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Abstract. Program verification is a crucial issue in the field of program
development, compilation and debugging. In this paper, we present an
analyser for Prolog which aims at verifying whether the execution of a
program behaves according to a given specification (behavioural assump-
tions). The analyser is based on the methodology of abstract interpre-
tation. A novel notion of abstract sequence is introduced, that includes
an over-approximatimation of successful inputs (this is useful to detect
mutual exclusion of clauses), and expresses size relation information be-
tween successful inputs and the corresponding outputs, together with
cardinality information in terms of input argument sizes.
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1 Introduction

Declarative languages have received great attention in the last years, as they al-
low the programmer to focus on the description of the problem to be solved while
ignoring low level implementation details. Nevertheless, the implementation of
declarative languages remains a delicate issue. Very often, languages include ad-
ditional “impure” features which are intended to improve the efficiency of the
programs but do not respect their declarative nature. This is what happens in
logic programming with Prolog, where a number of these “impure” features arise,
e.g., the incomplete (depth-first) search rule, the non logical negation by failure,
the non-logical test predicates like var, and the cut.
Many static analysis techniques have been proposed in the literature to improve
on this situation. Some analyses aim at optimizing programs automatically, re-
lieving the programmer from using impure control features [8, 18]. Other analyses
are designed to verify that a non declarative implementation of a program does
behave according to its declarative meaning [6, 9]. These analyses may also be
useful to transform a first (declaratively but not operationally correct) version
of a program into a both declaratively and operationally correct program.

In this paper, we describe an analyser for Prolog programs which aims at
verifying whether the concrete execution of a program behaves according to a



given specification consisting of a set of behavioural assumptions. The analyser is
based on the methodology of abstract interpretation [5, 14]: it can be seen as an
online approximation of (sets of) concrete program executions. However, instead
of performing a fixpoint computation, the analyser makes use of declarations
on allowed program executions (behaviours) provided by the user. Therefore,
the emphasis here is not on the analysis of substitution properties, like modes,
sharing and types, that can be automatically inherited from previous works [14],
but on the automatic verification of assumptions like the number of solutions,
or the size relations between input and output arguments.

Our analyser is built upon the notion of abstract sequence [2, 3, 12]. Abstract
sequences describe pairs (#,.5), where @ is a substitution and S is the sequence of
answer substitutions resulting from executing a program (a procedure, a clause,
etc.) with input substitution @. In this paper, we revisit this notion so that

e the new notion includes an over-approximatimation of successful inputs: this
1s useful to detect mutual exclusion of clauses,

e it allows to express size relation information between successful inputs and
the corresponding outputs,

e it allows to express cardinality information in terms of input argument sizes.

Basically, the new notion of abstract sequence is more “relational”, since it may
relate the number of solutions and the size of output terms to the size of input
terms in full generality. For instance, it may relate the input and output sizes of
the same * term without requiring any invariance under instantiation.

This paper presents the main features of our analyser which uses abstract
sequences for computing non trivial information on size relations and cardinality.
The interested reader may found more details and correctness proofs in [10]. The
practical implementation of the analyser (which is still under progress) is based
on the generic system GAIA [14] and on the polyhedron library described in [19]
to manipulate size information.

The paper is organized as follows. Section 2 provides an overview of the
analyser. Section 3 recalls some basic concepts. Section 4 illustrates our domain
of abstract sequences. Section 5 describes the analyser. Section 6 discusses the
implementation of two abstract operations. Section 7 concludes the paper.

2 Overview of the Analyser

In this section, we introduce the main functionalities of the analyser by discussing
a simple example. Consider the Prolog procedure select/3 depicted below.

select(X, L, LS):- L=[HIT], H=X, LS=T, list(T).
select(X, L, LS):- L=[HIT], LS=[HITS], select(X, T, TS).

Declaratively, it defines a relation between three terms® X, L, and LS that holds

*ie., bound to the same program variable.
® We use roman letters to denote the values to which program variables are instanti-
ated. Syntactic objects are denoted by typewriter characters.



if and only if the terms L and LS are lists and LS 1s obtained by removing one
occurrence of X from L. Our analyser is not aimed at verifying this (informal)
declarative specification. Instead, it checks a number of operational properties
which ensure that the program execution of this program actually computes the
specified relation, provided that the procedure is “declaratively” correct (and
its operational specification guarantees such correctness). We assume one par-
ticular and reasonable class of input calls, i.e., calls such that X and LS are
distinct variables and L is any ground term (not necessarily a list). For this class
of input calls, the user has to provide a description of the expected behaviour
of the procedure by means of an abstract sequence B and a size expression se.
The abstract sequence B is a tuple {Bin, Bref, Bout, Eref_out; Esol), Where

1. B;n 1s an abstract substitution describing the above class of input calls;

2. Bre is an abstract substitution describing an over approximation of the
successful input calls, 1.e., those that produce at least one solution: in our
example, fr.; states that L is a non empty ground list;

3. Bout 18 an abstract substitution describing an over approximation of the set
of outputs corresponding to the successful calls: in our example, §,,; states
that X is a ground term and LS is a ground list;

4. Erer_ous describes a relation between the size of the terms of a successful
call and the size of the terms returned by the call: in our example, Eref _ous
states that the input length of L is equal to the output length of LS plus 1;

5. E,1 describes a relation between the size of the terms occurring in a suc-
cessful call and the number of solutions returned by the call: in our example,
FE,1 states that the number of solutions is equal to the input length of L.

The size expression se is a positive integer expression over the formal parame-
ters of the procedure denoting the size of the corresponding input terms; this
expression must decrease strictly through recursive calls. In our example, se is
equal to L representing the input length of L, denoted by | L|.

Starting from B and se, the analyser computes a number of abstract se-
quences, one for every prefix of the body of every clause, one for every clause,
and, finally, one for the complete procedure. In our example, the analyser com-
putes an abstract sequence Bj for the first clause, expressing that for the specified
class of input calls, the first clause succeeds if and only if L is a non empty list,
and 1t succeeds exactly once. The derivation of this information is possible be-
cause the analyser is able to detect that the unification L=[H|T] succeeds if and
only if L is of the form [t;]t2] (not necessarily a list) and that both unifications
H=X and LS=T surely succeed since X and LS are free and do not share. By is ob-
tained by combining this information with the abstract sequence that describes
the behaviour of the procedure 1ist/1. The latter states that, for ground calls,
the literal succeeds only for lists, and it succeeds exactly once.

The second clause of select/3 is treated similarly. Only the recursive call
deserves a special treatment. First, the analyser infers that the recursive call will
be executed at most once and, in fact, exactly once when L is of the form [ty |¢2].
It also infers that X and TS are distinct variables and that T is ground and



strictly smaller than L with respect to the norm | - ||. Thus, it can be assumed
by induction that the recursive call satisfies the conditions provided by the user
through the abstract sequence B. The analyser deduces that the recursive call
succeeds only if T is a non-empty list and that it returns a number of solutions
equal to the length of T. It also infers that X is ground and that TS is a ground
list whose size is the same as the size of T minus 1. Putting all pieces together,
the analyser computes the abstract sequence By for the second clause, which
states that the second clause succeeds only for a list L of at least two elements
and that the output size of LS is equal to the size of L minus 1, i.e., |L| — 1;
moreover, the number of solution is also equal to |L| — 1.

The last step for the analyser is to combine the abstract sequences B; and
By to get a new abstract sequence B,,; describing the behaviour of the whole
procedure. Once again, a careful analysis is necessary to get the most precise
result. When L is a list of at least two elements, the first clause succeeds once and
the second one succeeds |L| — 1 times. Thus, the procedure succeeds |L| times.
Otherwise, when the length of L is equal to 1, the second clause fails and the
first one succeeds exactly once. Thus, in both cases the procedure succeeds | L]
times. Hence, putting the abstract sequences B; and Bs together, the analyser
is able to reconstruct exactly the information provided by the user, which is
automatically verified to be correct.

3 Preliminaries

The reader is assumed to be familiar with the basic concepts of logic program-
ming and abstract interpretation [5, 17]. We denote by 7 the set of all terms,
and for any set of indices I, we denote by 77 the set of all tuples of terms
(tiYier. A size measure (or norm) is a function | - | : 7 — N. Here, we refer to
the list-length measure defined for any term ¢ by |[t| = 1+ |[¢2] if ¢ is of the form
[t1]t2] and |t] = 0 otherwise. The disjoint union of two (possibly non disjoint)
sets A and B is an arbitrarily set A + B in which the elements of A (resp. B)
can be identified. Formally, A + B is equipped with two injections functions in 4
and inpg such that: for any set (' and for any pair of functions f4 : A — C' and
fB : B — C, there exists a unique function f : A+ B — C with fu = foinga
and fp = f oinp (the symbol o is the usual function composition). We denote
the function f by fa + fp. For any set V, we denote by Expy the set of all
integer linear expressions with variables in V. An element se € Expix,  x.3
can also be seen as a function from N to N. The value of se({ny,...,nm)) is
obtained by evaluating the expression se where each X; is replaced by n;.
Programs are assumed to be normalized as follows. A (normalized) program
P is a non empty set of procedures pr. A procedure is a non empty sequence
of clauses ¢. Each clause has the form h: —¢ where the head h is of the form
p(X1,...,Xy) and p is a predicate symbol of arity n, whereas the body g is a
possibly empty sequence of literals. A literal [ is either a built-in of the form
X;, = Xi,, or a built-in of the form X;, = f(X,,...,X;,) where f is a functor

of arity n—1, or an atom p(X;,, ..., X;,). The variables occurring in a literal are



all distinct; all clauses of a procedure have exactly the same head. We denote by
P the set of all predicate symbols occurring in the program P. Variables used
in the clauses are called program vartables and are denoted by Xq,..., X;,....
A (program) substitution @ is a finite set {X;,/t1,..., X, /tn} where vari-
ables X;,,..., X;, are distinct program variables and the ;s are terms. The
domain of 0, denoted by dom(0), is the set of variables {X;,,..., X;, }. Vari-
ables occurring in 4, ..., t, are taken from the set of standard variables which is
disjoint from the set of program variables. A standard substitution o i1s a substi-
tution in the usual sense which only uses standard variables. The application of
a standard substitution o to a program substitution 8 = {X;, /t1,..., X;, [t} is
the program substitution fo = {X;, /t10, ..., X;, /tho}. We say that 6y is more
general than 0y, noted 62 < 6, iff there exists o such that 0, = 010. mgu(ty,t2)
denotes the set of standard substitutions that are a most general unifier of #;
and t5. The restriction of 0 to a set of variables D, denoted by ,p, is such that
dom(0/p) = D and X;0 = X;(0/p), for all X; € D. A (program) substitution
sequence S is a finite sequence < f1,...,0, > of (program) substitutions with
the same domain. We denote by < > the empty sequence and by Subst(S) the
set of all substitutions in .S. The symbol :: denotes the sequence concatenation.
Our analyser refers to the concrete semantics of Prolog programs presented
in [13], which has been proven equivalent to Prolog operational semantics in [11].
The concrete semantics for a program P is a total function from the set of pairs
(0, p), where p € P has arity n and dom(f#) = {X1,..., X, }, to the set of substi-
tution sequences. The fact that (#, p) is mapped to the sequence S is denoted by
(#,p) — S. Here, this means that the execution of p(Xy,..., X;,)0 terminates
and produces the (finite, possibly empty) sequence of answer substitutions S.

4 Abstract Domains

In this section, we describe the abstract objects used by the analyser, namely,
abstract substitutions, abstract sequences and behaviours.

Abstract Substitutions. Our domain of abstract substitutions is an instantiation
of the generic domain Pat(R) [4]. Here, we give only an informal presentation of
it and we refer the reader to our previous papers [14, 4] for more details.

An abstract substitution § with domain {X;,..., X, } describes a set of pro-
gram substitutions with the same domain giving information not only about the
terms to which Xi,..., X, are bound, but also about some subterms of them.
The terms described in § are denoted by indices from a set I. We say that 4 is an
abstract substitution over /. The following properties of terms are captured: the
pattern, which specifies the main functor of a term as well as the subterms that
are its arguments; the mode (e.g., ground, var); the type (e.g., list); and the
possible sharing with other subterms. We donote by Ce() the set of all substi-
tutions described by 3, by L the abstract substitution describing the empty set,
i.e., Cc(L) =0, and by DECOMP(f, 3) the set of all tuples of terms (¢;);¢ respect-
ing the term properties described in 8 and such that § = {Xy/t;,,..., X/t }
(if 41, ..., 4, denote the terms bound to Xy,..., X,,, respectively).



As an example, consider the abstract substitutions 3, , Brer, fous informally
described in Section 2. They can be represented as follows. The terms bound to
the formal parameters X, L and LS are denoted by indices 1, 2 and 3, respectively,
whereas the subterms of L in 8,y and .4 are denoted by indices 4 and 5, in

Bin © Xq/var(1), Xo/ground(2), X3/var(3), noshare(1, 3)
Bref © Xq/var(1), Xo/[ground(4)|ground 1ist(5)](2), X3/var(3), noshare(1,3)
Bout : X1/ground(1), Xo/[ground(4)|ground 1ist(5)](2), X3/ground 1ist(3)

Abstract Sequences. We formally describe here our domain of abstract sequences
which is substantially more elaborate than the similar notion used in [12, 13]. An
abstract sequence B is a tuple (Bin, Bref, Bout, Evef_out, Esor). The first element
Bin 1s the input abstract substitution; f,.; is a refinement of 3;, approximating
the set of concrete substitutions in Cc(;,) that surely succeeds (i.e., whose exe-
cution produces at least one result); Foy: approximates output information about
variable instantiation. Eer_ous Tepresents size relations between the output and
the input arguments (we refer to 3, for the input) whereas E,,; expresses the
number of solutions in terms of the input argument sizes. The size components
Frep_out and FEgo; are abstract objects representing tuples of natural numbers.

In this paper, we assume that a size component F over a set of indices I is
a system of linear equations and inequations over Exp;. It represents the set of
all tuples of natural numbers (n;);cr € N7 which are solutions of E. We denote
by Ce(E) this set. In order to distinguish indices of I, considered as variables,
from integer coefficient and constants, when writing elements of Exp;, we wrap
up each element ¢ of I into the symbol sz(¢). If f is a function from one set
of indices to another one, such that f(i) = ¢ and f(j) = j/, the expression
sz(f(7)) = sz(f(Jj)) + 1 stands for the syntactical equation sz(i') = sz(j') + 1.

In the following definition, the symbol sol denotes a special index representing
the number of substitutions belonging to the approximated sequences.

Definition1 (Abstract Sequence). An abstract sequence B is either L or a tuple
of the form <6m ) Brefa Bouta Eref_outa Esol> where

e (., 1s an abstract substitution over I;;;

o (o is an abstract substitution over I..; with dom(fF,er) = dom(f;,) and
CC(Bref) g CC(Bm)a

Bout is an abstract substitution over I,y with dom(Bouz) 2O dom(Bin);
Fref_out 15 a size component over lro; + Ious;

Eop is a size component over ¢ + {sol};

for all 6 € Ce(Bour), 30 € Ce(Brep) such that H;dom(ﬁmf) <40.

The abstract sequence B represents the set of all pairs {(#,.S), noted Ce(B), such
that @ € Ce(Bin), S is a sequence of substitutions with Subst(S) C Ce(SBour) and

o if S #< > then 6 € Ce(fBref);
o VO € Subst(S), if (ti)iefref E€DECOMP(6, Brer ) and (s;)ier
then <||tl||>ZEI + <||5i||>i610ut € CC(Eref_out);

EDECOMP(0', Bout)

out

ref



o if <ti>iEIref € DECOMP(G,ﬁTef) then <||tl||>lej + {sol — |S|} € CC(ESOI).

ref
Consider the abstract substitutions &, Brer, and B,y described above where
Iref = Ioy = {1a2a3a4a5}~ Let inref : Iref - Iref + Lout, Mour © Tour —
Iet + Lout and ingo1 : Lrep — Lres + {s0l} be injection functions. The behaviour
for the procedure select/3 described in Section 2 can be expressed in terms
of the abstract sequence B = (Bin, Bref, Bouts Eref_out, Esot) Where Eref our =

{82(inref(2)) = s2(in,ut(3)) + 1} and Eso = {s0l = sz(in..i(2))}.

Behaviours. A behaviour for a procedure is a formalization of its behavioural
properties provided by the user. Formally, a behaviour Beh,, for a procedure p/n
is a finite set of pairs {{B1, se1),...,(Bm, sem)} where for all & € {1....,m},
B = (B%,, Zfef, k EF E* ) is an abstract sequence with dom(8E,) =

out» “ref _out? mn
dom( fef) = dom(pB%,,) = {X1,..., X,,}, and sey, is a positive linear expression

from Expx,  x,}- As an example, the behaviour for select/3 described in
Section 2 is simply {(B,X5)} where B is the abstract sequence defined above.
In the following, we assume that a set of behaviours SBeh for a program P
contains exactly one behaviour Beh, for each procedure name p € P.

Definition 2 (Consistency). We say that a set of behaviours SBeh for a program
P is consistent with respect to the concrete semantics of P iff for all p € P and
(B, se) € Beh,, the execution of the procedure p called with a substitution
described by the input of B terminates and (6, p) — S implies (4, S} € Cc(B).

5 The Analyser

The analyser follows the standard top-down verification technique: for a given
program, it analyses each procedure; for each procedure, it analyses each clause;
for each clause, it analyses each atom such that if an atom is a procedure call,
then it looks up the behaviour to infer information about its execution. The
algorithm of the analyser is depicted in the Appendix. We specify here its main
operations. To simplify the presentation, we assume that programs contain no
mutually recursive procedures. We discuss this point below.

The analysis of a program P with a set of behaviours SBeh returns a boolean
value success. If success is true, then the program satisfies the set of behaviours
SBeh and, in particular, every procedure call (allowed by SBeh) terminates.
Otherwise, if success i1s false then the analyser is not able to infer whether the
program is correct with respect to the set of behaviours SBeh.

The analyser computes the glb-closure of the set of behaviours SBeh through the
function MAKE_SAT. This is useful when analysing an atom which is a procedure
call: in that case, a look-up to such a set is performed. Formally, MAKE_SAT(SBeh)
returns a family sat = (satp)pep of sets of abstract sequences such that for all
p € P, sat, is the smallest set containing {B | 3se : (B, se) € Beh,} which is
closed under greatest lower bound. The results of the analysis of clauses in a
same procedure are “concatenated” through the operation CONC (see Section 6).



The analysis of a clause ¢ = p(X1,...,X,) : — l,...,{;. with respect to
(B, se) € Beh,, consists in the following steps:

1. extending the input substitution 3;, of B to an abstract sequence By on all
the variables in the clause through the operation EXTC;

2. computing By from Bj_1 and i, (k€ {1,...,s});

3. restricting B; to the variables in the head of ¢ through the operation RESTRC.

Each By is computed from Bi_; and [ by

1. restricting the domain of the output abstract substitution By of Br_1 to
the variables X;,, ..., X;, ofl; and renaming them into X1, ..., X,, through
the operation RESTRG;

2. executing the literal [y with 8%, which returns an abstract sequence B

3. propagating this result on By_; by computing By, = EXTGS(l;, By_1, B%

in

k.
auz)
aux)'

The execution of {3 with 8,,., depends on the form of /.

L. If [y is a built-in of the form X;, = X;, then B%, = UNIF_VAR(BE,.,) (see
Section 6).

2. If i is of the form X;, = f(X,,,..., X;,) then B
This operation is defined similarly to the previous one.

3. If I} is a non-recursive call ¢(X;,,..., X; ) (i.e., ¢ # p) then the analyser
looks at sat, the glb-closed set of behaviours, to find an abstract sequence
general enough to give information about this call.

4. If I, is a recursive call p(X;,, ..., X;,) then the analyser checks whether the
size of the arguments decreases through operation CHECK_TERM({j,, By_1, se),
i.e., it checks whether for all {6, S} € Cc(Bj—1) and for all §' € Subst(S),
se({1Xer @1l -, 1Xs, 1)) < eI, . [1Xn61).

= UNIF FUNC(3¥ ).

inter

Mutual Recursion. Mutual recursion is treated by extending the termination test
to all mutual recursive procedures (above, such a test is applied only to recursive
procedures). Mutual recursive procedures are found out by a first-stage analy-
sis which returns all pairs ({(p, By, sep), (¢, By, se4)) with (B, se,) € Beh, and
(By, seq) € Behy, describing possibly mutual recursive calls.

Theorem 3 (Correctness [10]). Let P be a program and SBeh be a set of be-
haviours for P. The analyser called with P and SBeh as inputs returns a boolean
value success as output such that if success s true, then SBeh is consistent with
respect to the concrete semantics of the program P.

Proof. (sketch) In order to prove the theorem, we introduce the notion of pro-
cedure call allowed by SBeh which is a tuple ¢ = (0, B, se, p) such that p € P,
(B, se) € Beh, and @ is described by the input abstract substitution of B. We also
introduce a well-founded relation on the set of all the allowed procedure calls as
follows: for any allowed procedure calls ¢ = (6, B, se,p) and t' = (¢, B, se’, p'),
t <t iff either the procedure p’ is used in the definition of p or ¢’ is a (mutually)
recursive call that may be reached during the execution of ¢. In the second case,



we also require that the “size” of ¢’ is (strictly) smaller than the “size” of 4, i.e.,
sepr (X0l . X0, 0(1) < sep (X0, . [Xa01).

The proof is done by induction on the ordering on allowed procedure calls:
we assume that SBeh correctly describes the executions of all procedure calls
t’ such that ¢ < t and that these executions terminate and we prove that the
execution of ¢ terminates and is correcly described by SBeh. O

6 Abstract Operations

In this section we describe the implementation of two main operations, namely
UNIF_VAR and CONC. For a complete description of the operations used by the
analyser and the corresponding correctness proofs, the reader is referred to [10].

Unification Operation. The unification operation UNIF_VAR is used for executing
built-ins of the form X; = X; with an input abstract substitution 5. It returns
an abstract sequence B’ = (3., ;ef, gut,Eief_out,E;Ol). The principle of the
implementation is the following: first, we (re)use the operation UNIF VAR, ;4 [14]
to compute the abstract result of the execution of X; = X; called with @; then
we refine § to the set of § € Ce(B3) for which the unification succeeds through
operation REF,.r; finally, we derive constraints between the input and argument
sizes as well as constraints on the number of solutions. Below, we state the
specifications of the operations UNIF VAR, and REF,.;; whereas we detail the

implementation of UNIF_VAR.

UNIF VAR 4(8) = (Bout, ss, sf, tr, U). This operation is similar ¢ to the one de-
fined in [14]. Given an abstract substitution f with dom(8) = {X1, X3}, it
returns an abstract substitution 3,,; describing the unification of X768 and X268
forall @ € Ce(B); two boolean values ss and sf specifying whether sure success or
sure failure can be inferred at the abstract level, a so-called structural mapping
tr between the indices of 7 and the indices of 3,y representing corresponding
terms before and after the unification, and a set of indices U representing the
set of terms in @ whose norm is not affected by the instantiation.

REF e (1, B2, tr) = (', tr'). This operation takes as inputs two abstract substi-
tutions 41 and f; and a structural mapping {r between the indices of 5y and 5.
It refines the abstract substitution 51 by keeping substitutions in Ce¢(51) that
have at least an instance in Ce¢(32). It returns an abstract substitution 5" and a

structural mapping ¢r’ between the indices of @ and 3, such that 3’ is at least
as precise as 81 and 0 € Ce(f5r) (k= 1,2) with 02 < 6y implies 6, € Ce(f).

UNIF VAR(S) = B’. Let 5 be an abstract substitution with dom(8) = {X1, X2}
and (Boue, tr, ss, sf, U) = UNIF VAR, q(5). B’ is defined as follows.

® Actually, the signature in [14] of this operation is UNIF_VAR(B) = ', as there was
no need there to export sure success/failure information. Adapting that definition to
our purposes is straightforward (see [13]). That’s why we call it simply UNIF_VAR,;4.



in o

ﬁ)ut = Bout
<6;~efa trref_out> = <6;n’ t?”) if ss
(L, undef) if sf
REFTef (Bgn ’ Bguta t?”) lf 88 and —|5f
;“ef_out =1 if Sf
{82(inref (1)) = 82(10 out (Trref _out (1)) -
i€ tin_rer(U)} otherwise
E = {sol =1} if ss
L if sf
{0 < sol, sol < 1} if =ss and —sf.

where tr;,_rer 15 a canonical inclusion, and the following commutative diagram
is satisfied by r;n_rer, t7ref_ous and the injection functions in,.; and i oy:.

trref_out

trin_ref
I;‘ef Ii)ut

Uvci=r,

MNyef inout

I;‘ef + Ii)ut

The accuracy of this operation may be improved in practice by using a reexecu-
tion strategy [15]: we may repeatedly apply UNIF_VAR,;4 and REF,¢; to ﬁ;ef until
sure success or sure failure is inferred or ﬁ;ef stabilizes.

Concatenation Operation. The concatenation operation CONC is the counterpart
for abstract sequences of the operation UNION, used in [14], which simply collects
information provided by two abstract substitutions into a single one. In fact,
CONC differs from UNION only for the computation of the number of solutions to
a procedure which is the sum of the numbers of solutions of its clauses, not an
“upper bound” of them. To obtain a good precision, we detect mutual exclusion
of clauses [2, 13] by computing the greatest lower bound of the #,.; component
of the two abstract sequences. If it is L, then the clauses are exclusive: in this
case, we only collect the numbers of solutions of the two clauses. Otherwise, we
compute the sum of the numbers of solutions for the greatest lower bound only.
The implementation of CONC uses special operations, namely ¢r” (E) and tr<(E),
to manipulate size components (see [16]). If E is a size component over a set of
indices I and ¢r : I — I’ is a (possibly partial) function, then ¢r>(E) returns
E' over I' such that (n;);er € Ce(E) and n; = n’”(i) (Vi € dom(ir)) imply
(n})ier € Ce(F’). Analogously, if F is as above and 4r : I’ — I, then {r<(F)
returns £’ over I’ such that (n;)ier € Cc(F) and nyy = ni (Vi € dom(tr))
imply (nf)serr € Ce(E'). The following auxiliary operations are also used.

LUB(f31, f2) returns a triplet (3, try, {ra) where 5/ = 1 U 82 and trp are two
structural mappings between 5" and 8y, i.e., try : I' — I, (k= 1,2).



EXT_LUB(f1, f2) is an extension of the previous operation returning an additional
boolean value st (standing for “strict union”) such that st = true implies that

06(6/) = 06(61) U Cc(ﬁz)

GLB(f1, B=2) returns the triplet (', try, tra) where 5/ = 51 M Gy and {ry are two
structural mappings between 5y and @ ie., try : I, — I' (k=1,2).

SUM,,i( B, E2) returns asize component B’ satisfying the following relation: if £y,
(k = 1,2) are two size components over I+{sol} then E’ is a size component over
over I + {sol} such that (nf)icri{son € Cc(Ey) (k=1,2),nf =nf=n; (i € 1)
and ngo1 = nt,; +n?,, imply (ni)ier4{sory € Cc(E').

Now we are in position to describe the implementation of CONC. Let By =
(@n,ﬁ’ﬁef, Cuts Eref outs EED) (k= 1,2) be two abstract sequences. CONC(By, Bs)
returns an abstract sequence B’ such that (#,51) € Cc(B;) and (8, S2) € Cc(B2)
imply (4, 5] :: S2) € Ce(B'). B’ can be implemented as follows”.

Qn = Pin
< ref’ trref’ trref’ 5t> - EXT‘LUB(BTEf’ 6ref)
< out) trout’ trout) - LUB( out) out)

E;‘ef out — (trref + trout) (E}"ef out) (trief + tr?)ut)<(E%ef_out)

(trref + {501 = 501}) ( sol)l—l
(trref + {501 = 501}) ( sol)l—l if st

(trmt + {501 e 501}) (SUMSOI(ESOI’ Esol))
E/

sol ref + {501 e 501}) ( sol)l—l
ref + {501 = 501}) ( sol)l—l
Tint + {501 = 501}) (SUMSOI(ESOI’ Esol))

sol({SOI - 0})

r
r .
if —st.

(trL
(tr2
(1
ir

where <6mt’ trmt’ trmt) - GLB( ref) %ef)’ Ffol = (trmt + {501 = 501}) ( sol)
(k=1,2), treor : {sol} — I],;+{sol} is the canonical injection and the structural

mappings tr’ﬁef, trk . 4P satisfy the commutative diagram below.

AN
trmt
ref mt
2
% %:
ref

" The least upper bound operator U between (in)equation systems is implemented as

convex union (see [19]).



7 Conclusion

The analyser presented in this paper may apply to any kind of Prolog program
(without dynamic predicates such as assert and retract). To cite some of
its applications, it could be integrated in a programming environment to check
correctness of Prolog programs and/or to derive efficient Prolog programs from
purely logic descriptions. In particular, it may be integrated in the FOLON en-
vironment [6, 9] which was developed for supporting the automatable aspects
of Deville’s methodology for logic program construction [7]. Our system could
support the automatable aspects of other works on verification, e.g., [1]. More-
over, since the information provided by the user is certified by the system, it can
be used by a compiler to optimize the object code. Finally, since it may verify
precise relations between the size of the arguments and the number of solutions
to a procedure, it can be used as a basis for an automatic complexity analysis.
This is the main topic of future work.
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A The Algorithm of the Analyser

This appendix contains the implementation of the three main procedures of our
analyser, namely analyse_program, analyse procedure and analyse_clause.

PROCEDURE analyze_program(P, SBeh) =
success := true
sat := MAKE SAT(SBeh)
for all p€ P, for all (B,se) € Beh,
success 1= success N\ analyse_procedure(p, B, 56)
return success.

PROCEDURE analyze procedure(p, B, se) =

for k:=1 to r do
(successy, By) := analyze_clause(cy, B, se)

if there exists k € {l,...,r} such that —successg,
then success := false
else B,y := CONC(By,...,B,)

success = (Boyr < B)
return success.

PROCEDURE analyze _clause(c, B) =
Bin = input(B)
By := EXTC(e, fin)
for k:=1 to s do
K rer = RESTRG(It, Br_1)
if I, = X;, = X;, then B¥ .= UNIF VAR(SY,.,)
if I, = X;, = f(Xi,,..., X;,, ) then BY .= UNIF FUNC(BF,,.,, f)
if Iy =¢(X5,,...,X;,) and ¢ # p then
(B ., successy) := LOOK_UP(BE .. . q, sat)
if I = p(Xil, cee Xim) then
(B, success;) := LOOK_UP(BE .. . q, sat)
successy = success;, A CHECK_TERM(!j, By_1, s¢)
By, := EXTGS(ly, Br_1, BY,.)
if there exists k such that
either [ = ¢(X;,,..., X, ) A "successy,
or Iy = p(Xiy, ..., Xi,) A (—successy V 35 ... £ Bin)
then success = false
else success = true and B,,; = RESTRC(c, B;)

return{success, Boyt).

This article was processed using the INTpX macro package with LLNCS style



