Hopfield Network

- Single Layer Recurrent Network
- Bidirectional Symmetric Connection
- Binary / Continuous Units
- Associative Memory
- Optimization Problem

Hopfield Model - Discrete Case

Recurrent neural network that uses McCulloch and Pitt's (binary) neurons.
Update rule is stochastic.

Eeach neuron has two "states" : $\mathrm{V}_{\mathrm{i}}{ }^{\mathrm{L}}, \mathrm{V}_{\mathrm{i}}{ }^{\mathrm{H}}$
Usually: $\left\{\begin{array}{l}V_{i}^{L}=-1, V_{i}^{H}=1 \\ V_{i}^{L}=0, V_{i}^{H}=1\end{array}\right.$
Input to neuron i is :

$$
H_{i}=\sum_{j \neq i} w_{i j} V_{j}+I_{i}
$$

Where:

- $\quad w_{i j}=$ strength of the connection from j to i
- $\quad V_{j}=$ state (or output) of neuron j
- $\quad I_{i}=$ external input to neuron i

Hopfield Model - Discrete Case

Each neuron updates its state in an asynchronous way, using the following rule:

$$
V_{i}= \begin{cases}-1 & \text { if } H_{i}=\sum_{j \neq i} w_{i j} V_{j}+I_{i}<0 \\ +1 & \text { if } H_{i}=\sum_{j \neq i} w_{i j} V_{j}+I_{i}>0\end{cases}
$$

The updating of states is a stochastic process:

To select the to-be-updated neurons we can proceed in either of two ways:

- At each time step select at random a unit i to be updated (useful for simulation)
- Let each unit independently choose to update itself with some constant probability per unit time (useful for modeling and hardware implementation)

Dynamics of Hopfield Model

In contrast to feed-forward networks (wich are "static") Hopfield networks are dynamical system.
The network starts from an initial state

$$
V(0)=\left(V_{1}(0), \ldots . ., V_{n}(0)\right)^{\top}
$$

and evolves in state space following a trajectory:

Until it reaches a fixed point:

$$
\mathrm{V}(\mathrm{t}+1)=\mathrm{V}(\mathrm{t})
$$

Dynamics of Hopfield Networks

What is the dynamical behavior of a Hopfield network?
Does it coverge ?
Does it produce cycles?
Examples

(a)

(b)

Dynamics of Hopfield Networks

To study the dynamical behavior of Hopfield networks we make the following assumption:

$$
w_{i j}=w_{j i} \quad \forall i, j=1 \ldots n
$$

In other words, if $\mathrm{W}=\left(w_{i j}\right)$ is the weight matrix we assume:

$$
W=W^{T}
$$

In this case the network always converges to a fixed point.
In this case the system posseses a Liapunov (or energy) function that is minimized as the process evolves.

The Energy Function - Discrete Case

Consider the following real function:

$$
E=-\frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} w_{i j} V_{i} V_{j}-\sum_{i=1}^{n} I_{i} V_{i}
$$

and let $\quad \Delta E=E(t+1)-E(t)$
Assuming that neuron h has changed its state, we have:

$$
\Delta E=-\left[\begin{array}{l}
\\
\sum_{\dot{\mathfrak{j}} \neq h} w_{h j} V_{j}+I_{h} 4 \mathbb{B} \\
\operatorname{H}_{h}
\end{array}\right] \Delta V_{h}
$$

But H_{h} and ΔV_{h} have the same sign. Hence

$$
\left.\Delta E \leq 0 \quad \text { (provided that } W=W^{T}\right)
$$

Schematic configuration space

model with three attractors

