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Abstract. An iterative pruning method for second-order recurrent neural networks is 
presented. Each step consists in eliminating a unit and adjusting the remaining weights so 
that the network performance does not worsen over the training set. The pruning process 
involves solving a linear system of equations in the least-squares sense. The algorithm also 
provides a criterion for choosing the units to be removed, which works well in practice. 
Initial experimental results demonstrate the effectiveness of the proposed approach over 
high-order architectures. 

I. Introduction 

Recurrent neural networks are particularly attractive 
because of their potential in dealing with such 
problems as pattern completion and temporal 
sequence processing [1], [2]. 

As for feed-forward networks, the choice of the 
proper number of hidden units is still an open 
question that usually turns out to be a trade-off 
between generalization and learning abilities [2]. 
Various methods have been proposed for feed- 
forward topologies [3], which solve this problem by 
pruning excessive weights and/or units in a larger 
than necessary network after or during training. By 
contrast, such methods for recurrent neural networks 
are lacking. To our knowledge, the only attempt in 
this direction was made by Giles and Omlin [4], who 
proposed a simple heuristic for pruning trained 
recurrent neural networks. 

In this paper we propose a formal method of  pruning 
second-order recurrent neural networks, which is a 
generalization of an algorithm initially developed for 
feed-forward architectures [5] and successively 
extended to first-order recurrent neural networks [6]. 
The method is based on the idea of removing hidden 
units and adjusting the remaining weights in such a 
way that the overall input-output network's behavior 
is kept approximately unchanged over the entire 
training set. The pruning process is formulated in 
terms of a linear system, that is solved in the least- 
squares sense by means of  a very efficient 
preconditioned conjugate gradient procedure. 

Initial experimental results over a simple problem of  
grammatical inference demonstrate the effectiveness 

of the pruning algorithm, in terms of  both speed and 
generalization capability of the reduced networks. 

2. The network 

Let the second-order network be represented by a 
directed graph N = (V, E, w). V = {0 ..... n}is the set 
of units, which is divided into a subset Vt of input 
units and a subset VR of recurrent units, that includes 
the set Vn of hidden units and the set Vo of output 
units. E c VR x VR x Vt is the set of connections. 
Each connection (i, j ,  k )~  E is associated with a 
weight wvk ~ R. For each unit i e Vn, let us define its 
"projective" field Pj= {j ~ VR [ (i, j ,  k) ~ E; 
Vk ~ Vi} and its "receptive" field 
Ri = {j ~ Vn l (], i; k) ~ E; ~/k ~ V/}. 

At each time step t = 0, 1, ... the output of unit i ~ Vn 
is xj ~-l =f,(u/) where 35 is a nonlinear differentiable 
activation function (here assumed to be the logistic 
function for all units), and 

 wok4I'  (l) 

is the net input. Ik t denotes the output of unit k ~ % 
at time t. At each time step t, the network is 
presented a single symbol crp(t) of  an input pattern p, 
which is mapped onto the input set V,. 

Unary input mapping is usually adopted [8], that 
associates one input neuron to each distinct symbol. 
This means that when symbol o(t) is presented, only 
the correspondent input neuron is on. The net input 
becomes: 
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j ~  R i 

From (1) and (2) it is clear that with this mapping, 
each input neuron k e VI acts as a selector of the 
subset of  connections ~Ek = {(i, j ,  k) ~ ~E}. For each 
input pattern, the response of the network is given by 
the output values of  neurons in Vo when the last 
symbol is met. 

3. The pruning algorithm 

Suppose that unit h ~ Vn has been identified to be 
removed. Our approach to network pruning involves 
eliminating all its incoming and outgoing 
connections, and then adjusting the weights 
incoming into h's projective field in such a way that 
the net input of every unit i~  Ph remains 
approximately unchanged. This amounts to requiring 
that the following relation holds: 

k ~ 'k'! jE R i ke  V t j e  Ri-{h } 

for each unit i ~ Ph - {h}, for each training pattern p 
and for each symbol Crp(t). The 5r arefactors to be 
computed in order to adjust the weights wgk's. Simple 
algebraic manipulations yield: 

~_~ijkX~.Itk = ~aWhjkXthltk (4) 
kE q21 j~  R~-{h} k~_'I/I 

that, according to the unary input encoding becomes: 

~60.~(t) t t Xj  = Whjff(t)X h (5) 
j e  R i - {h} 

Note that in first order architectures, the symbols of 
a pattern are given in one shot to the network, thus 
condition (3) is applied after the network has 
reached a stable state. In second-order recurrent 
networks, the same condition must be applied after 
the presentation of each symbol in a pattern; this is 
done in order to keep trace of the subset of 
connection weights involved in computing the output 
at each time step. 

System (5), which can be conveniently represented 
as Ay = ~6, is then solved in the least-square sense by 
means of a very efficient preconditioned conjugate- 
gradient method proposed by BjiOrck and Elfving 
[7]. It begins with an initial solution Y0 and 
iteratively produces a sequence ofpoints{y~} so as to 
decrease the residuals pk-- I I Ayk- ~kl/. This 
naturally suggests a criterion for choosing the units 
to be removed: pick the unit for which the initial 

residual P0 is minimum. Since the initial point yo is 
usually chosen to be the null vector, this amounts to 
selecting the unit for which the norm of ~ is 
minimum. To prevent the algorithm producing 
"useless" units, the selected unit h ~ Vn should 
satisfy the following conditions: Pi-  {h} ~ O; for 
each i ~ Rh and Ri- {h} ~: O for each i e ph. 
Summarizing, the proposed algorithm is: 
1. s : = 0  
2. repeat 

(a) identify the "minimum-norm" unit h ~ q,'# in 
network ~ )  = (,p(s) ~s), w(~, 

(b) compute 5~jk by solving system (5) in the 
least-squares sense 

(c) construct the new network ~ t )  = 
(qfls+O ~.~-t), w(.,§ as follows: 

r ' .  -th} 

E(s+l):= ~E (s) -({h}XPh(S) UR(hS)X{h}) (6) 

w/j(s+l) w(~ ) +~/yk for i Ph -{h} k :=  E 

3. s := s+l 
until a stopping condition is satisfied. 

Note that the stopping condition has been left 
purposely undefined in the algorithm. In fact the 
proposed pruning procedure can be stopped with 
different criteria. If the application at hand requires 
keeping the original network behavior over the 
training data, one can stop the pruning algorithm by 
evaluating the performance of the pruned network 
over the training set. As well, if a good 
generalization ability is requested to the reduced 
network, a stopping condition that takes into account 
the performance over the test set can be used, 
regardless of  the behavior over the training data. 

4. Experimental results 

To assess the performance of  the pruning algorithm 
on second-order network architectures, we chose the 
well known problem of grammatical inference, in 
which the network has to infer a grammar which best 
describes a set of positive and negative example 
strings of a regular language. As pointed out in [8], 
second order recurrent networks are more reliable 
than first order ones for this kind of  problem, as they 
converge more quickly to a good solution. A 
benchmark for the grammatical inference problem is 
the set of seven small regular grammars introduced 
by Tomita [10], that generate languages with strings 
of arbitrary length over the alphabet {0, 1 }. In our 
simulations an extra end symbol e was added to the 
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alphabet, since, as suggested by Giles et al. [9], this 
helps the network to find a good solution. 

We carried out some experiments on Tomita's first 
grammar, which can be described as TI = 1*,where 
(string)* represents a string repeated zero or more 
times. Simulations were carried out over the simple 
training set proposed by Tomita [10], consisting of 
16 strings, uniformly distributed in the two classes of 
positive and negative examples, with increasing 
lenght up to 9 (including the final symbol). The 
network training was carried out by means of  the 
incremental algorithm proposed in [8], with both 
learning rate and momentum term set to 0,5. Initial 
weight values were drawn randomly from a uniform 
distribution in [-1.0, 1.0]. The network was 
considered to classify a string correctly when I x0 - T I 
< e, where e is a threshold fixed at 0.2 and T is the 
target value for the input string, that is assumed to be 
0.8 for positive examples and 0.2 for negative ones. 

We trained networks with 3 non-recurrent input 
neurons (including the one corresponding to the final 
symbol e), one output unit and 15, 12, 9, 7, 5 and 3 
hidden neurons respectively. In order to avoid 
dependence on starting conditions each trial was 
repeated seven times with different starting weights. 
The averaged results are reported in table 1. For a 
large number of neurons, the network successfully 
recognizes the whole training set within few epochs. 
On the contrary, as soon as the number of hidden 
units becomes less than 7, the training procedure did 
not converge at all within 500 epochs. 

Hidden nodes Epochs MSE 
15 97 0.009 
12 139 0.010 
9 254 0.015 
7 325 0.011 
5 
3 

Table 1. Results of the training phase over networks with 
different sizes 

Next, the pruning algorithm was applied to the 
successfully trained networks with no stopping 
condition, in order to see how well the time required 
to train and prune a large solution network compares 
with that of  directly training a small network. As an 
illustrative example, figures la and lb show 
respectively the averaged misclassification error 
(tolerance e = 0.5) and MSE of  thel2-node network 
during the pruning process. We observed that the 
reduced network with 7-hidden units has the same 
MSE as the network trained with 7 hidden units (see 
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table 1), but the former was obtained in fewer 
iterations. This suggests that training an 
overdimensioned network and then reducing it to a 
smaller size with the proposed method requires less 
time than simply training a network of that size. 

Moreover, we tested the generalization of the 
reduced networks obtained at each step of the 
pruning procedure. The test set was composed of all 
the positive and negative strings with length less than 
13 that were not in the training set. The results of  
this testing phase (figures 2a and 2b) show that the 
networks with 11 to 4 hidden units correctly 
generalize all the test strings. Therefore, if the 
pruning is stopped when the misclassification error 
computed on the test set becomes worse than the 
original one of 0.01 or more, we obtain a 4-hidden 
units network with the same generalization ability as 
the original 12-hidden network. 

5. Conclusions 

In this letter, a method of reducing the size of  
second-order recurrent neural networks has been 
developed. 

The iterative nature of  the proposed pruning 
procedure allows the network's designer to monitor 
the performance of the reduced networks, in order to 
define a stopping condition according to his own 
requirements. Therefore, the algorithm tums out to 
be very flexible. 

Moreover, for the proposed procedure to work, no 
parameter needs to be set: this feature is in contrast 
with most pruning procedures existing in literature, 
that often require a preliminary phase of parameter 
tuning. 

Initial experimental results demonstrated the 
effectiveness of  the proposed method, that quickly 
reduces the network size while maintaining a good 
generalization ability. 

Further work is in progress to test the feasibility of  
using the pruning method in more complex 
problems. 
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