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ari di Veneziafbossi,fo
ardi,piazza,srossig�dsi.unive.itAbstra
t. Persistent BNDC (P BNDC for short) is an information-
ow se
urity property for pro
esses in dynami
 
ontexts, i.e., 
ontextsthat 
an be re
on�gured at runtime. We propose a method for transform-ing an arbitrary pro
ess into a pro
ess satisfying P BNDC and show thatthe transformation preserves the \low level" observational semanti
s fora large 
lass of pro
esses. We also study how to eÆ
iently verify P BNDCby exploiting a 
hara
terization of it through a suitable notion of weakbisimulation up to high level a
tions. We de�ne a se
ond transforma-tion over pro
esses whi
h allows us to redu
e the problem of 
he
kingP BNDC to the problem of testing a weak bisimulation between two pro-
esses. This approa
h is parti
ularly appealing as it allows us to performthe P BNDC 
he
k using already existing tools at a low time 
omplexity.1 Introdu
tionSystems are be
oming more and more 
omplex, and the se
urity 
ommunityhas to fa
e this by taking into a

ount new threats and potentially dangeroussituations. A signi�
ant example is the introdu
tion of pro
ess mobility amongdi�erent ar
hite
tures and systems. A mobile pro
ess moving on the network
olle
ts information about the environments it 
rosses, and su
h information
an in
uen
e it. A system or an appli
ation exe
uting in a \se
ure way" insideone environment 
ould �nd itself in a \inse
ure state" when moving to a di�erentenvironment. In this setting, one 
an abstra
tly think that the environment isdynami
ally re
on�gured at run-time, 
hanging in unpredi
table ways.A number of formal de�nitions of se
urity properties (see, for instan
e, [1,3, 5, 7, 13{15, 17, 20{22℄) has been proposed in the literature. Persistent BNDC(P BNDC, for short), proposed in [10℄, is a se
urity property whi
h is suitable toanalyze pro
esses in 
ompletely dynami
 hostile environments, i.e., environmentswhi
h 
an be dynami
ally re
on�gured at run-time, 
hanging in unpredi
tableways. The notion of P BNDC is based on the idea of Non-Interferen
e [11, 19,22℄ (formalized as BNDC [7℄) and requires that every state whi
h is rea
hable bythe system still satis�es a basi
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assured that even if the environment 
hanges during the exe
ution no mali
iousatta
ker will be able to 
ompromise the system, as every possible rea
hable stateis guaranteed to be se
ure. In [10℄ it is proved that the P BNDC property isequivalent to an already proposed se
urity property 
alled SBSNNI and studiedin [7℄. In parti
ular, the property SBSNNI is 
ompared with di�erent propertiesin the taxonomy of Non-Interferen
e properties [11℄. From the analysis presentedin [7℄ two important problems emerge: how to verify the P BNDC property andhow to 
onstru
t P BNDC pro
esses. The �rst problem has been 
onsidered in[10℄ where it has been shown to be de
idable, and in [9℄ where eÆ
ien
y issueshave also been ta
kled. To the best of our knowledge the se
ond problem hasnot been analyzed yet. In [7℄ there are many examples of pro
esses whi
h are notP BNDC but 
an be modi�ed in order to obtain a P BNDC pro
ess. Howeverea
h single example is treated in a di�erent way by applying ea
h time an \adho
" re-de�nition.Our purpose here is to �nd a general method for re
tifying non P BNDCpro
esses. It turns out that the method we suggest 
an be used both to re
tifyand to eÆ
iently verify the P BNDC property. We automati
ally transform apro
ess E into a P BNDC pro
ess E� and identify a large 
lass of pro
esses forwhi
h the transformation preserves the low level observational semanti
s, i.e., forthe low level user E and E� are not distinguishable. This transformation 
an beused to 
onstru
t \se
ure" pro
esses from a �rst possibly \inse
ure" de�nition.Moreover, this also allows us to give an alternative 
hara
terization of P BNDCthrough a suitable notion of weak bisimulation up to high level a
tions [10℄.More pre
isely, we obtain that a pro
ess E is P BNDC if and only if E and E�are weak bisimilar up to high level a
tions. The problem of verifying whethera pro
ess is P BNDC is then redu
ed to the problem of 
he
king whether Eand E� are weak bisimilar up to high level a
tions. We show that this problem
an be further simpli�ed redu
ing it to the problem of 
he
king the more usualnotion of weak bisimulation between two pro
esses. In parti
ular we de�ne ase
ond transformation over pro
esses su
h that the problem of 
he
king whethera pro
ess is P BNDC is redu
ed to the problem of testing a weak bisimulationrelation. This approa
h seems to be parti
ularly appealing as it allows us toperform the P BNDC 
he
k using already existing tools at a low time 
omplexity.The paper is organized as follows. In Se
tion 2 we present some basi
 notionson the SPA language, we introdu
e the P BNDC property and we re
all its
hara
terization in terms of weak bisimulation up to high level a
tions. In Se
tion3 we de�ne our �rst transformation and prove its main properties. In Se
tion 4 weintrodu
e a se
ond transformation and show how to use both our transformationsto 
he
k P BNDC. In Se
tion 5 we illustrate the usefulness of our transformationson a simple example. Finally, in Se
tion 6 we draw some 
on
lusions.2 Basi
 NotionsIn this se
tion we report from [7℄ the syntax and semanti
s of the Se
urity Pro-
ess Algebra together with the de�nition of the Non-Interferen
e property 
alled2



BNDC. We then report from [10℄ the de�nition of Persistent BNDC togetherwith the main result that we will exploit for the veri�
ation of su
h a property.The SPA Language. The Se
urity Pro
ess Algebra (SPA, for short) [7℄ is avariation of Milner's CCS [16℄, where the set of visible a
tions is partitionedinto high level a
tions and low level ones in order to spe
ify multilevel systems.SPA syntax is based on the same elements as CCS that is: a set L of visiblea
tions su
h that L = I [ O where I = fa; b; : : :g is a set of input a
tions andO = f�a;�b; : : :g is a set of output a
tions; a spe
ial a
tion � whi
h models internal
omputations, i.e., not visible outside the system; a 
omplementation fun
tion�� : L ! L, su
h that ��a = a, for all a 2 L, and �� = � ; A
t = L [ f�g is the setof all a
tions. The set of visible a
tions is partitioned into two sets, H and L,of high and low a
tions su
h that H = H and L = L. The syntax of SPA terms(or pro
esses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j Env j E[f ℄ j Zwhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�) and f(�) = � ,and Z is a 
onstant that must be asso
iated with a de�nition Z def= E.Intuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
ess that
an perform an a
tion a and then behaves as E; E1 + E2 represents the non-deterministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is the pa-rallel 
omposition of E1 and E2, where exe
utions are interleaved, possibly syn-
hronized on 
omplementary input/output a
tions, produ
ing an internal a
-tion � ; E n v is a pro
ess E prevented from performing a
tions in v; E[f ℄ isthe pro
ess E whose a
tions are renamed via the relabelling fun
tion f . Forthe de�nition of se
urity properties it is also useful the hiding operator, =, ofCSP whi
h 
an be de�ned as a relabelling as follows: for a given set v � L,E=v def= E[fv ℄ where fv(x) = x if x 62 v and fv(x) = � if x 2 v. In pra
ti
e, E=vturns all a
tions in v into internal � 's.Given a �xed language L we denote by E the set of all SPA pro
esses and byEH the set of all high level pro
esses, i.e., those 
onstru
ted on H [ f�g.The operational semanti
s of SPA agents is given in terms of Labelled Tran-sition Systems. A Labelled Transition System (LTS) is a triple (S;A;!) whereS is a set of states, A is a set of labels (a
tions), !� S � A � S is a setof labelled transitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2)means that the system 
an move from the state S1 to the state S2 through thea
tion a. The operational semanti
s of SPA is the LTS (E ;A
t ;!), where thestates are the terms of the algebra and the transition relation !� E �A
t � Eis de�ned by stru
tural indu
tion as the least relation generated by the infer-en
e rules reported in Fig. 1. The operational semanti
s for an agent E is thesubpart of the SPA LTS rea
hable from the initial state and we refer to it asLTS (E) = (SE ;A
t ;!). A pro
ess E is said to be �nite-state if SE is �nite.In [16℄ it is shown that a �nite-state pro
ess E 
an always be de�ned througha system S of equations of the formEj = a1:E1 + : : :+ an:En;3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restri
tion if a 62 vEnv a! E0nvE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0Constant if A def= EA a! E0Fig. 1. The operational rules for SPAsu
h that E1; : : : ; En 2 SE and there is one equation in S for ea
h Ej 2 SE .The 
on
ept of observation equivalen
e between two pro
esses is based onthe idea that two systems have the same semanti
s if and only if they 
annot bedistinguished by an external observer. This is obtained by de�ning an equiva-len
e relation over E . In the following, we report the de�nition of an observationequivalen
e 
alled weak bisimulation [16℄. Intuitively, weak bisimulation equatestwo pro
esses if they are able to mutually simulate their behavior step by step.Weak bisimulation does not 
are about internal � a
tions. So, when F simulatesan a
tion of E, it 
an also exe
ute some � a
tions before or after that a
tion.We will use the following auxiliary notations. If t = a1 � � � an 2 A
t� andE a1! � � � an! E0, then we write E t! E0. We also write E t=) E0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a (possibly empty) sequen
e of �labelled transitions. If t 2 A
t�, then t̂ 2 L� is the sequen
e gained by deletingall o

urren
es of � from t. As a 
onsequen
e, E â=) E0 stands for E a=) E0 ifa 2 L, and for E( �!)�E0 if a = � (note that �=) requires at least one � labelledtransition while �̂=) means zero or more � labelled transitions).De�nition 1 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,� if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 su
h that E â=) E0 and (E0; F 0) 2 R.4



Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R 
ontaining the pair (E;F ).� is the largest weak bisimulation and an equivalen
e relation (see [16℄).Se
urity Properties. In this se
tion, we re
all from [10℄ the Persistent BNDC(P BNDC, for short) se
urity property and its 
hara
terization in terms of weakbisimulation up to high level a
tions. We start by re
alling the de�nition ofBisimulation-based Non Dedu
ibility on Compositions (BNDC, for short) [7℄.The BNDC se
urity property aims at guaranteeing that no information 
ow fromthe high to the low level is possible, even in the presen
e of mali
ious pro
esses.The main motivation is to prote
t a system also from internal atta
ks, whi
h
ould be performed by the so 
alled Trojan Horse programs, i.e., programs thatpretend/appear to be honest but in
orporate some mali
ious 
ode.Property BNDC is based on the idea of 
he
king the system against allhigh level potential intera
tions, representing every possible high level mali
iousprogram. In parti
ular, a system E is BNDC if for every high level pro
ess � alow level user 
annot distinguish E from (Ej�), i.e., if � 
annot interfere [11℄with the low level exe
ution of the system E.De�nition 2 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; EnH � (Ej�)nH:In [10℄ it is shown that the BNDC property is not strong enough to analysesystems in dynami
 exe
ution environments. To deal with these situations, in[10℄ it has been introdu
ed the se
urity property named P BNDC. Intuitively, asystem E is P BNDC if it never rea
hes inse
ure states.De�nition 3 (Persistent BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 rea
hable from E; E0 2 BNDC :We give a simple example of a P BNDC pro
ess. A more expressive example
an be found in [10℄.Example 1. Consider the pro
ess E1 = l:h:j:0 + l:(�:j:0 + �:0) where l; j 2 Land h 2 H . E1 
an be proved to be BNDC . Indeed, the 
ausality betweenh and j in the �rst bran
h of the pro
ess is \hidden" by the se
ond bran
hl:(�:j:0 + �:0), whi
h may simulate all the possible intera
tions with a highlevel pro
ess. Suppose now that E1 is moved in the middle of a 
omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexe
uted). Now it is 
lear that this pro
ess is not se
ure, as a dire
t 
ausalitybetween h and j is present. In parti
ular h:j:0 is not BNDC and this giveseviden
e that E1 is not P BNDC. The pro
ess may be \repaired" as follows:E2 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.5



In [10℄ it has been proven that the property P BNDC is equivalent to these
urity property SBSNNI [6, 7℄, whi
h is automati
ally 
he
kable over �nite-state pro
esses.However, this property still requires a universal quanti�
ation over all thepossible states that are rea
hable from the initial pro
ess E. In [10℄ it has beenshown that this 
an be avoided, by in
luding the requirement of \being se
urein every state" dire
tly inside the bisimulation equivalen
e notion.In parti
ular, an observation equivalen
e, named weak bisimulation up to H ,is de�ned in su
h a way that a
tions from H may be ignored, i.e., they maybe mat
hed with zero or more � a
tions. This bisimulation notion is based ona suitable transition relation â=)nH whi
h does not take 
are of both internala
tions and a
tions from H .De�nition 4. Let E;E0 2 E and a 2 A
t. We de�ne the transition relationâ=)nH as follows:E â=)nH E0 = (E â=) E0 if a 62 HE a=) E0 or E �̂=) E0 if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used in thede�nition of weak bisimulation [16℄. In fa
t, if H = ;, then for all a 2 A
t ,E â=)nH E0 
oin
ides with E â=) E0.The 
on
ept of weak bisimulation up to H is de�ned as follows.De�nition 5 (Weak Bisimulation up to H). A binary relation R � E � Eover agents is a weak bisimulation up toH if (E;F ) 2 R implies, for all a 2 A
t,(1) if E a! E0, then there exists F 0 su
h that F â=)nH F 0 and (E0; F 0) 2 R;(2) if F a! F 0, then there exists E0 su
h that E â=)nH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up toH, written E �nH F , if (E;F ) 2R for some weak bisimulation R up to H.The relation�nH is the largest weak bisimulation up toH and it is an equivalen
erelation.In [10℄ it has been proved that P BNDC 
an be 
hara
terized in terms of�nH as follows.Theorem 1. Let E 2 E. Then, E 2 P BNDC i� E �nH EnH:3 De�ning P BNDC Pro
essesIn this se
tion we de�ne a transformation on pro
esses whi
h maps an arbitrarypro
ess into a P BNDC one. Moreover, we show that a pro
ess is P BNDC i�it is weak bisimilar up to H to its transformed version. In order to prove thisse
ond result we exploit some basi
 properties of weak bisimulation up to Hwhi
h are introdu
ed in Se
tion 3.1. 6



3.1 Basi
 Properties of �nHWe start by proving some properties of the relation �nH . A
tually the relation�nH enjoys the majority of the properties of the standard weak bisimulation.First of all �nH is 
oarser than �.Lemma 1. If E � F , then E �nH F .Proof. Let S = f(E;F ) j E � Fg: The binary relation S is a weak bisimulationup to H sin
e for all pro
esses E it holds that if E â=) E0, then E â=)nH E0. utThe relation �nH is 
ompositional with respe
t to the restri
tion on highlevel a
tions, as stated by the following lemma.Lemma 2. If E �nH F , then EnH �nH F nH.Proof. Let S = f(EnH;F nH) j E �nH Fg. It is easy to prove that S is a weakbisimulation up to H . utThe P BNDC 
lass of pro
esses is 
losed with respe
t to the equivalen
erelation of �nH .Lemma 3. Let E;F 2 E. If E �nH F and F 2 P BNDC, then E 2 P BNDC.Proof. If E �nH F , then we obtainE �nH F�nH F nH by Theorem 1�nH EnH by Lemma 2Hen
e, sin
e E �nH EnH , by Theorem 1 we obtain that E is P BNDC. utBy Lemma 1 and Lemma 3 it immediately follows that if E � F and F 2P BNDC , then E 2 P BNDC .Another useful property of P BNDC pro
esses is that restri
tion and hidingwith respe
t to high level a
tions yield weakly bisimilar pro
esses.Lemma 4. If E 2 P BNDC , then EnH � E=H.Proof. This is a 
onsequen
e of the fa
t that P BNDC is equivalent to theSBSNNI property [10℄ and SBSNNI implies that EnH � E=H [6, 7℄. ut3.2 The � 
ompletion of a pro
essNow we are ready to de�ne our �rst transformation over �nite-state pro
esseswhi
h maps a pro
ess E into a P BNDC pro
ess E� .De�nition 6 (� 
ompletion of E). Let E 2 E be one of the pro
esses de�nedby a system of equations S. The � 
ompletion of E is the pro
ess E� de�ned bythe system S� , where: 7



{ if F = 0 is in S, then F � = 0 is in S� ;{ if F =Pi2I li:Fi +Pj2J hj :Fj is in S, with li 2 L [ f�g and hj 2 H, thenF � =Pi2I li:F �i +Pj2J hj :F �j +Pj2J �:F �j is in S� .In pra
ti
e, the LTS asso
iated to E� 
an be obtained from the LTS of E bysimply adding a � edge whenever there is a transition with a label in H .Example 2. Consider the pro
ess E de�ned by the following system S:�E = h:F + l1:0F = l2:EUsing the above de�nition we obtain the pro
ess E� de�ned by�E� = h:F � + �:F � + l1:0F � = l2:E�The two LTS's for E and E� are depi
ted in Fig. 2. Di�erent edges betweenthe same nodes are represented in a 
ompa
t way with a single ar
 labeled by asequen
e of a
tions separated by 
ommas.
21

h

ll

h, τ

21 llFig. 2. The LTS's representing E and E�The following lemma formalizes the relations between E and E� , whi
h areat the basis of all the results in this se
tion.Lemma 5. Let E 2 E.1. if E� a! E0 with a 6= � , then there exists E1 su
h that E0 = E�1 and E a! E1;2. if E� �! E0, then there exists E1 su
h that E0 = E�1 and E k! E1 withk 2 H [ f�g;3. if E a! E1 with a 2 H [ L [ f�g, then E� a! E�1 ;4. if E� h! E0 with h 2 H, then E� �! E0.Proof. It immediately follows by De�nition 6. utThe di�eren
e between E and E� is that whenever E 
an perform a higha
tion, E� 
an silently simulate the same redu
tion, thus hiding the high levela
tions to the low level user. We prove that E� so de�ned is P BNDC .Theorem 2. For any pro
ess E 2 E, E� 2 P BNDC.8



Proof. Let S = f(E� ; E� nH) j E 2 Eg. It is easy to prove that S is a weakbisimulation up to H . The result follows by Theorem 1. utThe following lemma shows that E and E� behave in the same way if wehide the high level a
tions.Lemma 6. For any pro
ess E 2 E it holds that E=H � E�=H.Proof. Let S = f(E=H;E�=H) j E 2 Eg. By Lemma 5, it is easy to prove thatS is a weak bisimulation. utThe previous result is not suÆ
ient to guarantee that the transformationpreserves the semanti
s of the pro
ess, at least from the low level user pointof view. In fa
t, what the low level user 
an observe are the restri
tions EnHand E�nH . The following theorem identi�es the 
lass of pro
esses for whi
h thetransformation preserves the low level semanti
s.Theorem 3. Let E 2 E. EnH � E� nH i� EnH � E=H.Proof. If EnH � E� nH , thenEnH � E� nH by hypothesis� E�=H by Theorem 2 and Lemma 4� E=H by Lemma 6:If EnH � E=H , thenEnH � E=H by hypothesis� E�=H by Lemma 6� E� nH by Theorem 2 and Lemma 4: utThe pro
esses satisfying EnH � E=H are studied in [7℄ and form the 
lassof BSNNI pro
esses. In [7℄ it is also shown that the 
lass of P BNDC pro
esses(there 
alled SBSNNI ) is properly in
luded in the 
lass of BSNNI pro
esses.In a 
ertain sense we have the feeling that E� is a straight 
ompletion of Ein order to obtain a P BNDC pro
ess, and that if E is P BNDC then E mustbe not too far from (in strong 
onne
tion with) E� . In the rest of this se
tion westudy whi
h is this 
onne
tion. First, we show that P BNDC properly in
ludesthe 
lass of pro
esses whi
h are weakly bisimilar to their � 
ompletion and it isproperly in
luded in the 
lass of pro
esses whose H restri
tion is weak bisimilarto the restri
tion of their 
ompletion.Proposition 1. Let E 2 E. The following properties hold:(1) if E � E� then E 2 P BNDC ;(2) if E 2 P BNDC then EnH � E� nH.Proof. (1) By Theorem 2 we have that E� is P BNDC, hen
e by Lemma 3 wehave the thesis. (2) This is a 
orollary of Theorem 3 and of Lemma 4. ut9



Note that E 2 P BNDC does not imply E � E� . As an example 
onsider thepro
ess E = h:0 whi
h is P BNDC but it is not weak bisimilar to E� = h:0+�:0.Moreover, EnH � E�nH does not imply E 2 P BNDC . This is a 
onsequen
e ofthe fa
t that, by Theorem 3, EnH � E�nH is equivalent to the BSNNI propertywhi
h, as already said, is weaker than P BNDC (see [7℄).The following theorem shows that if we use the relation �nH instead of � weobtain the desired 
hara
terization of P BNDC pro
esses.Theorem 4. Let E 2 E. Then, E 2 P BNDC i� E �nH E� .Proof. ()) E �nH EnH by Theorem 1�nH E=H by Lemma 4�nH E�=H by Lemma 6�nH E� nH by Lemma 4�nH E� by Theorem 1:(() By Theorem 2, we have that E� 2 P BNDC , hen
e, by Lemma 3, weobtain the thesis. ut4 Che
king P BNDCBy Theorem 4, it follows that in order to 
he
k whether a pro
ess E is P BNDCwe 
an equivalently 
he
k whether E �nH E� . The �rst question should bewhether this test is de
idable or not; then it is ne
essary to study the 
omplexityof a de
ision algorithm. Instead of de�ning an ad ho
 algorithm we prefer here toprove that it is possible to redu
e the test of weak bisimilarity up to H to a testof weak bisimilarity1. Hen
e, we de�ne a se
ond transformation over pro
esseswhi
h maps a pro
ess E into a pro
ess EH in su
h a way that E �nH F i�EH � FH . Sin
e the transformation 
an be performed in linear time we obtainthat the test of weak bisimilarity up to H is in the same 
omplexity 
lass of thetest of weak bisimilarity.De�nition 7. Let E 2 E be one of the pro
esses de�ned by a system of equationsS. EH is the pro
ess de�ned by the system SH , where:{ if F = 0 is in S, then FH =Ph2H h:FH is in SH ;{ if F =Pi2I ai:Fi+Pj2J �:Fj is in S, with ai 6= � , then FH =Pi2I ai:FHi +Pj2J �:FHj +Pj2J;h2H h:FHj +Ph2H h:FH is in SH .The LTS asso
iated to EH 
an be obtained from the LTS of E by adding allthe possible H transitions to any � transition and all the possible H self-loops.1 Note that weak bisimilarity is usually tested through strong bisimilation on trans-formed pro
esses (see [4℄). 10



Example 3. Let H = fh1; h2g and 
onsider the pro
ess E de�ned by the follow-ing system �E = �:FF = h1:EWe have that EH is pro
ess de�ned by the following system�EH = �:FH + h1:FH + h2:FH + h1:EH + h2:EHFH = h1:EH + h1:FH + h2:FH
1h

τ

h 1 , h 2 h 1 , h 2

h 1 , h 2τ, 

1hFig. 3. The LTS's asso
iated to E and EHSimilarly to Lemma 5 in the previous se
tion, the following lemma formalizesthe relations between E and EH . Its proof follows by De�nitions 4 and 7.Lemma 7. Let E 2 E.(1) if EH a! E0 with a 62 H, then there exists E1 su
h that E0 = EH1 andE a! E1;(2) if EH h! E0 with h 2 H then there exists E1 su
h that E0 = EH1 and E k! E1with k 2 fhg [ f�g;(3) if EH �! E0 then EH h! E0 for all h 2 H;(4) if E a! E1 then EH a! EH1 for any a
tion a;(5) if E �! E1 then EH h! EH1 for all h 2 H;(6) if E â=)nH E1 then EH â=) EH1 for any a
tion a;(7) if E �̂=)nH E1 then EH ĥ=) EH1 for all h 2 H;(8) if EH â=) EH1 then E â=)nH E1 for any a
tion a.We are now ready to prove the main result of this se
tion whi
h shows thatwe 
an redu
e the test of �nH to a test of �.Theorem 5. Let E;F 2 E. Then, E �nH F i� EH � FH .Proof. ()) Let S = f(EH ; FH) j E �nH Fg: By Lemma 7, it is easy to provethat S is a weak bisimulation. (() Let S = f(E;F ) jEH � FHg: By Lemma 7,it is easy to prove that S is a weak bisimulation up to H . utThe results presented so far show that the � 
ompletion of a pro
ess E is aP BNDC pro
ess whi
h 
an be used both to 
he
k whether E is P BNDC andin 
ase it is not to re
tify it. Moreover, both the 
onstru
tion of E� and theP BNDC test performed using E� have a low time 
omplexity, as stated by thefollowing result. 11



Theorem 6. Let T (n1; n2;m1;m2) be the time 
omplexity of an algorithm totest F1 � F2 where n1;2 is the number of nodes in LTS(F1;2) and m1;2 is thenumber of edges in LTS(F1;2). It is possible to 
he
k if E 2 P BNDC in timeT (n; n;mH ;m�H)+O(n+m� ), where n is the number of nodes in LTS(E), mHis the number of edges in LTS(EH), m� is the number of edges in LTS(E�),and m�H is the number of edges in LTS((E�)H ).Proof. This is an immediate 
onsequen
e of the following fa
ts:{ LTS(EH) and LTS(E�) have the same number of nodes of LTS(E);{ LTS(EH) 
an be 
omputed through a visit of LTS(E);{ LTS(E�) 
an be 
omputed through a visit of LTS(E);{ LTS((E� )H) 
an be 
omputed through a visit of LTS(E�);{ the number of edges in LTS(E�) is greater than the number of edges inLTS(E), hen
e O(n+m)+O(n+m� ) = O(n+m� ), where m is the numberof edges in LTS(E). utNoti
e that if m is the number of edges in LTS(E), then m� � m+mH , wheremH is the number of edges in LTS(E) labelled with a high a
tion. Moreover,mH � m+H �m� , where m� is the number of edges in LTS(E) labelled witha � a
tion. Hen
e, m�H � m + +H � (m� +mH). However, in order to 
he
kEH � (E� )H it is not really ne
essary to expli
itly 
ompute EH and (E� )H ,sin
e it is suÆ
ient to build a simple interfa
e for the bisimulation algorithmwhi
h reinterprets the labels of the transitions. More pre
isely, for instan
e, theset of pro
esses whi
h 
an evolve into EH with a h a
tion is equal to the unionof the set of pro
esses whi
h 
an evolve into E with a � or a h a
tion.5 An ExampleIn this se
tion we illustrate through an example how the � 
ompletion 
an beused to re
tify a pro
ess whi
h is neither P BNDC nor BSNNI .Note that, as the system is not BSNNI , then it is neither BNDC , i.e., it isinse
ure even with respe
t to non-dynami
 environments. Moreover, the fa
t thatthe system is not BSNNI implies (by Theorem 3) that the low level semanti
s isnot preserved by the � 
ompletion. However, we will see that the way low levelsemanti
s is 
hanged is very reasonable and only a�e
ts some deadlo
k states
aused by high level a
tivity.Consider the pro
essC des
ribed through a value-passing extension of SPA byC = in(x):out(x):CC is a 
hannel whi
h may a

ept a value x at the left-hand port, labelled in.When it holds a value, it may deliver it at the right-hand port, labelled out. Ifthe domain of x is f0; 1g, then the 
hannel C 
an be translated into SPA in astandard way by following [16℄ as:C = in0:out0:C + in1:out1:C12



Let us assume that C is used as 
ommuni
ation 
hannel from low to high level.This 
an be expressed as in0; in1 2 L and out0; out1 2 H .Note that su
h a 
hannel should be se
ure as it provides a \legal" information
ow from low to high. However, we show that this is not the 
ase. If we 
omputeC� we obtain C� = in0:(out0:C� + �:C� ) + in1:(out1:C� + �:C� )Moreover, CH and (C� )H are respe
tivelyCH = in0:out0:CH + in1:out1:CH + out0:CH + out1:CH(C� )H = in0:(out0:(C� )H + �:(C� )H + out1:(C� )H)+in1:(out1:(C� )H + �:(C� )H + out0:(C� )H)+out0:(C� )H + out1:(C� )HIt is immediate to see that they are not weak bisimilar, sin
e (C� )H 
ansilently reset itself after every input a
tion, while CH must always exe
ute the
orresponding output. Hen
e C is not P BNDC . Intuitively, a high level user
an inde�nitely blo
k the pro
ess C after ea
h low level input by just refusing toa

ept the 
orresponding output (remind that 
ommuni
ation is syn
hronous).The potential high level deadlo
ks 
ould be exploited to transmit informationas shown, e.g., in [7℄.Now, by Theorem 2 we 
an repla
e C by C� thus obtaining a P BNDCpro
ess. Intuitively C� is P BNDC as the presen
e of \resetting" � transitionsavoids the high level deadlo
ks mentioned above.These � 's basi
ally makes the 
hannel a lossy one, as high level outputs maybe non-deterministi
ally lost. However, note that non-determinism is used toabstra
t away implementation details. For example, su
h � 's 
ould 
orrespond,at implementation time, to time-outs for the high output a
tions, i.e., events thatempty the 
hannel and allow a new low level input, whenever high outputs arenot a

epted within a 
ertain amount of time. In this respe
t, it would be quiteinteresting to rephrase our theory to models enri
hed with time or probabilityas [2, 12, 8℄, in order to study how the � 
ompletion instantiate to more 
on
retesettings. Even if the resulting pro
ess behaves di�erently from the low level pointof view (C is not BSNNI ), we think that C� 
an be reasonably proposed as ase
ure re
tifying of C.Indeed, note that the only di�eren
e, from a low level perspe
tive, is theabsen
e in C� n H of deadlo
k states after the low level input a
tions. Su
hstates of C nH are exa
tly the 
ause of potential information 
ows in pro
essC, as they provide a 
ausality between high level a
tivity (i.e., a

epting or nothigh outputs) and low level one.In general when we de�ne E� from a given pro
ess E and we add a � transi-tion relative to a high level output, this 
an always be seen as the insertion of atime-out. While in the 
ase we add a � transition relative to a high level inputthis 
orresponds to generating a non-deterministi
 high input. This latter 
aseis 
learly less reasonable. Hen
e, our transformation seems to be appropriate for13



�xing 
ows related to high level outputs. A re
tifying strategy 
ould be to addonly the � transitions relative to the outputs and 
he
k whether this is suÆ
ientto have a P BNDC pro
ess.6 Con
lusionsIn the re
ent years, issues 
on
erning se
urity have re
eived an in
reasing at-tention due to the augmented possibilities of inter
onne
tions and informationex
hanges. A number of formal de�nitions of se
urity properties has been pro-posed in the literature.In this paper we 
onsider the se
urity property P BNDC based on the ideaof Non-Interferen
e [11, 19, 22℄ whi
h has been deeply studied in [10℄ and showedto be suitable to guarantee se
urity in a dynami
ally re
on�gurable 
ontext. Wepresent a method to automati
ally 
onstru
t a P BNDC pro
ess by a trans-formational approa
h. We show that the transformation preserves the low levelobservational semanti
s of BSNNI pro
esses. Moreover we illustrate on an exam-ple how the transformation produ
es reasonable 
orre
tions also for non BSNNIpro
esses where a modi�
ation of the low level semanti
s is ne
essary in order toensure se
urity. We show that our transformation 
an be used also to eÆ
iently
he
k the P BNDC property, exploiting existing tools for bisimulation.We are presently trying to apply our te
hniques to more signi�
ant exam-ples in order to establish their e�e
tiveness in produ
ing se
ure systems frominse
ure ones. Moreover, it would be interesting to have a measure of what se-
urity damage would be in 
ase P BNDC does not hold. In [18℄, it is proposed away of 
lassifying information 
ow properties depending on whi
h kind of 
han-nels from high to low level are implementable from systems that do not satisfysu
h properties. For example, obtaining a \perfe
t" 
hannel represents a damageworse than, e.g., obtaining a noisy one. It 
ould be interesting to measure thestrenghtness of P BNDC with respe
t to this kind of 
lassi�
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