
Castellano et al.: Iterative pruning in second-order recurrent neural networks 5

Iterative pruning in second-order
recurrent neural networks

Giovanna Castellano, Anna Maria Fanelli, Marcello Pelillo

Dipartimento di lnformatica, Universita degli Studi di Bari
Via Orabona 4, 1-70126 Bari, Italy

Abstract. An iterative pruning method for second-order recurrent neural networks is
presented. Each step consists in eliminating a unit and adjusting the remaining weights so
that the network performance does not worsen over the training set. The pruning process
involves solving a linear system of equations in the least-squares sense. The algorithm also
provides a criterion for choosing the units to be removed, which works well in practice.
Initial experimental results demonstrate the effectiveness of the proposed approach over
high-order architectures.

I. Introduction

Recurrent neural networks are particularly attractive
because of their potential in dealing with such
problems as pattern completion and temporal
sequence processing [1], [2].

As for feed-forward networks, the choice of the
proper number of hidden units is still an open
question that usually turns out to be a trade-off
between generalization and learning abilities [2].
Various methods have been proposed for feed-
forward topologies [3], which solve this problem by
pruning excessive weights and/or units in a larger
than necessary network after or during training. By
contrast, such methods for recurrent neural networks
are lacking. To our knowledge, the only attempt in
this direction was made by Giles and Omlin [4], who
proposed a simple heuristic for pruning trained
recurrent neural networks.

In this paper we propose a formal method of pruning
second-order recurrent neural networks, which is a
generalization of an algorithm initially developed for
feed-forward architectures [5] and successively
extended to first-order recurrent neural networks [6].
The method is based on the idea of removing hidden
units and adjusting the remaining weights in such a
way that the overall input-output network's behavior
is kept approximately unchanged over the entire
training set. The pruning process is formulated in
terms of a linear system, that is solved in the least-
squares sense by means of a very efficient
preconditioned conjugate gradient procedure.

Initial experimental results over a simple problem of
grammatical inference demonstrate the effectiveness

of the pruning algorithm, in terms of both speed and
generalization capability of the reduced networks.

2. The network

Let the second-order network be represented by a
directed graph N = (V, E, w). V = {0 n}is the set
of units, which is divided into a subset Vt of input
units and a subset VR of recurrent units, that includes
the set Vn of hidden units and the set Vo of output
units. E c VR x VR x Vt is the set of connections.
Each connection (i, j , k)~ E is associated with a
weight wvk ~ R. For each unit i e Vn, let us define its
"projective" field Pj= {j ~ VR [(i, j , k) ~ E;
Vk ~ Vi} and its "receptive" field
Ri = {j ~ Vn l (], i; k) ~ E; ~/k ~ V/}.

At each time step t = 0, 1, ... the output of unit i ~ Vn
is xj ~-l =f,(u/) where 35 is a nonlinear differentiable
activation function (here assumed to be the logistic
function for all units), and

 wok4I' (l)

is the net input. Ik t denotes the output of unit k ~ %
at time t. At each time step t, the network is
presented a single symbol crp(t) of an input pattern p,
which is mapped onto the input set V,.

Unary input mapping is usually adopted [8], that
associates one input neuron to each distinct symbol.
This means that when symbol o(t) is presented, only
the correspondent input neuron is on. The net input
becomes:

6 Neural Processing Letters, Vol. 2, No. 6, 5-8, 1995

j ~ R i

From (1) and (2) it is clear that with this mapping,
each input neuron k e VI acts as a selector of the
subset of connections ~Ek = {(i, j , k) ~ ~E}. For each
input pattern, the response of the network is given by
the output values of neurons in Vo when the last
symbol is met.

3. The pruning algorithm

Suppose that unit h ~ Vn has been identified to be
removed. Our approach to network pruning involves
eliminating all its incoming and outgoing
connections, and then adjusting the weights
incoming into h's projective field in such a way that
the net input of every unit i~ Ph remains
approximately unchanged. This amounts to requiring
that the following relation holds:

k ~ 'k'! jE R i ke V t j e Ri-{h }

for each unit i ~ Ph - {h}, for each training pattern p
and for each symbol Crp(t). The 5r arefactors to be
computed in order to adjust the weights wgk's. Simple
algebraic manipulations yield:

~_~ijkX~.Itk = ~aWhjkXthltk (4)
kE q21 j~ R~-{h} k~_'I/I

that, according to the unary input encoding becomes:

~60.~(t) t t Xj = Whjff(t)X h (5)
j e R i - {h}

Note that in first order architectures, the symbols of
a pattern are given in one shot to the network, thus
condition (3) is applied after the network has
reached a stable state. In second-order recurrent
networks, the same condition must be applied after
the presentation of each symbol in a pattern; this is
done in order to keep trace of the subset of
connection weights involved in computing the output
at each time step.

System (5), which can be conveniently represented
as Ay = ~6, is then solved in the least-square sense by
means of a very efficient preconditioned conjugate-
gradient method proposed by BjiOrck and Elfving
[7]. It begins with an initial solution Y0 and
iteratively produces a sequence ofpoints{y~} so as to
decrease the residuals pk-- I I Ayk- ~kl/. This
naturally suggests a criterion for choosing the units
to be removed: pick the unit for which the initial

residual P0 is minimum. Since the initial point yo is
usually chosen to be the null vector, this amounts to
selecting the unit for which the norm of ~ is
minimum. To prevent the algorithm producing
"useless" units, the selected unit h ~ Vn should
satisfy the following conditions: Pi- {h} ~ O; for
each i ~ Rh and Ri- {h} ~: O for each i e ph.
Summarizing, the proposed algorithm is:
1. s : = 0
2. repeat

(a) identify the "minimum-norm" unit h ~ q,'# in
network ~) = (,p(s) ~s), w(~,

(b) compute 5~jk by solving system (5) in the
least-squares sense

(c) construct the new network ~ t) =
(qfls+O ~.~-t), w(.,§ as follows:

r ' . -th}

E(s+l):= ~E (s) -({h}XPh(S) UR(hS)X{h}) (6)

w/j(s+l) w(~) +~/yk for i Ph -{h} k := E

3. s := s+l
until a stopping condition is satisfied.

Note that the stopping condition has been left
purposely undefined in the algorithm. In fact the
proposed pruning procedure can be stopped with
different criteria. If the application at hand requires
keeping the original network behavior over the
training data, one can stop the pruning algorithm by
evaluating the performance of the pruned network
over the training set. As well, if a good
generalization ability is requested to the reduced
network, a stopping condition that takes into account
the performance over the test set can be used,
regardless of the behavior over the training data.

4. Experimental results

To assess the performance of the pruning algorithm
on second-order network architectures, we chose the
well known problem of grammatical inference, in
which the network has to infer a grammar which best
describes a set of positive and negative example
strings of a regular language. As pointed out in [8],
second order recurrent networks are more reliable
than first order ones for this kind of problem, as they
converge more quickly to a good solution. A
benchmark for the grammatical inference problem is
the set of seven small regular grammars introduced
by Tomita [10], that generate languages with strings
of arbitrary length over the alphabet {0, 1 }. In our
simulations an extra end symbol e was added to the

Castellano et al.: Iterative pruning in second-order recurrent neural networks 7

alphabet, since, as suggested by Giles et al. [9], this
helps the network to find a good solution.

We carried out some experiments on Tomita's first
grammar, which can be described as TI = 1*,where
(string)* represents a string repeated zero or more
times. Simulations were carried out over the simple
training set proposed by Tomita [10], consisting of
16 strings, uniformly distributed in the two classes of
positive and negative examples, with increasing
lenght up to 9 (including the final symbol). The
network training was carried out by means of the
incremental algorithm proposed in [8], with both
learning rate and momentum term set to 0,5. Initial
weight values were drawn randomly from a uniform
distribution in [-1.0, 1.0]. The network was
considered to classify a string correctly when I x0 - T I
< e, where e is a threshold fixed at 0.2 and T is the
target value for the input string, that is assumed to be
0.8 for positive examples and 0.2 for negative ones.

We trained networks with 3 non-recurrent input
neurons (including the one corresponding to the final
symbol e), one output unit and 15, 12, 9, 7, 5 and 3
hidden neurons respectively. In order to avoid
dependence on starting conditions each trial was
repeated seven times with different starting weights.
The averaged results are reported in table 1. For a
large number of neurons, the network successfully
recognizes the whole training set within few epochs.
On the contrary, as soon as the number of hidden
units becomes less than 7, the training procedure did
not converge at all within 500 epochs.

Hidden nodes Epochs MSE
15 97 0.009
12 139 0.010
9 254 0.015
7 325 0.011
5
3

Table 1. Results of the training phase over networks with
different sizes

Next, the pruning algorithm was applied to the
successfully trained networks with no stopping
condition, in order to see how well the time required
to train and prune a large solution network compares
with that of directly training a small network. As an
illustrative example, figures la and lb show
respectively the averaged misclassification error
(tolerance e = 0.5) and MSE of thel2-node network
during the pruning process. We observed that the
reduced network with 7-hidden units has the same
MSE as the network trained with 7 hidden units (see

"o

o:

E

1

e . 9

8 . 0

o . ?

0 . 6

8 . 5

0 . 4

0 . 3

8 . 2

e . l

e
I~ 11 10 9 8 ? 6 5 4

h idden u n i t s

I I
3 2

OO~ I I I I I I i I]

0 . 4

e . 3

0 . 2

8 . !

12 11 l e 9 8 7 6 S
hidden un i ~r

t
! I

4 3

Fig. 1. Averaged performance during pruning of l 2-node
networks. Up: (a). Bottom: (b).

1

9 . 9
o"
t. o ' . o

9 . 7

.~ 0 . 6

8 . 5

- 11.4

e . 3

~ 11.2

z 0 . 1

e

tt
12 I I lO 9 8 7 6 5 4 3 2

h idden u n i * s

0 .~ i I l I I I l I i I

8 . 4

e . 3

0 . 2

8 . 1

l e I t l e 9

t I

8 7 6 5 4 3 2
h i d d e n u n i t s

Fig. 2. Averaged generalization of the reduced networks.
Up: (a). Bottom: (b).

8 Neural Processing Letters, Vol. 2, No. 6, 5-8, 1995

table 1), but the former was obtained in fewer
iterations. This suggests that training an
overdimensioned network and then reducing it to a
smaller size with the proposed method requires less
time than simply training a network of that size.

Moreover, we tested the generalization of the
reduced networks obtained at each step of the
pruning procedure. The test set was composed of all
the positive and negative strings with length less than
13 that were not in the training set. The results of
this testing phase (figures 2a and 2b) show that the
networks with 11 to 4 hidden units correctly
generalize all the test strings. Therefore, if the
pruning is stopped when the misclassification error
computed on the test set becomes worse than the
original one of 0.01 or more, we obtain a 4-hidden
units network with the same generalization ability as
the original 12-hidden network.

5. Conclusions

In this letter, a method of reducing the size of
second-order recurrent neural networks has been
developed.

The iterative nature of the proposed pruning
procedure allows the network's designer to monitor
the performance of the reduced networks, in order to
define a stopping condition according to his own
requirements. Therefore, the algorithm tums out to
be very flexible.

Moreover, for the proposed procedure to work, no
parameter needs to be set: this feature is in contrast
with most pruning procedures existing in literature,
that often require a preliminary phase of parameter
tuning.

Initial experimental results demonstrated the
effectiveness of the proposed method, that quickly
reduces the network size while maintaining a good
generalization ability.

Further work is in progress to test the feasibility of
using the pruning method in more complex
problems.

References

[1] L.B. Almeida. A learning rule for asynchronous
perceptrons with feedback in a combinatorial
environment, Proc. lnt. Conference on Neural
Networks, San Diego, CA, vol. 2, pp. 609-618,
1987.

[2] J. Hertz, A. Krogh, R.G. Palmer. Introduction to the
theory of neural computation. Addison-Wesley,
Redwood City, CA, 199 !.

[3] R. Reed. Pruning algorithms - a survey, IEEE
Trans. on Neural Networks, vol.4, no. 5, pp. 740-
747, 1993.

[4] C.L. Giles, C.W. Omlin. Pruning recurrent neural
networks for improved generalization pertbrmance,
1EEE Trans. on Neural Networks, vol. 5, no. 5, pp.
848-851, i 994.

[5] M. Pelillo, A. M. Fanelli. A method of pruning
layered feed-forward neural networks, New Trends
in Neural Computation, J. Mira, J. Cabestany, A.
Prieto, eds., pp. 278-283, Springer-Verlag, Berlin,
1993.

[6] G. Castellano, A.M. Fanelli, M. Pelillo. Pruning i,a
recurrent neural networks, Proc. Int. Conf. on
Artificial Neural Networks (Sorrento, Italy), pp.
451-454, 1994.

[7] A. BjOrck, T. Elfving. Accelerated projectio,~
methods for computing pseudoinverse solutions of
systems of linear equations, BIT vol. 19, 145-163,
1979.

[8] C.B. Miller, C.L. Giles. Experimental comparison of
the effect of order in recurrent neural networks,
International Journal of Pattern Recognition and
Artificial Intelligence, vol. 7, no. 4, pp. 849-872,
1993.

[9] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z.
Sun, Y.C. Lee. Learning and extracting finite state
automata with second-order recurrent neural
networks, Neural Computation, vol.4, pp. 393-405,
1992.

[10] M. Tomita. Dynamic construction of finite-state
automata from examples using hill-climbing, Proc.
Fourth Annual Cognitive Science Conf., Ann Arbor,
MI, pp. 105-108, 1982.

