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Abstract

We develop a framework for the image segmentation
problem based on a new graph-theoretic formulation of
clustering. The approach is motivated by the analogies be-
tween the intuitive concept of a cluster and that of a domi-
nant set of vertices, a novel notion that generalizes that of a
maximal complete subgraph to edge-weighted graphs. We
also establish a correspondence between dominant sets and
the extrema of a quadratic form over the standard simplex,
thereby allowing us the use of continuous optimization tech-
niques such as replicator dynamics from evolutionary game
theory. Such systems are attractive as can be coded in a few
lines of any high-level programming language, can easily
be implemented in a parallel network of locally interact-
ing units, and offer the advantage of biological plausibility.
We present experimental results on real-world images which
show the effectiveness of the proposed approach.

1 Introduction

The segmentation of images is a classic problem in com-
puter vision and pattern recognition [2, 6], and recently
there has been an increasing interest in graph-theoretic seg-
mentation algorithms based on clustering (see, e.g., [4, 6, 7,
20, 23, 24, 26]).

An image can be represented as a similarity (edge-
weighted) graph, where the vertices represent individual
pixels, the edges neighborhood relations, and the weights
on the edges reflect the similarity between pixel appear-
ances. Graph-theoretic clustering algorithms basically con-
sist of searching for certain combinatorial structures in the
similarity graph, such as a minimum spanning tree [27] or
a minimum cut [7, 24, 26] and, among these methods, a
classic approach to clustering (the “complete-link” algo-
rithm [12]) reduces to a search for a complete subgraph,

namely a clique.1 Indeed, some authors [1, 21] argue that
the maximal clique is the strictest definition of a cluster.
Unfortunately, while the minimum spanning tree and the
minimum cut (and variations thereof) are notions that are
explicitly defined on edge-weighted graphs, the concept of
a maximal clique is defined on unweighted graphs, and it is
not clear how to generalize it to the edge-weighted case. As
a consequence, maximal-clique-based clustering algorithms
typically work on unweighted graphs derived from the simi-
larity graph by means of some threshold operation [12, 1, 9].
Although such threshold operations can be used to generate
a hierarchy of clusters displayed to a user in the form of
a dendogram [12], in image segmentation applications this
approach is infeasible due to the large number of data (pix-
els) to be clustered. It is therefore of considerable interest
to extend the notion of a maximal clique to edge-weighted
graphs, thereby allowing the development of a new non-
hierarchical (partitional) clustering approach.

To this end, in this paper we propose a new framework
for pairwise clustering and image segmentation based on a
novel combinatorial concept (that of a dominant set) which
arises from the study of a continuous formulation of the
maximum clique problem, originally due to Motzkin and
Straus [16]. Our proposal seems to be a plausible general-
ization of the notion of a maximal clique in the context of
edge-weighted graphs since, in the unweighted case, dom-
inant sets turn out to be equivalent to (strictly) maximal
cliques. Formal properties, intuitive arguments, and empir-
ical findings make dominant sets reasonable candidates for
a new formal definition of a cluster in the context of edge-
weighted graphs.

A second contribution of this paper is to establish a cor-
respondence between dominant sets and the extrema of a
(continuous) quadratic form over the standard simplex. In-
terestingly, other well-known approaches to clustering and

1Recall that a subset of vertices of a graph is said to be a clique if
all its nodes are mutually adjacent; a maximal clique is one which is not
contained in any larger clique, whereas a maximum clique is one having
largest cardinality.

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



segmentation lead to similar (though different) quadratic
optimization problems [20, 23, 24]. Computationally, this
allows us to find dominant sets (clusters) using straightfor-
ward continuous optimization techniques such as replica-
tor equations, a class of dynamical systems arising in evo-
lutionary game theory [10, 25]. Such systems, which are
intimately related to Hopfield neural networks [11] and re-
laxation labeling processes [22, 18], are attractive as can be
coded in a few lines of any high-level programming lan-
guage, can easily be implemented in a parallel network of
locally interacting units, and offer the advantage of biolog-
ical plausibility [28].

We apply our clustering methodology to image segmen-
tation. Basically, our approach consists of searching for
dominant sets in the similarity graph built upon the image,
using the replicator dynamics. Experiments on real-world
images show the effectiveness of the proposed framework.

2. Graph-theoretic definition of a cluster

We represent the data to be clustered as an undirected
edge-weighted graph with no self-loops G = (V, E, w),
where V = {1, . . . , n} is the vertex set, E ⊆ V × V is
the edge set, and w : E → IR∗

+ is the (positive) weight
function. Vertices in G correspond to data points, edges rep-
resent neighborhood relationships, and edge-weights reflect
similarity between pairs of linked vertices. As customary,
we represent the graph G with the corresponding weighted
adjacency (or similarity) matrix, which is the n × n sym-
metric matrix A = (aij) defined as:

aij =
{

w(i, j) , if (i, j) ∈ E
0 , otherwise.

A common informal definition states that “a cluster is
a set of entities which are alike, and entities from differ-
ent clusters are not alike” [12, p. 1]. Hence, a cluster
should satisfy two fundamental conditions: (a) it should
have high internal homogeneity; (b) there should be high
inhomogeneity between the entities in the cluster and those
outside. When the entities are represented as an edge-
weighted graph, these two conditions amount to saying that
the weights on the edges within a cluster should be large,
and those on the edges connecting the cluster nodes to the
external ones should be small.

To give our formal definition of a cluster, we start with
the intuitive idea that the assignment of the edge-weights
induces, in some way to be described, an assignment of
weights on the vertices. This perspective gives us a chance
to analyze the assignment of the edge-weights in a simpler
and fruitful way. To grasp the intuition behind this idea,
consider the graph in Figure 1 and the subgraph induced
by the set S = {1, 2, 3}. Observe that the edges incident

Figure 1. An example edge-weighted graph.

to vertex 1 are the lightest ones (within the subgraph), the
heaviest ones are incident to vertex 3 and those incident to
2 are the lightest as well as the heaviest ones. This induces
a sort of natural ranking among the vertices of S, which is
captured by the notions introduced below.

Let S ⊆ V be a non-empty subset of vertices and i ∈ V .
The (average) weighted degree of i w.r.t. S is defined as:

awdegS (i) =
1
|S|

∑
j∈S

aij . (1)

Observe that awdeg{i} (i) = 0 for any i ∈ V . Moreover, if
j /∈ S we define:

φS (i, j) = aij − awdegS (i) . (2)

Note that φ{i}(i, j) = aij , for all i, j ∈ V with i �= j.
Intuitively, φS(i, j) measures the similarity between nodes
j and i, with respect to the average similarity between node
i and its neighbors in S. Note that φS(i, j) can be either
positive or negative.

We are now in a position to formalize the notion of “in-
duction” of node-weights, which is captured by the follow-
ing recursive definition.

Definition 1 Let S ⊆ V be a non-empty subset of vertices
and i ∈ S. The weight of i w.r.t. S is

wS (i) =




1, if |S| = 1∑
j∈S\{i}

φS\{i} (j, i) wS\{i} (j) , otherwise.

(3)
Moreover, the total weight of S is defined to be:

W(S) =
∑
i∈S

wS(i) . (4)

Note that w{i,j} (i) = w{i,j} (j) = aij , for all i, j ∈ V
(i �= j). Also, observe that wS (i) is calculated simply
as a function of the weights on the edges of the subgraph
induced by S. Moreover, the weights so defined respect
the intuitive ranking illustrated above. For example, re-
ferring again to the graph in Figure 1, it turns out that
w{1,2,3} (1) < w{1,2,3} (2) < w{1,2,3} (3).
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Intuitively, wS (i) gives us a measure of the overall sim-
ilarity between vertex i and the vertices of S \ {i} with re-
spect to the overall similarity among the vertices in S \ {i}.
For example, in the graph of Figure 1 it turns out that
w{4,5,6,7} (4) < 0 and w{8,9,10,11} (8) > 0 and this can be
intuitively grasped by looking at the amount of edge-weight
associated to vertices 4 and 8: that associated to vertex 4
is significantly smaller than that of subset {5, 6, 7}; con-
versely, that associated to vertex 8 is significantly greater
than that of subset {9, 10, 11}.

The following definition represents our formalization of
the concept of a cluster in an edge-weighted graph.

Definition 2 A non-empty subset of vertices S ⊆ V such
that W(T ) > 0 for any non-empty T ⊆ S, is said to be
dominant if:

1. wS (i) > 0, for all i ∈ S

2. wS∪{i} (i) < 0, for all i /∈ S.

The two conditions of the above definition correspond to
the two main properties of a cluster: the first regards inter-
nal homogeneity, whereas the second regards external inho-
mogeneity. The condition W(T ) > 0 for any non-empty
T ⊆ S is a technicality explained in some detail in [17].

Figure 2. The subset of vertices {1, 2, 3} is dominant.

To illustrate, in the graph of Figure 2 the subset of ver-
tices {1, 2, 3} is dominant, and this may be intuitively ex-
plained by observing that the edge weights “internal” to that
set (60, 70 and 90) are larger than those between internal
and external vertices (which are between 5 and 25). As the
example suggests, the main property of a dominant set is
that the overall similarity among internal nodes is higher
than that between external and internal nodes, and this fact
is the motivation of considering a dominant set as a cluster
of nodes.

Before concluding this section we provide a useful char-
acterization of the notions introduced above in terms of de-
terminants. To this end, we need some new notations. If
S ⊆ V , we denote by AS the submatrix of A formed by the
rows and the columns indexed by the elements of S. Addi-

tionally, we define the matrix BS as:

BS =
(

0 eT

e AS

)

where e is a vector of appropriate length consisting of unit
entries, and “T” denotes transposition. Assuming S =
{i1, . . . , im} with i1 < · · · < im, the matrix jBS is de-
fined to be:

jBS =
(

0 eT

e A1
S · · · Aj−1

S 0 Aj+1
S · · · Am

S

)

where Ai
S denotes the i-th column of AS .

Lemma 1 Let S = {i1, . . . , im} ⊆ V be a non-empty sub-
set of vertices and, w.l.o.g., assume i1 < · · · < im. Then,
we have:

wS (ih) = (−1)m det
(
hBS

)
, (5)

for any ih ∈ S. Moreover:

W(S) = (−1)m det (BS) . (6)

Proof: Proceeds by induction and exploits elementary
properties of the determinant (see [17] for details).

An alternative, useful way of computing the wS (i)’s is
given by the following formula (cfr. [17]):

wS (i) =
∑

j∈S\{i}
(aij − ahj) wS\{i} (j) (7)

where h is an arbitrary element of S \ {i} (it can be shown
that the sum in (7) does not depend upon the choice of h).

3. From dominant sets to local optima

Given an edge-weighted graph G = (V, E, w) and
its weighted adjacency matrix A, consider the following
quadratic program (which is a generalization of the so-
called Motzkin-Straus program [16]):

maximize f(x) = 1
2x

TAx
subject to x ∈ ∆ (8)

where

∆ = {x ∈ IRn : x ≥ 0 and eTx = 1}

is the standard simplex of IRn. Recall that a point x∗ ∈ ∆
is said to be a local solution of program (8) if there exists an
ε > 0 such that f(x∗) ≥ f(x) for all x ∈ ∆ whose distance
from x∗ is less than ε, and if f(x∗) = f(x) implies x∗ = x,
then x∗ is said to be a strict local solution.
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Given a vector x ∈ IRn, the support of x is defined as
the set of indices corresponding to its non-zero components,
that is:

σ (x) = {i ∈ V : xi �= 0} . (9)

A point x ∈ ∆ satisfies the Karush-Kuhn-Tucker (KKT)
conditions for problem (8), i.e., the first-order necessary
conditions for local optimality [14], if there exist n + 1 real
constants (Lagrange multipliers) µ1, . . . , µn and λ, with
µi ≥ 0 for all i = 1 . . . n, such that:

(Ax)i − λ + µi = 0 (10)

for all i = 1 . . . n, and
n∑

i=1

xiµi = 0 . (11)

Note that, since both xi and µi are nonnegative for all i =
1 . . . n, the latter condition is equivalent to saying that i ∈
σ(x) implies µi = 0. Hence, the KKT conditions can be
rewritten as:

(Ax)i

{
= λ, if i ∈ σ(x)
≤ λ, otherwise

(12)

for some real constant λ (indeed, it is immediate to see that
λ = xTAx). A point x ∈ ∆ satisfying (12) will be called a
KKT point throughout.

With the notations introduced at the end of the previ-
ous section, note that the KKT equality conditions in (12)
amount to saying that there exists a real number λ such that:

Bσ (λ, xi1 , . . . , xim
) T = (1, 0, . . . , 0) T (13)

where σ = σ(x) = {i1, . . . , im} with i1 < · · · < im.

Definition 3 We say that a non-empty subset of vertices S
admits weighted characteristic vector xS ∈ ∆ if it has non-
null total weight W(S), in which case we set:

xS
i =

{
wS(i)
W(S) , if i ∈ S

0 , otherwise.
(14)

Note that, by definition, dominant sets always admit a
weighted characteristic vector.

The next two results establish useful connections be-
tween KKT points of program (8) and weighted character-
istic vectors.

Lemma 2 Let σ = σ(x) be the support of a vector x ∈ ∆
which admits weighted characteristic vector xσ . Then x
satisfies the KKT equality conditions in (12) if and only if
x = xσ . Moreover, in this case, we have:

wσ∪{j} (j)
W(σ)

= (Ax)j − (Ax)i = −µj (15)

for all i ∈ σ and j /∈ σ, where the µj’s are the (nonnega-
tive) Lagrange multipliers of program (8).

Proof: Note that conditions (13), which are equivalent to
the KKT equality conditions in (12), can be regarded as a
system of linear equations in the unknowns λ and xi’s (i ∈
σ). From Lemma 1, the system has a unique solution since
det (Bσ) �= 0. Hence, supposing σ = {i1, . . . , im} and,
w.l.o.g., i1 < . . . < im, from Cramer’s rule and Lemma 1
we have:

xih
=

det
(
hBσ

)
det (Bσ)

=
(−1)m wσ (ih)
(−1)m W(σ)

=
wσ (ih)
W(σ)

for any 1 ≤ h ≤ m. Therefore x = xσ .
The fact that (Ax)j − (Ax)i = −µj , for i ∈ σ and

j /∈ σ, follows immediately from equation (10). Finally,
using equation (7), we obtain:

wσ∪{j}(j)
W(σ)

=
∑

h∈σ(ajh − aih)wσ(h)
W(σ)

=
∑
h∈σ

ajhxσ
h −

∑
h∈σ

aihxσ
h

= (Axσ)j − (Axσ)i

which concludes the proof, since x = xσ .

Proposition 1 Let x ∈ ∆ be a vector whose support σ =
σ(x) has positive total weight W(σ), and hence admitting
weighted characteristic vector xσ . Then, x is a KKT point
for (8) if and only if the following conditions hold:

1. x = xσ

2. wσ∪{j} (j) ≤ 0, for all j /∈ σ .

Proof: Vector x satisfies the KKT conditions (12) if and
only if x = xσ (cfr. Lemma 2) and (Ax)j ≤ (Ax)i for any
j /∈ σ and i ∈ σ, but from (15) the latter condition amounts
to saying that wσ∪{j} (j) ≤ 0, since W(σ) > 0.

The following theorem, which is the main result of this
section, establishes an intriguing connection between dom-
inant sets and local solutions of program (8).

Theorem 1 If S is a dominant subset of vertices, then its
weighted characteristics vector xS is a strict local solution
of program (8).

Conversely, if x∗ is a strict local solution of program (8)
then its support σ = σ(x∗) is a dominant set, provided that
wσ∪{i} (i) �= 0 for all i /∈ σ.

Proof: First we note that the well-known bordered Hessian
test from nonlinear programming [14] can be reformulated
in the following way (see [17] for details): Given a subset of
m vertices Q ⊆ V , AQ is negative definite in the subspace
{y ∈ IRm :

∑m
i=1 yi = 0} if and only if W(T ) > 0 for any

non-empty subset T ⊆ Q.
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Now, let S be a dominant set. Then, from Proposition 1,
it follows that xS is a KKT point for (8). Moreover, by
Lemma 2, we have that the j-th nonnegative Lagrange mul-
tiplier µj (j /∈ S) is positive if and only if wS∪{j} (j) < 0.
Therefore, the second-order sufficient conditions for local
optimality [14], together with the bordered Hessian test, im-
ply that xS is a strict local solution for program (8).

Conversely, suppose that x∗ is a strict local solution
of (8), and let σ = σ(x∗) be its support. After some al-
gebra, it follows that the submatrix Aσ is negative definite
in the subspace {y ∈ IRm :

∑m
i=1 yi = 0}, where m = |σ|.

Hence, from the bordered Hessian test, we have W(T ) > 0
for any non-empty subset T ⊆ σ.

Moreover, we have wS (i) > 0 for all i ∈ S. This fol-
lows directly from Lemma 2 (in fact, x∗ is a KKT point)
and the definition of weighted characteristic vector. Finally,
Proposition 1 states that x∗ = xσ and wσ∪{j} (j) ≤ 0, for
all j �∈ σ. Therefore, the fact that σ is dominant follows
trivially from the hypotheses.

The condition that wσ∪{i} (i) �= 0 for all i /∈ σ is a tech-
nicality due to the presence of “spurious” solutions in (8),
namely solutions whose support does not admit a weighted
characteristic vector (see [17] for details). However, this
corresponds to a non-generic situation and thus, in the fol-
lowing, we shall ignore it.

The quadratic program we have considered in this sec-
tion was first analyzed by Motzkin and Straus [16] limited
to the case of unweighted graphs, where the matrix A in (8)
is a standard (unweighted) adjacency matrix. In this case, it
turns out that there exists a strong correspondence between
the solutions of the program and the maximal cliques of
the (unweighted) graph [8, 19]. Since an unweighted graph
can be seen as a special case of an edge-weighted graph,
our definition of a dominant set is indeed equivalent to that
of a (strictly) maximal clique when applied to unweighted
graphs [17]. This is a further motivation to consider dom-
inant sets as clusters, since maximal cliques are a classic
formalization of the notion of a cluster [1, 9, 12, 21].

By virtue of Theorem 1 dominant sets are in correspon-
dence with (strict) solutions of quadratic program (8). This
is interesting because recently other quadratic programming
formulations have been proposed for clustering and seg-
mentation, though motivated by the different idea of find-
ing cuts in a similarity graph [24] or computing eigenvalues
and eigenvectors of the weighted adjacency matrix [20, 23].
In particular, note that we use the same objective function
as Sarkar and Boyer [23] (see also [20]), which provides a
measure of the cohesiveness of a cluster. However, we dif-
fer from them in the feasible region, namely, we look for
solutions in the standard simplex whereas they consider the
sphere. This is important as the components of the weighted
characteristic vectors give us a measure of the participa-
tion of the corresponding vertices in the cluster. Hence,

in contrast to Sarkar and Boyer’s approach, we automati-
cally avoid the nuisance of dealing with negative compo-
nents, which are meaningless. Note also that no combinato-
rial interpretation is offered for Sarkar and Boyer’s “eigen-
clusters.”

4. Finding dominant sets by replicator
dynamics

The main theorem of the previous section provides a
tight correspondence between the problem of finding domi-
nant sets in an edge-weighted graph and that of finding solu-
tions of a quadratic program. By virtue of this theoretical re-
sult, we can find a dominant set by first localizing a solution
of program (8) with an appropriate continuous optimiza-
tion technique, and then picking up the support set of the
solution found. In this sense, we indirectly perform com-
binatorial optimization via continuous optimization. Here,
we provide some details about the continuous optimization
method we use to solve problem (8).

Let M be a non-negative real-valued n × n matrix, and
consider the following dynamical system:

ẋi(t) = xi(t)
[
(Mx(t))i − x(t)TMx(t)

]
, (16)

where a dot signifies derivative w.r.t. time t, and its discrete-
time counterpart

xi(t + 1) = xi(t)
(Mx(t))i

x(t)TMx(t)
. (17)

It is readily seen that the simplex ∆ is invariant under these
dynamics, which means that every trajectory starting in ∆
will remain in ∆ for all future times. Moreover, it turns
out that their stationary points, i.e. the points satisfying
ẋi(t) = 0 for (16) or xi(t + 1) = xi(t) for (17), coincide
and are the solutions of the equations

xi[(Mx)i − xTMx] = 0 (18)

for i = 1 . . . n. A stationary point x is said to be asymp-
totically stable if every solution to (16) or (17) which starts
close enough to x, will converge to x as t → ∞.

Both (16) and (17) are called replicator equations in
theoretical biology and evolutionary game theory, since
they are used to model evolution over time of relative fre-
quencies of interacting, self-replicating entities [10]. The
discrete-time dynamical equations turn out to be a spe-
cial case of a general class of dynamical systems intro-
duced by Baum and Eagon [3] in the context of Markov
chains theory. They also represent an instance of the origi-
nal heuristic Rosenfeld-Hummel-Zucker relaxation labeling
algorithm [22], whose dynamical properties have recently
been clarified [18] (specifically, it corresponds to the 1-
object, n-label case). Moreover, the biological significance
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of such processes has been strongly advocated by Zucker et
al. [28] who hypothesized that the first 2-3 iterations of the
algorithm could be implemented by the pyramidal neurons
connecting the striate and the extrastriate cortices.

We are now interested in the dynamical properties of
replicator dynamics; it is these properties that will allow us
to solve our original combinatorial problem.

Theorem 2 If M = MT then the function x(t)TMx(t)
is strictly increasing with increasing t along any non-
stationary trajectory x(t) under both continuous-time (16)
and discrete-time (17) replicator dynamics. Furthermore,
any such trajectory converges to a stationary point. Finally,
a vector x ∈ ∆ is asymptotically stable under (16) and (17)
if and only if x is a strict local maximizer of xTMx on ∆.

The previous result is known in mathematical biology as
the fundamental theorem of natural selection [10, 25] and,
in its original form, traces back to R. A. Fisher [5]. As
far as the discrete-time model is concerned, it can be re-
garded as a straightforward implication of the more general
Baum-Eagon theorem [3]. The fact that all trajectories of
the replicator dynamics converge to a stationary point has
been proven more recently [13, 15].

In light of their dynamical properties, replicator equa-
tions naturally suggest themselves as a simple and useful
heuristic for finding dominant sets. Indeed, let A denote the
weighted adjacency matrix of an edge-weighted graph G.
By letting

M = A

we know that the replicator dynamical systems (16)
and (17), starting from an arbitrary initial state, will iter-
atively maximize the function xTAx over ∆ and will even-
tually be attracted with probability 1 by the nearest asymp-
totically stable point. By virtue of Theorem 2 this will then
correspond to a strict local maximizer of xTAx in ∆ and
hence, by Theorem 1, to a dominant set.

Since the process cannot leave the boundary of ∆, it is
customary to start out the relaxation process from some in-
terior point, a common choice being the barycenter of ∆.
This prevents the search from being initially biased in favor
of any particular solution.

5. Application to image segmentation

We apply our clustering methodology to the segmen-
tation of intensity and color images. The image to be
segmented is represented as an edge-weighted undirected
graph, where vertices correspond to individual pixels and
the edge-weights reflect the “similarity” between pairs of
vertices. As customary, we define a similarity measure be-
tween pixels based on brightness/color proximity. Specifi-
cally, in our experiments the similarity between pixels i and

j was measured by:

w(i, j) = exp
(−‖F(i) − F(j)‖2

2

σ2

)

where σ is a positive real number which affects the de-
creasing rate of w, and F(i) is defined as the intensity
value at node i, normalized to a real number in the inter-
val [0, 1], for segmenting brightness images, and as F(i) =
[v, vs sin(h), vs cos(h)](i), where h, s, v are the HSV val-
ues of pixel i, for color segmentation.

In principle, our clustering algorithm consists of itera-
tively finding a dominant set in the graph using replicator
dynamics and then removing it from the graph, until all
vertices have been clustered. Indeed, in the experiments
reported here, to avoid the formation of small meaning-
less clusters, we repeated the process until 90% of the pix-
els were clustered, the remaining ones being assigned to
the closest clusters, in terms of brightness/color proxim-
ity. In our experiments, we used the discrete-time replicator
equations (17). The process was started from the simplex
barycenter and stopped after a few iterations (typically, no
more than three). To improve the segmentation results, after
convergence small isolated regions were incorporated into
larger ones (see figure’s captions for details).

Figures 3 to 7 show the results obtained with our seg-
mentation algorithm on various natural brightness and color
images. The left side of each figure shows the original im-
age and the right one shows the corresponding segmenta-
tion, where connected pixels having the same gray level are
intended to belong to the same region. On average, the al-
gorithm took only a few seconds to return a segmentation,
on a machine equipped with a 750 MHz Intel Pentium III.

Figure 3. An 83 × 125 intensity image (left) and its seg-
mentation (right). Parameter setting: σ = 0.14. Minimal
region size of interest is 11.

Figure 3 shows an intensity image taken during a base-
ball game that has been used originally by Shi and Ma-
lik [24] and other authors [4, 7]. As can be seen, unlike
other algorithms [24, 7, 4], ours was able to separate the
grassy region from the back wall in a nice way. The uni-
forms of the two players (which have significant variation
due to folds in the cloth) are also segmented in a satisfac-
tory way, and smaller but important components such as the
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arms and gloves are also correctly segmented. Like other
algorithms [24, 7], however, ours did not succeed in distin-
guishing between the Mets emblem and the left leg of the
top player. Also, note that the helmet of the bottom player
is incorrectly merged with the back wall. Overall, these re-
sults compare well with those presented in [24, 7], and are
substantially better than those obtained with an optimally-
tuned standard split-and-merge algorithm [7].

Figure 4, which shows a weather radar image, has also
been used in [24] as an instance whereby edge-detection-
based segmentation would perform poorly. The algorithm
was able to correctly partition the image into a background
and a foreground, and our results compare well with those
reported in [24], where the image was separated into more
components.

Figure 4. A 115 × 97 intensity image (left) and its seg-
mentation (right). Parameter settings: σ = 0.1. Minimal
region size of interest is 2.

Figure 5 shows the facade of a building. Again, the seg-
mentation produced by our algorithm is of good quality.
Specifically, the sky, the windows, the banners, and the wall
(except from some noisy components around the central and
right window on the first level) are all correctly segmented.
Note also that the shadow of the balcony, the central door,
and the window on the left-hand side are erroneously put in
a unique component.

Figures 6 and 7 show results on color images taken from
the COREL database. Figure 6 shows the image of a space-
man. Note how the segmentation is very clean despite sub-
stantial color variation. Essentially, the algorithm found
three large regions: a large component for the black sky,
another one for the earth, and a third one for the astronaut.
Note also that some spurious regions were also found in the
earth and in the man areas.

Finally, Figure 7 (used also in [4]) shows an image of
the Eiffel tower at night. Here, the algorithm was able to
partition the image into meaningful components. It found
a large component for the sky and, within the tower, it dis-

Figure 5. A 94 × 115 intensity image (left) and its seg-
mentation (right). Parameter setting: σ = 0.15. Minimal
region size of interest is 11.

Figure 6. An 125× 83 color image (left) and its segmen-
tation (right). Parameter setting: σ = 0.11. Minimal region
size of interest is 16.

tinguished between the bright and the dark areas. However,
note that the dark area in the bottom part of the image was
incorrectly merged with the lower dark part of the tower.
The quality of our segmentation looks comparable to the
one reported by Felzenszwalb and Huttenlocher in [4]: they
were able to separate the lower dark area from the tower,
but failed in clearly distinguishing the dark from the bright
tower regions.

6. Conclusions

We have introduced the notion of a dominant set of
vertices in an edge-weighted graph and have shown how
this concept can be relevant in pairwise clustering as well
as image segmentation problems. We have also estab-
lished an intriguing connection between the (combinato-
rial) problem of finding dominant sets and (continuous)
quadratic programming, and this allows the use of straight-
forward dynamics from evolutionary game theory to deter-
mine them. Experimentally, we have demonstrated the po-
tential of our approach for intensity and color image seg-
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Figure 7. A 121 × 82 color image (left) and its segmen-
tation (right). Parameter settings: σ = 0.325. Minimal
region size of interest is 10.

mentation. The framework, however, is general and can be
applied in a variety of computer vision and pattern recog-
nition domains such as, for example, texture segmentation,
perceptual grouping, and the unsupervised organization of
an image database. All this will be the subject of future
work.
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