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Notations

We represent the data to be clustered as an undirected edge-weighted
graph with no self-loops G = (V, FE,w), where V. = {1...., n} is the
vertexset, & € V x Visthe edge set, and w : I — IRjr is the (positive)
weight function.

We represent the graph & with the corresponding weighted adjacency (or
similarity) matrix, which is the n x n symmetric matrix A = (a;;) defined
as:

- { w(i,j), if(i,j) ek
Y

0, otherwise.



Basic Definitions

Let S € V be a non-empty subset of vertices and ¢« € S. The (average)
weighted degree of « w.r.t. S is defined as:

_ 1
awdeggq (i) = B > a;;.
[ J.l'_— (:;

Moreover, if 7 € S we define:
¢s (i,7) = a;; —awdedg (i) .

Intuitively, ¢ (i, 7) measures the similarity between nodes j and i, with
respect to the average similarity between node i and its neighbors in S.

Note that ¢ 5(i, j) can be either positive or negative.




Assigning Node Weights / 1

Let S € V be a non-empty subset of vertices and ¢ € S. The weight of 2
w.rt. Sis

1. if |S| =1

Wg (1) = > sy (i) We iy (J),  otherwise.
jesviiy a

Moreover, the total weight of S is defined to be:

W(S) =3 wg(i) .

icSs




Assigning Node Weights / 2

Intuitively, wg (2) gives us a measure of the overall similarity between ver-
tex i and the vertices of S\ {i} with respect to the overall similarity among
the vertices in S\ {i}.

Wi1234; (1) < 0andwisg 75, (5) > 0.




Dominant Sets

A non-empty subset of vertices S C V such that W(1") > 0 for any non-
empty 7" C S, is said to be dominant if.

1. wg(2) > 0O, forall: € S (internal homogeneity)
2. Wsifi) (i) < O,foralli g S (external inhomogeneity)

J}
157 354, 70
(5—F20+—2) :
wxg_ﬁ / aﬁ._ﬂ}?’ Dominant sets = clusters
|'l - "'-\.‘ __.-" Hl.illll i
N 90
A o
A3

Theset {1.2.3} is dominant.

For O/1 matrices: dominant sets = (strictly) maximal cliques



From Dominant Sets to Local Optima
(and Back) / 1

Given an edge-weighted graph G = (V, F/, w) and its weighted adjacency
matrix A, consider the following Standard Quadratic Program (StQP):

maximize f(x) = x'Ax
subjectto xe A

where

is the standard simplex of R” ande = (1,1,--- ,1)".

Note. Other approaches to clustering lead to similar quadratic optimization
problems (e.g., Sarkar and Boyer, 1998).



The Standard Simplex




From Dominant Sets to Local Optima
(and Back) / 2

Theorem If S is a dominant subset of vertices, then its weighted charac-
teristics vector x°, defined as

) We(t) £~ Q
T? _ W(‘a) . ifi1 € S
0. otherwise

is a strict local maximizer of f in A.

Conversely, if x* is a strict local maximizer of f in A then its support
c=o0(x")={ieV  zj #0}

is a dominant set, provided that w (;\ (1) # O foralli & o.
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Replicator Equations

Developed in evolutionary game theory to model the evolution of behavior
in animal conflicts (Hofbauer & Sigmund, 1998).

Let W = (w;;) be a non-negative real-valued n x n matrix.

Continuous-time version:
{'J.'T . f—
—i(t) = zi(t) (Wx(t)); — x(t) Wx(1)]

Discrete-time version:

(Wx(1)),
x (1) Wx(t)

ri(t+1) =ux;(t)

A is invariant under both dynamics, and they have the same stationary
points.



The Fundamental Theorem of Natural Selection

If W = W/, then the function
F(x) =x'Wx

is strictly increasing along any non-constant trajectory of both continuous-
time and discrete-time replicator dynamics.

In other words, vt > O:

d / ~
EP(X(T,)) > 0

for the continuous-time dynamics, and

F(x(t+ 1)) > F(x(t))

for the discrete-time dynamics, unless x(t) is a stationary point.




Grouping by Replicator Equations

Let A denote the weighted adjacency matrix of the similarity graph.
Let

W=A (=W >0).

The replicator systems, starting from an arbitrary initial state, will eventually
converge to a maximizer of the function f(x) = x’ Ax, over the simplex.

This will correspond to a dominant set in the graph, and hence to a cluster
of vertices.



MATLAB Code for Replicator Dynamics

while true
X = X.* (A*X) ;

X x./sum(x) ;

end




Characteristic Vectors

Note. The components of the weighted characteristic vectors give us a
measure of the participation of the corresponding vertices in the cluster,
while the value of the objective function provides a measure of the cohe-

siveness of the cluster (cfr. Sarkar and Boyer, 1998).




Separating Structure from Clutter
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Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and the edge-weights reflect the
“similarity” between pairs of vertices.

Our clustering algorithm basically consists of iteratively finding a dominant
set in the graph using replicator dynamics and then removing it from the
graph, until all vertices have been clustered.

In our experiments, we used the discrete-time replicator equations. The
process was started from the simplex barycenter and stopped after a few
iterations.

On average, the algorithm took only a few seconds to converge, on a ma-
chine equipped with a 750 MHz Intel Pentium Ill.



Experimental Setup

The similarity between pixels ¢ and ;7 was measured by:

—[|F (i) — F(j)ll%)

o2

w(i,j) = exp (
where o is a positive real number which affects the decreasing rate of w,
and:
e F(7) = (normalized) intensity of pixel i, for intensity segmentation
e F(i) = [v.vssin(h),vscos(h)](z), where h. s, v are the HSV values
of pixel z, for color segmentation

o F(2) = [|I*f1],...,|[I*[|](7) is avector based on texture information
at pixel i, the f; being DOOG filters at various scales and orientations,
for texture segmentation



Intensity Segmentation Results / 1




Felzenszwalb and Huttenlocher (2003).




Gdalyahu, Weinshall, and Werman (2001).




Intensity Segmentation Results / 2




Color Segmentation Results




Texture Segmentation Results




Ncut Results
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Dealing with Large Data Sets

We address the problem of grouping out-of-sample (i.e., unseen)
examples after the clustering process has taken place.

This may serve to:

1. substantially reduce the computational burden associated to
the processing of very large data sets, by extrapolating the
complete grouping solution from a small number of samples,

2. deal with dynamic situations whereby data sets need to be
updated continually.



Grouping Out-of-Sample Data

Recall that the sign of wg, () provides an indication as to
whether ¢ is tightly or Ioosely coupled with the vertices in S.

Accordingly, we use the following rule for predicting cluster mem-
bership of unseen data i:

IT Wg iy (1) > 0, then assign vertex i to cluster S .



Results on Berkeley Database Images
(321 x 481)




Results on Berkeley Database Images
(321 x 481)
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Capturing Elongated Structures / 2
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“Closing” the Similarity Graph

Basic idea: Trasform the original similarity graph G into a “closed”
version thereof (G ,¢.q), Whereby edge-weights take into account
chained (path-based) structures.

Unweighted (0/1) case:

G = Transitive Closure of G

closed

Note: G ,..4 Can be obtained from:

A+A%+ . +AD




Weighted Closure of G

Observation: When G is weighted, the jj-entry of AK represents the sum
of the total weights on the paths of length k between vertices i and J.

Hence, our choice is:

A =A+ A2+ . + A"

closed




Example: Without Closure (o = 2)
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Example: Without Closure (o = 4)
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Example: Without Closure (o = 8)
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Example: With Closure (o = 0.5)
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Grouping Experiments

The elements to be grouped are edgels.

We used Herault/Horaud (1993) similarities, which combine the
following four terms:

Co-circularity
Smoothness
Proximity
Contrast

B n =

Comparison with Mean-Field Annealing (MFA).
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[mmagine originale Immagine con rumore al 50%
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Building a Hierarchy:
A Family of Quadratic Programs

Consider the following family of StQP'’s:

maximize fa(x) =x'(A — al)x
subjectto xe A

where v > 0 is a parameter and [ is the identity matrix.

The objective function f, consists of:
e adataterm (x'Ax) which favors solutions with high internal coherency

e a regularization term (—ax’x) which acts as an entropic factor: it is
concave and, on the simplex A, it is maximized at the barycenter and
it attains its minimum value at the vertices of A




An Observation

The solutions of the StQP remain the same if the matrix A — o[ is replaced
with A — ol 4+ ree’, where x is an arbitrary constant, since

x'(A — ol + kee) x =x'"(A —al)x+ &

forall x € A.

In particular, if 1 = « the resulting matrix is nonnegative and has a null
diagonal.

Hence all (strict) solutions of the StQP correspond to dominant sets for
the scaled similarity matrix A + a(ee’ — I') having the off-diagonal entries
equal to a;; + «.



Bounds for the Regularization Parameter / 1

When « is large enough the regularization term (—ax'x) dominates, and
the only solution of the StQP is in the interior of A: this corresponds to a
unique large cluster which comprises all the data points.

Proposition If

o = )\max(;’-l)

then f. is a strictly concave function in IR", and the only solution x of the
StQP belongs to the interior of A, i.e., c(x) = V.



Bounds for the Regularization Parameter / 2

Given a subset of vertices S € V, the face of A corresponding to S is
defined as:

Ag=1{xec A : o(x)C S}
and its relative interior is:

int(Ag) =4{xe A : o(x) =5}

Theorem Let S C V' be a proper subset of vertices (S = V'), and let Ag
denote the submatrix of A formed by the rows and columns indexed by the
elements of S. If

o = Amax(;"—ls)

then there is no point x € int(A ) that is a local maximizer of f in A.



Bounds for the Regularization Parameter /3

Suppose for simplicity that a;; < 1 foralli,j < V, i.e.
0< A<eel — 1.
Forany S C V' we get:
Amax(Ag) < Amax(eel — 1) = |5 -1

Hence, if we want to avoid clusters of size |S| < m < |V | we could let

a>m—1

In so doing, no face A g with |.S| < m will contain solutions of the StQP, in
other words:

at this scale all clusters will have more than m data points



The Landscape of f,

Key observation: For any fixed «, the energy landscape of f. is populated
by two kinds of solutions:

e solutions which correspond to dominant sets for the original matrix A

¢ solutions which do not correspond to any dominant set for the original
matrix A, although they are dominant for the scaled matrix A4-a (ee’—
I)

The latter represent large subsets of points that are not sufficiently coher-
ent to be dominant with respect to A, and hence they should be split.



Sketch of the Hierarchical Clustering Algorithm

Basic idea: start with a sufficiently large « and adaptively decrease it
during the clustering process:

1) let « be a large positive value (e.g., a > |[V| — 1)

2) find a partition of the data into a-clusters

3) for all the a-clusters that are not O-clusters recursively repeat step 2)
with decreased a




Pseudo-code of the Algorithm

Algorithm HIER_.CLUSTERING( V', A )

begin
if V" is dominant then return V'
leta > |V]| -1
repeat

decrease o
if o« << Othen o« — O
Vi Vi, — SPLIT(V, A, o)
until 2z > 1
return Uff'zl { HER_CLUSTERING( V, Ay.) }
end




Luo and Hancock’s Similarities (CVPR’01)
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Left: Similarity matrix used in the experiment. Middle: Hierarchy produced by our algo-

rithm. Right: (Flat) partition produced by Luo and Hancock.




Klein and Kimia’s Similarities (SODA’01)
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Left: Similarity matrix used in the experiment. Right: Hierarchy produced by our algorithm.




Gdalyahu and Weinshall’s Similarities (PAMI 01)
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Left: Similarity matrix used in the experiment (courtesy of Y. Gdalyahu). Right: Hierarchy

produced by our algorithm.




Factorization Results
(Perona and Freeman, 98)
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Conclusions

¢ Introduced the notion of a dominant set of vertices in an edge-weighted
graph, and defined a new notion of a cluster.

e Established a connection between the (combinatorial) problem of find-
ing dominant sets and (continuous) quadratic programming.

e Used straightforward parallel dynamics from evolutionary game theory
that can be coded in a few lines of MATLAB.

e Demonstrated potential of the approach on image segmentation.

e Extended the framework to hierarchical clustering

o Demonstrated its potential on the problem of organizing a shape database.
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