
Automated Veri�cation of BehaviouralProperties of Prolog ProgramsB. Le Charlier1 and C. Lecl�ere1 and S. Rossi2 and A. Cortesi31 Institut d'Informatique, 21 rue Grandgagnage, B-5000 Namur, Belgiume-mail: fble,clcg@info.fundp.ac.be2 Dip. di Matematica, via Belzoni 7, 35131 Padova, Italye-mail: sabina@math.unipd.it3 Dip. di Matematica e Informatica, via Torino 155, 30173 Venezia, Italye-mail: cortesi@dsi.unive.itAbstract. Program veri�cation is a crucial issue in the �eld of programdevelopment, compilation and debugging. In this paper, we present ananalyser for Prolog which aims at verifying whether the execution of aprogram behaves according to a given speci�cation (behavioural assump-tions). The analyser is based on the methodology of abstract interpre-tation. A novel notion of abstract sequence is introduced, that includesan over-approximatimation of successful inputs (this is useful to detectmutual exclusion of clauses), and expresses size relation information be-tween successful inputs and the corresponding outputs, together withcardinality information in terms of input argument sizes.Keywords: Program Veri�cation, Static Analysis, Logic Programming, Prolog.1 IntroductionDeclarative languages have received great attention in the last years, as they al-low the programmer to focus on the description of the problem to be solved whileignoring low level implementation details. Nevertheless, the implementation ofdeclarative languages remains a delicate issue. Very often, languages include ad-ditional \impure" features which are intended to improve the e�ciency of theprograms but do not respect their declarative nature. This is what happens inlogic programmingwith Prolog, where a number of these \impure" features arise,e.g., the incomplete (depth-�rst) search rule, the non logical negation by failure,the non-logical test predicates like var, and the cut.Many static analysis techniques have been proposed in the literature to improveon this situation. Some analyses aim at optimizing programs automatically, re-lieving the programmer from using impure control features [8, 18]. Other analysesare designed to verify that a non declarative implementation of a program doesbehave according to its declarative meaning [6, 9]. These analyses may also beuseful to transform a �rst (declaratively but not operationally correct) versionof a program into a both declaratively and operationally correct program.In this paper, we describe an analyser for Prolog programs which aims atverifying whether the concrete execution of a program behaves according to a



given speci�cation consisting of a set of behavioural assumptions. The analyser isbased on the methodology of abstract interpretation [5, 14]: it can be seen as anonline approximation of (sets of) concrete program executions. However, insteadof performing a �xpoint computation, the analyser makes use of declarationson allowed program executions (behaviours) provided by the user. Therefore,the emphasis here is not on the analysis of substitution properties, like modes,sharing and types, that can be automatically inherited from previous works [14],but on the automatic veri�cation of assumptions like the number of solutions,or the size relations between input and output arguments.Our analyser is built upon the notion of abstract sequence [2, 3, 12]. Abstractsequences describe pairs h�; Si, where � is a substitution and S is the sequence ofanswer substitutions resulting from executing a program (a procedure, a clause,etc.) with input substitution �. In this paper, we revisit this notion so that� the new notion includes an over-approximatimation of successful inputs: thisis useful to detect mutual exclusion of clauses,� it allows to express size relation information between successful inputs andthe corresponding outputs,� it allows to express cardinality information in terms of input argument sizes.Basically, the new notion of abstract sequence is more \relational", since it mayrelate the number of solutions and the size of output terms to the size of inputterms in full generality. For instance, it may relate the input and output sizes ofthe same 4 term without requiring any invariance under instantiation.This paper presents the main features of our analyser which uses abstractsequences for computing non trivial information on size relations and cardinality.The interested reader may found more details and correctness proofs in [10]. Thepractical implementation of the analyser (which is still under progress) is basedon the generic system GAIA [14] and on the polyhedron library described in [19]to manipulate size information.The paper is organized as follows. Section 2 provides an overview of theanalyser. Section 3 recalls some basic concepts. Section 4 illustrates our domainof abstract sequences. Section 5 describes the analyser. Section 6 discusses theimplementation of two abstract operations. Section 7 concludes the paper.2 Overview of the AnalyserIn this section, we introduce the main functionalities of the analyser by discussinga simple example. Consider the Prolog procedure select/3 depicted below.select(X, L, LS):- L=[H|T], H=X, LS=T, list(T).select(X, L, LS):- L=[H|T], LS=[H|TS], select(X, T, TS).Declaratively, it de�nes a relation between three terms5 X, L, and LS that holds4 i.e., bound to the same program variable.5 We use roman letters to denote the values to which program variables are instanti-ated. Syntactic objects are denoted by typewriter characters.



if and only if the terms L and LS are lists and LS is obtained by removing oneoccurrence of X from L. Our analyser is not aimed at verifying this (informal)declarative speci�cation. Instead, it checks a number of operational propertieswhich ensure that the program execution of this program actually computes thespeci�ed relation, provided that the procedure is \declaratively" correct (andits operational speci�cation guarantees such correctness). We assume one par-ticular and reasonable class of input calls, i.e., calls such that X and LS aredistinct variables and L is any ground term (not necessarily a list). For this classof input calls, the user has to provide a description of the expected behaviourof the procedure by means of an abstract sequence B and a size expression se.The abstract sequence B is a tuple h�in ; �ref ; �out ; Eref out ; Esoli, where1. �in is an abstract substitution describing the above class of input calls;2. �ref is an abstract substitution describing an over approximation of thesuccessful input calls, i.e., those that produce at least one solution: in ourexample, �ref states that L is a non empty ground list;3. �out is an abstract substitution describing an over approximation of the setof outputs corresponding to the successful calls: in our example, �out statesthat X is a ground term and LS is a ground list;4. Eref out describes a relation between the size of the terms of a successfulcall and the size of the terms returned by the call: in our example, Eref outstates that the input length of L is equal to the output length of LS plus 1;5. Esol describes a relation between the size of the terms occurring in a suc-cessful call and the number of solutions returned by the call: in our example,Esol states that the number of solutions is equal to the input length of L.The size expression se is a positive integer expression over the formal parame-ters of the procedure denoting the size of the corresponding input terms; thisexpression must decrease strictly through recursive calls. In our example, se isequal to L representing the input length of L, denoted by jjLjj.Starting from B and se, the analyser computes a number of abstract se-quences, one for every pre�x of the body of every clause, one for every clause,and, �nally, one for the complete procedure. In our example, the analyser com-putes an abstract sequence B1 for the �rst clause, expressing that for the speci�edclass of input calls, the �rst clause succeeds if and only if L is a non empty list,and it succeeds exactly once. The derivation of this information is possible be-cause the analyser is able to detect that the uni�cation L=[H|T] succeeds if andonly if L is of the form [t1jt2] (not necessarily a list) and that both uni�cationsH=X and LS=T surely succeed since X and LS are free and do not share. B1 is ob-tained by combining this information with the abstract sequence that describesthe behaviour of the procedure list/1. The latter states that, for ground calls,the literal succeeds only for lists, and it succeeds exactly once.The second clause of select/3 is treated similarly. Only the recursive calldeserves a special treatment. First, the analyser infers that the recursive call willbe executed at most once and, in fact, exactly once when L is of the form [t1jt2].It also infers that X and TS are distinct variables and that T is ground and



strictly smaller than L with respect to the norm jj � jj. Thus, it can be assumedby induction that the recursive call satis�es the conditions provided by the userthrough the abstract sequence B. The analyser deduces that the recursive callsucceeds only if T is a non-empty list and that it returns a number of solutionsequal to the length of T. It also infers that X is ground and that TS is a groundlist whose size is the same as the size of T minus 1. Putting all pieces together,the analyser computes the abstract sequence B2 for the second clause, whichstates that the second clause succeeds only for a list L of at least two elementsand that the output size of LS is equal to the size of L minus 1, i.e., jjLjj � 1;moreover, the number of solution is also equal to jjLjj � 1.The last step for the analyser is to combine the abstract sequences B1 andB2 to get a new abstract sequence Bout describing the behaviour of the wholeprocedure. Once again, a careful analysis is necessary to get the most preciseresult. When L is a list of at least two elements, the �rst clause succeeds once andthe second one succeeds jjLjj � 1 times. Thus, the procedure succeeds jjLjj times.Otherwise, when the length of L is equal to 1, the second clause fails and the�rst one succeeds exactly once. Thus, in both cases the procedure succeeds jjLjjtimes. Hence, putting the abstract sequences B1 and B2 together, the analyseris able to reconstruct exactly the information provided by the user, which isautomatically veri�ed to be correct.3 PreliminariesThe reader is assumed to be familiar with the basic concepts of logic program-ming and abstract interpretation [5, 17]. We denote by T the set of all terms,and for any set of indices I, we denote by T I the set of all tuples of termshtiii2I . A size measure (or norm) is a function jj � jj : T ! N. Here, we refer tothe list-length measure de�ned for any term t by jjtjj = 1+ jjt2jj if t is of the form[t1jt2] and jjtjj = 0 otherwise. The disjoint union of two (possibly non disjoint)sets A and B is an arbitrarily set A + B in which the elements of A (resp. B)can be identi�ed. Formally,A+B is equipped with two injections functions inAand inB such that: for any set C and for any pair of functions fA : A! C andfB : B ! C, there exists a unique function f : A + B ! C with fA = f � inAand fB = f � inB (the symbol � is the usual function composition). We denotethe function f by fA + fB . For any set V , we denote by ExpV the set of allinteger linear expressions with variables in V . An element se 2 ExpfX1;:::;Xmgcan also be seen as a function from Nm to N. The value of se(hn1; : : : ; nmi) isobtained by evaluating the expression se where each Xi is replaced by ni.Programs are assumed to be normalized as follows. A (normalized) programP is a non empty set of procedures pr . A procedure is a non empty sequenceof clauses c. Each clause has the form h: �g where the head h is of the formp(X1; : : : ; Xn) and p is a predicate symbol of arity n, whereas the body g is apossibly empty sequence of literals. A literal l is either a built-in of the formXi1 = Xi2 , or a built-in of the form Xi1 = f(Xi2 ; : : : ; Xin) where f is a functorof arity n�1, or an atom p(Xi1 ; : : : ; Xin). The variables occurring in a literal are



all distinct; all clauses of a procedure have exactly the same head. We denote byP the set of all predicate symbols occurring in the program P . Variables usedin the clauses are called program variables and are denoted by X1; : : : ; Xi; : : :.A (program) substitution � is a �nite set fXi1=t1; : : : ; Xin=tng where vari-ables Xi1 ; : : : ; Xin are distinct program variables and the ti's are terms. Thedomain of �, denoted by dom(�), is the set of variables fXi1 ; : : : ; Xing. Vari-ables occurring in t1; : : : ; tn are taken from the set of standard variables which isdisjoint from the set of program variables. A standard substitution � is a substi-tution in the usual sense which only uses standard variables. The application ofa standard substitution � to a program substitution � = fXi1=t1; : : : ; Xin=tng isthe program substitution �� = fXi1=t1�; : : : ; Xin=tn�g. We say that �1 is moregeneral than �2, noted �2 � �1, i� there exists � such that �2 = �1�. mgu(t1; t2)denotes the set of standard substitutions that are a most general uni�er of t1and t2. The restriction of � to a set of variables D, denoted by �=D, is such thatdom(�=D) = D and Xi� = Xi(�=D), for all Xi 2 D. A (program) substitutionsequence S is a �nite sequence < �1; : : : ; �n > of (program) substitutions withthe same domain. We denote by < > the empty sequence and by Subst(S) theset of all substitutions in S. The symbol :: denotes the sequence concatenation.Our analyser refers to the concrete semantics of Prolog programs presentedin [13], which has been proven equivalent to Prolog operational semantics in [11].The concrete semantics for a program P is a total function from the set of pairsh�; pi, where p 2 P has arity n and dom(�) = fX1; : : : ; Xng, to the set of substi-tution sequences. The fact that h�; pi is mapped to the sequence S is denoted byh�; pi 7�! S. Here, this means that the execution of p(X1; : : : ; Xn)� terminatesand produces the (�nite, possibly empty) sequence of answer substitutions S.4 Abstract DomainsIn this section, we describe the abstract objects used by the analyser, namely,abstract substitutions, abstract sequences and behaviours.Abstract Substitutions. Our domain of abstract substitutions is an instantiationof the generic domain Pat(<) [4]. Here, we give only an informal presentation ofit and we refer the reader to our previous papers [14, 4] for more details.An abstract substitution � with domain fX1; : : : ; Xng describes a set of pro-gram substitutions with the same domain giving information not only about theterms to which X1; : : : ; Xn are bound, but also about some subterms of them.The terms described in � are denoted by indices from a set I. We say that � is anabstract substitution over I. The following properties of terms are captured: thepattern, which speci�es the main functor of a term as well as the subterms thatare its arguments; the mode (e.g., ground, var); the type (e.g., list); and thepossible sharing with other subterms. We donote by Cc(�) the set of all substi-tutions described by �, by ? the abstract substitution describing the empty set,i.e., Cc(?) = ;, and by DECOMP(�; �) the set of all tuples of terms htiii2I respect-ing the term properties described in � and such that � = fX1=ti1 ; : : : ; Xn=ting(if i1; : : : ; in denote the terms bound to X1; : : : ; Xn, respectively).



As an example, consider the abstract substitutions �in , �ref , �out informallydescribed in Section 2. They can be represented as follows. The terms bound tothe formal parameters X, L and LS are denoted by indices 1, 2 and 3, respectively,whereas the subterms of L in �ref and �out are denoted by indices 4 and 5, in�in : X1=var(1), X2=ground(2), X3=var(3), noshare(1; 3)�ref : X1=var(1), X2=[ground(4)jground list(5)](2), X3=var(3), noshare(1; 3)�out : X1=ground(1), X2=[ground(4)jground list(5)](2), X3=ground list(3)Abstract Sequences. We formally describe here our domain of abstract sequenceswhich is substantially more elaborate than the similar notion used in [12, 13]. Anabstract sequence B is a tuple h�in ; �ref ; �out ; Eref out ; Esoli. The �rst element�in is the input abstract substitution; �ref is a re�nement of �in approximatingthe set of concrete substitutions in Cc(�in ) that surely succeeds (i.e., whose exe-cution produces at least one result); �out approximates output information aboutvariable instantiation. Eref out represents size relations between the output andthe input arguments (we refer to �ref for the input) whereas Esol expresses thenumber of solutions in terms of the input argument sizes. The size componentsEref out and Esol are abstract objects representing tuples of natural numbers.In this paper, we assume that a size component E over a set of indices I isa system of linear equations and inequations over ExpI . It represents the set ofall tuples of natural numbers hniii2I 2NI which are solutions of E. We denoteby Cc(E) this set. In order to distinguish indices of I, considered as variables,from integer coe�cient and constants, when writing elements of ExpI , we wrapup each element i of I into the symbol sz(i). If f is a function from one setof indices to another one, such that f(i) = i0 and f(j) = j0, the expressionsz(f(i)) = sz(f(j)) + 1 stands for the syntactical equation sz(i0) = sz(j0) + 1.In the following de�nition, the symbol sol denotes a special index representingthe number of substitutions belonging to the approximated sequences.De�nition1 (Abstract Sequence). An abstract sequence B is either ? or a tupleof the form h�in ; �ref ; �out ; Eref out ; Esoli where� �in is an abstract substitution over Iin ;� �ref is an abstract substitution over Iref with dom(�ref ) = dom(�in ) andCc(�ref )�Cc(�in );� �out is an abstract substitution over Iout with dom(�out ) � dom(�in );� Eref out is a size component over Iref + Iout ;� Esol is a size component over Iref + fsolg;� for all �0 2 Cc(�out ), 9� 2 Cc(�ref ) such that �0=dom(�ref ) � �.The abstract sequence B represents the set of all pairs h�; Si, noted Cc(B), suchthat � 2 Cc(�in ), S is a sequence of substitutions with Subst(S) � Cc(�out ) and� if S 6=< > then � 2 Cc(�ref );� 8�0 2 Subst(S), if htiii2Iref 2DECOMP(�; �ref ) and hsiii2Iout 2DECOMP(�0; �out)then hjjtijjii2Iref + hjjsijjii2Iout 2 Cc(Eref out );



� if htiii2Iref 2 DECOMP(�; �ref ) then hjjtijjii2Iref + fsol 7! jSjg 2 Cc(Esol).Consider the abstract substitutions �in ; �ref , and �out described above whereIref = Iout = f1; 2; 3; 4;5g. Let inref : Iref ! Iref + Iout , inout : Iout !Iref + Iout and insol : Iref ! Iref + fsolg be injection functions. The behaviourfor the procedure select=3 described in Section 2 can be expressed in termsof the abstract sequence B = h�in ; �ref ; �out ; Eref out ; Esoli where Eref out =fsz(inref (2)) = sz(inout(3)) + 1g and Esol = fsol = sz(insol(2))g:Behaviours. A behaviour for a procedure is a formalization of its behaviouralproperties provided by the user. Formally, a behaviour Behp for a procedure p=nis a �nite set of pairs fhB1; se1i; : : : ; hBm; semig where for all k 2 f1: : : : ;mg,Bk = h�kin ; �kref ; �kout ; Ekref out ; Eksoli is an abstract sequence with dom(�kin ) =dom(�kref ) = dom(�kout ) = fX1; : : : ; Xng, and sek is a positive linear expressionfrom ExpfX1;:::;Xng. As an example, the behaviour for select=3 described inSection 2 is simply fhB; X2ig where B is the abstract sequence de�ned above.In the following, we assume that a set of behaviours SBeh for a program Pcontains exactly one behaviour Behp for each procedure name p 2 P.De�nition2 (Consistency). We say that a set of behaviours SBeh for a programP is consistent with respect to the concrete semantics of P i� for all p 2 P andhB; sei 2 Behp, the execution of the procedure p called with a substitution �described by the input of B terminates and h�; pi 7! S implies h�; Si 2 Cc(B).5 The AnalyserThe analyser follows the standard top-down veri�cation technique: for a givenprogram, it analyses each procedure; for each procedure, it analyses each clause;for each clause, it analyses each atom such that if an atom is a procedure call,then it looks up the behaviour to infer information about its execution. Thealgorithm of the analyser is depicted in the Appendix. We specify here its mainoperations. To simplify the presentation, we assume that programs contain nomutually recursive procedures. We discuss this point below.The analysis of a program P with a set of behaviours SBeh returns a booleanvalue success. If success is true, then the program satis�es the set of behavioursSBeh and, in particular, every procedure call (allowed by SBeh) terminates.Otherwise, if success is false then the analyser is not able to infer whether theprogram is correct with respect to the set of behaviours SBeh.The analyser computes the glb-closure of the set of behaviours SBeh through thefunction MAKE SAT. This is useful when analysing an atom which is a procedurecall: in that case, a look-up to such a set is performed. Formally, MAKE SAT(SBeh)returns a family sat = hsatpip2P of sets of abstract sequences such that for allp 2 P, satp is the smallest set containing fB j 9se : hB; sei 2 Behpg which isclosed under greatest lower bound. The results of the analysis of clauses in asame procedure are \concatenated" through the operation CONC (see Section 6).



The analysis of a clause c � p(X1; : : : ; Xn) : � l1; : : : ; ls: with respect tohB; sei 2 Behp consists in the following steps:1. extending the input substitution �in of B to an abstract sequence B0 on allthe variables in the clause through the operation EXTC;2. computing Bk from Bk�1 and lk (k 2 f1; : : : ; sg);3. restricting Bs to the variables in the head of c through the operation RESTRC.Each Bk is computed from Bk�1 and lk by1. restricting the domain of the output abstract substitution �out of Bk�1 tothe variables Xi1 ; : : : ; Xin of lk and renaming them into X1; : : : ; Xn throughthe operation RESTRG;2. executing the literal lk with �kinter which returns an abstract sequence Bkaux ;3. propagating this result on Bk�1 by computing Bk = EXTGS(lk; Bk�1; Bkaux ).The execution of lk with �kinter depends on the form of lk.1. If lk is a built-in of the form Xi1 = Xi2 then Bkaux = UNIF VAR(�kinter) (seeSection 6).2. If lk is of the form Xi1 = f(Xi2 ; : : : ; Xin) then Bkaux = UNIF FUNC(�kinter; f).This operation is de�ned similarly to the previous one.3. If lk is a non-recursive call q(Xi1 ; : : : ; Xim ) (i.e., q 6= p) then the analyserlooks at sat , the glb-closed set of behaviours, to �nd an abstract sequencegeneral enough to give information about this call.4. If lk is a recursive call p(Xi1 ; : : : ; Xin) then the analyser checks whether thesize of the arguments decreases through operation CHECK TERM(lk; Bk�1; se),i.e., it checks whether for all h�; Si 2 Cc(Bk�1) and for all �0 2 Subst (S),se(hkXi1�0k; : : : ; kXin�0ki) < se(hkX1�k; : : : ; kXn�ki):Mutual Recursion. Mutual recursion is treated by extending the termination testto all mutual recursive procedures (above, such a test is applied only to recursiveprocedures). Mutual recursive procedures are found out by a �rst-stage analy-sis which returns all pairs (hp;Bp; sepi; hq; Bq; seqi) with hBp; sepi 2 Behp andhBq ; seqi 2 Behq, describing possibly mutual recursive calls.Theorem3 (Correctness [10]). Let P be a program and SBeh be a set of be-haviours for P . The analyser called with P and SBeh as inputs returns a booleanvalue success as output such that if success is true, then SBeh is consistent withrespect to the concrete semantics of the program P .Proof. (sketch) In order to prove the theorem, we introduce the notion of pro-cedure call allowed by SBeh which is a tuple t = h�; B; se ; pi such that p 2 P,hB; sei 2 Behp and � is described by the input abstract substitution ofB. We alsointroduce a well-founded relation on the set of all the allowed procedure calls asfollows: for any allowed procedure calls t = h�; B; se ; pi and t0 = h�0; B0; se0; p0i,t < t0 i� either the procedure p0 is used in the de�nition of p or t0 is a (mutually)recursive call that may be reached during the execution of t. In the second case,



we also require that the \size" of �0 is (strictly) smaller than the \size" of �, i.e.,sep0 (hkXi1�0k; : : : ; kXim�0ki) < sep(hkX1�k; : : : ; kXn�ki).The proof is done by induction on the ordering on allowed procedure calls:we assume that SBeh correctly describes the executions of all procedure callst0 such that t0 < t and that these executions terminate and we prove that theexecution of t terminates and is correcly described by SBeh. 26 Abstract OperationsIn this section we describe the implementation of two main operations, namelyUNIF VAR and CONC. For a complete description of the operations used by theanalyser and the corresponding correctness proofs, the reader is referred to [10].Uni�cation Operation. The uni�cation operation UNIF VAR is used for executingbuilt-ins of the form Xi = Xj with an input abstract substitution �. It returnsan abstract sequence B0 = h�0in ; �0ref ; �0out ; E0ref out ; E0soli. The principle of theimplementation is the following: �rst, we (re)use the operation UNIF VARold [14]to compute the abstract result of the execution of Xi = Xj called with �; thenwe re�ne � to the set of � 2 Cc(�) for which the uni�cation succeeds throughoperation REFref ; �nally, we derive constraints between the input and argumentsizes as well as constraints on the number of solutions. Below, we state thespeci�cations of the operations UNIF VARold and REFref whereas we detail theimplementation of UNIF VAR.UNIF VARold(�) = h�out ; ss; sf ; tr ; U i. This operation is similar 6 to the one de-�ned in [14]. Given an abstract substitution � with dom(�) = fX1; X2g, itreturns an abstract substitution �out describing the uni�cation of X1� and X2�for all � 2 Cc(�); two boolean values ss and sf specifying whether sure success orsure failure can be inferred at the abstract level, a so-called structural mappingtr between the indices of � and the indices of �out representing correspondingterms before and after the uni�cation, and a set of indices U representing theset of terms in � whose norm is not a�ected by the instantiation.REFref (�1; �2; tr) = h�0; tr0i. This operation takes as inputs two abstract substi-tutions �1 and �2 and a structural mapping tr between the indices of �1 and �2.It re�nes the abstract substitution �1 by keeping substitutions in Cc(�1) thathave at least an instance in Cc(�2). It returns an abstract substitution �0 and astructural mapping tr0 between the indices of �0 and �2 such that �0 is at leastas precise as �1 and �k 2 Cc(�k) (k = 1; 2) with �2 � �1 implies �1 2 Cc(�0).UNIF VAR(�) = B0. Let � be an abstract substitution with dom(�) = fX1; X2gand h�out ; tr; ss; sf ; U i = UNIF VARold(�). B0 is de�ned as follows.6 Actually, the signature in [14] of this operation is UNIF VAR(�) = �0, as there wasno need there to export sure success/failure information. Adapting that de�nition toour purposes is straightforward (see [13]). That's why we call it simply UNIF VARold .



�0in = ��0out = �outh�0ref ; trref outi= h�0in ; tri if ssh?; undef i if sfREFref (�0in ; �0out ; tr) if :ss and :sfE0ref out = ? if sffsz(inref (i)) = sz(inout (trref out (i))) :i 2 tr in ref (U )g otherwiseE0sol = fsol = 1g if ss? if sff0 � sol ; sol � 1g if :ss and :sf .where tr in ref is a canonical inclusion, and the following commutative diagramis satis�ed by tr in ref , trref out and the injection functions inref and inout .U � I = I0in I 0ref I0outI0ref + I0out- -@@@@@R �����	trin ref trref outinref inoutThe accuracy of this operation may be improved in practice by using a reexecu-tion strategy [15]: we may repeatedly apply UNIF VARold and REFref to �0ref untilsure success or sure failure is inferred or �0ref stabilizes.Concatenation Operation. The concatenation operation CONC is the counterpartfor abstract sequences of the operation UNION, used in [14], which simply collectsinformation provided by two abstract substitutions into a single one. In fact,CONC di�ers from UNION only for the computation of the number of solutions toa procedure which is the sum of the numbers of solutions of its clauses, not an\upper bound" of them. To obtain a good precision, we detect mutual exclusionof clauses [2, 13] by computing the greatest lower bound of the �ref componentof the two abstract sequences. If it is ?, then the clauses are exclusive: in thiscase, we only collect the numbers of solutions of the two clauses. Otherwise, wecompute the sum of the numbers of solutions for the greatest lower bound only.The implementation of CONC uses special operations, namely tr>(E) and tr<(E),to manipulate size components (see [16]). If E is a size component over a set ofindices I and tr : I ! I0 is a (possibly partial) function, then tr>(E) returnsE0 over I0 such that (ni)i2I 2 Cc(E) and ni = n0tr(i) (8i 2 dom(tr)) imply(n0i)i2I0 2 Cc(E0). Analogously, if E is as above and tr : I 0 ! I, then tr<(E)returns E0 over I 0 such that (ni)i2I 2 Cc(E) and ntr(i) = n0i (8i 2 dom(tr))imply (n0i)i2I0 2 Cc(E0). The following auxiliary operations are also used.LUB(�1; �2) returns a triplet h�0; tr1; tr2i where �0 = �1 t �2 and trk are twostructural mappings between �0 and �k, i.e., trk : I0 ! Ik (k = 1; 2).



EXT LUB(�1; �2) is an extension of the previous operation returning an additionalboolean value st (standing for \strict union") such that st = true implies thatCc(�0) = Cc(�1) [Cc(�2).GLB(�1; �2) returns the triplet h�0; tr1; tr2i where �0 = �1 u �2 and trk are twostructural mappings between �k and �0, i.e., trk : Ik ! I0 (k = 1; 2).SUMsol(E1; E2) returns a size componentE0 satisfying the following relation: ifEk(k = 1; 2) are two size components over I+fsolg then E0 is a size component overover I + fsolg such that (nki )i2I+fsolg 2 Cc(Ek) (k = 1; 2), n1i = n2i = ni (i 2 I)and nsol = n1sol + n2sol imply (ni)i2I+fsolg 2 Cc(E0).Now we are in position to describe the implementation of CONC. Let Bk =h�in ; �kref ; �kout ; Ekref out ; Eksoli (k = 1; 2) be two abstract sequences. CONC(B1; B2)returns an abstract sequence B0 such that h�; S1i 2 Cc(B1) and h�; S2i 2 Cc(B2)imply h�; S1 :: S2i 2 Cc(B0). B0 can be implemented as follows7.�0in = �inh�0ref ; tr1ref ; tr2ref ; sti = EXT LUB(�1ref ; �2ref )h�0out ; tr1out ; tr2outi = LUB(�1out ; �2out)E0ref out = (tr1ref + tr1out)<(E1ref out) t (tr2ref + tr2out)<(E2ref out)E0sol = 8>>>>>>>>>>><>>>>>>>>>>>: (tr1ref + fsol 7! solg)<(E1sol)t(tr2ref + fsol 7! solg)<(E2sol)t(tr int + fsol 7! solg)<(SUMsol(E1sol ; E2sol )) if st(tr1ref + fsol 7! solg)<(E1sol)t(tr2ref + fsol 7! solg)<(E2sol)t(tr int + fsol 7! solg)<(SUMsol(E1sol ; E2sol ))ttr>sol(fsol = 0g) if :st :where h�int ; tr1int ; tr2inti = GLB(�1ref ; �2ref ), Eksol = (trkint + fsol 7! solg)>(Eksol)(k = 1; 2), trsol : fsolg ! I 0ref+fsolg is the canonical injection and the structuralmappings trkref , trkint , tr int satisfy the commutative diagram below.I0ref I2refI1ref IintQQQQs����3 QQQQs����3-tr2reftr1ref tr2inttr1inttr int7 The least upper bound operator t between (in)equation systems is implemented asconvex union (see [19]).
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A The Algorithm of the AnalyserThis appendix contains the implementation of the three main procedures of ouranalyser, namely analyse program, analyse procedure and analyse clause.PROCEDURE analyze program(P; SBeh) =success := truesat := MAKE SAT(SBeh)for all p 2 P; for all hB; sei 2 Behpsuccess := success ^ analyse procedure(p;B; se)return success.PROCEDURE analyze procedure(p;B; se) =for k := 1 to r dohsuccessk; Bki := analyze clause(ck; B; se)if there exists k 2 f1; : : : ; rg such that :successk;then success := falseelse Bout := CONC(B1; : : : ; Br)success := (Bout � B)return success :PROCEDURE analyze clause(c; B) =�in := input (B)B0 := EXTC(c; �in)for k := 1 to s do�kinter := RESTRG(lk; Bk�1)if lk � Xi1 = Xi2 then Bkaux := UNIF VAR(�kinter)if lk � Xi1 = f(Xi2 ; : : : ; Xim ) then Bkaux := UNIF FUNC(�kinter ; f)if lk � q(Xi1 ; : : : ; Xim) and q 6= p thenhBkaux ; successk i := LOOK UP(�kinter ; q; sat)if lk � p(Xi1 ; : : : ; Xim) thenhBkaux ; success0k i := LOOK UP(�kinter ; q; sat)successk := success 0k ^ CHECK TERM(lk; Bk�1; se)Bk := EXTGS(lk; Bk�1; Bkaux )if there exists k such thateither lk � q(Xi1 ; : : : ; Xim) ^ :successkor lk � p(Xi1 ; : : : ; Xin) ^ (:successk _ �kinter 6� �in)then success = falseelse success = true and Bout = RESTRC(c; Bs)returnhsuccess; Bouti:This article was processed using the LaTEX macro package with LLNCS style


