
from the model-theoretic semantics whether a query is bound to deadlock or not.
Let us establish some simple notation. In this section we assume that programs
are augmented with delay declarations, and we say that a derivation respects the
delay declarations iff every selected atom satisfies the delay declarations.



Notation 20. Let P be a program and A be a query.

— We say that PU{A} is input-consuming correct iff every SLD derivation
of PU{A} which respects the delay declarations is similar to an input-
consuming derivation.

— We say that P U { A} is input-consuming complete iff every input-consuming
derivation of P U { A} respects the delay declarations.

— We say that P U {A} is bound to deadlock if
(i) every SLD derivation of P U {A} which respects the delay declarations

either fails or deadlocks?, and
(ii) there exists at least one non-failing SLD derivation of P U {A} which
respects the delay declarations. O

For example, consider the program REVERSE (including delay declarations).

— REVERSE U reverse(s,Z) is input-consuming correct and complete provided
that Z is a variable disjoint from s.

Consider now the program APPEND augmented with the delay declaration d1 of
the introduction.

— APPEND U app(s,t,Z) is input-consuming correct and complete provided
that Z is a variable disjoint from the possibly non-ground terms s and t.

— Now, following up on Example 19, since APPEND U app([X,b],Y,Z) is input-
consuming complete, we can state that APPENDU app([X,b]l,Y,Z) is not
bound to deadlock.

In order to say something about the other query of Example 19 (app(Y, [X,b],Z))
we need a further reasoning: Consider for the moment the nicely-moded query
app(X,Y,Z). Since S(APPEND) contains instances of it, by Theorem 8, app(X,Y,Z)
has at least one successful SLD derivation. Thus, it does not fail. On the other
hand, every atom in S(APPEND) is in its input positions a proper instance of
app(X,Y,Z). Thus by Theorem 18, app(X,Y,Z) has no input-consuming suc-
cessful derivations. Therefore, since APPENDU app(X,Y,Z) is input-consuming
correct, we can state that app(X,Y,Z) either has an infinite input-consuming
derivation or it is bound to deadlock. This fact can be nicely combined with the
fact that APPEND is input-terminating [5]: i.e., all its input-consuming derivations
starting in a nicely-moded query are finite. In [5] we provided conditions which
guaranteed that a program is input-terminating; these conditions easily allow
one to show that APPEND in input-terminating. Because of this, we can conclude
that the query app(X,Y,Z) is bound to deadlock.
By simply formalizing this reasoning, we obtain the following.

Theorem 21. Let P be a well- and nicely-moded program, and A be nicely-
moded atomic query. If

% A derivation deadlocks if its last query contains no selectable atom, i.e., no atom
which satisfies the delay declarations



1. 3 B € §(P), such that A unifies with B,
2. ¥V B € S§(P), if A unifies with B, then In(A) is not an instance of In(B),
3. PU{A} is input-consuming-correct,

then A either has an infinite SLD derivation respecting the delay declarations or
1t s bound to deadlock.
If in addition P is input-terminating then A is bound to deadlock.

This result can be immediately generalized to non-atomic queries, as done for
our main result. Let us see more examples:

— APPEND U app(Y, [X,b],Z) either has an infinite derivation or it is bound to
deadlock.

— Since APPEND is input terminating, we have that APPEND U app (Y, [X,b],Z)
is bound to deadlock.

One might wonder why in order to talk about deadlock we went back to
programs using delay declarations. The crucial point here lies in the difference
between resolvability - via an input-consuming derivation step - (used in input-
consuming programs) and selectability (used in programs using delay declara-
tions). When resolvability does not reduce to selectability, we cannot talk about
(the usual definition of) deadlocking derivation. Consider the following program,
where all atom’s positions are moded as input.

p(X) <q(a). p(a). q(b).

The derivation starting in p(X) does not succeed, does not fail, but it also does
not deadlock in the usual sense: in fact, p(X) can be resolved with the first
clause, which however yields to failure. We can say that each input-consuming
SLD tree starting in p(X) is incomplete, as it contains a branch which cannot be
followed. In the moment that the program is input-consuming correct, we can
refer to the usual definition of deadlocking derivation.

Counterexamples The following examples demonstrate that the syntactic
restrictions used in Theorem 18 are necessary. Consider the following program.

pX,Y) < equal lists(X,Y), list_of_zeroes(Y).
equal lists([ 1,[ 1).

equal 1ists([HIT],[H|T’]) ¢~ equal_lists(T,T’).
list_of_zeroes([ ]).

list_of_zeroes([0]|T]) «+ list_of_zeroes(T).

With the modes: p(In,0Out),equal_lists(In,0Out),list_of _zeroes(Out).The
first clause is not nicely-moded because of the double occurrence of Y in the
body’s output positions. Here, there exists a successful input-consuming deriva-
tion starting in p([X1],Y), and producing the c.a.s. {X1/0, Y/[X1]}. Nevertheless,
there exists no corresponding A’ € S(P) (in fact, S(P)|, contains all and only
all the atoms of the form p(1ist0,1list0) where 1istO0 is a list containing only
zeroes). This shows that if the program is well-moded but not nicely-moded
then the implication (i) = (ii) in Theorem 18 does not hold. Now consider the
following program:



p(X) <+ 1list(Y), equal lists(X,Y).
equallists([ 1, [ 1).

equal lists([H|T],[HIT’]) < equal lists(T,T’).
list([ 1).

list ([HH|T]) < 1list(T).

With the modes p(In), equal_lists(In, In), list(Out). This program is
nicely-moded, but not well-moded: The variable HH in the output position of the
head occurs neither in an output position of the body nor in an input position
of the head. It is easy to check that there does not exist any successful input-
consuming derivation for the query p([a]); at the same time, p([X1]) € S(P).
Thus, if the program is nicely-moded but not well-moded then the implication
(ii) = (i) in Theorem 18 does not hold.

5 Concluding Remarks

We have shown that — under some syntactic restrictions — the S-semantics re-
flects the operational semantics also when programs are input-consuming. The S-
semantics is a denotational semantics which enjoys a model-theoretical reading.
The relevance of the results is due to the fact that input-consuming programs
often allow to model the behavior of programs employing delay declarations;
hence for a large part of programs employing dynamic scheduling there exists a
declarative semantics which is equivalent to the operational one.

As related work we want to mention Apt and Luitjes [3]. The crucial difference
with it is that in [3] conditions which ensure that the queries are deadlock-free are
employed. Under these circumstances the equivalence between the operational
and the Herbrand semantics follows. On the other hand, the class of queries we
consider here (the nicely-moded ones) includes many which would “deadlock”
(e.g., app(X,Y,Z)): Theorem 18 proves that in many cases one can tell by the
declarative semantics for instance if a query is “sufficiently instantiated” to yield
a success or if it is bound to deadlock.

Concerning the restrictiveness of the syntactic concepts we use here (well-
and nicely-moded programs and nicely-moded queries) we want to mention that
[4, 5] both contain mini-surveys of programs with the indication whether they
are well- and nicely-moded or not. From them, it appears that most “usual”
programs satisfy both definitions. It is important to stress that under this re-
striction one might still want to employ a dynamic selection rule. Consider for
instance a query of the form read_tokens (X), modify(X,Y), write_tokens(Y),
where the modes are read_tokens (Out),modify(In,Out),write_tokens(Out).
If read_tokens cannot read the input stream all at once, it makes sense that
modify and write_tokens be called in order to process and display the tokens
that are available, even if read_tokens has not finished reading the input. This
can be done by using dynamic scheduling, using either delay declarations or an
input-consuming resolution rule in order to avoid nontermination and inefficien-
cies.
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