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Abstract

We present a general unwinding framework for the definition of information

flow security properties of concurrent programs, described in a simple imperative

language enriched with parallelism and atomic statement constructors. We study

different classes of programs obtained by instantiating the general framework and

we prove that they entail the noninterference principle. Accurate proof techniques

for the verification of such properties are defined by exploiting the Tarski decid-

ability result for first-order formulae over the reals. Moreover, we illustrate how

the unwinding framework can be instantiated in order to deal with intentional infor-

mation release and we extend our verification techniques to the analysis of security

properties of programs admitting downgrading.

Keywords: Security, Noninterference, Concurrency, Bisimulation.

1 Introduction

The protection of confi dential data in computing systems has long been recognized as

a diffi cult and daunting problem. In order to guarantee the confi dentiality of sensitive

data it is necessary to analyze how information flows so that secrets are not transmitted
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to unauthorized parties. A commonway to control information flow is to associate a se-

curity level with information in the system, and to prevent higher level (more confi den-

tial) information from affecting lower level (less confi dential) information. Recently,

there has been much work applying this approach in a language-based setting. We refer

the reader to [28] for a clear and wide overview about the different approaches. All of

these proposals accomplish the noninterference principle [13] which requires that se-

cret input data cannot be inferred through the observation of non confi dential outputs.

Among the approaches based on formal methods, noninterference has been formalized

in terms of behavioural equivalences, e.g., [12, 26], and ensured through type-systems,

e.g., [27, 28, 37, 38], and logical formulations, e.g., [2, 4].

In this paper we face the problem of specifying and verifying noninterference prop-

erties for concurrent programs, described in a simple imperative language admitting

parallel executions on a shared memory and atomic statement constructors. We con-

sider two confi dentiality levels, a public level and a confi dential one, and associate a

level to each location (variable) of the language.

We start from the observation that, in order to be of practical usefulness, the method

used to check a property should be compositional with respect to the language opera-

tors. In particular, in the context of concurrent programs, it would be desirable to have

properties which are compositional with respect to the parallel operator. In our previ-

ous works (see [5] for an overview) we showed how compositional information flow

security properties for the Security Process Algebra (SPA) language [12] can be natu-

rally characterized in terms of unwinding conditions [14]. In this paper we investigate

how to instantiate the unwinding based framework for the defi nition of noninterference

properties of concurrent programs.

Unwinding conditions have been used to express security properties of processes

described through, e.g, event systems or labelled transition systems [14, 18, 24]. They

demand properties of individual actions and are easier to handle with respect to global

conditions. Intuitively, an unwinding condition requires that each high level (confi den-

tial) transition is simulated in such a way that a low level observer cannot infer whether

such high level action has been performed or not. Thus the low level observation of the

process is not influenced in any way by its high behaviour.

Following this idea, in Section 3 we defi ne a generalized unwinding condition for

our simple programming language. We study different classes of programs obtained

by instantiating the unwinding framework through different notions of low level bisim-

ulation. In particular, we study security properties which entail the noninterference

principle.

The problem of verifi cation is tracked in Section 4. We focus on one instance of our

unwinding condition which is compositional with respect to the language constructors.

We defi ne accurate proof methods for the verifi cation of such property which are more

precise than previous type-based techniques such as those presented in [1, 7, 27, 34].

Indeed, in our language, insecure flows can be explicit, e.g., when assigning the value

of a high variable to a low variable, or implicit, e.g., when testing the value of a high

variable and then assigning to a low variable a value depending on the result of the test.

In most of previous approaches explicit flows are prevented by asking that only low

level expressions, i.e., not containing high level variables, are assigned to low variables,

while implicit flows are prevented by requiring that the boolean expressions of while-

2



loops and conditionals contain high level variables only under strict restrictions (see,

e.g., [11, 6, 37, 34, 33, 28]). Thus, for instance, if H is a high level variable while L is

a low level one, the commands

L := H (1)

L := H−H (2)

while(L+H > H) {L := 1} (3)

if(H = 0) {L := 1} else {L := 1} (4)

are deemed insecure by the type systems mentioned above. Instead, our proof tech-

niques exploit the Tarski decidability result for fi rst-order formulae over the reals and

allow us to establish that, e.g., commands (2), (3) and (4) are secure.

The security properties studied in Sections 3 and 4 entail the standard noninter-

ference principle. However, as already noticed by many authors, e.g., [17, 29, 41],

noninterference is too strong for practical applications. Indeed, many realistic systems

do release some confi dential information as part of their intended function. For exam-

ple, a password checker leaks a small amount of information when a user attempts to

log in by inserting his password, since an external observer can learn whether the pass-

word has been guessed or not. Such a program violates the noninterference principle

and would be rejected by our verifi cation systems. In Section 5 we extend our approach

to programs which intentionally release some information. We fi rst illustrate how the

unwinding framework can be instantiated in order to deal with intentional information

release. In particular, we model a security property which can be viewed as the com-

positional version of the delimited release property defi ned in [29]. We also extend

our verifi cation techniques to the analysis of security properties of programs admitting

downgrading.

The paper is organized as follows. In Section 2 we introduce the language together

with its syntax and semantics. In Section 3 we defi ne a general unwinding schema

for our imperative language and study different instantiations of it. We also prove a

soundness theorem with respect to the standard noninterference property. In Section

4 we show that the noninterference properties of previous section are undecidable and

defi ne two different proof methods which exploit the Tarski’s decidability result for

fi rst-order formulae over the reals to gain precision. In Section 5 we show how our

unwinding condition can be instantiated in order to model security properties of pro-

grams in which there is an intentional release of information. We also extend our proof

techniques to deal with such properties. Finally, in Section 6 we discuss related work

and draw some conclusions.

2 The Language: Syntax and Semantics

The language we consider in this paper is inspired by the one for concurrent program-

ming introduced by Andrews in [3]. It is an imperative languagewith a parallel operator

and an atomic block constructor, called await. As described in [3], such a language

is suitable to deal with standard problems of concurrent programming (e.g., mutual
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exclusion) and to implement semaphores and monitors. Here we assume that the loca-

tions (variables) are partitioned into two levels: a public level and a confi dential one.

Intuitively, the values contained in the confi dential locations are accessible only to au-

thorized users (high level users), while the values in the public locations are available

to all the users. The security properties we are going to study aim at detecting any flow

of information from high level to low level locations, i.e., a variation of confi dential

(high level) inputs should not cause a variation of values in the low level locations.

The operational semantics of our language is expressed in terms of labelled transi-

tion systems, i.e., graphs with labels on the edges and on the nodes. The labels on the

nodes correspond to the states of the locations, while the labels on the edges denote the

level (high or low) of the transitions.

Let Z be the set of integer numbers, T = {true, false} be the set of boolean values,
L be a set of low level locations and H be a set of high level locations, with L∩H = /0.

The set Aexp of arithmetic expressions is defi ned by the grammar:

a ::= n |X |a0+a1 |a0−a1 |a0 ∗a1

where n ∈ Z and X ∈ L∪H. We assume that arithmetic expressions are total. The set

Bexp of boolean expressions is defi ned by:

b ::= true | false | (a0 = a1) | (a0 ≤ a1) | ¬b |b0∧b1 |b0∨b1

where a0,a1 ∈Aexp.
We say that an arithmetic expression a is confidential, denoted by a∈ high, if there

is a high level location which occurs in it. Otherwise we say that a is public, denoted

by a ∈ low. Similarly, we say that a boolean expression b is confidential, denoted by
b ∈ high, if there is a confi dential arithmetic expression which occurs in it. Otherwise
we say that b is public, denoted by b ∈ low. This notion of confi dentiality, both for
arithmetic and boolean expressions, is purely syntactic (as in [11]). Notice that a high

level expression can contain low level locations, i.e., its value can depend on the values

of low level locations. This reflects the idea that a high level user can read both high

and low level data.

The set Prog of programs of our language is defi ned as:

S ::= skip |X := a |S0;S1

P ::= S |P0;P1 |if(b) {P0} else {P1} |while(b) {P} |await(b) {S} |

co P1|| . . . ||Pn oc

where a ∈ Aexp, X ∈ L∪H, and b ∈ Bexp. Notice that, as in [3], in the body of the
await operator only sequences of assignments are allowed.

The operational semantics of our language is based on the notion of state. A state

σ is a function which assigns to each location an integer, i.e., σ : L∪H −→ Z. Given a

state σ, we denote by σ[X/n] the state σ
′ such that σ′(X) = n and σ

′(Y ) = σ(Y ) for all
Y 6= X . Moreover, we denote by σL the restriction of σ to the low level locations and

we write σ =l θ for σL = θL.

Given an arithmetic expression a ∈ Aexp and a state σ, the evaluation of a in σ,

denoted by 〈a,σ〉 → n with n ∈ Z, is defi ned in the standard way (see, e.g., [40]).
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Similarly, 〈b,σ〉 → v with b ∈ Bexp and v ∈ {true, false}, denotes the evaluation of
a boolean expression b in a state σ (see, e.g., [40]). In both cases atomicity of the

evaluation operation is assumed.

Our operational semantics is expressed in terms of state transitions. A transition

from a program P and a state σ has the form 〈P,σ〉
ε

→ 〈P′,σ′〉 where P′ is either a
program or the special symbol end (denoting termination) and ε ∈ {high,low} stating
that the transition is either confi dential or public. The operation ε1 ∪ ε2 returns low if

both ε1 and ε2 are low otherwise it returns high. Let P = Prog∪{end} and Σ be the

set of all the possible states. The operational semantics of 〈P,σ〉 ∈ P×Σ is the labelled

transition system (LTS) defi ned by structural induction on P according to the rules

depicted in Table 1. Intuitively, the semantics of the sequential composition imposes

that a program of the form P0;P1 behaves like P0 until P0 terminates and then it behaves

like P1. To describe the semantics of a program of the form while(b) {P} we have to
distinguish two cases: if b is true, then the program is unravelled to P;while(b) {P};
otherwise it terminates. As far as the await operator is concerned, if b is true then

await(b) {P} terminates executing P in one indivisible action (as an atomic block),
i.e., it is not possible to observe the state changes internal to the execution of P, while

if b is false then await(b) {P} loops waiting for b to become true. Finally, in a parallel
composition of the form co P0|| . . . ||Pnoc any of the Pi can move, and the termination
is reached only when all the Pi’s have terminated.

We use the following notations. We write 〈P,σ〉 → 〈P′,σ′〉 to denote 〈P,σ〉
ε

→
〈P′,σ′〉 with ε ∈ {low,high} and 〈P0,σ0〉 →

n 〈Pn,σn〉 with n ≥ 0 for 〈P0,σ0〉 →

〈P1,σ1〉 → ·· · → 〈Pn−1,σn−1〉 → 〈Pn,σn〉. The notation 〈P0,σ0〉
low
 〈Pn,σn〉 stands

for 〈P0,σ0〉 →
n 〈Pn,σn〉 for some n ≥ 0 with all the n transitions labelled with low;

similarly 〈P0,σ0〉
high
 〈Pn,σn〉 stands for 〈P0,σ0〉 →

n 〈Pn,σn〉 for some n ≥ 0 with at
least one of the n transitions labelled with high. Finally, we write 〈P,σ〉 〈P′,σ′〉 to

denote 〈P,σ〉
ε

 〈P′,σ′〉 with ε ∈ {low,high}.
Let R be a binary relation over a set S and s ∈ S. We denote by R (s) the set

{s′ ∈ S | (s,s′) ∈ R }. We defi ne the relation Reach as the binary relation over P such
that (P,Q) ∈ Reach if and only if there exist σ and σ′ in Σ such that 〈P,σ〉 〈P′,σ′〉.
Moreover, the relation Reach∗ denotes the transitive closure of the relation Reach. Ob-

serve thatQ∈ Reach∗(P) if and only if there exist n≥ 0,σ0, . . . ,σn−1,θ0, . . . ,θn−1 such
that

〈P,σ0〉 → 〈P1,θ0〉
〈P1,σ1〉 → 〈P2,θ1〉

· · ·
〈Pn−1,σn−1〉 → 〈Q,θn−1〉

Intuitively, a program Q is in Reach∗(P) if it can be obtained by reducing P starting
from an arbitrary initial state and allowing arbitrary changes in the memory throughout

the derivation. This is motivated by the fact that in a concurrent setting other threads

could change the memory state.

By abuse of notation, for any 〈P,σ〉 ∈ P×Σ, we denote by Reach∗(〈P,σ〉) the set
of pairs 〈F,ψ〉 such that ψ ∈ Σ and F ∈ Reach∗(P). Notice that both relations and
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Reach∗ over P×Σ are transitive, i.e., for R ∈ { ,Reach∗}, if 〈F2,ψ2〉 ∈ R (〈F1,ψ1〉)
and 〈F3,ψ3〉 ∈ R (〈F2,ψ2〉), then 〈F3,ψ3〉 ∈ R (〈F1,ψ1〉).

EXAMPLE 2.1. Consider the following program

P≡ if(L= 1) {P′} else {skip}

where P′ is the program

P′ ≡ if(L 6= 1) {L := 2} else {skip}.

In this case Reach(P) = {P,P′,skip} while Reach∗(P) = Reach(P)∪ {L := 2}. In
fact, if σ is such that σ(L) = 1 we get that 〈P,σ〉→ 〈P′,σ〉. If now we take σ′ such that

σ′(L) 6= 1 we get that 〈P′,σ′〉 → 〈L := 2,σ′〉, i.e., L := 2 ∈ Reach∗(P). In particular,
〈L := 2,ψ〉 ∈ Reach∗(〈P,σ〉) for all ψ,σ ∈ Σ.

From now on, in the examples we denote by L a low level location and by H a high

level one.

EXAMPLE 2.2. Consider the following program

P≡ if(H ≤ 3) {L := L+1} else {L := L+2}.

Let σ1, σ2 be two states such that σ1(H) ≤ 3 and σ2(H) > 3. The LTS’s associated to
the pairs 〈P,σ1〉 and 〈P,σ2〉 are

〈P,σ1〉

high↓
〈L := L+1,σ1〉

low↓
〈end,σ1[L/σ1(L)+1]〉

〈P,σ2〉

high↓
〈L := L+2,σ2〉

low↓
〈end,σ2[L/σ2(L)+2]〉

In this case the fi nal value of the low level location depends on the initial value of the

high level one. Hence a low level user can infer whether H is less or equal than 3 or

not just by observing the initial and fi nal values of L.

To illustrate the semantics of the await statement, consider now the program

Q≡ await(L≤ 3) {L1 := H;L2 := 5;L1 := L2};H := L1.

Let σ be a state such that σ(L) ≤ 3. The LTS associated to the pair 〈Q,σ〉 is

〈Q,σ〉

high↓
〈H := L1,σ[L1/5,L2/5]〉

low↓
〈end,σ[L1/5,L2/5,H/5]〉

The following property holds.
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Lemma 2.3. For each ψ and π such that ψ =l π, if 〈F,ψ〉
low
→ 〈F ′,ψ′〉, then 〈F,π〉

low
→

〈F ′,π′〉 with π′ =l ψ′.

Proof. By structural induction on programs since low transitions do not read high level

variables.

We are interested in a notion of behavioural equivalence which equates two pro-

grams if they are indistinguishable for a low level observer. In particular, we assume

that a low level observer may have access to the low level locations at any point of

the execution and not only at program termination. In fact, by exploiting the parallel

composition operator any user may keep trace of the values of the variables during the

execution.

EXAMPLE 2.4. Consider the programs P and Q below:

P≡ L := H;L := 0

Q≡ L := H−H;L := 0.

Let σ be a state such that σ(H) 6= 0. Since σ(H)−σ(H) is always 0, the LTS’s associ-
ated to the two programs are respectively

〈L := H;L := 0,σ〉 〈L := H−H;L := 0,σ〉

high ↓ high ↓
〈L := 0,σ[L/σ(H)]〉 〈L := 0,σ[L/0]〉

low ↓ low ↓
〈end,σ[L/0]〉 〈end,σ[L/0]〉

These two program executions cannot be considered equivalent. In fact, letR≡L1 := L.
If we consider the program co P||R oc, it is possible that (i.e., there exists an execution
such that) at the end of the execution L1 contains the value stored in H, while this is

never possible with the program co Q||R oc.
Consider now the programs

P≡ H := 1;L := 1 and Q≡ H := 2;L := H−1.

Given a state σ the LTS’s associated to the two programs are respectively

〈H := 1;L := 1,σ〉 〈H := 2;L := H−1,σ〉

low ↓ low ↓
〈L := 1,σ[H/1]〉 〈L := H−1,σ[H/2]〉

low ↓ high ↓
〈end,σ[H/1,L/1]〉 〈end,σ[H/2,L/1]〉

The two program executions described above could be considered equivalent for a low

level observerwhich can only read the values in the low level locations. This is captured

by the following notion of low level bisimulation [7]:

Definition 2.5. (Low Level Bisimulation) A binary symmetric relation B over P×Σ

is a low level bisimulation if for each (〈P,σ〉,〈Q,θ〉) ∈ B it holds that:
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• σ =l θ, i.e., the states coincide on low level locations;

• if 〈P,σ〉 → 〈P′,σ′〉, then there exists 〈Q′,θ′〉 such that 〈Q,θ〉 → 〈Q′,θ′〉 and
(〈P′,σ′〉,〈Q′,θ′〉) ∈ B .

Two pairs 〈P,σ〉 and 〈Q,θ〉 ∈ P×Σ are low level bisimilar, denoted by 〈P,σ〉 ≈l 〈Q,θ〉
if there exists a low level bisimulation B such that (〈P,σ〉,〈Q,θ〉) ∈ B .
Two programs P and Q are said to be low level bisimilar, denoted by P ≃l Q, if for
each σ,θ ∈ Σ it holds that if σ =l θ, then 〈P,σ〉 ≈l 〈Q,θ〉.

Notice that a pair 〈P,σ〉 is bisimilar to a pair of the form 〈end,θ〉 if and only if
P≡ end and σ =l θ. In fact, end is the only programwhich cannot make any transition.
A partial equivalence relation (per, for short) [31] is a symmetric and transitive

relation.

Lemma 2.6. The relation ≈l⊆ (P×Σ)2 is the largest low level bisimulation and it is
an equivalence relation. The relation ≃l⊆ P

2 is a partial equivalence relation.

Proof. If 〈P,σ〉 ≈l 〈Q,θ〉, then there exists a low level bisimulation B such that it
holds (〈P,σ〉,〈Q,θ〉) ∈ B . Hence if 〈P,σ〉 → 〈P′,σ′〉 we have that 〈Q,θ〉 → 〈Q′,θ′〉
with (〈P′,σ′〉,〈Q′,θ′〉) ∈ B , i.e., 〈P′,σ′〉 ≈l 〈Q

′,θ′〉. So we have that ≈l is a low level
bisimulation. It is the largest since by defi nition all the other low level bisimulations

are included in it.

It is easy to prove that ≈l is reflexive and symmetric. The fact that ≈l is transitive
follows from the fact that if B 1,B 2 are low level bisimulations, then the relation B 1◦B 2,
where ◦ is the composition of relations, is still a low level bisimulation.
The relation ≃l⊆ P

2 is symmetric and transitive since ≈l is symmetric and transi-
tive.

In [30] a stronger low level bisimulation is introduced to reason on concurrent and

multi-threaded programs.

Definition 2.7. (Strong Low Level Bisimulation)A binary symmetric relation B over

P is a strong low level bisimulation if for each (P,Q) ∈ B it holds that

• for all σ,θ ∈ Σ such that σ =l θ, if 〈P,σ〉 → 〈P′,σ′〉, then there exists Q′ and θ
′

such that 〈Q,θ〉 → 〈Q′,θ′〉, σ′ =l θ
′ and (P′,Q′) ∈ B .

Two programs P,Q ∈ P are strongly low level bisimilar, denoted by P ∼l Q if there
exists a low level bisimulation B such that (P,Q) ∈ B .

The difference between Defi nitions 2.5 and 2.7 is that, in the second one, P′ and Q′

have to be equivalent under any low-equivalent memories.

Lemma 2.8. [30] The relation ∼l⊆ P
2 is a partial equivalence relation.

Both the relations ≃l and ∼l are not reflexive. For example, the program L := H
is neither low level bisimilar nor strongly low level bisimilar to itself. Consider for

instance the states σ and θ such that σ(H) = 1, θ(H) = 2, σ(L) = θ(L). In this case
σ =l θ. However, 〈L :=H,σ〉 → 〈end,σ[L/1]〉 and 〈L :=H,θ〉 → 〈end,θ[L/2]〉 where
σ[L/1] 6=l θ[L/2]. Therefore neither L := H ≃l L := H nor L := H ∼l L := H.
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EXAMPLE 2.9. Consider the programs of Example 2.4:

P≡ H := 1;L := 1 and Q≡ H := 2;L := H−1.

It is easy to prove that P ≃l Q. In fact, a low level user which can only observe the
low level location L cannot distinguish the two programs. However, P and Q are not

strongly low level bisimilar, i.e., P 6∼l Q. Indeed, changing the state σ to σ[H/5] after
the fi rst transition, we obtain two different fi nal values for L (1 and 4, respectively).

This reflects the fact that if one considers, for instance, the program R ≡ H := 5 then
the programs co P||R oc and co Q||R oc do not exhibit the same behaviour from the
low level point of view. In fact, starting from a state σ, any execution of co P||R oc
always terminates in a state σ1 such that σ1(L) = 1. On the other hand, there exists
one execution of co Q||R oc which terminate in a state σ2 such that σ2(L) = 4, i.e.,
σ1 6=l σ2.

The following lemma trivially follows from the defi nition of partial equivalence

relation.

Lemma 2.10. Let P be a program. Either P≃l P (P∼l P) or for each P
′ ∈ P it holds

P 6≃l P
′ (P 6∼l P

′).

The following useful property of ∼l holds.

Lemma 2.11. If P∼l P, then for all F ∈ Reach∗(P) it holds that F ∼l F.

Proof. If F ∈ Reach∗(P), then there are n≥ 0 and P0, . . . ,Pn, σ0, . . . ,σn−1, θ0, . . . ,θn−1
such that P0 ≡ P, Pn ≡ F and for each 0 ≤ i ≤ n−1 it holds 〈Pi,σi〉 → 〈Pi+1,θi〉. We
prove that Pn ∼l Pn by induction on n.
Base. If n= 0, then Pn ≡ P, hence we immediately get the thesis.
Inductive step. Let n> 0 and 〈Pn−1,σn−1〉 → 〈Pn,θn−1〉. By inductive hypothesis,

Pn−1 ∼l Pn−1. Thus by defi nition of ∼l there exist Q such that 〈Pn−1,σn−1〉 → 〈Q,µ〉
with Pn ∼l Q. By Lemma 2.10 from Pn ∼l Q we get Pn ∼l Pn.

It is immediate to prove that ∼l⊆≃l.
The following lemma states that the relations≃l and∼l equate programswhich ex-

hibit the same behavior. Specifi cally, each step performed by one program is simulated

by exactly one step performed by the other program.

Lemma 2.12. Let P and Q be two programs and σ,θ ∈ Σ.

(1) Let 〈P,σ〉 ≈l 〈Q,θ〉. If 〈P,σ〉 →n 〈P′,σ′〉, then there exists Q′ and θ
′ such that

〈Q,θ〉 →n 〈Q′,θ′〉 and 〈P′,σ′〉 ≈l 〈Q
′,θ′〉, and viceversa.

(2) Let P∼l Q and σ =l θ. If 〈P,σ〉 →
n 〈P′,σ′〉, then there exists Q′ and θ

′ such that

〈Q,θ〉 →n 〈Q′,θ′〉, σ′ =l θ
′ and P′ ∼l Q

′, and viceversa.

Proof. (1). By induction on n.

• Base: n= 1. We immediately have the thesis by defi nition of ≈l .
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• Inductive step: n=m+1 and we proved the thesis form. We have that 〈P,σ〉→m

〈P′′,σ′′〉 → 〈P′,σ′〉. By inductive hypothesis we get 〈Q,θ〉 →m 〈Q′′
,θ′′〉 with

〈P′′,σ′′〉 ≈l 〈Q
′′
,θ′′〉. By defi nition of bisimulation we get the thesis.

The proof of (2) is analogous.

3 Unwinding Conditions for Security

In [5] we introduced a general framework to defi ne classes of secure processes written

in the Security Process Algebra (SPA) language, an extension of Milner’s CCS [20].

The framework is based on a generalized unwinding condition which is a local persis-

tent property parametric with respect to a notion of low level behavioral observation

and a reachability relation. We proved that many noninterference properties can be

seen as instances of this framework. Following a similar approach, in this paper we

introduce a generalized unwinding condition for defi ning classes of programs that is

parametric with respect to:

• a binary relation
.

= which equates two states if they are indistinguishable for a
low level observer;

• a binary relation+ which equates two pairs 〈P,σ〉 and 〈Q,θ〉 if they are indistin-
guishable for a low level observer;

• a binary reachability relation R on P×Σ which associates to each pair 〈P,σ〉 all
the pairs 〈F,ψ〉 which, in some sense, are reachable from 〈P,σ〉.

A pair 〈P,σ〉 satisfi es (an instance of) our unwinding framework if any high level

step 〈F,ψ〉
high
→ 〈G,ϕ〉 performed by a pair 〈F,ψ〉 reachable from 〈P,σ〉 has no effect on

the observation of a low level user. This is achieved by requiring that all the elements

in the set {〈F,π〉 | π
.

= ψ} (whose states are low level equivalent) may perform a tran-
sition reaching an element of the set {〈R,ρ〉 | 〈R,ρ〉 + 〈G,ϕ〉} (whose elements are all
indistinguishable for a low level observer).

Definition 3.1. (Generalized Unwinding) Let
.

= be a binary relation over Σ,+ and R
be two binary relations over P×Σ. We defi ne the unwinding class W (

.

=,+,R ) by:

W (
.

=,+,R )
def
= {〈P,σ〉 ∈ Prog×Σ | ∀ 〈F,ψ〉∈R (〈P,σ〉)

if 〈F,ψ〉
high
→ 〈G,ϕ〉 then

∀ π ∈ Σ such that π
.

= ψ, ∃ 〈R,ρ〉 :
〈F,π〉 → 〈R,ρ〉 and 〈G,ϕ〉 + 〈R,ρ〉}

The intuition behind the unwinding condition is that any high level transition should

be simulated by a high independent transition guaranteeing that the low level observer

cannot infer which kind of transition occurred. In other words, the high level transi-

tions have no influence on the low level observation. This intuition is depicted by the

following diagram:
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〈F,ψ〉
high
−→ 〈G,ϕ〉

↓ ↑
↓ ↑

π
.

= ψ +

↓ ↓
↓ ↓

〈F,π〉 −→ 〈R,ρ〉

In the above defi nition we do not assume any condition on the reachability relation

R . We can show that whenever R is transitive, the generalized unwinding condition

allows one to specify properties which are closed under R . In this sense we say that

our properties are persistent.

Lemma 3.2. Let R be a transitive reachability relation on pairs of P× Σ and let

〈P,σ〉 ∈ Prog×Σ. If 〈P,σ〉 ∈W (
.

=,+,R ), then 〈F,ψ〉 ∈W (
.

=,+,R ) for all 〈F,ψ〉 ∈
R (〈P,σ〉).

Proof. Let R be transitive, 〈P,σ〉 ∈W (
.

=,+,R ), and 〈F,ψ〉 ∈ R (〈P,σ〉). If 〈F ′,ψ′〉 ∈
R (〈F,ψ〉), then by transitivity we have that 〈F ′,ψ′〉 ∈ R (〈P,σ〉). Hence we get that if

〈F ′,ψ′〉
high
→ 〈G′

,ϕ′〉, then for each π such that ψ′ =l π′ there exists 〈R′,ρ′〉 such that
〈F ′,π′〉 → 〈R′,ρ′〉 with 〈G′

,ϕ′〉+ 〈R′,ρ′〉, i.e., the thesis.

Hereafter we discuss some instantiations of our generalized unwinding condition.

The class of secure imperative programs SIMP≈l is obtained by instantiating Def-

inition 3.1 with the low level bisimilarities =l for
.

= and ≈l for +, and the relation 
for R .

Definition 3.3. (SIMP≈l ) A program P belongs to the class SIMP≈l if for each state

σ, 〈P,σ〉 ∈W (=l,≈l, ).

EXAMPLE 3.4. Consider the program

P≡ L := H;L := 1.

We can prove that it does not hold 〈P,σ〉 ∈ W (=l,≈l, ) for any σ ∈ Σ. In fact, let

for instance σ(H) = 1, σ(L) = 0, θ(H) = 2, θ(L) = 0. It holds that σ =l θ, but after

the execution of the fi rst high transition we reach the states σ′ and θ′ with σ′(L) = 1 6=
θ′(L) = 2. In this case, a low level user which can observe the intermediate values of
the low level locations, may infer the initial value of H just by observing the state of

the memory after one execution step.

Let now

P≡ H := 4;L := 1;if(L= 1) {skip} else {L := H}.

P is in the class SIMP≈l . In fact, the fi rst branch of the conditional is always executed

independently of the value in the high level location.

Since is transitive, by Lemma 3.2 we get that W (=l,≈l, ) is persistent, i.e.,
if a program P starting in a state σ belongs to the class W (=l,≈l, ), then also each

11



pair 〈P′,σ′〉 reachable from 〈P,σ〉 does. However, in general it does not hold that if P
is in SIMP≈l , then also each program P

′ ∈ Reach(P) is in SIMP≈l . This is illustrated
in the following example.

EXAMPLE 3.5. Consider the program P≡ L := 0;P′ where

P′ ≡ if(L= 1) {L := H} else {skip}.

It holds that P ∈ SIMP≈l since, for each state σ, 〈P,σ〉 will never perform any high
transition. However, the program P′ is in Reach(P) but P′ 6∈ SIMP≈l .
Consider now the programs

Q1 ≡ await(true) {L1 := H;L2 := 5;L1 := L2};H := L1

Q2 ≡ await(true) {L1 := H;L2 := L1;L1 := L2};H := L1.

It is immediate to prove that Q1 ∈ SIMP≈l since, for all states σ1 and θ1 such that

σ1 =l θ1, 〈Q1,σ1〉
high
→ 〈H := L1,σ

′

1
〉 and 〈Q1,θ1〉

high
→ 〈H := L1,θ

′

1
〉 and σ′

1
=l θ

′

1
. This

does not hold for Q2. Consider for instance σ2 and θ2 such that σ2 =l θ2, σ2(H) = 1

and θ2(H) = 0. In this case, 〈Q2,σ2〉
high
→ 〈H := L1,σ

′

2
〉 and 〈Q2,θ2〉

high
→ 〈H := L1,θ

′

2
〉

but σ′

2
(L1) = σ′

2
(L2) = 1 while θ′

2
(L1) = θ′

2
(L2) = 0.

A more restrictive class of secure imperative programs can be introduced by instan-

tiating our generalized unwinding with the reachability relation Reach∗.

Definition 3.6. (SIMP∗
≈l
) A program P belongs to the class SIMP∗

≈l
if for each state

σ, 〈P,σ〉 ∈W (=l,≈l,Reach
∗).

Lemma 3.7. SIMP∗
≈l

⊆ SIMP≈l .

Proof. This is a consequence of the fact that for each P,Q and σ,θ it holds that 〈P,σ〉 
〈Q,θ〉 implies 〈Q,θ〉 ∈ Reach∗(〈P,σ〉).

The two classes do not coincide as shown below.

EXAMPLE 3.8. Consider the program

P≡ H := 4;L := 1;if(L= 1) {skip} else {L := H}.

It belongs to the class SIMP≈l but it does not belong to the class SIMP
∗

≈l
. In fact

given an initial state σ there exists a state ψ such that the pair 〈L := H,ψ〉 belongs to

Reach∗(〈P,σ〉). Moreover 〈L := H,ψ〉
high
→ 〈end,ϕ〉 but it clearly does not hold that

for each π such that π =l ψ there exists 〈R,ρ〉 such that 〈L := H,π〉 → 〈R,ρ〉 and
〈R,ρ〉 ≈l 〈end,ϕ〉.

The relation Reach∗ on P × Σ is transitive and then, by Lemma 3.2, the class

W (=l,≈l,Reach
∗) is persistent, i.e., if 〈P,σ〉 is in W (=l,≈l,Reach

∗), then also each
pair 〈P′,σ′〉 ∈ Reach∗(〈P,σ〉) is in W (=l,≈l,Reach

∗). Moreover, differently from
SIMP≈l , if a program P is in SIMP

∗

≈l
, then also each P′ ∈ Reach∗(P) is in SIMP∗

≈l
.

Lemma 3.9. Let P be a program. If P ∈ SIMP∗
≈l
, then for all P′ ∈ Reach∗(P), P′ ∈

SIMP∗
≈l
.
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Proof. Let P′ ∈ Reach∗(P), hence, 〈P′,σ′〉 ∈ Reach∗(〈P,σ〉) for some σ and σ′. By

defi nition of Reach∗, 〈P′,θ〉 ∈ Reach∗(〈P,σ〉) for each state θ. Hence, by persistence

ofW (=l,≈l,Reach
∗), 〈P′,θ〉 ∈W (=l,≈l,Reach

∗), i.e., P′ ∈ SIMP∗
≈l
.

BothW (=l,≈l, ) andW (=l,≈l,Reach
∗) allow us to express notions of security.

This is a consequence of the fact that ≈l equates programs which exhibit the same
behavior (see Lemma 2.12).

In the previous section we observed that the relation ≃l is not reflexive. However,
≃l is reflexive on the class SIMP≈l (and then, by Lemma 3.7, on SIMP

∗

≈l
).

Lemma 3.10. Let P be a program. If P ∈ SIMP≈l , then P≃l P.

Proof. Assume that P∈ SIMP≈l . Then for all states σ and θ, 〈P,σ〉,〈P,θ〉 ∈W (=l,≈l
, ). Hence, in order to prove that P ≃l P, it is suffi cient to show that for all σ and θ

such that 〈P,σ〉,〈P,θ〉 ∈ W (=l,≈l, ) and σ =l θ, it holds 〈P,σ〉 ≈l 〈P,θ〉. Consider
the binary relation

S = {(〈P,σ〉,〈P,θ〉) | 〈P,σ〉,〈P,θ〉 ∈W (=l,≈l, ),σ =l θ}
∪ {(〈P,σ〉,〈Q,θ〉)| 〈P,σ〉 ∼l 〈Q,θ〉}

We show that S is a low level bisimulation ≈l .

If 〈P,σ〉
high
→ 〈P′,σ′〉, then from the fact that 〈P,σ〉 ∈ W (=l,≈l, ) we have that

〈P,θ〉 → 〈P′′,θ′〉 with 〈P′,σ′〉 ≈l 〈P
′′,θ′〉. By defi nition of S , (〈P′,σ′〉,〈P′′,θ′〉) ∈ S .

If 〈P,σ〉
low
→ 〈P′,σ′〉, then by Lemma 2.3 we have that 〈P,θ〉

low
→ 〈P′,θ′〉with σ′ =l θ

′.

By Lemma 3.2, since is transitive, we have that, both 〈P′,σ′〉 ∈W (=l,≈l, ) and
〈P′,θ′〉 ∈W (=l,≈l, ). Hence we have that (〈P′,σ′〉,〈P′,θ′〉)∈ S , i.e., the thesis.

The converse of Lemma 3.10 does not hold in general as illustrated in the following

example.

EXAMPLE 3.11. Consider the program

P≡ if(H = 1) {P0} else {P1}

where

P0 ≡ while(H > 1) {skip} and P1 ≡ skip.

One can prove that P≃l P, i.e., for all states σ and θ such that σ =l θ, 〈P,σ〉 ≈l 〈P,θ〉.
However, the program P 6∈ SIMP≈l . In fact, for any σ such that 〈P,σ〉 〈P0,σ〉 we

have that 〈P0,σ〉
high
→ 〈end,σ〉. But it does not hold that for all ρ such that σ =l ρ there

exist R and ρ′ such that 〈P0,ρ〉 → 〈R,ρ′〉 and 〈end,σ〉 ∼l 〈R,ρ
′〉. Indeed, if ρ(H) > 1,

〈P0,ρ〉 → 〈skip;P0,ρ〉 and 〈end,σ〉 6∼l 〈skip;P0,ρ〉. This is due to the fact that the
subprogram P0 of P is not in SIMP≈l .

However, it holds that if P′ ≃l P
′ for all P′ ∈ Reach∗(P), then P ∈ SIMP∗

≈l
.

Lemma 3.12. Let P be a program such that P′ ≃l P
′ for all P′ ∈ Reach∗(P). It holds

P ∈ SIMP∗
≈l
.
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Proof. We prove that for all σ ∈ Σ, 〈P,σ〉 ∈ W (=l,≈l,Reach
∗). Let us consider

〈F,ψ〉 ∈ Reach∗(〈P,σ〉). Then, by defi nition of Reach∗, F ∈ Reach∗(P). Hence, by
hypothesis, F ≃l F .

If 〈F,ψ〉
high
→ 〈G,ϕ〉, then, since F ≃l F , for each π ∈ Σ such that ψ =l π it holds

〈F,π〉 → 〈R,ρ〉 with 〈G,ϕ〉 ≈l 〈R,ρ〉, i.e., the thesis.

The next theorem provides a characterization of SIMP∗
≈l
in terms of the low level

bisimulation ≃l .

Theorem 3.13. P ∈ SIMP∗
≈l
if and only if P′ ≃l P

′ for all P′ ∈ Reach∗(P).

Proof. ⇐) This has been proved in Lemma 3.12.
⇒) If P ∈ SIMP∗

≈l
, then by Lemma 3.9 we get that for each P′ ∈ Reach∗(P) it

holds P′ ∈ SIMP∗
≈l
. Hence, by Lemma 3.7 we have that for each P′ ∈ Reach∗ it holds

P′ ∈ SIMP≈l . By Lemma 3.10 we can conclude that for each P
′ ∈ Reach∗ it holds

P′ ≃l P
′.

The classes SIMP≈l and SIMP
∗

≈l
introduced above are not compositional with

respect to the parallel composition constructor as illustrated by the following example.

EXAMPLE 3.14. Consider the program

P≡ if(H = 1) {P0} else {P1}

where

P0 ≡ L := 1; if(L= 1) {L := 2} else {L := 3}

and

P1 ≡ L := 1;skip;L := 2.

We have that for each σ and θ such that σ =l θ it holds 〈P0,σ〉 ≈l 〈P1,θ〉, i.e., P0 ≃l
P1. From this we get that P ≃l P. Moreover, it is easy to see that for each P

′ ∈
Reach∗(P0)∪Reach

∗(P1) it holds P
′ ≃l P

′. Hence, by Theorem 3.13, we can say that

P ∈ SIMP∗
≈l
. Consider also the program Q ≡ L := 0. It is immediate to see that Q ∈

SIMP
∗

≈l
. However, if we consider co P||Q oc this does not belong to SIMP∗

≈l
. In fact,

if σ and θ are such that σ =l θ, σ(H) = 1 and θ(H) = 0 we get that 〈co P||Q oc,σ〉 →
〈co P0||Q oc,σ〉, while 〈co P||Q oc,θ〉 → 〈co P1||Q oc,θ〉. We can see that it does not
hold 〈co P0||Q oc,σ〉 ≈l 〈co P1||Q oc,θ〉, since the fi rst can assign 3 to L, while the
second does not.

Compositionality is useful both for verifi cation and synthesis: if a property is pre-

served when programs are composed, then the analysis may be performed on subpro-

grams and, in case of success, the program as a whole will satisfy the desired property

by construction. This motivates the study of stronger properties such as the one defi ned

below.

We introduce the class of secure imperative programs SIMP∗ which is obtained by

instantiating our generalized unwinding condition with the relation Reach∗ for R and

the low level bisimilarity
..

∼l defi ned below for +.

Definition 3.15. The relation
..

∼l over P×Σ is defi ned as follows: 〈P,σ〉
..

∼l 〈Q,θ〉 if
σ =l θ and P∼l Q.
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The relation
..

∼l is a partial equivalence relation. This follows from the fact that
both =l and ∼l are symmetric and transitive. The following inclusion holds:

..

∼l⊆≈l .

Definition 3.16. (SIMP∗) A program P belongs to the class SIMP∗ if for each state σ,

〈P,σ〉 ∈W (=l,
..

∼l,Reach
∗).

As for the above classes, W (=l,
..

∼l ,Reach
∗) is persistent in the sense that if 〈P,σ〉

is in W (=l,
..

∼l,Reach
∗), then also each pair 〈P′,σ′〉 ∈ Reach∗(〈P,σ〉) is in W (=l,

..

∼l
,Reach∗). Moreover, it holds that if a program P is in SIMP∗, then also each program
P′ ∈ Reach∗(P) is in SIMP∗.

Lemma 3.17. Let P be a program. If P ∈ SIMP∗, then for all P′ ∈ Reach∗(P), P′ ∈
SIMP∗.

Proof. Let P′ ∈ Reach∗(P), hence, 〈P′,σ′〉 ∈ Reach∗(〈P,σ〉) for some σ and σ′. By

defi nition of Reach∗, 〈P′,θ〉 ∈ Reach∗(〈P,σ〉) for each state θ. Hence, by persistence

ofW (=l,
..

∼l,Reach
∗), 〈P′,θ〉 ∈W (=l,

..

∼l,Reach
∗), i.e., P′ ∈ SIMP∗.

Interestingly, it turns out that the reflexive closure of the relation ∼l exactly coin-
cides with the set of programs in SIMP∗.

Theorem 3.18. Let P be a program. P ∈ SIMP∗ if and only if P∼l P.

Proof. ⇒) Consider the binary relation

S = {(P,P) | P ∈ SIMP∗}∪ {(P,Q) | P∼l Q}

We show that S is a strong low level bisimulation ∼l . This follows from the fol-
lowing cases. Let σ and θ be two states such that σ =l θ.

If 〈P,σ〉
high
→ 〈P′,σ′〉, then since P ∈ SIMP∗, 〈P,σ〉 ∈ W (=l,

..

∼l,Reach
∗) and then

〈P,θ〉 → 〈P′′,θ′〉 with 〈P′,σ′〉
..

∼l 〈P
′′
,θ′〉, i.e., σ′ =l θ′ and P′ ∼l P

′′. Hence, by defi ni-

tion of S , (P′,P′′) ∈ S .

If 〈P,σ〉
low
→ 〈P′,σ′〉, then by Lemma 2.3 we have that 〈P,θ〉

low
→ 〈P′,θ′〉with σ′ =l θ

′.

By Lemma 3.17, we have that P′ ∈ SIMP∗ and then, by defi nition of S , (P′,P′) ∈ S ,
i.e., the thesis.

⇐) Let P be a program such that P∼l P. Let σ,ψ ∈ Σ and 〈F,ψ〉 ∈ Reach∗(〈P,σ〉).
Then F ∈ Reach∗(P) and, by Lemma 2.11, F ∼l F . Let π be such that ψ =l π.

If 〈F,ψ〉
high
→ 〈G,ϕ〉, then, since F ∼l F , 〈F,π〉 → 〈R,ρ〉 with ϕ =l ρ and G ∼l R,

i.e., the thesis.

The class SIMP∗ is more restrictive than SIMP∗
≈l
and SIMP≈l . This is a conse-

quence of the fact that
..

∼l⊆≈l .

Lemma 3.19. SIMP∗ ⊆ SIMP∗
≈l

⊆ SIMP≈l .

Proof. We only have to prove that SIMP∗ ⊆ SIMP∗
≈l
. If P ∈ SIMP∗ by Lemma 3.17

we get that for each P′ ∈ Reach∗(P) it holds P′ ∈ SIMP∗. Hence by Theorem 3.18 we
have that for each P′ ∈ Reach∗(P) it holds P′ ∼l P

′. Since ∼l⊆≃l , we get that for each
P′ ∈ Reach∗(P) it holds P′ ≃l P

′, i.e., by Theorem 3.13, the thesis.
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Moreover, SIMP∗ does not coincide with SIMP∗
≈l
as shown by the following ex-

ample.

EXAMPLE 3.20. Consider the program P of Example 3.14. It holds that P ∈ SIMP∗
≈l
.

However, it does not hold P∈ SIMP∗. To show this it is suffi cient to prove that P 6∼l P.
Indeed, if σ and θ are such that σ =l θ, σ(H) = 1, and θ(H) = 0, we get that 〈P,σ〉 →
〈P0,σ〉 and 〈P,θ〉 → 〈P1,θ〉. It does not hold P0 ∼l P1 since 〈P0,σ〉 → 〈P′

0
,σ[L/1]〉,

where P′
0
≡ if (L= 1){L := 2} else {L := 3} and 〈P1,θ〉 → 〈P′

1
,θ[L/1]〉, where P′

1
≡

skip;L := 2 and it is plain that P′
0
6∼l P

′

1
.

The class SIMP∗ enjoys several compositional properties which are useful for the

development of automatic verifi cation techniques. The following theorem states that

the class SIMP∗ is compositional with respect to most of the language constructors.

Theorem 3.21. (Compositionality) Let H be a high level location, L be a low level

location, ah and bh be high level expressions, and al and bl be low level expressions. If

P0, P1, and S are in SIMP
∗, then also the following programs are in SIMP∗:

(1) skip;

(2) L := al , H := ah, and H := al;

(3) P0;P1;

(4) if(bl) {P0} else {P1};

(5) if(bh) {P0} else {P1}, whenever P0 ∼l P1;

(6) while(bl) {P0};

(7) await(bl) {S};

(8) co P0||P1 oc.

Proof. We consider case (3), all the other cases are similar. We exploit the fact that

P∈ SIMP∗ if and only if P∼l P. The thesis follows from the fact that if P,P
′,Q,Q′ are

such that P∼l P
′ and Q∼l Q

′, then P;Q∼l P
′;Q′. To prove this it is suffi cient to show

that

S = {(P;Q,P′;Q′) |P∼l P
′ and Q∼l Q

′}∪{(P,Q) |P∼l Q}

is a strong low level bisimulation. In fact, let σ =l θ.

If 〈P;Q,σ〉 → 〈P1;Q,σ1〉, then 〈P,σ〉 → 〈P1,σ1〉. Hence, since P ∼l P
′, we get

that 〈P′,θ〉 → 〈P′
1
,θ1〉 with P1 ∼l P

′

1
and σ1 =l θ1. From this last we get 〈P

′;Q′,θ〉 →
〈P′
1
;Q′,θ1〉 with (P1;Q,P′

1
;Q′) ∈ S .

If 〈P;Q,σ〉 → 〈Q,σ1〉, then 〈P,σ〉 → 〈end,σ1〉. Hence, since P ∼l P
′, we get that

〈P′,θ〉 → 〈P′
1
,θ1〉 with end ∼l P

′

1
and σ1 =l θ1. Therefore, P

′

1
≡ end. From this last

we get 〈P′;Q′,θ〉 → 〈Q′,θ1〉 with (Q,Q′) ∈ S .

16



Notice that Theorem 3.21 does not provide a procedure to decide whether P ∈
SIMP∗. This is due to the request P0 ∼l P1 in item (5) which is undecidable. Moreover,
a program P could be in SIMP∗ even if it does not satisfy the conditions of Theorem

3.21.

EXAMPLE 3.22. Consider

P≡ if(L= 1) {L := H−H} else {L := 2}.

The program L :=H−H is in SIMP∗, since for each state σ it holds 〈L :=H−H,σ〉→
〈end,σ[L/0]〉. However it does not satisfy any of the conditions of Theorem 3.21. As
a consequence, by applying Theorem 3.21 we cannot prove that P ∈ SIMP∗.
Let now P ≡ await(0 = 0) {L := H;L := 1}. For each state σ it holds 〈P,σ〉 →

〈end,σ[L/1]〉. Hence, P is in SIMP∗. However, we cannot use Theorem 3.21 to con-
clude this fact since S≡ L := H;L := 1 does not satisfy Theorem 3.21.

In the next section we exploit the decidability of fi rst-order formulae over the reals

to get sound and accurate (but not complete) proof systems both for∼l and for SIMP
∗.

The following theorem shows that all the security properties introduced above im-

ply a lockstep noninterference principle.

Theorem 3.23. (Soundness) Let P be a program such that P ∈ SIMP≈l (respectively,
SIMP∗

≈l
, SIMP∗). For each state σ and θ such that σ =l θ,

〈P,σ〉 →n 〈end,σ′〉 if and only if 〈P,θ〉 →n 〈end,θ′〉 with σ
′ =l θ

′.

Proof. It is suffi cient to prove the theorem for P ∈ SIMP≈l . Then the thesis follows
from the fact that SIMP∗ ⊆ SIMP∗

≈l
⊆ SIMP≈l .

By Lemma 3.10, since σ =l θ, we have that 〈P,σ〉 ≈l 〈P,θ〉. Then, by Lemma 2.12,
we get that 〈P,θ〉 →n 〈P′,θ′〉 with 〈P′,θ′〉 ≈l 〈end,σ

′〉. Hence we immediately have
σ
′ =l θ

′. Moreover, since end is not bisimilar to any program different from end, it

must be P′ ≡ end.

We conclude this section with a mutual exclusion example.

EXAMPLE 3.24. Consider the programs

P0 ≡ while(true) { P1 ≡ while(true) {
await(M = 0) {skip}; await(M = 1) {skip};
L := H1+H2; L := H1 ∗H2;
H1 := H1−H2; H1 := H1+H2;
H2 := L; H2 := L;
L := 0; L := 0;
M := 1 M := 0

} }

where M is a low level variable. Let P ≡ co P0||P1 oc. The two programs P0 and
P1 alternatively exploit the low level variable L to temporary store high level informa-

tion. They write on L, H1, H2 in mutual exclusion. In fact, the await condition on
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the variable M ensures that the subsequent writing operations cannot be interleaved.

However, the program P does not belong to the class SIMP∗. In fact, the program

Q≡ co L :=H1+H2;H1 :=H1−H2;H2 := L;L := 0;M := 1;P0||P1 oc is in Reach
∗(P)

and it is immediate to show that Q 6∼l Q. Intuitively, the point in which L is used to
store high level information is in mutual exclusion between P0 and P1, but it is not in-

cluded into an atomic sequence such as the body of the await operator, hence the high

level information could be read by a low level user running a program in parallel with

P. In order to ensure security we could modify P0 and P1 as follows

P′
0
≡ while(true) { P′

1
≡ while(true) {

await(M = 0) { await(M = 1) {
L := H1+H2; L := H1 ∗H2;
H1 := H1−H2; H1 := H1+H2;
H2 := L; H2 := L;
L := 0; L := 0;

} }
M := 1; M := 0;

} }

Now if we consider the program P′ ≡ co P′
0
||P′
1
oc then we can prove that P′ ∈ SIMP∗

(see next section). In fact, the low level user cannot observe L inside the await state-

ments and outside them L does not depend on the high level values.

4 Verifi cation Techniques

In general, it is diffi cult to decide whether a program belongs to an unwinding class.

First of all, given a program P and a state σ, the LTS associated to 〈P,σ〉 could be
infi nite.

EXAMPLE 4.1. Consider the program

P≡ while(1 = 1) {L := L+1}

and a state σ such that σ(L) = 1. The LTS associated to 〈P,σ〉 consists of an infi nite
chain of transitions to different pairs:

〈P,σ〉 → 〈L := L+1;P,σ〉→ 〈P,σ[L/2]〉 → . . . → 〈P,σ[L/n]〉 → . . .

Another diffi culty arises from the fact that even if we restrict ourselves to terminat-

ing programs, the relation ∼l⊆ (P)2 is not decidable.

Lemma 4.2. The relation ∼l⊆ (P)2 is undecidable.

Proof. A diophantine equation is an equation deq of the form p(X1, . . . ,Xn) = 0, where
p is a polynomial with integer coeffi cients. The 10th Hilbert Problem over a diophan-

tine equation deq, which consists in deciding whether deq has integer solutions, has
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been proved to be undecidable [19]. We prove that given an arbitrary diophantine equa-

tion deq we can reduce the 10th Hilbert Problem over deq to the problem Pdeq ∼l Pdeq
for an opportune program Pdeq. This is suffi cient to prove that ∼l is undecidable.
Let deq≡ p(X1, . . . ,Xn) = 0 be a diophantine equation. Consider the program de-

fi ned as

Pdeq ≡ if(p(X1, . . . ,Xn) = 0) {L := H} else {skip}

where X1, . . . ,Xn,L are low level variables and H is a high level variable. Pdeq is a pro-
gram, since p(X1, . . . ,Xn) is an arithmetic expression of our language. If Pdeq ∼l Pdeq,
then L := H is not in Reach∗(Pdeq) which implies that there do not exist x1, . . . ,xn ∈ Z

such that p(X1/x1, . . . ,Xn/xn) = 0 is true, i.e., deq does not admit integer solutions. On
the other hand if deq does not admit integer solutions, then there does not exist a state

σ such that 〈p(X1, . . . ,Xn) = 0,σ〉 → true, hence L := H is not in Reach∗(Pdeq) and
Pdeq ∼l Pdeq is true.

The above result is a direct consequence of the undecidability of the equational

theory over integer with multiplication. In order to cope with this problem, we abstract

integers with reals and exploit the Tarski’s decidability result for fi rst-order formulae

over the reals [35] to defi ne a decidable binary relation≎l over programs which entails

∼l . Let R be the set of real numbers. A real state is a function σ
r : L∪H −→ R,

i.e., a state in which the variables range over the reals. Two real states σ
r and θ

r are

low level equivalent, σr =l θ
r, if they assign the same values to the low level variables.

We start by defi ning a decidable binary relation ≏l over expressions and sequences of

assignments.

Definition 4.3. (≏l over Aexp∪Bexp∪P) Let a1,a2 ∈ Aexp. We say that a1 and
a2 are low level equivalent, denoted by a1 ≏l a2, if for all real states σ

r,θr such that
σ
r =l θ

r it holds

〈a1,σ
r〉 → r if and only if 〈a2,θ

r〉 → r.

Let b1,b2 ∈Bexp. We say that b1 and b2 are low level equivalent, denoted by b1 ≏l b2,
if for all real states σ

r,θr such that σr =l θ
r it holds

〈b1,σ
r〉 → v if and only if 〈b2,θ

r〉 → v.

Let await(true){S1} and await(true){S2} be two programs. We say that S1 and S2 are
low level equivalent, denoted by S1 ≏l S2, if for all real states σ

r,θr such that σr =l θ
r

it holds

〈S1,σ
r〉 〈end,σr1〉 if and only if 〈S2,θ

r〉 〈end,θr1〉, where σ
r
1 =l θ

r
1.

Notice that the relation ≏l is symmetric but not reflexive. Moreover, we could

avoid to use the await statement before S1 and S2 by simply specifi ng that they are

two sequential programs.
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EXAMPLE 4.4. Consider the expression a≡H+1. It does not hold that a≏l a. In fact,
if we consider the states σ

r and θ
r such that σ

r =l θ
r but σ(H) = 1 while θ(H) = 2,

then we obtain 〈a,σr〉 → 2 and 〈a,θr〉 → 3.
Consider the program await(true){S}, where

S ≡ L := H1+H2;H1 := H1−H2;H2 := L;L := 0.

We have that S≏l S. In fact, for each σ
r and θ

r such that σr =l θ
r, we get that 〈S,σr〉 

〈end,σr
1
〉 and 〈S,θr〉 〈end,θr

1
〉 with σ

r

1
(L) = 0= θ

r

1
(L), i.e., σr

1
=l θ

r

1
.

As a consequence of the fact that states are a subset of real states and low level

equivalence over states is coherent with low level equivalence over real states we get

the following result.

Lemma 4.5. Let a1,a2 ∈ Aexp, b1,b2 ∈ Bexp, and S1,S2 ∈ P such that a1 ≏l a2,

b1 ≏l b2, and S1 ≏l S2. If σ and θ are two states (over the integers) such that σ =l θ,

then:

• 〈a1,σ〉 → n if and only if 〈a2,θ〉 → n;
• 〈b1,σ〉 → v if and only if 〈b2,θ〉 → v;
• 〈S1,σ〉 〈end,σ1〉 if and only if 〈S2,θ〉 〈end,θ1〉, where σ1 =l θ1.

The converse of Lemma 4.5 is not true, i.e., it can be the case that two expressions

are not≏l-equivalent, even if they are always mapped to the same value by two integer

states which are low level equivalent.

EXAMPLE 4.6. Let b be H2 6= 2. It does not hold b ≏l b. In fact, over the reals this
expression is equivalent to H 6= ±

√
2 which can be either true or false depending on

the value of H. However, over the integers this expression is always true, i.e. for each

state σ it holds 〈b,σ〉 → true.

Lemma 4.7. The relation ≏l is decidable.

Proof. Let X1, . . . ,Xn (X
′

1
, . . . ,Xn) be variables, we use the notation X (X ′) as a short-

hand for X1, . . . ,Xn (X
′

1
, . . . ,Xn, respectively).

Let a1,a2 ∈ Aexp be two arithmetic expressions. Let L and H be the low and high
level variables, respectively, occurring in a1+a2. We use a[X ] to denote the fact that a
could contain the variables X . We use the notation a[Z,X/Y ] to refer to the expression
obtained by replacing in a the variables X with Y . We have that the validity of a1 ≏l a2
is equivalent to the validity of the following fi rst-order formula over the reals

∀L,H,K(a1[L,H] = a2[L,H/K])

As a consequence of the decidability of the fi rst-order theory of real numbers (see [35])

we get the thesis in the case of arithmetic expressions.
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Similarly given two boolean expressions b1,b2 ∈ Bexp we have that the validity of
b1 ≏l b2 is equivalent to the validity of the fi rst-order formula over the reals

∀L,H,K(b1[L,H] ↔ b2[L,H/K])

Hence, exploiting again the result in [35] we get the thesis also in the case of boolean

expressions.

Let await(true) {S} be a program and T be a subprogram of S. Let X1, . . ., Xn
be the variables occurring in S and let X ′

1
, . . . ,X ′n be n new variables. We defi ne the

formula ψT [X ,X ′] by structural induction on T . Intuitively, X denotes the input values
while X ′ are the outputs after the execution of T . The other variables are used for tem-

porary values. If T ≡ skip, then ψT [X ,X ′] is the formula ∧ni=1(X
′
i = Xi). If T ≡ X j =

a j[X1, . . . ,Xn], then ψT [X ,X ′] is the formula X ′
j = a j[X1, . . . ,Xn]∧

n
i=1,i6= j (X

′
i = Xi). If

T ≡ T1;T2, then ψT [X ,X ′] is the formula ∃X ′′
1
, . . . ,X ′′n (ψT1 [X ,X ′/X ′′]∧ψT2 [X/X ′′,X ′]).

Consider now two programs await(true) {S1} and await(true) {S2}. Let L (H) be
the low level variables (high level variables, respectively) occurring in S1 and S2. The

validity of S1 ≏l S2 is equivalent to the validity of the fi rst-order formula over the reals

∀L,L′,M′,H,H ′,K,K′

((ψS1 [L,H,L′,H ′]∧ψS2 [L,H/K,L′/M′,H ′/K′]) → L′ =M′)

Hence we get the thesis.

Based on the defi nition of ≏l over expressions and sequences of assignments, we

defi ne the binary relation ≎l over P which provides a decidable approximation of

∼l . Given a program P we denote by l(P) the number of operators occurring in P,
i.e., l(end) = l(skip) = l(X:=a) = 1, l(P0;P1) = l(co P0||P1 oc) = l(P0)+ l(P1)+ 1,
l(if(b) {P0} else {P1}) = l(P0)+ l(P1)+2, l(while(b) {P}) = l(await(b) {P}) =
l(P)+1.

Definition 4.8. (≎l over P) The binary relation≎l over P is defi ned by the rules given

in Table 2 and Table 3.

Note that the last rule introduces a controlled form of symmetry. Note also that

the given rules do not imply the transitivity of ≎l . Consider, for instance P ≡ if(1 =
1) {P0} else {P1} and Q≡ while(1 6= 1) {skip};P0. We have that P≎1 skip;P0 ≎l

Q, but P 6≎l Q. In order to guarantee the decidability of≎l we cannot simply add a rule
for transitivity. In fact a rule of the form

P≎l R and R≎l Q

P≎l Q

without any condition on R, requires to look for R in the set of all programs which is

infi nite. We could instead enlarge the relation ≎l as follows: if we have to test P≎l Q

we fi rst fi nd all the subprograms of P and Q which are ≎l-equivalent with skip; we

replace them by skip in P and Q; we test ≎l on the programs obtained in this way.

Moreover, the side conditions on the boolean expressions in Table 3 could be re-

laxed when the bodies of the while and await statements meet specifi c requirements

(as in [7, 33]).
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Lemma 4.9. The relation ≎l⊆ P×P is decidable and it entails the relation ∼l .

Proof. The fact that the relation ≎l⊆ P×P is decidable is an immediate consequence

of Lemma 4.7 and of the fact that≎l is defi ned by structural induction on the syntax of

the programs.

In order to prove that ≎l entails the relation ∼l consider the binary relation S de-
fi ned as

S = {(P,Q) |P≎l Q}∪{(P,Q) |P∼l Q}

We prove that S is a strong low level bisimulation. Let (P,Q) ∈ S . Clearly we need to
consider only the case P≎l Q. We proceed by structural induction on P.

Let σ,θ be two states such that σ =l θ.

Let P≡ end (skip). In this case Q≡ end (skip) hence we immediately get the thesis.
Let P ≡ L := a0 with L ∈ L. In this case we have Q ≡ L := a1 with a0 ≏l a1. Since
a0 ≏l a1, by Lemma 4.5, we have that 〈a0,σ〉 → n and 〈a1,θ〉 → n. Hence, it holds
that 〈P,σ〉 → 〈end,σ[L/n]〉 and 〈Q,θ〉 → 〈end,θ[L/n]〉 with σ[L/n] =l θ[L/n], i.e., the
thesis.

Let P ≡ H := a0 with H ∈ H. In this case Q ≡ K := a1 with K ∈ H. Let 〈a0,σ〉 → n
and 〈a1,θ〉→m. It holds that 〈P,σ〉→ 〈end,σ[H/n]〉 and 〈Q,θ〉→ 〈end,θ[K/m]〉with
σ[H/n] =l θ[K/m], i.e., the thesis.
Let P ≡ P0;P1. In this case we have Q ≡ Q0;Q1 with P0 ≎l Q0 and P1 ≎l Q1. If
〈P0,σ〉 → 〈end,σ′〉, then 〈P,σ〉 → 〈P1,σ

′〉. By inductive hypothesis on P0 and Q0 we
have that 〈Q0,σ〉 → 〈end,θ′〉 with σ

′ =l θ
′. Hence 〈Q,θ〉 → 〈Q1,θ

′〉 and (P1,Q1) ∈ S ,
i.e., the thesis. If 〈P0,σ〉 → 〈P′

0
,σ′〉 with P′

0
6≡ end, then 〈P,σ〉 → 〈P′

0
;P1,σ

′〉. By
inductive hypothesis on P0 and Q0 we have that 〈Q0,σ〉 → 〈Q′

0
,θ′〉 with (P′

0
,Q′

0
) ∈ S

and σ
′ =l θ

′. Hence 〈Q,θ〉 → 〈Q′

0
;Q1,θ

′〉 and (P′
0
;P1,Q

′

0
;Q1) ∈ S , i.e., the thesis.

Let P≡ co P0||P1 oc. This case is similar to the previous one.
Let P ≡ if(b0) {P0} else {P1}. Let Q ≡ if(b1) {Q0} else {Q1} with P0 ≎l Q0,
P1 ≎l Q1, and b0 ≏l b1. Since b0 ≏l b1, by Lemma 4.5, we have that 〈b0,σ〉 → v iff
〈b1,θ〉 → v. Let us assume that 〈b0,σ〉 → true. We have 〈P,σ〉 → 〈P0,σ〉 and 〈Q,θ〉 →
〈Q0,θ〉 with (P0,Q0) ∈ S , i.e., the thesis. The case 〈b0,σ〉 → false is similar. Let
Q ≡ skip;P0 with b0 ≏l true and P0 ≎l P0. We have 〈P,σ〉 → 〈P0,σ〉 and 〈Q,θ〉 →
〈P0,θ〉. By inductive hypothesis we immediately get the thesis. The remaining cases
are similar.

Let P ≡ while(b0) {P0}. Let Q ≡ while(b1) {Q0} with b0 ≏l b1 and P0 ≎l Q0.
If 〈P,σ〉 → 〈end,σ〉, then 〈b0,σ〉 → false. Hence, by Lemma 4.5, 〈b1,θ〉 → false
and 〈Q,θ〉 → 〈end,θ〉, i.e., we have the thesis. If 〈P,σ〉 → 〈P0;P,σ〉, then 〈b0,σ〉 →
true. Hence 〈b1,θ〉 → true and 〈Q,θ〉 → 〈Q0;Q,θ〉, with P0;P ≎l Q0;Q, i.e., with
(P0;P,Q0;Q) ∈ S . The remaining cases are similar.
Let P ≡ await(b0){S0}. Let Q ≡ await(b1){S1} with b0 ≏l b1 and S0 ≏l S1. If

〈b0,σ〉 → false, then 〈b1,θ〉 → false. In this case both 〈P,σ〉 → 〈P,σ〉 and 〈Q,θ〉 →
〈Q,θ〉 with (P,Q) ∈ S . If 〈b0,σ〉 → true, then 〈b1,θ〉 → true. Hence 〈P,σ〉 → 〈end,σ′〉
with 〈S0,σ〉  〈end,σ′〉. Since S0 ≏l S1, by Lemma 4.5, we have that 〈S1,θ〉  
〈end,θ′〉 with σ

′ =l θ
′. Hence 〈Q,θ〉 → 〈end,θ′〉 and we get the thesis.

As a consequence of Theorem 3.18, we can exploit the proof system for≎l to check

if a program is in SIMP∗.
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Theorem 4.10. If P≎l P then P ∈ SIMP
∗.

EXAMPLE 4.11. Let the program

P≡ if(H = 0) {L := 1;H := 1} else {L := 1;H := 2}.

By applying the proof system for ≎l defi ned above, one can easily check that P≎l P,

and then P ∈ SIMP∗.
Consider the program

P≡ while(L2+H ≥H) {L := 1}.

By applying the Tarski’s decidability result for fi rst-order formulae over the reals, we

can prove that (L2+H ≥H) ≎l (L
2+H ≥H). Hence, since L := 1≎l L := 1, by using

our proof system one can derive that P≎l P, i.e., P ∈ SIMP
∗.

The decidability of ≏l , and then of ≎l , depends on the Tarski’s result on quantifi er

elimination. However, the result in [35] is mainly of theoretical interest. More effi cient

techniques to deal with formulae over the reals have been later developed and integrated

in systems for automatic computations. Hong developed the fi rst practical quantifi er

elimination software, named Qepcad [9]. A quantifi er elimination procedure based on

Collins’ algorithm [8] and called Cylindrical Decomposition has been integrated

in Mathematica starting from Version 5.0. Since the formulae used to prove ≏l have

no quantifi er alternations (see proof of Lemma 4.7), the symbolic computation mod-

ule of Maple (see http://www.maplesoft.com/products/maple/index.aspx) in-

tegrated in Matlab Version 5 is suffi cient for our purposes.

In order to analyze the time complexity of≎l , we denote by c(P) the time complex-
ity of evaluating the ≏l equivalence on the expressions and sequences of assignments

occurring in P. In general c(P) is a function of the maximum number v of variables
which occurs in each expression of P, the degree d of the polynomials, and the quanti-

fi er alternations q, and it strongly depends on the algorithm used to check the fi rst-order

formulae over the reals. Since the formulae we use to prove ≏l are closed and have

only universal quantifi cations, the number q of quantifi er alternations in our analysis is

always zero. So, the methods proposed by Grigoriev [15] and Renegar [25] in our case

are polynomial in d and exponential in v.

Theorem 4.12. Let P be a program. The complexity of deciding P ≎l P is O(c(P) ∗
l(P)).

Proof. In the worst case at each step two rules which require a checking of the form

b0 ≏l b1 are applicable. Moreover, at each step we apply only the fi rst matching rule

and l(P) decreases by at least 1.

The proof system for≎l defi ned above is quite involved since it has been designed

to decide if P0 ≏l P1 for any pair of programs P0 and P1. However, to check whether a

program P belongs to the class SIMP∗, it is suffi cient to verify if P ≏l P. Below, we

exploit the unwinding characterization of SIMP∗ to specialize some of the rules and

to reduce the number of checks. In particular, we introduce a decidable class W (≎l)
of secure programs such that P ∈ W (≎l) if and only if P ≎l P. The class W (≎l) is
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defi ned through a proof system which can be used to incrementally build programs

which are secure by construction.

Definition 4.13. (W (≎l)) The class W (≎l) is defi ned by the rules given in Table 4.

Lemma 4.14. The class W (≎l) ⊆ P is decidable. Moreover, P ∈ W (≎l) if and only
if P≎l P.

Proof. The fact that W (≎l) ⊆ P is decidable is an immediate consequence of Lemma

4.7, Lemma 4.9, and of the fact that W (≎l) is defi ned by structural induction on the
syntax of the programs.

It is easy to prove that if a,b ∈ low, then a≏l a and b≏l b. Hence, if P ∈W (≎l),
then it holds P≎l P, since in Table 4 we only instantiate some of the rules of≎l . On the

other hand, if P ≎l P, then the only rules which can have been applied are that which

occur in Table 4, hence P ∈W (≎l).

As a consequence, we get the following result.

Theorem 4.15. If P ∈W (≎l), then P ∈ SIMP
∗.

EXAMPLE 4.16. Let P′ be the program of Example 3.24. We can use our proof system

to show that P′ is in SIMP∗. First, we have to prove that both P′
0
and P′

1
are inW (≎l).

Let us consider P′
0
. It has the form while(true){await(M = 0){S};M := 1}. By using

the second rule for the while statement we get that we have to prove that await(M =
0){S};M := 1 is in W (≎l). By applying the rule for sequential composition we need
to prove that both await(M = 0){S} and M := 1 are in W (≎l). The second proof
is immediate. As far as await(M = 0){S} is concerned, we need to prove the side
conditions of the await rule, i.e., (M = 0) ≏l (M = 0) and S ≏l S. Since M is a

low level variable, the fi rst condition is satisfi ed. The second one has been proved in

Example 4.4. We can conclude that P′
0
∈ W (≎l). Similarly, the proof system allows

us to prove that P′
1
∈W (≎l). Finally, by applying the rule for parallel composition we

obtain that P′ ∈W (≎l).

The following example shows that there are programs which are in SIMP∗ but not

inW (≎l).

EXAMPLE 4.17. Let

P≡ while(true) {L := 1}; L := H

Since L := H is not in Reach∗(P) we get that P ∈ SIMP∗. However, we cannot prove
it using our proof system. In fact, the rule for P0;P1 requires that both P0 and P1 be

secure independently of their reachability.

Consider now the program

P≡ if(H2 6= 2) {L := 1} else {L := 2}

It holds that H2 6= 2 is always true over the integers, hence it follows that P ∈ SIMP∗.
However, (H2 6= 2) 6≏l (H

2 6= 2) and L := 1 is not low level equivalent to L := 2, hence
P 6∈W (≎l).
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5 Delimited Information Release

In the previous sections we have presented a method for specifying and verifying se-

curity properties of programs which prevent any flow of information from high to low

level locations. However, as observed by many authors, e.g., [17, 29, 41], noninterfer-

ence is too strong for practical applications. Indeed, many realistic programs do allow

some release, or declassification, of secret information (e.g., password checking, in-

formation purchase, and spreadsheet computation). In this section we show how our

generalized unwinding condition can be instantiated in order to obtain security prop-

erties for concurrent programs which intentionally release some information. We also

extend the proof systems of previous section to the analysis of such properties.

We consider a fi nite set D of arithmetic and boolean expressions which are con-

structed by using only high level variables. The set D represents the set of all the high

level expressions which can be declassifi ed during the execution.

Definition 5.1. A set D of arithmetic and boolean expressions is said to be declassifi-

able if it is fi nite and all the expressions in it contain only high level variables.

EXAMPLE 5.2. Let D = {H1 > 5,H1+H2}. D is a declassifi able set. Intuitively, it
represents the fact that, concerning the values of the secret variables H1 and H2, a low

level user is allowed to know whether H1 is greater than 5 or not, as well as the total

value of the sum H1+H2. Hence, the program

P≡ if(H1 > 5) {skip} else {L := H1+H2}

should be considered secure.

Notice that, the user can observe if H1 ≤ 5 and the sum H1+H2. Thus the user
can infer H2 ≥ ℓ− 5, where ℓ is the value of L at the end of the execution. Hence the

information which is downgraded through the set D exceeds D itself.

The previous example shows that not only the information in the set D but any in-

formation obtained by combining elements of D is downgraded to the low level user.

Intuitively, D represents a fi nite abstraction of all information that is actually down-

graded. We defi ne the concretization γ(D) of D representing all the declassifi able ex-
pressions which are deducible from D.

Definition 5.3. Let D be a declassifi able set. The concretization γ(D) of D is the
smallest set such that:

(1) D⊆ γ(D),

(2) if e,e′ ∈ Aexp∪Bexp, e′ ∈ γ(D) and for all states σ, 〈e,σ〉 → v if and only if
〈e′,σ〉 → v, then e ∈ γ(D),

(3) if e is defi ned through the grammar for Aexp∪Bexp given in Section 2 with
a0,a1,b,b0,b1,X ∈ γ(D) then e ∈ γ(D).

EXAMPLE 5.4. Consier the declassifi able set D of Example 5.2. We have that, e.g.,

2H1−10> 0 and H2+H1+1 belong to γ(D), while H1,H2 6∈ γ(D).
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By Defi nition 5.3 it follows that for all set D′ such that D ⊆ D′ ⊆ γ(D), it holds
γ(D′) = γ(D).
Our approach is in the spirit of [17, 29] in the sense that we require that only

explicitly declassifi able data, i.e., those in γ(D), but no further information is released.
Notice that, differently from [29], we do not add an explicit declassify predicate to the

syntax of expressions but instead we consider the set D representing all declassifi able

expressions.

Let σ and θ be two states and D be a declassifi able set. We write σ =l,D θ if σ =l θ

and 〈d,σ〉 → c if and only if 〈d,θ〉 → c, for all d ∈D. By Defi nition 5.3, it follows that
σ =l,D θ if and only if σ =l,γ(D) θ. Moreover, the following technical property holds.

Lemma 5.5. For each ψ and π such that ψ =l,D π, if 〈F,ψ〉
low

→ 〈F ′,ψ′〉, then 〈F,π〉
low

→
〈F ′,π′〉 with π′ =l,D ψ′.

Proof. This is a consequence of the fact that in D there are not low level variables. The

proof follows by structural induction on programs.

In order to deal with delimited release we introduce the notion of strong low-D level

bisimulation which is obtained from Defi nition 2.7 by replacing =l with =l,D. We say
that two programs P,Q ∈ P are strongly low-D level bisimilar, denoted by P ∼l,D Q if
there exists a low-D level bisimulation B such that (P,Q) ∈ B .

Lemma 5.6. If P∼l,D P, then for all F ∈ Reach∗(P) it holds that F ∼l,D F.

Proof. If F ∈ Reach∗(P), then there exists n ≥ 0 and P0, . . . ,Pn, σ0, . . . ,σn, θ0, . . . ,θn
such that P0 ≡ P, Pn ≡ F and for each 1 ≤ i ≤ n it holds 〈Pi−1,σi−1〉 → 〈Pi,θi〉. We
prove that Pn ∼l,D Pn by induction on n.
Base. If n= 0, then Pn ≡ P, hence we immediately get the thesis.
Inductive step. Suppose that the thesis holds for n=m and consider n=m+1. We

have that 〈Pm,σm〉 → 〈Pm+1,θm+1〉. Since by inductive hypothesis it holds Pm ∼l,D Pm
and it holds that σm =l,D σm and 〈Pm,σm〉 → 〈Pm+1,θm+1〉 we get that 〈Pm,σm〉 →
〈Q,µ〉 with Pm+1 ∼l,D Q and θm+1 =l,D µ. Since ∼l,D is a partial equivalence relation
from Pm+1 ∼l,D Q we get Pm+1 ∼l,D Pm+1.

Moreover, the relation
..

∼l,D over P×Σ is defi ned as follows:

Definition 5.7. Let D be a declassifi able set. The relation
..

∼l,D over P×Σ is defi ned

by: 〈P,σ〉
..

∼l,D 〈Q,θ〉 if σ =l,D θ and P∼l,D Q.

The next technical property will be used in the following.

Lemma 5.8. Let P and Q be two programs and σ and θ be two states. Let 〈P,σ〉
..

∼l,D
〈Q,θ〉. If 〈P,σ〉→n 〈P′,σ′〉, then there exists Q′ and θ′ such that 〈Q,θ〉 →n 〈Q′

,θ′〉 and
〈P′,σ′〉

..

∼l,D 〈Q
′
,θ′〉, and viceversa.

Proof. By induction on n.

• Base: n= 1. We immediately have the thesis by defi nition of
..

∼l,D.
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• Inductive step: n=m+1 and we proved the thesis form. We have that 〈P,σ〉→m

〈P′′,σ′′〉 → 〈P′,σ′〉. By inductive hypothesis we get 〈Q,θ〉 →m 〈Q′′,θ′′〉 with
〈P′′,σ′′〉

..

∼l,D 〈Q′′,θ′′〉. By defi nition of strong low-D level bisimulation we get
the thesis.

Lemma 5.9. Let D be a declassifiable set. The relations ∼l,D and
..

∼l,D are partial
equivalence relations.

Proof. The fact that∼l,D is symmetric is a consequence of the fact that each strong low-
D level bisimulation is symmetric. Moreover, ∼l,D is transitive since the composition
of two strong low-D level bisimulations is still a strong low-D level bisimulation.

We study the class of secure imperative programs SIMP∗D which is obtained by

instantiating our unwinding condition with the low-D level relations =l,D for
.
= and

..

∼l,D for+, and the relation Reach
∗ for R .

Definition 5.10. (SIMP∗D) Let D be a declassifi able set. A program P belongs to the

class SIMP∗D if for each state σ, 〈P,σ〉 ∈W (=l,D,
..

∼l,D,Reach
∗).

EXAMPLE 5.11. Consider the program

P≡ if(H = 0) {L := 0;H := 0} else {L := 1;H := 1}

and the set D= {H = 0}. In this case P ∈ SIMP∗D. In fact, for all states σ and θ such

that σ =l,D θ, if 〈P,σ〉
high
→ 〈L := 0;H := 0,σ〉 then also 〈P,θ〉

high
→ 〈L := 0;H := 0,θ〉 and

{L := 0;H := 0} ∼l,D {L := 0;H := 0}. Analogously, if 〈P,σ〉
high
→ 〈L := 1;H := 1,σ〉

then also 〈P,θ〉
high
→ 〈L := 1;H := 1,θ〉 and {L := 1;H := 1} ∼l,D {L := 1;H := 1}.

Consider now the program P≡ H1 := H2;L := H1 where H1 and H2 are high level

variables and D = {H1}. In this case P 6∈ SIMP
∗

D. In fact, given a state σ, 〈P,σ〉
high
→

〈L := H1,σ[H1/H2]〉. However, it does not hold that for any θ such that σ =l,D θ,

〈P,θ〉
high
→ 〈L := H1, θ[H1/H2]〉 with σ[H1/H2] =l,D θ[H1/H2]. This happens whenever

σ(H2) 6= θ(H2). Indeed, because of the assignment H1 := H2, after the execution of P,
a low level user can infer the value of H2 just by observing the value of L.

Observe that also the program P ≡ L := H1;H1 := H2 with D = {H1} does not
belong to SIMP∗D, since the second assignment assigns a high value to a downgraded

variable. To understand why this is insecure we can consider the program co P||Q oc
with Q≡ L1 := H1. By observing L and L1, a low level user can infer the value of the
secret variable H2; in fact whenever the values of L and L1 are different, the value of

L1 is equal to that of H2.

The following property holds.

Lemma 5.12. Let P be a program and D be a declassifiable set. If P ∈ SIMP∗D, then
for all P′ ∈ Reach∗(P), P′ ∈ SIMP∗D.

Proof. This proof is similar to that of Lemma 3.17.
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The next theorem follows from the defi nition of γ(D) and shows that the set γ(D)
is exactly the information that can be released by a program P in SIMP∗D.

Theorem 5.13. Let D be a declassifiable set. P ∈ SIMP∗D if and only if P ∈ SIMP
∗

γ(D).

Proof. It follows from the fact that by Defi nition 5.3, for all states σ and θ, σ =l,D θ if

and only if σ =l,γ(D) θ.

The class SIMP∗D satisfi es compositional properties similar to those of Theorem

3.21 for the class SIMP∗. In particular it is compositional with respect to the sequential

and parallel operators. We can also prove that W (=l,D,
..

∼l,D,Reach
∗) is persistent

in the sense that if 〈P,σ〉 is in W (=l,D,
..

∼l,D,Reach
∗), then also each pair 〈P′,σ′〉 ∈

Reach∗(〈P,σ〉) is in W (=l,D,
..

∼l,D,Reach
∗). Moreover, if P is in SIMP∗D, then also

each P′ ∈ Reach∗(P) is in SIMP∗D.
The class of programs P such that P ∼l,D P exactly coincides with the set of pro-

grams in the class SIMP∗D.

Theorem 5.14. Let D be a declassifiable set. P ∈ SIMP∗D if and only if P∼l,D P.

Proof. ⇒) Consider the binary relation

S = {(P,P) | P ∈ SIMP∗D}∪ {(P,Q) | P∼l,D Q}

We show that S is a strong D-low level bisimulation. This follows from the follow-

ing cases. Let σ and θ be two states such that σ =l,D θ.

If 〈P,σ〉
high
→ 〈P′,σ′〉, since P ∈ SIMP∗D, 〈P,σ〉 ∈ W (=l,D,

..

∼l,D,Reach
∗) and also

〈P,θ〉 → 〈P′′,θ′〉 with 〈P′,σ′〉
..

∼l,D 〈P′′,θ′〉, i.e., σ′ =l,D θ′ and P′ ∼l,D P
′′. Hence, by

defi nition of S , (P′,P′′) ∈ S .

If 〈P,σ〉
low
→ 〈P′,σ′〉, then by Lemma 5.5 we have that 〈P,θ〉

low
→ 〈P′,θ′〉 with σ′ =l,D

θ′. By Lemma 5.12, we have that P′ ∈ SIMP∗D and then, by defi nition of S , (P
′
,P′)∈ S ,

i.e., the thesis.

⇐) Let P be a program and P ∼l,D P. Let σ,ψ ∈ Σ and 〈F,ψ〉 ∈ Reach∗(〈P,σ〉).
Then F ∈ Reach∗(P) and, by Lemma 5.6, F ∼l,D F . Let π be such that ψ =l,D π.

If 〈F,ψ〉
high
→ 〈G,ϕ〉, then, since F ∼l,D F , 〈F,π〉→ 〈R,ρ〉 with ϕ =l,D ρ and G∼l,D

R, i.e., the thesis.

The next theorem shows that the family of security properties SIMP∗D implies the

delimited release property studied in [29] for sequential programs.

Theorem 5.15. (Soundness) Let D be a declassifiable set and P be a program. If

P ∈ SIMP∗D, then for all states σ and θ such that σ =l,D θ,

〈P,σ〉 →n 〈end,σ′〉 if and only if 〈P,θ〉 →n 〈end,θ′〉 with σ′ =l θ′.
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Proof. By Theorem 5.14, since σ =l,D θ, we have that 〈P,σ〉
..

∼l,D 〈P,θ〉. Then, by 5.8,
we get that 〈P,θ〉 〈P′,θ′〉 with 〈P′,θ′〉

..

∼l,D 〈end,σ′〉. Hence we immediately have
σ
′ =l,D θ

′. So by defi nition of =l,D we get σ
′ =l θ

′. Moreover, since end is not strong

low-D level bisimilar to any program, it must be P′ ≡ end.

We can decide whether a program belongs to a class SIMP∗D by extending the proof

systems presented in Section 4 as described below.

First, by exploiting the Tarski decidability result for fi rst-order formulae over the

reals we defi ne a decidable binary relation≎l,D over programs which entails ∼l,D. The
relation =l,D is extended to real states in the natural way.

Definition 5.16. (≏l,D over Aexp∪Bexp∪P) LetD be a declassifi able set. Let a1,a2 ∈
Aexp. We say that a1 and a2 are low-D level equivalent, denoted by a1 ≏l,D a2, if for

all real states σ
r,θr such that σr =l,D θ

r it holds

〈a1,σ
r〉 → r if and only if 〈a2,θ

r〉 → r.

Let b1,b2 ∈Bexp. We say that b1 and b2 are low-D level equivalent, denoted by b1≏l,D
b2, if for all σ

r,θr such that σr =l,D θ
r it holds

〈b1,σ
r〉 → v if and only if 〈b2,θ

r〉 → v.

Let await(true){S1} and await(true){S2} be two programs. We say that S1 and S2
are low-D level equivalent, denoted by S1 ≏l,D S2, if for all real states σ

r,θr such that
σ
r =l,D θ

r it holds

if 〈S1,σ
r〉 〈end,σr1〉 and 〈S2,θ

r〉 〈end,θr1〉 then σ
r

1 =l,D θ
r

1.

Lemma 5.17. Let a1,a2 ∈ Aexp, b1,b2 ∈ Bexp, and S1,S2 ∈ P such that a1 ≏l a2,

b1 ≏l b2, and S1 ≏l S2. If σ and θ are two states (over the integers) such that σ =l,D θ,

then:

• 〈a1,σ〉 → n if and only if 〈a2,θ〉 → n;

• 〈b1,σ〉 → v if and only if 〈b2,θ〉 → v;

• if 〈S1,σ〉 〈end,σ1〉 and 〈S2,θ〉 〈end,θ1〉 then σ1 =l,D θ1.

Lemma 5.18. Let D be a declassifiable set. The relation ≏l,D is decidable.

Proof. Let a1,a2 ∈ Aexp be two arithmetic expressions. Let L and H be the low and
high level variables, respectively, occurring in a1,a2 and D. We consider the case in
which inD there are only arithmetic expressions. We have that the validity of a1≏l,D a2
is equivalent to the validity of the following fi rst-order formula over the reals

∀L,H,K(
V

d∈D d[H] = d[H/K]) → (a1[L,H] = a2[L,H/K])
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As a consequence of the decidability of the fi rst-order theory of real numbers we get

the thesis. If D contains also boolean expressions we only have to replace = with↔
on the boolean expressions.

The case of boolean expressions is similar.

Let S1,S2 ∈ P. For any sequence of assignments S consider the formula ψS[X ,X ′]
as defi ned in the proof of Lemma 4.7. The validity of S1 ≏l,D S2 is equivalent to the

validity of the following fi rst-order formula over the reals

∀L,L′,L′′,H,K

((
V

d∈D d[H] = d[H/K]∧ψS1 [L,H,L′,H ′]∧ψS2 [L,H/K,L′/L′′,H ′/K′]) →

(L′ = L′′∧
V

d∈D d[H/H ′] = d[H/K′]))

Lemma 5.19. Let H and K be two high level locations and D be a declassifiable set.

H := a0 ≏l,D K := a1 entails H := a0 ∼l,D K := a1.

Proof. This is an immediate consequence of Lemma 5.17.

Definition 5.20. (≎l,D over P) Let D be a declassifi able set. The binary relation ≎l,D

over P is obtained from the rules given for≎l in Tables 2 and 3 by replacing≎l and≏l

with≎l,D and≏l,D, respectively and by adding the side conditionH := a0 ≏l,D K := a1
in the second rule for the assignment command.

Lemma 5.21. The relation ≎l,D⊆ P×P is decidable and entails ∼l,D.

Proof. The decidability is an immediate consequence of Lemma 5.18 and of the fact

that ≎l,D is defi ned by structural induction on the syntax of the programs.

The second part of the proof is similar to that of Lemma 4.9. The only case which

is different is the case H := a0 ≎l,D K := a1 which now is a consequence of Lemma
5.19.

We fi nally defi ne the decidable class W (≎l,D) of secure programs by modifying
our previous proof system as follows: the class W (≎l,D) is obtained from the rules
given in Table 4 by replacing≎l and≏l with≎l,D and≏l,D, respectively and by adding

the side conditionH := a≏l,D H := a in the second line, second rule for the assignment
command.

Theorem 5.22. If P ∈W (≎l,D), then P ∈ SIMP
∗

D.

Proof. This is similar to the proof of Lemma 4.14.

EXAMPLE 5.23. Consider the program

P≡ if(H = 0) {L := 0;H := 0} else {L := 1;H := 1}

and the set D = {H = 0}. It is easy to prove that both {L := 0;H := 0} ∈W (≎l,D)
and {L := 1;H := 1} ∈W (≎l,D). Moreover, we can prove that (H = 0) ≎l,D (H = 0).
Hence, by applying the rules ofW (≎l,D), we get that P ∈W (≎l,D), i.e., P ∈ SIMP

∗

D.
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EXAMPLE 5.24. Let us consider a database in which low level users can only write

(both on low and high level locations), while high level users can only read. In partic-

ular, the write operations are performed through assignments to global variables, de-

noted by Lglob and Hglob, while the read operations are performed through assignments

to local variables, denoted by Hloc. Moreover, we want to ensure mutual exclusion

among the low level users, and that high level users as a class exclude the low level

ones (i.e., at any time either one low lever user or many high level users have access to

the database and the high level users have priority on the low level ones).

As in [3], we use the standard semaphore notation: if S is a variable, P(S) is a
shorthand for await(S > 0) {S := S− 1} which is used to delay a process until the
value of S is positive and then to decrement S; similarly,V (S) stands for S := S+1 and
is used to increment the value of the semaphore.

We can model each low level user with a program of the form

LowW(al,ah) ≡
while(true) {

P(W ); //get lock to write
Lglob := al; //write on the database
Hglob := ah;
V (W ) //release lock

}

where al is a low level expression and ah is a high level expression, and // is used for
comments. Notice that the fact that the low level user write ah on a high level location

does not mean that he can see the value of ah, i.e., he only knows the expression but

not its value. The variableW is a low level variable initialized to 1. WhenW is equal

to 1 and a low level writer asks to write on the database he turnsW to 0, this ensures

that the other low level users cannot write, then he writes on the database and he sets

againW to 1.

As far high level users are concerned, we can model them as follows

HighR(Hloc,Hglob) ≡
while(true) {

P(MH); //get lock to . . .
NH := NH+1; //. . . increment nr. of readers and . . .
if(NH = 1) {P(W)}; //. . . if fi rst reader, exclude the writers
V (MH); //release lock
Hloc := Hglob; //read from the data base
P(MH); //get lock to . . .
if(NH = 1) {V(W )}; //. . . if last reader, release lock on writers and
NH := NH−1; //. . . decrement the nr. of readers . . .
V (MH); //release lock

}

where MH is a low level variable and NH is a high level variable. MH is used to

ensure that the writers have mutually exclusive access to NH andW . NH represents

the number of active readers. The fi rst high level user who asks to read have to prevent
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low level users from writing on the database while he is reading. It is possible to have

more than one reader reading the database at the same time. The last reader has to

release the lock, so that the writers can write on the database.

It is easy to see that high level readers release information to low level writers. In

fact, the instructions if(NH = 1) {P(W )} and if(NH = 1) {V (W )} have high level
boolean conditions which determine changes on a low level variable. Intuitively, a low

level user which is waiting to write can infer that either another low level user is writing

or at least one high level user is reading. This is a high level information. since it is the

disjunction of a low with a high part. However, the low level writer cannot infer how

many readers are active, i.e., he cannot infer the value of NH.

Let us consider the set D = {NH = 1}. Our proof system can be used to prove
that both LowW and HighR are in the class SIMP∗D, hence any parallel composition of

readers and writer is also in SIMP∗D.

6 Conclusion and Related Work

In this paper we introduce a generalized unwinding schema for the defi nition of non-

interference properties of programs described in a simple imperative language with a

parallel operator and an atomic block constructor. We study different instances of our

unwinding condition also accounting for intentional information release. Moreover,

we defi ne accurate proof techniques for the verifi cation of compositional noninterfer-

ence properties for concurrent programs. Indeed, as far as expressions and sequential

programs are concerned, our system is complete over the real numbers.

There is a widespread literature on secure information flow in imperative languages

(see [28]). Many works concern the defi nition of noninterference properties control-

ling the end-to-end behaviour of programs. In the setting of concurrency, these kind

of properties have been studied by, e.g., Volpano and Smith in [34] and by Boudol and

Castellani in [7]. They both defi ne type systems to ensure the property of noninterfer-

ence expressed in terms of the followingweak low bisimulation≈L: let։ stand for one
or zero transitions, thus (〈P,σ〉,〈Q,θ〉) ∈ ≈L if σ =l θ and whenever 〈P,σ〉 → 〈P′,σ′〉,
then there exists 〈Q′

,θ
′〉 such that 〈Q,θ〉։ 〈Q′

,θ
′〉 and (〈P′,σ′〉,〈Q′

,θ
′〉) ∈ ≈L, and

viceversa. The relation ≈L is a partial equivalence relation and a program P is secure
if 〈P,σ〉 ≈L 〈P,θ〉 for all σ and θ such that σ =l θ. We can instantiate our general-

ized unwinding condition with ≈L obtaining, for instance, the classes W (=l,≈
L
, )

and W (=l,≈
L
,Reach∗) which both imply the property studied in [7, 34]. Unfor-

tunately, such properties are not compositional, neither with respect to the parallel

composition operator nor with respect to the sequential one. This is due to the fact

that they do not take into account termination and then secure programs like, e.g.,

P1 ≡ while(H = 0) {skip} and P2 ≡ L := 1, give rise to insecure programs when
composed through, e.g., P1;P2 and co P1||P2 oc.
Later work by Volpano and Smith [38] investigates security for multithreaded pro-

gramswith a probabilistic scheduler which selects a thread from the pool of live threads

with a fi xed probability distribution. However scheduling policies may vary from im-

plementation to implementation and this motivated the work of Sabelfeld and Sands

[30] which argue for scheduler independent security, that is a notion of security robust
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with respect to a wide class of potentially probabilistic schedulers. This is achieved

by relying on a compositional strong low-bisimulation such that any two strongly low-

bisimilar thread pools must be of equal size and must create/kill exactly the same num-

ber of processes at each step under any scheduler. In the present paper we do not focus

on scheduler independent security. However, our approach is flexible enough to model

scheduler independent properties. Indeed it is suffi cient to parameterize the
ε

→ relation
with a list of indexes S keeping track of each single thread execution. The new relation
ε

→S can be obtained by modifying the rules in Table 1 as follows: the relation
ε

→ is

replaced by
ε

→[ ], where S is the empty list, in all the rules except the fi rst one for the

parallel operator co P1|| . . .Pi . . . ||Pn oc which becomes:

〈Pi,σ〉
ε

→S 〈P
′

i
,σ

′〉

〈co P1|| . . .Pi . . . ||Pn oc,σ〉
ε

→i,S 〈co P1|| . . .P
′

i
. . . ||Pn oc,σ

′〉

Bisimulation equivalence relations defi ned on the new LTS’s thus require that the same

lists of indexes in an arrow are simulated, ensuring that the same threads are executed at

each step. In particular, if we restrict ourselves to programs without any occurrence of

the await operator, we can easily reformulate in terms of an unwinding condition the

strong security property for multithreaded programs studied by Sabelfeld and Mantel

in [27] and by Agat in [1].

The security properties presented in this paper capture internal timing leaks pro-

vided that programs do not contain await statements. Timing-sensitive bisimulations

have been considered by various authors, e.g., [1, 16, 30, 27, 33], for modelling timing

attacks which include the ability to observe the timing behavior of the system. We

argue that our approach can also be extended to deal with timing sensitive security

properties. It is suffi cient to modify the rules in Table 1 in order to model the timing

behavior of atomic blocks in the await statements. This is achieved by replacing
ε

→

with
ε

→1 in all the rules except the one for await which becomes

〈b,σ〉→ true 〈S,σ〉
ε2

→֒n 〈end,σ
′〉

〈await(b) {S},σ〉
ε1∪ε2→ n+1 〈end,σ

′〉

b ∈ ε1

where
ε

→֒n is defi ned as 〈S0,σ0〉→1〈S1,σ1〉→1 · · ·→1〈Sn,σn〉, i.e., n denotes the num-
ber of transition steps from 〈S0,σ0〉 to 〈Sn,σn〉.
Security properties for programs admitting downgrading have been recently stud-

ied by several authors, see the recent survey [32]. In this paper, we follow the approach

of [17, 29]: instead of studying “who can downgrade the data”or “how much informa-

tion can be downgraded”we study “which information can be released”. We assume

that the programmersmay specify which data can be downgraded. This is expressed by

the set D of arithmetic and boolean high level expressions we use to parameterize the

defi nition of the secure class SIMP∗D. For instance, if H%2 belongs to D then only the

parity ofH can be leaked to public. We show that our generalized unwinding condition

can be instantiated in order to provide a compositional security property which gen-

eralizes pure noninterference and accurately describes the effects due to downgrading.
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In particular we prove a soundness theorem with respect to the delimited release prop-

erty defi ned by Sabelfeld and Myers in [29]. Our approach differs from most previous

works on declassifi cation in a language-based security setting in which constraints, at

a linguistic level, are imposed to control the declassifi cation operation. For instance,

Volpano and Smith in [36, 39] restrict downgrading to occur by means of specifi c one-

way functions. Another example of constrained downgrading is robust declassifi cation

which was proposed, and then studied in a series of papers [21, 22, 23, 41] by Myers

et. al. The idea of robust declassifi cation is to model a downgrading operation by ex-

tending the reading clearances assigned to the owner of an object, and to control it by

requiring that this operation runs under appropriate authority guarantee.

Finally, we observe that the properties we have defi ned in terms of unwinding con-

ditions characterize the security of programs against so-called passive attackers, i.e.,

low level users which try to infer the values of the high level variables just by observ-

ing the values of the low level ones. On the contrary, in defi ning noninterference one

usually explicitly characterize the class of active attackers, i.e., malicious users or pro-

grams which try to directly transmit confi dential information to the low level observers.

Some authors have proved that there is a connection between properties characterizing

passive attacks and properties involving active attacks [41]. In our approach an active

attacker can be seen as a high programwhich intentionally manipulates high level vari-

ables. We can prove that if P is a secure program belonging to the class SIMP∗ then a

low level user cannot distinguish P running in parallel with different (malicious) high

programs PH and PK exhibiting the same timing behaviour (i.e., PH ∼l PK). More pre-
cisely, we can prove that if P∈ SIMP∗ then P||PH ∼l P||PK for all PH and PK containing
only high level variables and such that PH ∼l PK . Intuitively, this theorem states that if
a program P belongs to SIMP∗ then even if the values of the high level variables are

changed during the computation, a low level user will never observe any difference on

the values of low variables.

More in general, following the approach in [23], we can say that a fair attach is any

program belonging to the class SIMP∗. In this case we obtain that if P ∈ SIMP∗ then
P||R∼l P||Q for all R,Q ∈ SIMP∗ and such that R∼l Q.
As far as the verifi cation of our properties is concerned, we provide techniques

which are more precise than the type-based proof methods presented in, e.g., [1, 7,

27, 29, 30, 34, 38]. Indeed, as explained in the introduction, by exploiting the Tarski

decidability result for fi rst-order formulae over the reals, we can infer, for instance,

that a program like, while(L+H >H) {L := 1} is secure. This cannot be captured by
previous type systems.

In a recent paper [10], Dam considers a while language extended with parallel

composition and studies noninterference properties based on the notion of strong low

bisimulation introduced by Sabelfeld and Sands. He proves that strong low bisimula-

tion is decidable on his language, provided that the arithmetic expressions belong to

a decidable equational theory. The main differences between his work and the one

presented here are the followings. Our language is more expressive since we admit

atomic constructions through the await statement which allows us to implement mu-

tual exclusion. Moreover, our arithmetic expressions range over an undecidable theory

and we exploit an abstraction over the reals to introduce a sound proof system. Our

proof system is not complete even if we consider a decidable equational theory. This is
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mainly due to the lack of rules for structural congruence. It is not diffi cult to add such

rules to our system to strength our results. Finally, the focus of our work is the intro-

duction of a general unwinding framework for the defi nition of different flow security

properties.
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〈skip,σ〉
low
→ 〈end,σ〉

〈a,σ〉 → n

〈X := a,σ〉
ε

→ 〈end,σ[X/n]〉

a ∈ ε

〈P0,σ〉
ε

→ 〈P′
0
,σ′〉

〈P0;P1,σ〉
ε

→ 〈P′
0
;P1,σ

′〉

P
′

0
6≡ end

〈P0,σ〉
ε

→ 〈end,σ′〉

〈P0;P1,σ〉
ε

→ 〈P1,σ
′〉

〈b,σ〉→ true

〈if(b) {P0} else {P1},σ〉
ε

→ 〈P0,σ〉

b ∈ ε

〈b,σ〉→ false

〈if(b) {P0} else {P1},σ〉
ε

→ 〈P1,σ〉

b ∈ ε

〈b,σ〉→ true

〈while(b) {P},σ〉
ε

→ 〈P;while(b) {P},σ〉

b ∈ ε

〈b,σ〉→ false

〈while(b) {P},σ〉
ε

→ 〈end,σ〉

b ∈ ε

〈b,σ〉→ true 〈S,σ〉
ε2
 〈end,σ′〉

〈await(b) {S},σ〉
ε1∪ε2→ 〈end,σ′〉

b ∈ ε1

〈b,σ〉→ false

〈await(b) {S},σ〉
ε

→ 〈await(b) {S},σ〉

b ∈ ε

〈Pi,σ〉
ε

→ 〈P′
i
,σ′〉

〈co P1|| . . . ||Pi|| . . . ||Pn oc,σ〉
ε

→ 〈co P1|| . . . ||P
′

i
|| . . . ||Pn oc,σ

′〉

〈co end|| . . . ||end|| . . . ||end oc,σ〉
low
→ 〈end,σ〉

Table 1: The operational semantics.
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skip≎l skip end≎l end

P0 ≎l Q0 and P1 ≎l Q1

P0;P1 ≎l Q0;Q1

Pi ≎l Qi 1≤ i≤ n

co P1|| . . . ||Pn co≎l co Q1|| . . . ||Qn co

L := a0 ≎l L := a1
L ∈ L and a0 ≏l a1

H := a0 ≎l K := a1
H,K ∈ H

P0 ≎l Q0

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l b1 ≏l true

P1 ≎l Q1

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l b1 ≏l false

P0 ≎l Q0 and P1 ≎l Q1

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l b1

P0 ≎l Q1

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l ¬b1 ≏l true

P1 ≎l Q0

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l ¬b1 ≏l false

P0 ≎l Q1 and P1 ≎l Q0

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}
b0 ≏l ¬b1

P0 ≎l Q0 and Q0 ≎l Q1 and P1 ≎l Q1

if(b0) {P0} else {P1} ≎l if(b1) {Q0} else {Q1}

P0 ≎l P0

if(b0) {P0} else {P1} ≎l skip;P0

b0 ≏l true

P1 ≎l P1

if(b0) {P0} else {P1} ≎l skip;P1

b0 ≏l false

P0 ≎l P1

if(b0) {P0} else {P1} ≎l skip;P0

Table 2: The rules of relation ≎l for skip, end, ; ,co || oc, :=, and if.
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P0 ≎l Q0

while(b0) {P0} ≎l while(b1) {Q0}
b0 ≏l b1

while(b0) {P0} ≎l while(b1) {Q0}
b0 ≏l b1 ≏l false

while(b0) {P0} ≎l skip

b0 ≏l false

await(b0) {S0} ≎l await(b1) {S1}
b0 ≏l b1 and S0 ≏l S1

Q≎l P

P≎l Q
l(P) < l(Q)

Table 3: The rules of relation ≎l for while, await, and symmetry.
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end ∈W (≎l) skip ∈W (≎l)

L := a ∈W (≎l)
L ∈ L and a≏l a

H := a ∈W (≎l)
H ∈ H

P0 ∈W (≎l) and P1 ∈W (≎l)

P0;P1 ∈W (≎l)

Pi ∈W (≎l) 1≤ i≤ n

co P1|| . . . ||Pn oc ∈W (≎l)

P0 ∈W (≎l)

if(b) {P0} else {P1} ∈W (≎l)
b≏l true

P1 ∈W (≎l)

if(b) {P0} else {P1} ∈W (≎l)
b≏l false

P0 ∈W (≎l) and P1 ∈W (≎l)

if(b) {P0} else {P1} ∈W (≎l)
b≏l b

P0 ≎l P1

if(b) {P0} else {P1} ∈W (≎l)

while(b) {P} ∈W (≎l)
b≏l false

P ∈W (≎l)

while(b) {P} ∈W (≎l)
b≏l b

await(b) {S} ∈W (≎l)
b≏l b and S≏l S

Table 4: The class W (≎l).
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