HEURISTICS FOR MAXIMUM
CLIQUE AND INDEPENDENT SET

Introduction. Throughout this article, G =
(V,E) is an arbitrary undirected and weighted
graph unless otherwise specified, where V' =
{1,2,... ,n} is the vertex set of G and E C
V x V is its edge set. For each vertex ¢ € V,
a positive weight w; is associated with i, col-
lected in the weight vector w € IR™. For a
subset S C V, the weight of S is defined as
W(S) = > icgwi, and G(S) = (S,ENS x §)
is the the subgraph induced by S. The cardinal-
ity of S, i.e., the number of its vertices, will be
denoted by |S].

A graph G = (V, E) is complete if all its ver-
tices are pairwise adjacent, i.e. Vi, j € V with
i # j, we have (i,j) € E. A cliqgue C is a sub-
set of V such that G(C) is complete. The cligue
number of G, denoted by w(G) is the the car-
dinality of the maximum clique. The maximum
clique problem asks for cliques of maximum car-
dinality. The maximum weight clique problem
asks for cliques of maximum weight. Given the
weight vector w € IR", the weighted clique num-
ber is the total weight of the maximum weight
clique, and will be denoted by w(G, w).

We should distinguish a mazimum clique from
a mazimal clique. A maximal clique is one that is
not a proper subset of any other clique. A max-
imum (weight) clique is a maximal clique that
has the maximum cardinality (weight).

An independent set (also called stable set, ver-
tex packing) is a subset of V', whose elements are
pairwise nonadjacent. The maximum indepen-
dent set problem asks for an independent set of
maximum cardinality. The size of a maximum
independent set is the stability number of G (de-
noted by a(G)). The maximum weight indepen-
dent set problem asks for an independent set of
maximum weight.

The complement graph of G = (V, E) is the
graph G = (V,E), where E = {(i,j) | 4,j €
V, i# jand (i,5) ¢ E}. It is easy to see that S
is a clique of G if and only if S is an indepen-
dent set of G. Any result or algorithm obtained
for one of the two problems has its equivalent

forms for the other one. Hence a(G) = w(G),
and, more generally, a(G,w) = w(G,w).

The maximum clique and independent set
problems are well-known examples of intractable
combinatorial optimization problems [18]. Apart
from the theoretical interest around these prob-
lems, they also find practical applications in
such diverse domains as computer vision, exper-
imental design, information retrieval, fault toler-
ance, etc. Moreover, many important problems
turn out to be easily reducible to them, and
these include, for example, the Boolean satisfia-
bility problem, the subgraph isomorphism prob-
lem, and the vertex covering problem. The maxi-
mum clique problem has also a certain historical
value, as it was one of the first problems shown
to be NP-complete in Karp’s now classical pa-
per on computational complexity [64].

Due to their inherent computational complex-
ity, exact algorithms are guaranteed to return
a solution only in a time which increases ex-
ponentially with the number of vertices in the
graph, and this makes them inapplicable even to
moderately large problem instances. Moreover,
a series of recent theoretical results show that
the problems are in fact difficult to solve even
in terms of approximation. Strong evidence of
this fact came in 1991, when Feige et al. [32]
proved that if there is a polynomial-time algo-
rithm that approximates the maximum clique
within a factor of 21°8' " then any N P problem
can be solved in “quasi-polynomial” time (i.e.,
in 2log®®n time). The result was further refined
by Arora et al. [7, 6] one year later. Specifically,
they proved that there exists an € > 0 such that
no polynomial-time algorithm can approximate
the size of the maximum clique within a factor of
n®, unless P = N P. More recent developments
along these lines can be found in [14, 15, 49].

In light of these negative results, much ef-
fort has recently been directed towards devis-
ing efficient heuristics for maximum clique and
independent set, for which no formal guarantee
of performance may be provided, but are any-
way of interest in practical application. Lack-
ing (almost by definition) a general theory of
how these algorithms work, their evaluation is
essentially based on massive experimentation.



In order to facilitate comparisons among differ-
ent heuristics, a set of benchmark graphs arising
from different applications and problems has re-
cently been constructed in conjunction with the
1993 DIMACS challenge on cliques, coloring and
satisfiability [63].

In this article we provide an informal sur-

vey of recent heuristics for maximum clique and
related problems, and up-to-date bibliographic
pointers to the relevant literature. A more com-
prehensive review and bibliography can be found
in [18].
Sequential greedy heuristics. Many approxi-
mation algorithms in the literature for the maxi-
mum clique problem are called sequential greedy
heuristics. These heuristics generate a maximal
clique through the repeated addition of a vertex
into a partial clique, or the repeated deletion of a
vertex from a set that is not a clique. Decisions
on which vertex to be added in or moved out
next are based on certain indicators associated
with candidate vertices as, for example, the ver-
tex degree. There is also a distinction between
heuristics that update the indicators every time
a vertex is added in or moved out, and those
that do not. Examples of such heuristics can be
found in [62, 89]. The differences among these
heuristics are their choice of indicators and how
indicators are updated. A heuristic of this type
can run very fast.

Local search heuristics. Let us define Cq to
be the set of all the maximal cliques of G. Basi-
cally, a sequential greedy heuristic finds one set
in Cg, hoping it is (close to) the optimal set, and
stops. A possible way to improve our approxi-
mation solutions is to expand the search in Cg.
For example, once we find a set S € Cg, we can
search its “neighbors” to improve S. This leads
to the class of the local search heuristics [2]. De-
pending on the neighborhood structure and how
the search is performed, different local search
heuristics result.

A well-known class of local search heuristics
in the literature is the k-interchange heuris-
tics. They are based on the k-neighbor of a
feasible solution. In the case of the maximum
clique problem, a set C € Cg is a k-neighbor

of S if |[CAS| < k, where k& < |S|. A k-
interchange heuristic first finds a maximal clique
S € Cg, then it searches all the k-neighbors of
S and returns the best clique found. Clearly,
the main factors for the complexity of this class
of heuristics are the size of the neighborhood
and the searches involved. For example, in the
k-interchange heuristic, the complexity grows
roughly with O(n*).

A class of heuristics designed to search vari-
ous sets of Cq is called the randomized heuris-
tics. The main ingredient of this class of heuris-
tics is the part that finds a random set in Cg.
A possible way to do that is to include some
random factors in the generation of a set of Cg.
A randomized heuristic runs a heuristic (with
random factors included) a number of times to
find different sets over Cg. For example, we can
randomize a sequential greedy heuristic and let
it run N times. The complexity of a random-
ized heuristic depends on the complexity of the
heuristic and the number N.

An elaborated implementation of the ran-
domized heuristic for the maximum indepen-
dent set problem can be found in Feo et al. [33]
where local search is combined with randomized
heuristic. Their computational results indicated
that their approach was effective in finding large
cliques of randomly generated graphs. A differ-
ent implementation of a randomized algorithm
for the maximum independent set problem can
be found in [5].

Advanced search heuristics. Local search al-
gorithms are only capable of finding local solu-
tions of an optimization problem. In the past
few years, many powerful variations of the ba-
sic local search procedure have been developed
which try to avoid this problem, many of which
are inspired from various phenomena occurring
in nature.
Simulated
physics, the term “annealing” refers to a phys-

annealing. In condensed-matter
ical process to obtain a pure lattice structure,
where a solid is first heated up in a heat bath
until it melts, and next cooled down slowly until
it solidifies into a low-energy state. During the
process, the free energy of the system is mini-
mized. Simulated annealing, introduced in 1983



by Kirkpatrick, Gelatt and Vecchi [65], is a ran-
domized neighborhood search algorithm based
on the physical annealing process. Here, the so-
lutions of a combinatorial optimization problem
correspond to the states of the physical system,
and the cost of a solution is equivalent to the
energy of the state.

In its original formulation, simulated anneal-
ing works essentially as follows. Initially, a ten-
tative solution in the state space is somehow
generated. A new neighboring state is then pro-
duced from the previous one and, if the value
of the cost function f improves, the new state
is accepted, otherwise it is accepted with proba-
bility exp{Af/7}, where Af is the difference of
the cost function between the new and the cur-
rent state, and 7 is a parameter usually called
the temperature in analogy with physical anneal-
ing, which is varied carefully during the opti-
mization process. The algorithm proceeds itera-
tively this way until a stopping condition is met.
One of the critical aspects of the algorithm re-
lates to the choice of the proper “cooling sched-
ule,” i.e., how to decrease the temperature as the
process evolves. While a logarithmic slow cool-
ing schedule (yielding an exponential time algo-
rithm) provably guarantees the exact solution,
faster cooling schedules, producing acceptably
good results, are in widespread use. Introduc-
tory textbooks describing both theoretical and
practical issues of the algorithm are [90] [1].

Aarts and Korst [1], without presenting any
experimental result, suggested the use of sim-
ulated annealing for solving the independent
set problem, using a penalty function approach.
Here, the solution space is the set of all possible
subsets of vertices of the graph G, and the prob-
lem is formulated as one of maximizing the cost
function f(V') = |[V'| — A|E'|, where |E'| is the
number of edges in G(V'), and X is a weighting
factor exceeding 1.

Jerrum [61] conducted a theoretical analysis
of the performance of a clique-finding Metropolis
process, i.e., simulated annealing at fixed tem-
perature, on random graphs. He proved that the
expected time for the algorithm to find a clique
that is only slightly bigger than that produced
by a naive greedy heuristic grows faster than any

polynomial in the number of vertices. This sug-
gests that “true” simulated annealing would be
ineffective for the maximum clique problem.

Jerrum’s conclusion seems to be contradicted

by practical experience. In [56], Homer and
Peinado compare the performance of three
heuristics, namely the greedy heuristic devel-
oped by Johnson [62], a randomized version of
Boppana and Halldérsson’s subgraph-exclusion
algorithm [24], and simulated annealing, over
very large graphs. The simulated annealing al-
gorithm was essentially that proposed by Aarts
and Korst, with a simple cooling schedule. This
penalty function approach was found to work
better than the method in which only cliques are
considered, as proposed by Jerrum [61]. The al-
gorithms were tested on various random graphs
as well as on DIMACS benchmark graphs. The
authors ran the algorithms over an SGI worksta-
tion for graphs with up to 10,000 vertices, and
on a Connection Machine for graphs with up to
70,000 vertices. The overall conclusion was that
simulated annealing outperforms the other com-
peting algorithms; it also ranked among the best
heuristics for maximum clique presented at the
1993 DIMACS challenge [63].
Neural networks. Artificial neural networks (of-
ten simply referred to as “neural networks”)
are massively parallel, distributed systems in-
spired by the anatomy and physiology of the
cerebral cortex, which exhibit a number of useful
properties such as learning and adaptation, uni-
versal approximation, and pattern recognition
(see [50, 52] for an introduction).

In the mid-1980’s Hopfield and Tank [57]
showed that certain feedback continuous neural
models are capable of finding approximate solu-
tions to difficult optimization problems such as
the traveling salesman problem [57]. This ap-
plication was motivated by the property that
the temporal evolution of these models is gov-
erned by a quadratic Liapunov function (typ-

“energy function” because of its

ically called
analogy with physical systems) which is itera-
tively minimized as the process evolves. Since
then, a variety of combinatorial optimization
problems have been tackled within this frame-

work. The customary approach is to formulate



the original problem as one of energy minimiza-
tion, and then to use a proper relaxation net-
work to find minimizers of this function. Al-
most invariably, the algorithms developed so far
incorporate techniques borrowed from statisti-
cal mechanics, in particular mean field theory,
which allow one to escape from poor local so-
lutions. We mention the articles [68, 82] and
the textbook of Takefuji [88] for surveys of this
field. In [1], an excellent introduction to a par-
ticular class of neural networks (the Boltzmann
machine) for combinatorial optimization is pro-
vided.

Early attempts at encoding the maximum
clique and related problems in terms of a neu-
ral network were already done in the late 1980’s
by Ballard et al. [12], Godbeer et al. [44], Ra-
manujam and Sadayappan [83], Aarts and Ko-
rst [1], and Shrivastava et al. [84] (see also [85]).
However, little or no experimental results were
presented, thereby making it difficult to evalu-
ate the merits of these algorithms. In [67], Lin
and Lee used the quadratic zero-one formula-
tion from [77] as the basis for their neural net-
work heuristic. On random graphs with up to
300 vertices, they found their algorithm to be
faster than the implicit enumerative algorithm
in [26], while obtaining slightly worse results in
terms of clique size.

Grossman [47] proposed a discrete, determin-
istic version of the Hopfield model for maximum
clique, originally designed for an all-optical im-
plementation. The model has a threshold pa-
rameter which determines the character of the
stable states of the network. The author suggests
an annealing strategy on this parameter, and an
adaptive procedure to choose the network’s ini-
tial state and threshold. On DIMACS graphs the
algorithm performs satisfactorily but it does not
compare well with more powerful heuristics such
as simulated annealing.

Jagota [58] developed several variations of the
Hopfield model, both discrete and continuous,
to approximate maximum clique. He evaluated
the performance of his algorithms over randomly
generated graphs as well as on harder graphs
obtained by generating cliques of varying size
at random and taking their union. Experiments

on graphs coming from the Solomonoff-Levin,
or “universal” distribution are also presented
in [59]. The best results were obtained using
a stochastic steepest descent dynamics and a
mean-field annealing algorithm, an efficient de-
terministic approximation of simulated anneal-
ing. These algorithms, however, were also the
slowest, and this motivated Jagota et al. [60]
to improve their running time. The mean-
field annealing heuristic was implemented on a
32-processor Connection Machine, and a two-
temperature annealing strategy was used. Ad-
ditionally, a “reinforcement learning” strategy
was developed for the stochastic steepest de-
scent heuristic, to automatically adjust its in-
ternal parameters as the process evolves. On
various benchmark graphs, all their algorithms
obtained significantly larger cliques than other
simpler heuristics but ran slightly slower. Com-
pared to more sophisticated heuristics, they ob-
tained significantly smaller cliques on average
but were considerably faster.

Pelillo [79] takes a completely different ap-
proach to the problem, by exploiting a contin-
uous formulation of maximum clique and the
dynamical properties of the so-called relaxation
labeling networks. His algorithm is described in
the next section.

Genetic algorithms. Genetic algorithms are par-
allel search procedures inspired from the mecha-
nisms of evolution in natural systems [55, 45]. In
contrast to more traditional optimization tech-
niques, they work on a population of points,
which in the genetic algorithm terminology, are
called chromosomes or individuals. In the sim-
plest and most popular implementation, chro-
mosomes are simply long strings of bits. Each in-
dividual has an associated “fitness” value which
determines its probability of survival in the next
“generation:” the higher the fitness, the higher
the probability of survival. The genetic algo-
rithm starts out with an initial population of
members generally chosen at random and, in its



simplest version, makes use of three basic opera-
tors: reproduction, crossover and mutation. Re-
production usually consists of choosing the chro-
mosomes to be copied in the next generation ac-
cording to a probability proportional to their fit-
ness. After reproduction, the crossover operator
is applied between pairs of selected individuals
to produce new offsprings. The operator consists
of swapping two or more sub-segments of the the
strings corresponding to the two chosen individ-
uals. Finally, the mutation operator is applied,
which randomly reverses the value of every bit
within a chromosome with a fixed probability.
The procedure just described is sometimes re-
ferred to as the “simple” genetic algorithm [45].

One of the earliest attempts to solve the max-
imum clique problem using genetic algorithms
was done in 1993 by Carter and Park [27]. Af-
ter showing the weakness of the simple genetic
algorithm in finding large cliques, even on small
random graphs, they introduced several modifi-
cations in an attempt to improve performance.
However, despite their efforts they did not get
satisfactory results, and their general conclusion
was that genetic algorithms need to be heavily
customized in order to be competitive with tra-
ditional approaches, and that they are compu-
tationally very expensive. In a later study [78],
genetic algorithms were proven to be less effec-
tive than simulated annealing. At almost the
same time Béick and Khuri [8], working on the
maximum independent set problem, arrived at
the opposite conclusion. By using a straightfor-
ward, general-purpose genetic algorithm called
GENEsYs and a suitable fitness function which
included a graded penalty term to penalize in-
feasible solutions, they got interesting results
over random and regular graphs with up to 200
vertices. These results indicate that the choice
of the fitness function is crucial for genetic algo-
rithms to provide satisfactory results.

Murthy et al. [73] also experimented with a
genetic algorithm using a novel “partial copy
crossover,” and a modified mutation operator.
However, they presented results over very small
(i.e., up to 50 vertices) graphs, thereby making
it difficult to properly evaluate the algorithm.

Bui and Eppley [25] obtained encouraging re-
sults by using a hybrid strategy which incor-
porates a local optimization step at each gen-
eration of the genetic algorithm, and a vertex-
ordering preprocessing phase. They tested the
algorithm over some DIMACS graphs getting re-
sults comparable to that in [39]

Instead of using the standard binary represen-
tation for chromosomes, Foster and Soule [36]
employed an integer-based encoding scheme.
Moreover, they used a time weighting fitness
function similar in spirit to those of Carter and
Park [27]. The results obtained are interesting,
but still not comparable to those obtained using
more traditional search heuristics.

[35] developed a
general-purpose system for solving graph col-

Fleurent and Ferland

oring, maximum clique, and satisfiability prob-
lems. As far as the maximum clique problem is
concerned, they conducted several experiments
using a hybrid genetic search scheme which in-
corporates tabu search and other local search
techniques as alternative mutation operators.
The results presented are encouraging, but run-
ning time is quite high.

In [53], Hifi modifies the basic genetic al-
gorithm in several aspects: (a) a particular
crossover operator creates two new different chil-
dren; (b) the mutation operator is replaced by a
specific heuristic feasibility transition adapted
to the weighted maximum stable set prob-
lem. This approach is also easily parallelizable.
Experimental results on randomly generated
graphs and also some (unweighted) instances
from the DIMACS testbed [63] are reported to
validate this approach.

Finally, Marchiori [70] has recently developed
a simple heuristic-based genetic algorithm which
consists of a combination of the simple genetic
algorithm and a naive greedy heuristic proce-
dure. Unlike previous approaches, here there is
a neat division of labour, the search for a large
subgraph and the search for a clique being incor-
porated into the fitness function and the heuris-
tic procedure, respectively. The algorithm out-
performs previous genetic-based clique finding
procedures over various DIMACS graphs, both
in terms of quality of solutions and speed.



Tabu search. Tabu search, introduced indepen-
dently by Glover [41], [42] and Hansen and Jau-
mard [48], is a modified local search algorithm,
in which a prohibition-based strategy is em-
ployed to avoid cycles in the search trajectories
and to explore new regions in the search space.
At each step of the algorithm, the next solu-
tion visited is always chosen to be the best legal
neighbor of the current state, even if its cost is
worse than the current solution. The set of le-
gal neighbors is restricted by one or more tabu
lists which prevent the algorithm to go back to
recently visited solutions. These lists are used
to store historical information on the path fol-
lowed by the search procedure. Sometimes the
tabu restriction is relaxed, and tabu solutions
are accepted if they satisfy some aspiration level
condition. The standard example of a tabu list
is one which contains the last k solutions ex-
amined, where k may be fixed or variable. Ad-
ditional lists containing the last modifications
performed, i.e., changes occurred when moving
from one solution to the next, are also common.
These types of lists are referred to as short-term
memories; other forms of memories are also used
to intensify the search in a promising region or
to diversify the search to unexplored areas. De-
tails on the algorithm and its variants can be
found in [43] and [51].

In 1989, Friden et al. [37] proposed a heuris-
tic for the maximum independent set problem
based on tabu search. The size of the indepen-
dent set to search for is fixed, and the algo-
rithm tries to minimize the number of edges in
the current subset of vertices. They used three
tabu lists: one for storing the last visited solu-
tions and the other two to contain the last in-
troduced/deleted vertices. They showed that by
using hashing for implementing the first list and
choosing a small value for the dimensions of the
other two lists, a best neighbor may be found in
almost constant time.

In [38, 86], three variants of tabu search for
maximum clique are presented. Here the search
space consists of complete subgraphs whose size
has to be maximized. The first two versions are
deterministic algorithms in which no sampling

of the neighborhood is performed. The main dif-
ference between the two algorithms is that the
first one uses just one tabu list (of the last solu-
tions visited), while the second one uses an addi-
tional list (with an associated aspiration mecha-
nism) containing the last vertices deleted. Also,
two diversification strategies were implemented.
The third algorithm is probabilistic in nature,
and uses the same two tabu lists and aspiration
mechanism as the second one. It differs from
it because it performs a random sampling of
the neighborhood, and also because it allows for
multiple deletion of vertices in the current solu-
tion. Here no diversification strategy was used.
In [38, 86] results on randomly generated graphs
were presented and the algorithms were shown
to be very effective. More recently, Soriano and
Gendreau [87] tested their algorithms over the
DIMACS benchmark graphs and the results con-
firmed the early conclusions.

Recently, Battiti and Protasi [13] extended
the tabu search framework by introducing a re-
active local search method. They modified a
previously introduced reactive scheme by ex-
ploiting the particular neighborhood structure
of the maximum clique problem. In general re-
active schemes aim at avoiding the manual se-
lection of control parameters by means of an in-
ternal feedback loop. Battiti and Protasi’s algo-
rithm adopts such a strategy to automatically
determine the so-called prohibition parameter
k, i.e., the size of the tabu list. Also an ex-
plicit memory-influenced restart procedure is ac-
tivated periodically to introduce diversification.
The search space consists of all possible cliques,
as in Friden et al.’s approach, and the function
to be maximized is the clique size. The worst
case computational complexity of this algorithm
is O(max{n,m}) where n and m are the num-
ber of vertices and edges of the graph respec-
tively. They noticed, however, that in practice,
the number of operations tends to be propor-
tional to the average degree of the vertices of
the complement graph. They tested their algo-
rithm over many DIMACS benchmark graphs
obtaining better results then those presented at
the DIMACS workshop in competitive time.



Continuous based heuristics. In 1965,
Motzkin and Straus [72] established a remark-
able connection between the maximum clique
problem and a certain quadratic programming
problem. Let G = (V, E) be an undirected (un-
weighted) graph and let A denote the standard
simplex in the n—dimensional Euclidean space
R™:

A={zeR":z;>0forallieV, efz =1}

where the letter e is reserved for a vector of
appropriate length, consisting of unit entries
(hence el'z = 3",y ).

Now, consider the following quadratic func-
tion, sometimes called the Lagrangian of G:

g(z) = 2" Agz (1)

where Ag = (a;;) is the adjacency matrix of G,
i.e. the symmetric n X n matrix where a;; = 1
if (i,j) € E and a;; = 0 if (i,5) ¢ E, and let
z* be a global maximizer of g on A. In [72] it is
proved that the clique number of G is related to
g(z*) by the following formula:

B 1

1—g(z*)
Additionally, it is shown that a subset of ver-
tices S is a maximum clique of G if and only

w(@)

if its characteristic vector z°, which is the vec-
tor of A defined as ¥ = 1/|S| if i € S and
a:f = 0 otherwise, is a global maximizer of g on
A. In [81, 40], the Motzkin-Straus theorem has
been extended by providing a characterization
of mazimal cliques in terms of local maximizers
of g on A.

One drawback associated with the original
Motzkin-Straus formulation relates to the exis-
tence of spurious solutions, i.e., maximizers of
g which are not in the form of characteristic
vectors [76, 81]. In principle, spurious solutions
represent a problem since, while providing infor-
mation about the cardinality of the maximum
clique, they do not allow us to easily extract its
vertices.

In the past few years, there has been much
interest around the Motzkin-Straus and related
continuous formulations of the maximum clique
problem. They suggest in fact a fundamentally

new way of solving the maximum clique prob-
lem, by allowing us to shift from the discrete
to the continuous domain in an elegant manner.
As recently pointed out [75], continuous formu-
lations of discrete optimization problems turn
out to be particularly attractive. They not only
allow us to exploit the full arsenal of continuous
optimization techniques, thereby leading to the
development of new algorithms, but may also
reveal unexpected theoretical properties.

In [76], Pardalos and Phillips developed a
global optimization approach based on the
Motzkin-Straus formulation and implemented
an iterative clique retrieval process to find the
vertices of the maximum clique. However, due
to its high computational cost they were not
able to run the algorithm over graphs with more
than 75 vertices. More recently, Pelillo [79] used
relazation labeling algorithms to approximately
determining the size of the maximum -clique
using the original Motzkin-Straus formulation.
These are parallel, distributed algorithms devel-
oped and studied in computer vision and pattern
recognition, which are also surprisingly related
to replicator equations, a class of dynamical sys-
tems widely studied in evolutionary game the-
ory and related fields [54, 80]. The model op-
erates in the simplex A and possesses a qua-
dratic Liapunov function which drives its dy-
namical behavior. It is these properties that nat-
urally suggest using them as a local optimiza-
tion algorithm for the Motzkin-Straus program.
The algorithm is especially suited for parallel
implementation, and is attractive for its opera-
tional simplicity, since no parameters need to be
determined. Extensive simulations over random
graphs with up to 2000 vertices have demon-
strated the effectiveness of the approach and
showed that the algorithm outperforms previous
neural network heuristics.

In order to avoid time-consuming iterative
procedures to extract the vertices of the clique,
Gibbons, Hearn and Pardalos [39] have pro-
posed a heuristics which is based on a param-
eterized formulation of the Motzkin-Straus pro-
gram. They consider the problem of minimizing
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where k is a fixed parameter. Let * be a global
minimizer of h on S(k), and let V (k) = h(z*).
In [39] it is proved that V (k) = 0 if and only if
there exists an independent set S of G with size
|S| > k. Moreover, the vertices of G associated
with the indices of the positive components of
z* form an independent set of size greater than
or equal k.

These properties motivated the following pro-
cedure to find a maximum independent set of G
or, equivalently, a maximum clique of G. Mini-
mize the function h over S(k), for different val-
ues of k between predetermined upper and lower
bounds. If V(k) = 0 and V (k+1) # 0 for some k,
then the maximum clique of G has size k, and its
vertices are determined by the positive compo-
nents of the solution. Since minimizing h on S(k)
is a difficult problem, they developed a heuristic
based on the observation that by removing the
non-negativity constraints, the problem is that
of minimizing a quadratic form over a sphere,
a problem which is solvable in polynomial-time.
However, in so doing a heuristic procedure is
needed to round the approximate solutions of
this new problem to approximate solutions of
the original one. Moreover, since the problem is
solved approximately, we have to find the value
of the spherical constraint 1/k which yields the
largest independent set. A careful choice of k is
therefore needed. The resulting algorithm was
tested over various DIMACS benchmark graphs
[63] and the results obtained confirmed the ef-
fectiveness of the approach.

The spurious solution problem has recently
been solved by Bomze [16]. Consider the follow-
ing regularized version of function g:

1
g(z) = 2T Agz + ia:Tx (2)

which is obtained from (1) by substituting the
adjacency matrix Ag of G with

- 1
AG:AG+§I

where I is the identity matrix. Unlike the
Motzkin-Straus formulation, it can be proved
that all maximizers of § on A are strict, and
are characteristic vectors of maximal/maximum
cliques in the graph. In an exact sense, there-
fore, a one-to-one correspondence exists between
maximal cliques and local maximizers of § in
A on the one hand and maximum cliques and
global maximizers on the other hand. In [16, 20],
replicator equations are used in conjunction to
this spurious-free formulation to find maximal
cliques of G. Note that here the vertices compris-
ing the clique are directly given by the positive
components of the converged vectors, and no it-
erative procedure is needed to determine them,
as in [76]. The results obtained over a set of ran-
dom as well as DIMACS benchmark graphs were
encouraging, especially considering that replica-
tor equations do not incorporate any mechanism
to escape from local optimal solutions. This sug-
gests that the basins of attraction of the global
solution w.r.t. the quadratic functions g and §
are quite large; for a thorough empirical analysis
see also [23]. One may wonder whether a subtle
choice of initial conditions and/or a variant of
the dynamics may significantly improve the re-
sults, but experiments in [22] indicate this is not
the case.

In [19] the properties of the following function
are studied

Ga(z) =2 Agz + azTx .
It is shown that when « is positive all the prop-
erties enjoyed by the standard regularization ap-
proach [16] hold true. Specifically, in this case a
one-to-one correspondence between local/global
maximizers in the continuous space and lo-
cal/global solutions in the discrete space exists.
For negative a’s an interesting picture emerges:
as the absolute value of a grows larger, local
maximizers corresponding to maximal cliques
disappear. In [19], bounds on the parameter «
are derived which affect the stability of these



solutions. These results have suggested an an-
nealed replication heuristic, which consists of
starting from a large negative a and then prop-
erly reducing it during the optimization process.
For each value of « standard replicator equa-
tions are run in order to obtain local solutions of
the corresponding objective function. The ratio-
nale behind this idea is that for values of a with
a proper large absolute value only local solutions
corresponding to large maximal cliques will sur-
vive, together with various spurious maximizers.
As the value of « is reduced, spurious solutions
disappear and smaller maximal cliques become
stable. An annealing schedule is proposed which
is based on the assumption that the graphs being
considered are random. In this respect, the pro-
posed procedure differs from usual simulated an-
nealing approaches. which mostly use a “black-
box” cooling schedule Experiments conducted
over several DIMACS benchmark graphs con-
firm the effectiveness of the proposed approach
and the robustness of the annealing strategy.
The overall conclusion is that the annealing pro-
cedure does help to avoid inefficient local solu-
tions, by initially driving the dynamics towards
promising regions in state space, and then re-
fining the search as the annealing parameter is
increased.

Recently, the Motzkin-Straus theorem has
been generalized to the weighted case [40]. Note
that the Motzkin-Straus program can be refor-
mulated as a minimization problem by consid-
ering the function

f(2) =" (I + Ag)z (3)

where A is the adjacency matrix of the comple-
ment graph G. It is straightforward to see that if
x* is a global minimizer of f in A, then we have:
w(G) = 1/f(z*). This is simply a different for-
mulation of the Motzkin-Straus theorem. Given
a weighted graph G = (V, E) with weight vector
w, let M(G,w) be the class of symmetric n x n
matrices B = (b;;); jev defined as 2b;; > b;;+bj;
if (4,j) ¢ E and b;; = 0 otherwise, and b;; = w%
foralli e V.

Given the following quadratic program, which
is in general indefinite,
f(z) =z"Bzx ()
r €A
in [40] it is shown that for any B € M(G,w) we
have:

minimize
subject to

1
f(z*)
where z* is a global minimizer of program (4).
Furthermore, denote by z° the weighted charac-
teristic vector of S, which is a vector with co-
ordinates =7 = w;/W(S) if i € S and z7 = 0
otherwise. It can be seen that a subset S of ver-

tices of a weighted graph G is a maximum weight
S

w(G,w) =

(5)

clique if and only if its characteristic vector z
is a global minimizer of (4). Notice that the ma-
trix I + Ag belongs to M(G, e). In other words,
the Motzkin-Straus theorem turns out to be a
special case of the preceding result.

As in the unweighted case, the existence of
spurious solutions entails the lack of one-to-
one correspondence between the solutions of
the continuous problem and those of the orig-
inal, discrete one. In [21] these spurious solu-
tions are characterized and a regularized ver-
sion which avoids this kind of problems is in-
troduced, exactly as in the unweighted case (see
also [17]). Replicator equations are then used to
find maximal weight cliques in weighted graphs,
using this formulation. Experiments with this
approach on both random graphs and DIMACS
graphs are reported. The results obtained are
compared with those produced by a very effi-
cient maximum weight clique algorithm of the
branch-and-bound variety. The algorithm per-
formed remarkably well especially on large and
dense graphs, and it was typically an order of
magnitude more efficient than its competitor.

Finally, we mention the recent work by Mas-
saro and Pelillo [71], who transformed the
Motzkin-Straus program into a linear comple-
mentarity problem [31], and then solved it using
Lemke’s well-known algorithm [66]. The prelim-
inary results obtained over many weighted and
unweighted DIMACS graphs show that this ap-
proach substantially outperforms all other con-
tinuous based heuristics.



Miscellaneous. Another type of heuristics that
finds a maximal clique of G is called the subgraph
approach (see [11]). It is based on the fact that
a maximum clique C of a subgraph G' C G is
also a clique of G. The subgraph approach first
finds a subgraph G' C G such that the maxi-
mum clique of G’ can be found in polynomial
time. Then it finds a maximum clique of G’ and
use it as the approximation solution. The ad-
vantage of this approach is that in finding the
maximum clique C C G’, one has (implicitly)
searched many other cliques of G’ (Ca C Cg).
Because of the special structure of G’, this im-
plicit search can be done efficiently. In Balas and
Yu [11], G’ is a maximal induced triangulated
subgraph of G. Since many classes of graphs
have polynomial algorithms for the maximum
clique problem, the same idea also applies there.
For example, the class of edge-maximal trian-
gulated subgraphs was chosen in [9], [91], and
[92]. Some of the greedy heuristics, randomized
heuristics and subgraph approach heuristics are
compared in [91] and [92] on randomly gener-
ated weighted and unweighted graphs.

Various new heuristics were presented at the
1993 DIMACS challenge devoted to clique, col-
oring and satisfiability [63]. In particular, Balas
and Niehaus [10] proposed an algorithm which is
based on the observation that finding the max-
imum clique in the union of two cliques can
be done using bipartite matching techniques.
Goldberg and Rivenbrugh [46] used restricted
backtracking to provide a tradeoff between the
size of the clique and the completeness of the
search. Mannino and Sassano [69] proposed an
edge projection technique to obtain a new upper
bound heuristic for the maximum independent
set problem. This procedure was used, in con-
junction with Balas and Yu’s branching rule [11],
to develop an exact branch and bound algorithm
which works well especially on sparse graphs.

Abbattista et al. [3]
population-based optimization heuristic in-

developed a new

spired by the natural behavior of human or an-
imal scouts in exploring unknown regions, and
applied it to maximum clique. The results ob-
tained over a few DIMACS graphs are compara-
ble with those obtained using continuous-based

heuristics but are inferior to those obtained by
reactive local search.

Recently, DNA computing [4] has also
emerged as a potential technique for the maxi-
mum clique problem [74, 93]. The major advan-
tage of DNA computing is its high parallelism,
but at present the size of graphs this algorithm
can handle is limited to a few tens.

Additional heuristics for

clique/independent set and related problems on
arbitrary or special class of graphs can be found
in 28, 29, 30, 34].
Conclusions. Over the past few years, research
on the maximum clique and related problems
has yielded many interesting heuristics. This
article has provided an expository survey on
these algorithms and an up-to-date bibliogra-
phy. However, the activity in this field is so ex-
tensive that a survey of this nature is outdated
before it is written.

the maximum
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