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Gottlob Frege (1848-1925)

Gottlob Frege (1848-1925) was a German 
logician, mathematician and philosopher 
who played a crucial role in the emergence 
of modern logic and analytic philosophy. 

Frege's logical works were revolutionary, 
and are often taken to represent the 
fundamental break between contemporary 
approaches and the older, Aristotelian 
tradition. 

He invented modern quantificational logic, 
and created the first fully axiomatic system 
for logic. 

His theory of meaning, especially his distinction between the sense and reference 
of linguistic expressions, was groundbreaking in semantics and the philosophy of 
language. He had a profound and direct influence on such thinkers as Russell, 
Carnap and Wittgenstein. 



1902: Russell Writes to Frege

In June 1902 a letter arrived in Jena, a 
medieval town later to be part of Communist 
East Germany, addressed to the 53-year-
old Gottlob Frege from the young British 
philosopher Bertrand Russell.
Although Frege believed that he had made 
important and fundamental discoveries, his 
work had been almost totally ignored. It 
must then have been with some pleasure 
that he read, 
“I find myself in agreement with you in all 
essentials […] I find in your work 
discussions, distinctions, and definitions that 
one seeks in vain in the work of other 
logicians. […] There is just one point where I 
have encountered a diffculty.” 

Frege soon realized that this one “diffculty” seemed to lead to the collapse of his 
life’s work. It cannot have helped too much that Russell went on to write,
“The exact treatment of logic in fundamental questions has remained very much 

behind; in your works I find the best I know of our time, and therefore I have 
permitted myself to express my deep respect to you.”



«A scientist can hardly meet with anything more undesirable 
than to have the foundations give way just as the work is 
finished. I was put in this position by a letter from Mr. Bertrand 
Russell when the work was nearly through the press.»

(Gottlob Frege, 
Quoted in Scientific American (May 1984) 77.)



Russell’s Paradox

Russell's paradox is the most famous of the logical or set-theoretical 
paradoxes. 

Some sets, such as the set of all teacups, are not members of 
themselves. Other sets, such as the set of all non-teacups, are 
members of themselves. 

Call the set of all sets that are not members of themselves R. 

If R is a member of itself, then by definition it must not be a member of 
itself. 

Similarly, if R is not a member of itself, then by definition it must be a 
member of itself. 

Discovered in 1901, the paradox has prompted much work in logic, set 
theory and the philosophy and foundations of mathematics.



Significance of the Paradox

The significance of Russell's paradox can be seen once it is realized 
that, using classical logic, all sentences follow from a contradiction. 

For example, assuming both P and ~P, any arbitrary proposition, Q, 
can be proved as follows: from P we obtain P v Q by the rule of 
Addition; then from P v Q and ~P we obtain Q by the rule of 
Disjunctive Syllogism. 

Because of this, and because set theory underlies all branches of 
mathematics, many people began to worry that, if set theory was 
inconsistent, no mathematical proof could be trusted completely.

Russell's own response to the paradox was his aptly named theory of 
types. Recognizing that self-reference lies at the heart of the paradox, 
Russell's basic idea is that we can avoid commitment to R (the set of 
all sets that are not members of themselves) by arranging all 
sentences (or, equivalently, all propositional functions) into a hierarchy.



Frege, the Man / 1

«As I think about acts of integrity and grace, I realise that there is 
nothing in my knowledge to compare with Frege’s dedication to truth. 
His entire life’s work was on the verge of completion, much of his work 
had been ignored to the benefit of men infintely less capable, his 
second volume was about to be published, and upon finding that his 
fundamental assumption was in error, he responded with intellectual 
pleasure clearly submerging any feelings of personal disappointment. 
It was almost superhuman and a telling indication of that of which 
men are capable if their dedication is to creative work and 
knowledge instead of cruder efforts to dominate and be known.»

Bertrand Russell



Frege, the Man / 2

«There is some irony for me in the fact that the man about whose 
philosophical views I have devoted, over the years, a great deal of time 
to thinking, was, at least at the end of his life, a virulent racist, 
specifically an anti-semite. . . .

[His] diary shows Frege to have been a man of extreme right-wing 
opinions, bitterly opposed to the parliamentary system, democrats, 
liberals, Catholics, the French and, above all, Jews, who he thought 
ought to be deprived of political rights and,preferably, expelled from 
Germany. 

I was deeply shocked, because I had revered Frege as an 
absolutely rational man . . .»

Michael Dummet



The Begriffsschrift

Begriffsschrift is the title of a short book of Frege, published in 1879, 
and is also the name of the formal system set out in that book.

Begriffsschrift is usually translated as concept writing or concept 
notation; the full title of the book identifies it as “a formula language, 
modelled on that of arithmetic, of pure thought.” 

“If the task of philosophy is to break the domination of words over the 
human mind [...], then my concept notation, being developed for these 
purposes, can be a useful instrument for philosophers [...] I believe the 
cause of logic has been advanced already by the invention of this 
concept notation.” (Preface to the Begriffsschrift)

The Begriffsschrift was arguably the most important publication in logic 
since Aristotle founded the subject. Frege's motivation for developing 
his formal approach to logic resembled Leibniz's motivation for his 
calculus ratiocinator. 



Frege’s Logic of Quantification

Frege's functional analysis of predication coupled with his 
understanding of generality freed him from the limitations of the 
‘subject-predicate’ analysis of ordinary language sentences that formed 
the basis of Aristotelian logic and it made it possible for him to develop 
a more general treatment of inferences involving ‘every’ and ‘some’. 

In traditional Aristotelian logic, the subject of a sentence and the direct 
object of a verb are not on a logical par. 

The rules governing the inferences between statements with different 
but related subject terms are different from the rules governing the 
inferences between statements with different but related verb 
complements. 

For example, in Aristotelian logic, the rule which permits the valid 
inference from ‘John loves Mary’ to ‘Something loves Mary’ is different 
from the rule which permits the valid inference from ‘John loves Mary’ 
to ‘John loves something’. 



In Frege's logic a single rule governs both the inference from ‘John 
loves Mary’ to ‘Something loves Mary’ and the inference from ‘John 
loves Mary’ to ‘John loves something’. 

That's because the subject John and the direct object Mary are both 
considered on a logical par, as arguments of the function loves. 

In effect, Frege saw no logical difference between the subject ‘John’ 
and the direct object ‘Mary’. 

What is logically important is that ‘loves’ denotes a function of 2 
arguments. Thus, Frege analyzed the above inferences in the following 
general way:

John loves Mary. Therefore, some x is such that x loves Mary. 
John loves Mary. Therefore, some x is such that John loves x. 



Frege saw the formulae of mathematics as the paradigm of clear, 
unambiguous writing. In order to make his logical language suitable for 
purposes other than arithmetic, he expanded the notion of function to 
allow arguments and values other than numbers. 

He defined a concept (Begriff) as a function that has a truth-value, 
either of the abstract objects the True or the False, as its value for any 
object as argument. 

The concept being human is understood as a function that has the 
True as value for any argument that is human, and the False as value 
for anything else. 

The values of such concepts could then be used as arguments to other 
functions. 



Frege would analyze the sentence
“all horses are mammals”

using the logical relationship if . . . then . . . :
“if x is a horse, then x is a mammal”

Likewise, he would analyze the sentence
“some horses are pure-bred”

using the logical relationship . . . and . . . :
“x is a horse and x is pure-bred”

[....]
(∀x)(if x is a horse, then x is a mammal)

(∃x)(x is a horse and x is pure-bred)
[...]

(∀x)( horse(x) ⊃ mammal(x))
(∃x)( horse(x) ∧ pure-bred(x))



“Tutti gli uomini sono mortali” si può riscrivere: 

∀ x ( U(x) -> M(x) )

che si può leggere: 
“per tutte le x, se x è un uomo, allora x è mortale”

“Tutti i ragazzi amano qualche fanciulla” si può riscrivere:

∀ x ∃ y ( R(x) & F(y) -> A(x,y) ) 

che si può leggere:

"per tutti gli x, esiste un y tali che, 
se x è un ragazzo e y una ragazza, allora x ama y"



Alla fine del primo capitolo della Ideografia Frege presenta la tavola 
delle opposizioni aristotelica con la sua scrittura:

(A) Tutti gli F sono G ∀ x (F(x) -> G(x))

(E) Nessun F è G ∀ x (F(x) -> ¬ G(x)) 

(I) Qualche F è G ∃ x (F(x) & G(x))

(O) Qualche F non è G ∃ x (F(x) & ¬ G(x))



Il limite di Boole, rispetto al progetto di Leibniz, è che l'algebra della 
logica ci fornisce solo un calcolo; la risposta di Frege è di accoppiare il 
calcolo a una lingua universale, secondo uno schema che potremmo
inquadrare, come si fa solitamente in molti manuali di logica, nel modo 
seguente:

SISTEMA FORMALE 

LINGUAGGIO CALCOLO (Apparato Deduttivo)
Vocabolario Assiomi 

Regole di Buona Formazione Regole di Trasformazione

Formule Ben Formate Teoremi 



The Grundgesetze 1

In 1893 Die Grundgesetze der Arithmetik, Volume1 (The Basic Laws 
of Arithmetic) appeared in which Frege set up a formal logical system 
with more rules of inference than that of his Begriffsschrift. 

Now Frege axiomatized arithmetic with an intuitive collection of axioms, 
and proofs of number theory results which had only sketched earlier he 
now gave formally. 

The main thrust of this volume was to develop the rules of number 
theory and in the later volumes Frege intended to extend the work to 
the real numbers. 

His bitter disappointment at the lack of reaction to his earlier work 
shows explicitly in the Preface to Volume 1 where he complains about 
other authors being unfamiliar with his ideas. 

He must have hoped that this first volume of what he viewed would be 
his greatest achievement would be well received, but except for one 
review by Peano, it was ignored by his contemporaries. 



The Grundgesetze 2

While Volume 2 of The Basic Laws of Arithmetic was at the printers 
Frege received a letter (on 16 June 1902) from Bertrand Russell. 
Russell pointed out, with great modesty, that the Russell paradox gave 
a contradiction in Frege's system of axioms. 

After many letters between the two, Frege modified one of his axioms 
and explains in an appendix to the book that this was done to restore 
the consistency of the system. 

However with this modified axiom, many of the theorems of Volume 1 
do not go through and Frege must have known this. 

He probably never realised that even with the modified axiom the
system is inconsistent since this was only shown by Leshniewski after 
Frege's death. 



The Peano Axioms

Giuseppe Peano (1858-1932) mostrò nel 
1889 che l’intera teoria dei numeri naturali 
può essere dedotta da tre idee primitive e 
da cinque proposizioni fondamentali in 
aggiunta a quelle della logica pura.

Le tre idee primitive della aritmetica di 
Peano sono:

0, numero, successore

Le cinque proposizioni primitive sono, invece:

1. 0 è un numero
2. Il successore di ogni numero è un numero
3. Due numeri distinti non possono avere lo stesso successore 
4. 0 non è il successore di alcun numero. 
5. Se una proprietà vale per 0, ed anche per il successore di ogni numero che 

abbia quella proprietà, allora vale per tutti i numeri (principio di induzione)



Russell and Whitehead’s 
Principia Mathematica

Bertrand Russell met Peano at the 1900 International Congress of
Mathematicians in Paris, and was captivated by Peano's work on 
foundations. 

And, starting in 1900, he was studying the Grundgesetze I of Frege. 
This led to his discovery of the famous contradiction in Frege's system 
in June, 1901, while writing his Principles of Mathematics (1903). 
Nonetheless, Russell and Whitehead, who started their joint work on 
foundations in 1900, would carry out the program of Frege to a 
significant extent, namely the seamless development of mathematics 
from a few clearly stated axioms and rules of inference in pure logic. 

However they opted for the more modern notation of Peano instead of 
Frege's Begriffsschrift. 



Their work, Principia Mathematica, filled three volumes, almost 2,000 
pages, and appeared in the years 1910-1913. Their approach was 
essentially that of Frege, to define mathematical entities, like numbers, 
in pure logic and then derive their fundamental properties. Indeed their 
definition of natural numbers was essentially that of Frege, but unlike 
him, they opted to avoid the philosophical aspects and justifications. 

In the preface they say 

We have avoided both controversy and general philosophy, and 
made our statements dogmatic in form   . 

The general method which guides our handling of logical symbols is 
due to Peano. His great merit consists not so much in his definite 
logical discoveries nor in the details of his notations (excellent as both 
are), as in the fact that he first showed how symbolic logic was to be 
freed from its undue obsession with the forms of ordinary algebra, and 
thereby made it a suitable instrument for research   . 

In all questions of logical analysis, our chief debt is to Frege. 



The main innovation of Principia Mathematica was to introduce 
a stratification of Frege's formulas into types, and to use this to 
restrict which of Frege's formulas would be permitted in their 
logic. 

Having salvaged Frege's logic, they proceeded to develop some 
of the elementary theorems of mathematics, covering far more 
ground than Frege.



“To Infinity, and Beyond!”



Georg Cantor (1845-1918)

Georg Ferdinand Ludwig Philipp 
Cantor was a German mathematician 
who is best known as the creator of set 
theory. 

Cantor established the importance of 
one-to-one correspondence between 
sets, defined infinite and well-ordered 
sets, and proved that the real numbers 
are "more numerous" than the natural 
numbers. In fact, Cantor's theorem 
implies the existence of an "infinity of 
infinities." He defined the cardinal and 
ordinal numbers, and their arithmetic. 

Cantor's work encountered resistance from contemporaries such as Leopold 
Kronecker and Henri Poincaré, Nowadays, the majority of mathematicians 
accept Cantor's work on transfinite sets and arithmetic, recognizing it as a major 
paradigm shift. David Hilbert once said: “No one shall expel us from the 
Paradise that Cantor has created”.



The Paradoxes of the Infinite

«For any number there exists a corresponding even number which is its 
double. Hence the number of all numbers is not greater than the number 
of even numbers, that is, the whole is not greater than the part.»

G. W. Leibniz

Cantor reasoned much as Leibniz had and faced the same dilemma: 
either it makes no sense to speak of the number of elements in an 
infinite set or some infinite sets will have the same number of elements 
as one of its subsets. 

However, while Leibniz had chosen one horn of this dilemma, Cantor 
chose the other. He went on to develop a theory of number that would 
apply to infinite sets, and just accepted the consequence that an infinite 
set could have the same number of elements as one of its parts.



Galileo’s Paradox

Galileo considera i numeri naturali 0, 1, 2, 
3 ... ed osserva che l'insieme (infinito) dei 
loro quadrati 0, 1, 4, 9, ... è certamente più 
piccolo e, pur tuttavia, contiene tanti 
elementi quanti erano i numeri di partenza, 
perché ad ogni numero corrisponde in 
modo biunivoco il suo quadrato. Galileo 
conclude: 

«io non veggo che ad altra decisione si 
possa venire che a dire infiniti essere tutti i 
numeri, infiniti i quadrati […]
né la moltitudine de' quadrati essere minore di quella di tutti numeri, né questa 
essere maggiore di quella, ed, in ultima conclusione, gli attributi di eguale, 
maggiore e minore non aver luogo negl'infiniti ma solo nelle quantità terminate 
[…] queste son di quelle difficoltà che derivano dal discorrer che noi facciamo 
col nostro intelletto finito intorno all'infinito, dandogli quegli attributi che noi 
diamo alle cose finite e terminate; il che penso che sia inconveniente.»

Discorsi e dimostrazioni matematiche intorno a due nuove scienze (1638)



Hilbert’s Grand Hotel

Suppose you are an innkeeper at a hotel with an infinite number of 
rooms. The hotel is full, and then a new guest arrives. It's possible to fit 
the extra guest in by asking the guest who was in room 1 to move to 
room 2, the guest in room 2 to move to room 3, and so on, leaving 
room 1 vacant. 

We can explicity write a segment of this mapping:

1 ↔ 2,  2 ↔ 3, 3 ↔ 4, …, n ↔ n+1, ... 

In this way we can see that the set {1,2,3,...} has the same cardinality 
as the set {2,3,4,...} since a bijection between the first and the second 
has been shown. 

This motivates the definition of an infinite set being any set which has a 
proper subset of the same cardinality; in this case {2,3,4,...} is a proper 
subset of {1,2,3,...}.



There are as Many Integers as 
Rational Numbers!

Two sets A and B 
are called equivalent
(A~B) if there is a 
bijection f: A -> B. 

Cantor proved that 
the set of rational 
number is 
equivalent to (i.e. 
contains the same 
number of elements 
as) the set of 
integers.



And What About the Reals?

In a letter dated 1873 Cantor asked the German mathematician 
Richard Dedekind the following question: 

«Take the collection of all positive whole numbers n and denote it by 
(n); then think of the collection of all real numbers x and denote it by 
(x); the question is simply whether (n) and (x) may be corresponded so 
that each individual of one collection corresponds to one and only one 
of the other?...As much as I am inclined to the opinion that (n) and (x) 
permit no such unique correspondence, I cannot find the reason.»

What Cantor is suggesting is that even though both the set of natural 
numbers and the set of real numbers are infinite, they do not have “the 
same number of elements.” 

It was Cantor himself that proved the impossibility of this 
correspondence and hence proved that the set of real numbers is 
bigger than the set of natural numbers.



Cantor’s Diagonal Argument / 1

Cantor's diagonal argument is a 
proof to demonstrate that the real 
numbers are not countably infinite. 

Cantor's original proof shows that the 
interval [0,1] is not countably infinite.

The proof by contradiction proceeds 
as follows:

Assume (for the sake of argument) 
that the interval [0,1] is countably 
infinite. There must then exist a 
sequence M in the form  (r1,r2,r3,...) 
that enumerates all numbers in this 
interval. 

We may represent each of these 
numbers as an infinite decimal 
expansion. 

We arrange the numbers in a list. 
Assume, for example, that the 
decimal expansions of the beginning 
of the sequence, M, are as follows: 

r1 = 0 . 5 1 0 5 1 1 0 ... 
r2 = 0 . 4 1 3 2 0 4 3 ... 
r3 = 0 . 8 2 4 5 0 2 6 ... 
r4 = 0 . 2 3 3 0 1 2 6 ... 
r5 = 0 . 4 1 0 7 2 4 6 ... 
r6 = 0 . 9 9 3 7 8 3 8 ... 
r7 = 0 . 0 1 0 5 1 3 5 ... 
... 

We shall now construct a real 
number x in [0,1] by considering 
the kth digit after the decimal point 
of the decimal expansion of rk.



Cantor’s Diagonal Argument / 2

- if the kth digit of rk is 5 then the kth

digit of x is 4 
- if the kth digit of rk is not 5 then the 
kth digit of x is 5 

For the above sequence, for 
example, we obtain the following 
decimal expansion: 

x = 0 . 4 5 5 5 5 5 4 ... 
Hence we must have rn = x for some 
n, since we have assumed that 
(r1,r2,r3,...) enumerates all real 
numbers in [0, 1]. 
However, because of the way we 
have constructed it, x differs in the 
nth decimal place from rn, so x is not 
in the sequence (r1,r2,r3,...). 
This sequence is therefore not an 
enumeration of the set of all reals in 
the interval [0,1]. A contradiction. 

The digits we will consider are 
underlined and in bold face, 
illustrating why this is called the 
diagonal proof. 

r1 = 0 . 5 1 0 5 1 1 0 ... 

r2 = 0 . 4 1 3 2 0 4 3 ... 

r3 = 0 . 8 2 4 5 0 2 6 ... 

r4 = 0 . 2 3 3 0 1 2 6 ... 

r5 = 0 . 4 1 0 7 2 4 6 ... 

r6 = 0 . 9 9 3 7 8 3 8 ... 

r7 = 0 . 0 1 0 5 1 3 5 ... 

... 

From these digits we define the 
digits of x as follows:. 



It is a direct corollary of this result that the set R of all real numbers is 
uncountable. 

If R were countable, we could enumerate all of the real numbers in a
sequence, and then get a sequence enumerating [0,1] by removing all 
of the real numbers outside this interval. But we have just shown that 
this latter list cannot exist. 

Alternatively, we could show that [0,1] and R are the same size by 
constructing a bijection between them. This is slightly awkward to do, 
though possible, for the closed interval [0,1]; for the open interval (0,1) 
we might use                        defined by  



The Continuum Hypothesis

The continuum hypothesis states the following:

There is no set whose size is strictly between that of the 
integers and that of the real numbers.

Or mathematically speaking, denoting the cardinality for the integers    
by       ("aleph-null"), it can be shown that the cardinality of the real 
numbers is       .  Hence, the continuum hypothesis says:

This is equivalent to:



David Hilbert (1862-1943)

David Hilbert was one of the most 
influential mathematicians of the 19th and 
early 20th centuries. 

He established his reputation by inventing 
or developing a broad range of ideas, such 
as invariant theory, the axiomization of 
geometry, and the notion of Hilbert space, 
one of the foundations of functional 
analysis. Hilbert and his students supplied 
significant portions of the mathematic 
infrastructure required for quantum 
mechanics and general relativity. 

He is one of the founders of proof theory, mathematical logic, and the distinction 
between mathematics and metamathematics, and warmly defended Cantor's set 
theory and transfinite numbers. 

Is 1900 it presented a set of problems that set the course for much of the 
mathematical research of the 20th century.



The Young Hilbert

Hilbert's first work on invariant functions led him to the demonstration in 
1888 of his famous finiteness theorem. 

Twenty years earlier, Paul Gordan had demonstrated the theorem of 
the finiteness of generators for binary forms using a complex 
computational approach. The attempts to generalize his method to
functions with more than two variables failed because of the enormous 
difficulty of the calculations involved. 

Hilbert realized that it was necessary to take a completely different 
path. As a result, he demonstrated Hilbert's basis theorem: showing 
the existence of a finite set of generators, for the invariants of quantics 
in any number of variables, but in an abstract form. That is, while 
demonstrating the existence of such a set, it was not algorithmic but an 
existence theorem.



Theology or Mathematics?

Hilbert sent his results to the Mathematische Annalen. 

Gordan, the house expert on the theory of invariants for the 
Mathematische Annalen, was not able to appreciate the 
revolutionary nature of Hilbert's theorem and rejected the 
article, criticizing the exposition because it was insufficently
comprehensive. 

His comment was:

This is Theology, not Mathematics!



... I am not prepared to alter or delete anything, and regarding this 
paper, I say with all modesty, that this is my last word so long as no 
definite and irrefutable objection against my reasoning is raised. 

D. Hilbert

Later, after the usefulness of Hilbert's method was universally 
recognized, Gordan himself would say:

I must admit that even theology has its merits. 



Paris, 1900

The mathematicians present at an international conference in Paris in 
August 1900 inevitably wondered what the new century would bring to 
their subject. 

It was on a sultry day that the 38-year-old David Hilbert, whose 
stunning accomplishments had taken him to the top of his profession, 
was delivering an invited address in which he presented, as a 
challenge to the mathematicians of the twentieth century, 23 problems 
that seemed utterly inaccessible by the methods available at the time.

Among which:

1. The continuum hyopthesis
2. The consistency of arithmetic
3. …



The Compatibility of the Arithmetical 
Axioms

«When we are engaged in investigating the foundations of a science, 
we must set up a system of axioms which contains an exact and 
complete description of the relations subsisting between the 
elementary ideas of that science. […]

Upon closer consideration the question arises: Whether, in any way, 
certain statements of single axioms depend upon one another, 
and whether the axioms may not therefore contain certain parts in 
common, which must be isolated if one wishes to arrive at a 
system of axioms that shall be altogether independent of one 
another.

But above all I wish to designate the following as the most important 
among the numerous questions which can be asked with regard to the 
axioms: To prove that they are not contradictory, that is, that a 
definite number of logical steps based upon them can never lead 
to contradictory results.»



Hilbert’s Program

In the early 1920s, Hilbert put forward a new proposal for the 
foundation of classical mathematics which has come to be known as 
Hilbert's Program. 

Hilbert’s program calls for a formalization of all of mathematics in 
axiomatic form, together with a proof that this axiomatization of 
mathematics is consistent. 

Work on the program progressed significantly in the 1920s with 
contributions from logicians such as Paul Bernays, Wilhelm 
Ackermann, John von Neumann, and Jacques Herbrand. It was also a
great influence on Kurt Gödel, whose work on the incompleteness 
theorems were motivated by Hilbert's Program. 

Gödel's work is generally taken to show that Hilbert's Program cannot 
be carried out. 



The Dispute with the Intuitionists

«Mathematics is the only science where one never knows what one is 
talking about nor whether what is said is true.»

(B. Russell)

«It is diffcult to see that the word if acquires when written ⊃, a virtue it 
did not possess when written “if”.»

«Thus it will be readily understood that in order to demonstrate a 
theorem, it is not necessary or even useful to know what it means. […] 
we might imagine a machine where we should put in axioms at one 
end and take out theorems at the other, like that legendary machine in 
Chicago where pigs go in alive and come out transformed into hams 
and sausages. It is no more necessary for the mathematician than it is 
for these machines to know what he is doing. »

(H. Poincaré, Science and Method. 1908)



Kurt Gödel (1906-1978)

Kurt Gödel was a logician, 
mathematician, and philosopher of 
mathematics.
One of the most significant logicians 
of all time, Gödel's work has had 
immense impact upon scientific and 
philosophical thinking in the 20th 
century, a time when many, such as 
Bertrand Russell, A. N. Whitehead, 
and David Hilbert, were attempting to 
use logic and set theory to understand 
the foundations of mathematics.
Gödel is best known for his incompleteness theorems, published in 1931 when he 
was 25 years of age, and only one year after finishing his doctorate at the 
University of Vienna. 
He also showed that the continuum hypothesis cannot be disproved from the 
accepted axioms of set theory, if those axioms are consistent. He made important 
contributions to proof theory by clarifying the connections between classical logic, 
intuitionistic logic, and modal logic.



“On Formally Undecidable Propositions of 
Principia Mathematica and Related Systems”

(1931)

«The development of mathematics towards greater exactness has, as
is well-known, lead to formalization of large areas of it such that you 
can carry out proofs by following a few mechanical rules. The most 
comprehensive current formal systems are the system of Principia
Mathematica (PM) on the one hand, the Zermelo-Fraenkelian axiom-
system of set theory on the other hand. These two systems are so 
far developed that you can formalize in them all proof methods 
that are currently in use in mathematics, i.e. you can reduce these 
proof methods to a few axioms and deduction rules. Therefore, 
the conclusion seems plausible that these deduction rules are 
sufficient to decide all mathematical questions expressible in 
those systems. We will show that this is not true, but that there are 
even relatively easy problem in the theory of ordinary whole numbers 
that can not be decided from the axioms. This is not due to the nature 
of these systems, but it is true for a very wide class of formal systems, 
which in particular includes all those that you get by adding a finite 
number of axioms to the above mentioned systems, provided the 
additional axioms don't make false theorems provable.»



The Liar Paradox

The liar paradox encompasses paradoxical statements such as:

“I am lying now”

“This statement is false”

Analyzing the statement "I am lying now", if what the speaker says is true, then 
the statement "I am lying now" is false, that means when the statement was 
said, the speaker was actually lying. 

But then, on the contrary, if it is true that the speaker is lying, then the statement 
"I am lying now" is false in that the statement turns out to be true.

To avoid having a sentence directly refer to its own truth value, one can also 
construct the paradox as follows:

“The following sentence is true” 
“The preceding sentence is false”



Eubulides and Epimenides

The oldest version of the liar paradox is attributed to the Greek 
philosopher Eubulides of Miletus who lived in the fourth century B.C. 
Eubulides reportedly said:

A man says that he is lying. Is what he says true or false?

Epimenides paradox is often considered an equivalent or 
interchangeable term for “liar paradox”. 

Epimenides was a sixth century BC philosopher-poet. Himself a 
Cretan, he reportedly wrote:

The Cretans are always liars



The proof of Gödel's incompleteness theorem uses self-referential 
statements similar to the statements at work in the Liar paradox.

In the context of a sufficiently strong axiomatic system A of arithmetic:

This statement is not provable in A. (1)

Suppose (1) is provable, then what it says of itself, that it is not 
provable, is not true. But this conclusion is contrary to our supposition, 
so our supposition that (1) is provable must be false. 

Suppose the contrary that (1) is not provable, then what it says of itself 
is true, although we cannot prove it. Therefore, there is no proof that 
(1) is provable, and there is also no proof that its negation is provable. 

Whence, A is incomplete because it cannot prove all truths, namely, (1) 
and its negation. Statements like (1) are called undecidable. 



Gödel Numbering / Step 1



Gödel Numbering / Step 2

Arithmetical statements are assigned unique Gödel numbers 
referenced to the series of prime numbers. This is based on a simple 
code which essentially reads:

prime_1 character_1 * prime_2 character_2 * prime_3 character_3 …etc. 

For example the statement

∀ x, P(x) becomes    22 * 316 * 512 * 76 * 1116 * 137, 

Because {2, 3, 5, 7, 11, ...} is the prime series, and 2, 16, 12, 6, 16, 7 
are the relevant character codes. 

It is important to note, by the Fundamental theorem of arithmetic, this 
astronomical number can be decomposed into unique prime factors; 
thus it is possible to convert the Gödel number back to its sequence of 
characters.



Gödel Numbering / Step 3

Finally, sequences of arithmetical statements are assigned further 
Gödel numbers, such that the sequence

Statement 1 (GN1)
Statement 2 (GN2)
Statement 3 (GN3)

(where GN denotes a Gödel number) gets the Gödel number 

2GN1 * 3GN2 * 5GN3

which we will call GN4. 



The proof of Gödel's incompleteness theorem depends on the 
demonstration that, in formal arithmetic, some sets of statements 
logically entail or prove other statements. 

For example it might be shown that GN1, GN2, and GN3 together, i.e. 
GN4, prove GN5. 

Because this is a demonstrable relationship between numbers it is 
entitled to its own symbol, for example R. 

Then we could write R(v,x) to express "x proves v". 

In the case where x and v are Gödel numbers GN4 and GN5 we would 
say R(GN5,GN4).



An Informal Account of Gödel’s Proof

The core of Gödel's argument is that we can write the statement

∀ x, ¬R(v,x)

which means

no proposition of type v can be proved. 

The Gödel number for this statement would be

22 * 316 * 51 * 718 * 116 * 1313 * 1716 * 197

but we will call it GN6.



Now if we consider the statement

∀ x, ¬R(GN6,x)

we will realise that it says

no proposition that says 
“no proposition of type v can be proved” can be proved. 

This collapses into the statement:

this proposition cannot be proved. 



If the statement can actually be proved, then its formal system 
is inconsistent because it proves something which states that it
itself cannot be proven (a contradiction). 

If the statement cannot be proved within its formal system, then
what the statement asserts is actually true, so the statement is
consistent, but since the formal system contains a statement 
which is semantically true but which cannot be proven 
(syntactically), then the system is incomplete. 

Therefore, assuming that the formal system is consistent, it 
has to be incomplete.



J. R. Lucas: 
Minds, Machines and Gödel (1961)

«Gödel's theorem seems to me to prove that Mechanism is false, that 
is, that minds cannot be explained as machines. 
[…]
Gödel's theorem states that in any consistent system which is strong 
enough to produce simple arithmetic there are formulae which cannot 
be proved-in-the-system, but which we can see to be true. Essentially, 
we consider the formula which says, in effect, "This formula is 
unprovable-in-the-system". 
[…]
Gödel's theorem must apply to cybernetical machines, because it is of 
the essence of being a machine, that it should be a concrete 
instantiation of a formal system. It follows that given any machine 
which is consistent and capable of doing simple arithmetic, there is a 
formula which it is incapable of producing as being true---i.e., the 
formula is unprovable-in-the-system-but which we can see to be true. 
It follows that no machine can be a complete or adequate model 
of the mind, that minds are essentially different from machines.»



Letture (testi divulgativi)



Approfondimenti



Sull’infinito



Sul Teorema di Gödel
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