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Università “Ca’ Foscari” di Venezia
Via Torino 155, 30173 Venezia Mestre, Italy

Abstract
The matching of relational structures is a problem that

pervades computer vision and pattern recognition research.
During the past few decades, two radically distinct ap-
proaches have been pursued to tackle it. The first views the
matching problem as one of explicit search in state-space.
The most popular method within this class consists of trans-
forming it in the equivalent problem of finding a large max-
imal clique in a derived “association graph.” In the second
approach, the relational matching problem is viewed as one
of energy minimization. In this paper, we provide a unify-
ing framework for relational structure matching whichdoes
unify the two existing approaches. The work is centered
around a remarkable result proved by Motzkin and Straus
which allows us to formulate the maximum clique problem
in terms of a continuous optimization problem. We present
a class of continuous- and discrete-time “replicator” dy-
namical systems developed in evolutionary game theory and
show how they can naturally be employed to solve our rela-
tional matching problem. Experiments are presented which
demonstrate the effectiveness of the proposed approach.

1 Introduction
The problem of matching relational structures is of fun-

damental importance in computer vision and pattern recog-
nition, and a great deal of effort has been devoted over the
past decades to devise efficient and robust algorithms for it.
Basically, two radically distinct approaches have emerged,
a distinction which reflects the well-known dichotomy orig-
inated in the Artificial Intelligence field between “symbol-
ic” and “numerical” methods. The first approach views the
matching problem as one of explicit search in state-space
(see, e.g., [18, 19]). The pioneering work of Ambleret
al. [1] falls into this class. Their approach is based on the
idea that relational structure matching is equivalent to the
problem of finding large maximal cliques in the so-called
association graph, an auxiliary graph derived from the struc-
tures being matched. This framework is attractive because
it casts the matching problem in terms of a pure graph-
theoretic problem, for which a solid theory and powerful al-

gorithms have been developed [11]. Since its introduction,
the association graph technique has been successfully ap-
plied to a variety of computer vision problems (e.g., [2, 8]).

In the second approach, the relational matching problem
is viewed as one of energy minimization. In this case, an
energy (or objective) function is sought whose minimizers
correspond to the solutions of the original problem, and a
dynamical system, usually embedded into a parallel relax-
ation network, is used to minimize it [6, 9, 17]. Typically,
these methods do not solve the problem exactly, but only in
approximation terms. Energy minimization algorithms are
attractive because they are amenable to parallel hardware
implementation and also offer the advantage of biological
plausibility.

In this paper, we develop a new framework for matching
relational structures whichdoesunify the two approaches
just described, thereby inheriting the attractive features of
both. The approach is centered around a remarkable result
proved by Motzkin and Straus in the mid-1960s, and more
recently expanded by many authors [3, 5, 14], which allows
us to map the maximum clique problem onto the problem
of extremizing a quadratic form over a linearly constrained
domain (i.e., the standard simplex in Euclidean space). We
present a class of continuous- and discrete-time “replicator”
dynamical systems developed in evolutionary game theory
as well as other branches of theoretical biology, and show
how they can naturally be employed to solve the relational
matching problem. Preliminary experiments are presented
which confirm the effectiveness of the proposed approach.
The technique has recently been applied with success to
shape matching problems formulated in terms of “shock”
tree matching [15].

2 Relational matching via maximum cliques
A relational structure is a tripleS = (U;P ;R), where

U is a set of units,P = fP1; � � � ; Plg is a set of properties,
andR = fR1; � � � ; Rkg is a set of (binary) relations over
the units. Relational structures are a generalization of tra-
ditional graphs, and are indeed often depicted in terms of
graphs, the nodes representing the units, and the edges the



relations.
Consider two relational structuresS0 = (U 0;P 0;R0) and

S00 = (U 00;P 00;R00). A pair of units(u0; u00), one fromS0

and the other fromS00, is said to begood if all properties
that hold foru0 hold foru00 as well, and vice versa, that is if

P 0

i (u
0), P 00

i (u
00)

for all i = 1 : : : l, whereP 0

i 2 P
0 andP 00

i 2 P 00. Similarly,
two good pairs(u0; u00) and(v0; v00), with u0 6= v0 andu00 6=
v00, are said to becompatibleif

R0

j(u
0; v0), R00

j (u
00; v00) andR0

j(v
0; u0), R00

j (v
00; u00)

for all j = 1 : : : k, whereR0

j 2 R
0 andR00

j 2 R
00. A match

betweenS0 andS00 is any relation� � U 0 � U 00 such that
all its assignments are good and mutually compatible. A
match ismaximalif it is not included in any other match,
and ismaximumif it has largest cardinality. The relational
structure matching problem is just the problem of finding a
maximum match between two relational structures. When
the relational structures being matched are graphs the prob-
lem becomes the (double) subgraph isomorphism problem,
which is known to beNP -complete [4].

Ambler et al. [1] introduced the notion of association
graph as a useful auxiliary structure for matching relational
structures. The association graph of two relational struc-
turesS0 andS00 is the graphG = (V;E) defined as

V = f(u0; u00) 2 U 0 � U 00 : (u0; u00) is goodg

and

E = f((u0; u00); (v0; v00)) 2 V � V :
(u0; u00) and(v0; v00) are compatibleg :

Given an arbitrary undirected graphG, a subset of ver-
tices is called aclique if all its vertices are pairwise con-
nected. A clique is said to bemaximalif it is not contained
in a larger clique, andmaximumif it is the largest clique
in the graph. It is clear that, given the way we have con-
structed the association graph, the notions of match, maxi-
mal match, and maximum match turn out to coincide with
those of clique, maximal clique, and maximum clique of
the association graph, respectively. The problem of match-
ing two relational structures is therefore equivalent to the
maximum clique problem, one of the earliest combinatorial
problem proven to beNP -complete, and certainly one of
the best studied [11].

3 Continuous formulation of MAX-CLIQUE
Let G = (V;E) be an undirected graph, whereV =

f1; � � � ; ng is the set of vertices andE � V �V is the set of
edges, and letA = (aij) denote its adjacency matrix, which
is then�n matrix defined as follows:aij = 1 if (i; j) 2 E,

andaij = 0 otherwise. LetSn denote the standard simplex
of then-dimensional Euclidean space IRn:

Sn =

(
x 2 IRn : xi � 0; i = 1 : : : n; and

nX
i=1

xi = 1

)
:

Given a subset of verticesC of graphG, we will denote by
x
c its characteristic vectorwhich is the point inSn defined

asxci = 1=jCj if i 2 C, xci = 0 otherwise, wherejCj
denotes the cardinality ofC.

Now, consider the following quadratic function:

f(x) = x
TAx (1)

where “T ” denotes transposition. The Motzkin-Straus the-
orem [10] establishes a remarkable connection between
global (local) maximizers off in Sn and maximum (maxi-
mal) cliques ofG. Specifically, it states that a subset of ver-
ticesC of a graphG is a maximum clique if and only if its
characteristic vectorxc is a global maximizer of the func-
tion f in Sn. A similiar relationship holds between (strict)
local maximizers and maximal cliques [5, 14]. This result
has an intriguing computational significance in that it allows
us to shift from the discrete to the continuous domain in an
elegant manner.

One drawback associated with the original Motzkin-
Straus formulation relates to the existence of spurious so-
lutions, i.e., maximizers off which are not in the form
of characteristic vectors [14]. In principle, spurious solu-
tions represent a problem since, while providing informa-
tion about thesizeof the maximum clique, do not allow us
to extract the vertices comprising the clique. Fortunately,
there is straightforward solution to this problem which has
recently been introduced and studied by Bomze [3]. Con-
sider the following regularized version of functionf :

f̂(x) = x
TAx+

1

2
x
T
x : (2)

The following is the spurious-free counterpart of the origi-
nal Motzkin-Straus theorem (see [3] for proof).

Theorem 3.1 LetC be a subset of vertices of a graphG,
and letxc be its characteristic vector. Then the following
statements hold:

(a)C is a maximum clique ofG if and only ifxc is a global
maximizer off̂ over the simplexSn. Its size is then
given byjCj = 1=2(1� f(xc)).

(b)C is a maximal clique ofG if and only ifxc is a local
maximizer off̂ in Sn.

(c) All local (and hence global) maximizers off̂ overSn

are strict.



Unlike the Motzkin-Straus formulation, the previous re-
sult guarantees thatall maximizers off̂ onSn are strict, and
are characteristic vectors of maximal/maximum cliques in
the graph. In an exact sense, therefore, a one-to-one corre-
spondence exists between maximal cliques and local max-
imizers off̂ in Sn on the one hand, and maximum cliques
and global maximizers on the other hand.

4 Replicator equations for matching
LetW be a non-negativen� n matrix, and consider the

following dynamical system:

d

dt
xi(t) = xi(t)

0
@�i(t)� nX

j=1

xj(t)�j(t)

1
A ; i = 1 : : : n

(3)
where�i(t) =

Pn

j=1 wijxj(t), i = 1 : : : n, and its discrete-
time counterpart:

xi(t+ 1) =
xi(t)�i(t)Pn

j=1 xj(t)�j(t)
; i = 1 : : : n : (4)

It is readily seen that the simplexSn is invariant under these
dynamics, which means that every trajectory starting inSn

will remain inSn for all future times.
Both (3) and (4) are calledreplicator equationsin theo-

retical biology, since they are used to model evolution over
time of relative frequencies of interacting, self-replicating
entities [7].

Theorem 4.1 If W is symmetric, then the quadratic poly-
nomial F (x) = x

TWx is strictly increasing along any
non-constant trajectory of both continuous-time (3) and
discrete-time (4) replicator equations. Moreover, a vector
x 2 Sn is asymptotically stable under (3) and (4) if and
only if x is a strict local maximizer ofF onSn.

The previous result is known in mathematical biology as
the Fundamental Theorem of Natural Selection [3, 7].

We now have all the ingredients to explicitly describe
the proposed structure matching algorithm. LetS0 andS00

be two relational structures, and letA denote the adjacency
matrix of the corresponding association graph. As seen in
Section 2, once we have constructed the association graph
the relational structure matching problem is just the prob-
lem of searching for a large maximal clique in it.

By letting

W = A+
1

2
I ;

whereI is the idendity matrix, we know from the previ-
ous section that the replicator dynamical system, starting
from an arbitrary initial state, will iteratively maximize the
function f̂ defined in (2) and will eventually converge to a
strict local maximizer, which in turn will correspond to the
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Figure 1: Percentage of correct isomorphisms obtained us-
ing replicator equations, as a function of the expected con-
nectivity.

characteristic vector of a maximal clique of the association
graph. The solution found will therefore provide a maximal
match between the two relational structures. Clearly, in the-
ory there is no guarantee that the converged solution will be
a global maximizer off̂ , and therefore that it will induce
a maximum match. Previous experimental work done on
the maximum clique problem [12], and also the results pre-
sented in the next section, however, suggest that the basins
of attraction of global maximizers are quite large, and very
frequently the algorithm converges to one of them.

5 Experimental results

To assess the effectiveness of the proposed approach,
we conducted a series of experiments on the graph isomor-
phism problem, a problem which still resists any computa-
tional complexity characterization. Despite decades of ac-
tive research, in fact, no polynomial-time algorithm for it
has yet been found. At the same time, while clearly be-
longing toNP , no proof has been provided that it isNP -
complete [4].

In the experiments reported here, the discrete-time repli-
cator equation (4) was used. The algorithm was started from
the barycenter of the simplex and it was stopped when ei-
ther a maximal clique was found or the distance between
two successive points was smaller than a fixed threshold,
which was set to10�17. In the latter case the converged
vector was randomly perturbed, and the algorithm restarted
from the perturbed point. Because of the one-to-one corre-
spondence between local maximizers and maximal cliques,
this situation corresponds to convergence to a saddle point.
All the experiments were run on a Sparc20.

Undirected 100-vertex random graphs were generated
with expected connectivities ranging from 1% to 99%. For
each connectivity value, 100 graphs were produced and
each of them had its vertices randomly permuted so as to
obtain a pair of isomorphic graphs. Due to the high com-
putational time required, in the 1% and 99% cases the algo-
rithm was tested on 10 pairs, instead of 100. Overall, there-
fore, 1320 pairs of isomorphic graphs were used. Each pair
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Figure 2: Average CPU time taken by replicator equations,
as a function of the expected connectivity. The vertical axis
is in logarithmic scale, and the numbers in parentheses rep-
resent the standard deviation.

was given as input to the replicator model and, after con-
vergence, a success was recorded when the cardinality of
the returned clique was equal to the size of the graphs given
as input. Because of the stopping criterion employed, this
guarantees that a maximum clique, and therefore a maxi-
mum match, was found. The proportion of successes as a
function of the expected connectivities is plotted in Fig. 1,
whereas Fig. 2 shows the average time taken by the algo-
rithm to converge.

These results are significantly superior to those reported
by Simić [20] who obtained poor results at connectivities
less than 40% even on smaller graphs (i.e., up to 75 ver-
tices). They also compare favorably with the results ob-
tained more recently by Rangarajanet al. [16] on 100-
vertex random graphs for connectivities up to 50%. Specif-
ically, at 1% and 3% connectivities they report a percent-
age of correct isomorphisms of about 30% and 0%, respec-
tively. Using our approach we obtained, on the same kind
of graphs, a percentage of success of 80% and 11%, respec-
tively. Rangarajan and Mjolsness [17] also ran experiments
on 100-vertex random graphs with various connectivities,
using a powerful Lagrangian relaxation network. Except
for a few instances, they always obtained a correct solution.
The computational time required by their model, however,
turns out to largely exceed ours. As an example, the average
time taken by their algorithm to match two 100-vertex 50%-
connectivity graphs was about 30 minutes on an SGI work-
station. As shown in Fig. 2, we obtained identical results in
about 3 seconds. However, for very sparse/dense graphs our
algorithm becomes slow. In [13], we present an exponential
dynamics which turns out to be dramatically faster and even
more accurate than the model presented here.

We note that all the algorithms mentioned above do
incorporate sophisticated annealing mechanisms to escape
from local minima. By contrast, in the presented work no
attempt was made to avoid such solutions.

Future work is aimed at applying the proposed method-
ology to more general matching problems.
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