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Shock Graph Representation of
Shape

» Shocks (or medial axis or skeleton) are locus of centers
of maximal circles that are bitangent to shape boundary

N
\J

Shape boundary

Real Example
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Riconoscimento (matching)

N
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Distance Between Shapes

L

N

*Distance between shapes 1s important
for recognition

* Shape space 1s the collection of all
shapes

— shape 1s a point (shock graph) in the

space

— shape deformation (shock graph) /

sequence 1s a path through the space B

* Cost of the optimal deformation sequence is

the minimim distance from 4 to B
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L

Un’applicazione:
Il riconoscimento di gesti

1235 5.73 | 6.02 | 7.35 | 10.25 | 11.15 | 9.12
405 | 688 | 522 | 327 | 2.84 | 4.18 | 5.95
537 | 3.13 | 840 | 447 | 756 | 421 | 2.72
15.18 1 9.02 | 544 | 13.19 | 10.18 | 15.95 | 13.22

11.01 | 12.17 | 15.88 | 9.21 | 17.75 | 16.37
10.43 | 3.41 | 4.19 | 400 | 7.26 | 5.69 | 4.96
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Motivation

N

# Many hierarchical structures in computer vision can be
represented as trees.

# Matching two hierarchical structures can therefore be
formulated as finding their largest isomorphic subtree.

# Equivalently, we can find the maximum clique in their
association graph, effectively reducing a hierarchical
matching problem to a ““flat,” discrete optimization
problem.

# Powerful, continuous optimization methods applicable
only to “flat” problems can be used to find a solution that
obeys hierarchical constraints.
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Outline

N

# Subtree isomorphism
# An equivalent, maximum clique formulation

# An equivalent, continuous, quadratic optimization
formulation

# A dynamical systems solution framework
# An extension to free trees
# An extension to weighted maximum clique

# Conclusions

13
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Preliminaries

Given a graph G=(V, E), with V the set of nodes, and E the set
of edges:

#® Two nodes u,v U V are adjacent (denoted u [J v) if they are
connected by an edge.

# A path is any sequence of distinct nodes u, u, --- u, such
thatu, , U u, Ui=1---n.

@ If u,=u , the path is a cycle.

#® A graph is connected if any pair of nodes is joined by a
path.

# The distance between two nodes u and v is the length of
the shortest path joining them.

N
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Trees

N

#® A tree is a connected graph with no cycles.
#® A rooted tree has a distinguished node, the root.

# The level of a node u in a rooted tree (denoted
lev(u)) 1s the distance between u and the root.

#® Ifu [Jvand lev(v) - lev(u) = 1, u is the parent
of v and, conversely, v 1s a child of w.

Property: In a tree, any two nodes are connected
by a unique path.

15
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Subtree Isomorphism

N

Let T,=(V,, £,) and T,=(V,, E,) be two rooted trees.

Any bijection ¢ : H, - H,,with H, L1 V,and H, I V,, 1s
called a subtree isomorphism if, given u,v L1 H,, we have:

1. vOve o(v)Od(v)
2. uis v'sparent = ¢(v) is ¢(v)'s parent.
3. the induced subgraphs are connected.

16
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N

A subtree isomorphism is maximal if there is no other
subtree isomorphism ¢' : H,” - H,’with A4, 0 H,; and
maximum if H, has largest cardinality.

The maximal (maximum) subtree isomorphism problem
is to find @ maximal (maximum) subtree isomorphism
between two rooted trees.

17
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Subgraph Isomorphism as a
Maximum Clique Problem

N

(u,w)~(v,z) iff (u~v AND w~z) OR (u !~ v AND w I~ 7)

18
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The Loss of Hierarchical Structure

In the standard formulation of the association graph, the
solutions may not preserve the hierarchical structure of the
trees being matched. 1

N

Example:

Using the standard association graph, the assignment 2 — h will
also be included in the final solution, but the result violates
hierarchical constraints, and is also not a tree.

19
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Solution: Path Strings

Let v and v be two distinct nodes of a rooted tree,
with u=x,x;--- x,=v the (unique) path joining them.

N

The path-string of v and v, denoted by str(u,v ), is the
string s,5,--- s, on the alphabet {-1,+1} where
s=lev(x;)-lev(x.,), O/=1--- n.

Example: e
str(eg)=-1-1+1+1
0 G 0 str (u,u)=¢, the null string
e ) (g

Graph Algorithms and Object Recognition: max clique
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Deriving the Tree Association
Graph (TAG)

N

The TAG of two attributed trees 7,=(V, £,) and

1. V=V, xV,

2. for any two nodes (u,w)and (v,z)in V:
(uv) [ (wz) = str(uw)=str(v,z)

Graph Algorithms and Object Recognition: max clique

7,=(V, E;)is the (weighted) graph G=(V,E) where:
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The Main Theorem

N

A subset of vertices of a graph G =(V,E) is said to be a
cligue if all its nodes are mutually adjacent.

A maximal clique in Gis one which is not contained in any
other clique having larger size.

Theorem 1 Any maximal (maximum) subtree
isomorphism between two rooted trees induces a maximal

(maximum) clique in the corresponding TAG and vice
versa. (proof in paper)

22
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Why Association Graphs for
Subtree Isomorphism?

The association graph approach is attractive for several reasons:

N

e it allows us to cast the relational structure matching problem in
terms of a well-known problem in graph theory, for which both theory
and algorithms are available.

e many powerful heuristics for solving the maximimum clique
problem are available (Bomze et al, 1999).

e it generalizes to many-to-many matching problems (see Pelillo et
al., 1999 (IWVF), for a review)

23
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Some Notation

N

Given an arbitrary weighted graph G(V,E,») with n nodes: 1

e S is the standard simplex in R”:

S ={xe R :le. =] and x, > O,‘v’z}
i=1
o If C /7 G, x°will denote its characteristic vector, which is defined

as:
. |vCl,  ifueC
x$ =
© |0, otherwise

o where | C| denotes the cardinality of C

24
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A Continuous Formulation for
MAX-CLIQUE

Consider the following quadratic function:

N

f(x)=x'4Ax

where A=(a; )is the adjacency matrix of G, i.e., the nx nsymmetric
matrix defined as:

e & i P 2
a. = : /
710, otherwise
X is a global maximizer of £ in S, if f{ix")> f(x), forall xS, X is
a local maximizer if there exists an ¢ > 0 such that ix") > f(x) for

all x /75, whose distance from x” is less than ¢ and if f{x*) = f(x)
implies x* = x, then x*is said to be a strict local maximizer.

25
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N

The Motzkin-Straus theorem (1965) establishes a connection
between the global (local) maximizers of 7in S, and maximum
(maximal) cliques of G.

Namely, a subset of vertices C of a graph G is a maximum clique if
and only if its characteristic vector x<is a global maximizer of / on

S,

This allows us to shift to the continuous domain, drawing on
continuous optimization techniques to solve the corresponding
discrete problem.

26
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Problem

N

e Unfortunately, there is a problem with the Motzkin-
Strauss formulation.

e Namely, spurious solutions exist that do not obey the
properties of a characteristic vector, i.e., the solution
doesn’t converge to the barycenter of a simplex face.

e In these cases, the cardinality of the solution is known
but the assignments are not.

27
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Solution

Bomze has recently introduced a solution using a
regularized version of £:

g(x)=x"Ax + %x'x

N

which is obtained by substituting in 7 the following
adjacency matrix:

Izl(x) = A+%]n

where 7 is the nxn identity matrix.

28
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A Stronger Result

N

Theorem 2
Let C /7 V, and let X¢ be its characteristic vector. Then:

e C is a maximum clique of G = x¢is a global maximizer of gin S,.
In this case, |C|=1/2(1-g(x°)).

e C is a maximal clique of G = xcis a local maximizer of gin S,.
e All local (and hence global) maximizers of gon S, are strict.

See (Bomze, Pelillo, and Stix, 1999) for proof.

29
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An Evolutionary Approach to Solving
the Continuous Optimization Problem

The search for an optimal solution on the simplex can be
modeled as the evolution of a set of populations over time.

Following (Hofbauer & Sigmund, 1988), the components of our
vector x represent the frequencies of the various populations.

The rate of increase of a particular population £ equals the
increase in fitness of the population over the average fitness:

X.
— = fitness of £, —average fitness

]

30
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N

X.
— = fitness of E, —average fitness

]

X‘l. :xi(ﬁ(x)_f(x))a i:1,...,n

This is called the replicator equation, and it models
the evolution of behaviour in animal conflicts.

The trajectory of the populations, including the

solution, is guaranteed to stay on the surface of the
simplex.

Graph Algorithms and Object Recognition: max clique
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N

If 7 is linear, i.e., f is an n x n matrix such that
f, (x)=(Wx)., then we can write:

x,(1) = x,()(f;(x(0) = f(x(1))), i=1,...,n
x() =x,(O)|(7x(1)), —x@)Wx(2)], i=L...,n

and in the discrete domain:

xi(z+1)=xi(z)x((i§f‘p(;2;), i=1,...n

Graph Algorithms and Object Recognition: max clique
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The Fundamental Theorem of
Natural Selection

Theorem 3 If W=W/, then the function
f(x)=x"Wx

is strictly increasing along any non-stationary trajectory of both
continuous-time and discrete-time replicator dynamics. In other

words, O£ 0:

for the contonuous-time dynamics, and

J(x(E+1)) > f(x(2))

for the discrete-time dynamics, unless x(¢) is a stationary point.
Furthermore, any such trajectory converges to a stationary point
(see Fisher (1930), Crow and Kimura (1970), Hofbauer & Sigmund
(1988)).

N

33
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Back to Tree Matching

Let 7, and 7, be two attributed trees, G=(V,E) be the corresponding
TAG, and define
1

W:A_I_EIN,

our regularized Motzkin-Strauss formulation.

N

The replicator dynamical system starting from an arbitrary initial
state (typically, the barycenter of S) will eventually converge to a
maximizer of xWx over the standard simplex.

This will correspond to a maximal clique in the TAG, and hence to a
maximal subtree isomorphism between 7, and 7..

34
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Shock Trees

NCS

N

Type 1 Type 2
[ —H )
Type 3 Type 4
Shock Graph

S1ddiqi, Shokoufandeh, Dickinson, and Zucker, 1999
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Matching Free Trees

N

Title: Matching Free Trees, Maximal Cliques, and
Monotone Game Dynamics

Author: M. Pelillo
Publication: IEEE PAMI
Year: 2002

URL: http://www.ds1.umve.it/~pelillo/papers/pami-
2001.ps.gz

Graph Algorithms and Object Recognition: max clique

38




Extension to Free Trees

N

A free tree (or simply a tree) is a connected graph with
no cycles.

Note: Unlike rooted trees, free trees have no

distinguished node playing the role of root. Hence, no
hierarchy is imposed on the tree.

Property: In a tree, any two nodes are connected by a
unique path.

39
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Deriving the Free Tree Association
Graph (FTAG)

N

The free tree association graph (FTAG) of two
attributed trees 7,=(V,E,)and 7,=(V,,E,)is the
(weighted) graph G=(V,E) where:

1. V=V, xV,

2. for any two nodes (u,w)and (v,z)in V
(uv) [ (w,z) = dluw)=d(v,z)

40
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The Main Theorem Holds for Free
Trees

N

Theorem 1 Any maximal (maximum) similarity
subtree isomorphism between two attributed trees
induces a maximal (maximum) weight cligue in the
corresponding weighted FTAG and vice versa. (proof in
paper)

41
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Faster Replicator Dynamics

Continuous-time version (« is a positive constant):
( A

N

eKﬂi (1)

. K7 (1)
Zx (e
\ /=1 Y,
Discrete-time version:

1

=50

K7 (1)
x.(t)e "
x;(t+1)=— 10

K7 ; (1)
Z x;(t)e
j=1

Graph Algorithms and Object Recognition: max clique
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Tree Matching Replicator Equations

Let 77and 7”be two free trees, let A denote the adjacency
matrix of the coresponding FTAG, and let

N

W:AG+%I =W'>0),

where 7 is the identity matrix.

The replicator systems, starting from an arbitrary initial state,
will eventually converge to a maximizer of the function

fo(x)=x"Ax+ % x'x

over the simplex. This will correspond to a maximal clique of
the FTAG, and hence to a "maximal” subtree isomorphism
between 77and 77

43
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Matching Shape Axis Trees

Recently, Liu, Geiger, and Kohn (1998) introduced a new
representation for shape based on the idea of self-similarity.

N

Given a closed planar shape, they consider two different
parameterizations of its contour, one oriented counterclockwise:

['(s)= {x(s) 0<s< 1}
and the other clockwise:

T()={%@t)=x(1-1):0<¢<1}

44
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N

4
e By minimizing an appropriate cost functional, they find a

“good” match between the two parameterizations.

e The shape axis (SA) is defined as the loci of middle points
between the matched contour points.

e From a given SA, it is possible to construct a unique free tree,
called the SA-tree, by grouping the discontinuities contained in

the SA.

45
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Results

N

o«

SA-tree construction: input shapes (left); shape-axis model (middle);
SA-trees (right)

46
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Examples of SA-trees, under various shape deformations.
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N

Algorithm was tested on a selection of 17 shapes (SA-trees)
representing six different object classes (horse, human, bird, dog,
sheep, and rhino).

Both the discrete-time first-order dynamics and its exponental
counterpart (with x~=10) were used.

The algorithms were started from the simplex barycenter and
stopped when either a maximal clique was found, or the distance
between two successive points was smaller than a fixed threshold.

Each shape was matched to each other shape (including itself), and
in all 289 trials, both algorithms returned the maximum
isomorphism, i.e., @ maximum clique in the FTAG.

48
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N

SA-tree matching examples.
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Matching (Larger) Random Trees

N

A hundred 100-node free trees were generated uniformly at random
using a procedure described by Wilf (1981).

Each tree was subject to a corruption process which consisted of
randomly deleting a fraction of its terminal nodes.

Corruption levels: 2%, 10%, 20%, 30%, 40%.
Overall, therefore, 500 pairs of trees were obtained.
Both linear and the exponential dynamics were used.

After convergence, the proportion of matched nodes was calculated
and averaged.

50
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N

Results obtained over
100-node random trees
with various levels of
coruption, using the first-
order dynamics. Top:
percentage of correct
matches; Bottom:
average computational
time taken by the
replicator equations.
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N

Results obtained over
100-node random trees
with various levels of
coruption, using the
exponential dynamics.
Top: percentage of

correct matches; Bottom:

average computational
time taken by the
replicator equations.
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Application: Matching Attributed
Hierarchical Structures

N

Title:Matching Hierarchical Structures using
Association Graphs

Authors: Pelillo, Siddiq1, and Zucker
Publication: IEEE PAMI Vol. 21, No. 11
Year: 1999

URL:
http://www.ds1.unive.it/~pelillo/papers/pami199.pdf
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Attributed Tree Matching

Let o be any similarity measure on the attribute space.

N

An attributed treeis a triple 7=(V,E,a), where (V,E) is
the “underlying” rooted tree and « is a function which
assigns an attribute vector «(u)to each node v 7 V.

If o : H, - H,is a subtree isomorphism between two
attributed trees 7, = (V,, £, a;)and T, = (V,, E,, a),
the overall similarity between the induced subtrees
7,/H,]and T,/H,]is defined as:

S(¢)= D o(a(u),a,(¢(u)))

54
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N

The isomorphism ¢ is called a maximal similarity
subtree ;somorphism if there is no other subtree

isomorphism ¢" : H,” - H,’such that #H, is a strict
subset of H,’and S5(¢) < 5(¢’).

It is called a maximum similarity subtree isomorphism

if S(¢)is largest among all subtree isomorphisms
between 7, and 7..

55
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Deriving the Attributed Tree
Association Graph (TAG)

The TAG of two attributed trees 7,=(V, £, «,)and
7,=(V,E,a,)is the (weighted) graph G=(V E,w)
where:

1. V=V, xV,

N

2. for any two nodes (u,w)and (v,z)in V
(uv) ] (v,z) = str{uv)=str(w,z)

3. for any node (u,w)in V:

o(u,w)=o(a(u),aw))

Graph Algorithms and Object Recognition: max clique
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The Main Theorem holds for
Attributed Trees

A subset of vertices of a weighted graph G=(V,E w) is said to be a
cligue if all its nodes are mutually adjacent.

N

Given a subset of nodes Cof V, the total weight assigned to Cis
the sum of all the weights associated with its nodes.

A maximal weight clique in G'is one which is not contained in any
other clique having larger total weight.

A maximum weight clique is a clique having largest total weight.

Theorem 1 Any maximal (maximum) similarity subtree
isomorphism between two attributed trees induces a maximal
(maximum) weight clique in the corresponding weighted TAG and
vice versa. (proof in paper)

57
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Some Notation

N

Given an arbitrary weighted graph G(V, £, ») with n nodes: 1

e S is the standard simplex in R”:

S ={x e R’ :le. =] and x, > O,‘v’i}
i=1
o If C /7 G, x°will denote its characteristic vector, which is defined

as.
C {a)(ui)/Q(C), ifu, ec}
)Cl. =

0, otherwise

e where (C) =2 ;- o(u;)is the total weight on C.

58
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Continuous Formulation of MAX-
WEIGHT-CLIQUE

Given a weighted graph G=(V,E,w), let M(G) be the class of nxn
symmetric matrices:

N

b, = 1 Vi=1...n
20(u,)
BeM(G)<>1b,=0, ifu, [ u, >

b;,=b,2b,+b,, otherwise

59
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Weighted Cligue/Minimizer Duality

N

Theorem 2 (extended) Let G=(V,E w)be an arbitrary weighted
graph, and let B /7 M(G). Then:

e A vector x /75, is a local minimizer of g(x)=xBxon S, iff x = x¢,
where Cis a maximal weight clique of G.

e A vector x /75, is a global minimizer of g(x)=xBxon S, iff x = x¢,
where Cis a maximum weight clique of G.

e All local (and hence global) minimizers of g(x)=xBxon S, are
strict.

See (Bomze, Pelillo, and Stix, 1999) for proof.

60
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N

M(G) is isomorphic to the positive orthant in

n
( )— ‘E\ dimensions
2

following matrix, the one used in the experiments:

-

1 ifi=j
20(u,)
b; =1 0 ifi# jand u, Uu,
1 1 ;
+ otherwise
L20)(1/11.) 20(u;)

Graph Algorithms and Object Recognition: max clique
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This class is a polyhedral pointed cone whose apex is given by the
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Attributed Tree Matching

Let 7, and 7, be two attributed trees, G=(V,E,») be the corresponding
weighted TAG, and define

W =yee' —B

where b=(b;)is any matrix in the class M(G), eis the vector of 1's,
and y = max by Note that since Bimplies a minimization problem, we
transform it to W, so that we can apply our replicator equation
maximization framework.

N

The replicator dynamical system, starting from an arbitrary initial state,
will eventually converge to a maximizer of xWx (and hence a minimizer
of x'Bx) over the standard simplex.

The solution yields a maximal weight clique in the weighted TAG, and
hence to a maximal similarity subtree isomorphism between 7, and 7..

62
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Attributed Shock Trees

The vector of attributes assigned to each node v /7 Vof the
attributed shock tree 7=(V,E,«) is given by

a(u)=(x,,6,v,,6;...;x_,V .1,V )
where

N

m is the number of shocks in the group.
X, and y; are the coordinates

r;is the radius (or time of formation)
v;is the speed

0;is the direction

of each shock 7in the sequence.

Graph Algorithms and Object Recognition: max clique
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Measuring Shock Similarity

The similarity measure we use is a linear combination of four terms,
incorporating the differences in lengths, radii, velocities, and
curvature of two shock sequences.

N

Each term is normalized to provide a unitless quantity, so that these
different geometric properties can be combined.

The measure provides a number between 0 and 1, which represents
the overall similarity between the geometric attributes of the two
nodes being compared.

The measure is designed to be invariant under rotations and
translations of two shapes.

64
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Conclusions

N

A formal framework for matching hierarchical structures, non-
hierarchical structures (free trees), attributed hierarchical
structures, and noisy structures has been introduced.

the basic ingredients are:

¢ subtree isomorphism as clique search

e clique search as a quadratic program

e replicator equations as tree matching co-operative algorithms
-- easily implementable in H/W (Torsello and Pelillo, 1998)
-- offer the advantage of biological plausibility

Application to shape matching problem (via hierarchical shock trees
and free shape-axis trees)

Extension to many-to-many matching (Pelillo et al, 2001).
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