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Edge detection




Goals of edge detection:

Primary

To extract information about the two-dimensional projection of a 3D scene.
Secondary

Image segmentation, region separation, object description and recognition,
hand/eye tasks, ...
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Figure 3: Local edges extracted from the ‘good’ image of the simple scene.




Figure 5: Lowpass filtering (smoothing) an mage with a Gaussian filter.




* (Consider a plot of intensity
values, taken approximately
from the row indicated

— This is sometimes called a
“profile” of image intensity
values

— Notice that now we are
considering only one dimension

* We can let x represent the
horizontal direction, and f{x)
represent the image intensity
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* How do you normally detect

change in some function f(x)q ’ " Column number
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The answer: estimate the derivative of image intensity

Remember: for a I-dimensional signal f(x), the derivative
1s defined as

a _ . Sl Ax)- fly)
dx  Ax—0 Ax

A discrete approximation of the derivative is therefore

df _ fx+Ax)-£(x)

dx Ax

Now extend this idea to a 2-dimensional image I(x, y),
and let Ax be related to the pixel size



 Discrete approximations to
PP of I(x+Ax,v)—I(x,v)

the partial derivatives: ~
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» The first expression above represents a simple edge
detector 1n the horizontal (x) direction

* Now let’s consider the discrete image array I(r, ¢),
and define Ax to be the width of one pixel:
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Compute [ ,.(r,c)= I(r,c+1)-1(r, ¢)
then take the absolute value,
and then threshold (7= 20)
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[ .(r,c)=1(r,c+1)-1(r,c)
=1(r,c) (=) + I(r,c+1)-(1)
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* The small grid is called a template or operator or mask or filter

*  We imagine moving the template over the original image to create the
new image

I(r,c) [.(r,c)




Many other templates are possible for approximating
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[.(r,c)= I(r,c+1)=1(r,c)

[ .(r,e)=1(r,c+1)=1(r,c—1)

[.(r.cy= [I(r—1,¢c+1) — I(r—1 c-1)
+(r, c+1) - I(r, c—1)
+1(r+1L c+1) = I(r+l c—1)]
N ol

Think of combining 3 separate approximations of 9y into a single estimate




Some pixels can be weighted more heavily
than others

1ol 1l Leo= [1(r=1c+l) = I(r-1,c-1)

2 I(ryc+l) — 2 I(r, c—1)

+I(r+1, c+l) — I(r+l, c—1)]
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This template 1s very common;
it 1s called the (horizontal) Sobel operator

We often drop the fraction at the end
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Now consider the vertical direction: —

dy
]}_,(r,c)zl(r—l, C)—](r,c)
l,(r,c)= [(r=1,¢)=-I(r+1,c)
Ill.(r,c): [[(:*—l, c—l) - I(r+l, c—l)
A +2 I(r-=1,¢) — 2 I(r+l ¢
T
+(r—1, c+1) - [(r+l,c+l)]-$
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This is called the (vertical) Sobel operator
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Combine the 2 Sobel results:

Original image: [




Roberts Operator
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Metodi basati sulla derivata seconda:
Il Laplaciano
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Finite approximations: 1-D
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Finite approximations: 2-D
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for ¢ from 0 to imar—1
do for j from 0 to jmaxr —1
do M[j, k] = (I[j + 1, k+1] = I[j,k]? + (I[j,k+ 1] = I[j + 1,k])?




Approximating the Laplacian
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Note that on a rectangular grid its hard to come up with an approximation to V2 that i3
rotationally symmetric (even though the continuous operator is symmetric). Certainly the
computation specified by equation (2) is not rotationally symmetric — it depends eritically
on the orientation of the axes. For example, if we consider a 45 rotated coordinate system,
themn we get
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A particularly accurate approximation to the Laplacian is given by a weighted sum
of the above two approximations, where the r-y-oriented term is weighted approsximately
twice as much as the diagonally oriented term. This results in a mask of
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Algoritmo di Marr-Hildreth

The Marr-Hildreth edge detector [3] is based on computing the zero crossings of the
Laplacian of the Gaussian smoothed image,

VHG, o).

We know from the previous section that both the Gaussian smoothed image and the
Laplacian can be mmplemented by convolution, and are hence linear operators. Thus, by
associativity we can equivalently express the computation as,

(VG @ I.

The Marr-Hildreth edge detector is thus often referred to as a Laplacian of Gaussian
operator, becaunse V>G,, (the Laplacian of Gaussian) is convolved with the image, I.




LoG & DoG
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Figure 6: The Laplacian of Gaussian.

The Laplacian of Gaussian can be approximated by a difference of two Ganssians, In
the one-dimensional case this is

. 1 - 1 -2
DOG (., 01 = Zran — 2=
(0 00) = i — e

which approximates a second derivative operation where o. < o3 (generally o; /o, = 1.6).




1. Smooth the image by convolution with G, (use the one~dimensional decomposition
from Section 3).

2. Apply the Laplacian to the result of the previous step (using convolution with the
mask from Section 2.

3. Identify edge pixels at the boundaries of regions of constant sign in the result of the
previons step.




Figure T: Laplacian of Gaussian edges for an image.
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Convolution

(i) i) (i) i m(i,j)
T Convolution ! Gaussian Gradient ] ’
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The image is gaussian filtered i) et -
followed by gradient and o
orientation computation
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gradient magnitude m(i,j) by

suppressing all values along _ o
the line of the gradient that The n(i,j) is finally thresholded
- . - - in order to reduce the number of
6(i. j) = arctan| & are not peak values of ridge. i
ofs false edge segments.
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Convolution

i) f.(i.j) i m(i.j)
H » Gaussian > Gradient _E_..
Filter 1 » 0“}/‘
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(hi) 397 272 146 60 19 4] 425 360 272 185 112 60029 12 4 1]




L’algoritmo di Canny

-
. . . . ) o [ &f. [ o
Step 1: magnitude and orientation computation mii. ) - | == (i, j)= arctan
. ox oy |
2
Step 2: Partition of angle orientations S, ) =sector(0(i, 7))

Step 3: At each pixel DO:
niig) = miijl.

I mfiy) =the neighbors along the
gradient sector

THEN niij)—0;

Step 4: Double Thresholding:
Create two thresholded images 1,(17) and 1,(1,7), using two thresholds T, and T, with T, =04 T,

This double threshold method allow to add weaker edges (those above 1)) if they are neighbors of
stronger edges (those above 75). So the threshold image 1s formed by 7,(i,/) ncluding some of the

edges in7,(1,/)







Results

m(i,j) 2 N mfi,j)
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