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Human Detection

Detect and localize persons in images regardless of their:
® position;

® scale

® pose and orientation;

e illumination.




Why Is Human Detection Difficult?

Challenges:
e wide variety of articulated poses;
® variable appearance and poses;
e complex background;

® unconstrained illumination;

® occlusion;

e different scales.

From: N. Dalal



Research Issues

Representation: how to describe a typical person?
Scale: how to deal with persons of different size?
Search strategy: how to spot these persons?

Post-processing: How to combine detection results?



The detection phase

A person detector often works by asking the same question in turn of very
possible rectangle (window) in the image that might possibly tightly bound
one of the instance of interest (persons).

Sliding window detectors find objects in 4 steps: Scan keos(s) ot al
scales and locations

1. Inspect every windows.
Extract features over

2. Given a window, extract a feature vector windows
(i.e. a vector of numbers that describes the Run linear SVM
window’s contents). classifier on all

locations

3. Classify each feature vector and accept a ,
Fuse multiple

window if the score is above a certain dotections I 3:D
threshold position & scale space

4. Clean-up the mess (post-processing). i



Search Over Space

The window is 128 pixels tall and 64 pixels wide: 2 to 1 aspect ratio is a rough
compromise between the aspect ratio of a person viewed from the front and
one viewed from the side with legs fully extended during a step.

Detection window

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

From: S. Fidler



Search Over Scale

Since window is fixed, how to deal with person at different size?

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Objects can be of very different sizes (scales), even in
the same image. How do we deal with that?

From: S. Fidler



Search Over Scale

Down-scale the image and slide again

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Scale-down the image, and slide the window
again (the size of the window is always the same)

From: S. Fidler



Search Over Scale

Down-scale the image and slide again

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

And again...

From: S. Fidler



Search Over Space and Scale

Do a full pyramid, a slide your detector at each scale. Make sure the

scale differences across levels are small (do lots of re-scaled images).

Detection Phase

Scan image(s) at all "

Extract features over
windows

Run Iinéar SVM
classifier on all

locations ’

Fuse multiple
detections in 3-D

= Detection window
position & scale space

Object detections with
bounding boxes

From: S. Fidler



Histograms of Oriented Gradients
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Abstract

We study the question of feature sets for robust visual ob-
Jject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer

Aictanra Thic hac haan necad in a nranticral vaal_tima nadac_
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Histograms of Oriented Gradients

The feature is specifically tuned to person detection.

[L]ocal object appearance and shape can often be characterized rather well by the distribution of
local intensity gradients or edge directions, even without precise knowledge of the correspond-
ing gradient or edge positions. In practice this is implemented by dividing the image window
into small spatial regions (“cells”), for each cell accumulating a local 1-D histogram of gradient
directions or edge orientations over the pixels of the cell. The combined histogram entries form
the representation. For better invariance to illumination, shadowing, etc., it is also useful to
contrast-normalize the local responses before using them. This can be done by accumulating a
measure of local histogram “energy” over somewhat larger spatial regions (“blocks”) and using
the results to normalize all of the cells in the block. We will refer to the normalized descriptor
blocks as Histogram of Oriented Gradient (HOG) descriptors [1].

Compute Weighted vote Contrast normalize
gradients —> | into spatial &  (—>| over overlapping
orientation cells spatial blocks




HOG Steps

HOG feature extraction

Compute centered horizontal and vertical gradients with no smoothing

Compute gradient orientation and magnitudes

= For color image, pick the color channel with the highest gradient magnitude for each
pixel.

For a 64x128 image,
Divide the image into 16x16 blocks of 50% overlap.
= 7x15=105 blocks in total
Each block should consist of 2x2 cells with size 8x8.
Quantize the gradient orientation into 9 bins
= The vote is the gradient magnitude

= Interpolate votes between neighboring bin center.

= The vote can also be weighted with Gaussian to downweight the pixels near the edges
of the block.

Concatenate histograms (Feature dimension: 105x4x9 = 3,780)

Compute Weighted vote Contrast normalize
gradients [ > | into spatial & | —>| over overlapping
orientation cells spatial blocks

From: M. Shah



Computing Gradient

Discrete Derivative

ar _ .. Fx)— flx—Ax)
df  fle)=flx=1)
dx | = 1)

Yo f0-fx-D= '
dx

Example

f(x)=10 15 10 10 25 20 20 20
flx)=0 5 —50 15-50 0

From: M. Shah



Computing Gradient

Given function f(x, y)
O (x,y) |
y . B Ox _ fx
radient vector Vf(x,y)= of (x,y) |~ f
I
Gradient magnitude ‘Vf(xa }’)‘ = \/ fx2 T fy2
0 =tan" L

Gradient direction
y



Computing Gradient

f(x+h) - f(x=h)

"(x) =lim
f( ) h—0 2h

Centered:

Gra

dient vector|

Gra

idient vector,

—f-1

Edge direction




Computing Gradients
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Cells, Blocks

i | Block 2
0oC T

\

= For a 64x128 image,

= Divide the image into 16x16 blocks of 50% overlap.
= 7x15=105 blocks in total

= Each block should consist of 2x2 cells with size 8x8.

Cells

From: M. Shah



Votes

100 __ 80
120 60

140 &0
gradient orientation binned into B bins (B = 160 20

9). 180 0

® In each cell, compute histogram of the

® The vote is the gradient magnitude.

® Interpolate votes linearly between
neighboring bin centers.

= Example: if 6=85 degrees. F! %
= Distance to the bin center Bin 70 and Bin 90 / \
are 15 and 5 degrees, respectively. |

= Hence, ratios are 5/20=1/4, 15/20=3/4. 19 30 SO 70 $0 10130150150
Bin centers

From: C. Tomasi



Block Normalization

Concatenate the four cell histograms in each block into a single block feature £
and normalize the block feature by its Euclidean norm.

Compute Weighted vote Contrast normalize
. gradients [ > | into spatial & | —>" over overlapping
Detection Phase orientation cells spatial blocks
Scan image(s) at all
scales and locations Cell -
Extract features over ] Block — S
windows S RS
Run linear SVM Overlap
classifier on all FBlock
locations OEDIOCKS
Fuse multiple =
R Feature vector f=[ ..., ..., ...]
position & scale space
Obj:ct dgtéctti)ons with L2 normalizationin  f — f
ounding boxes
v each block: \/||f||% + €2

From: S. Fidler



Final Feature Vector

With a 128 x 64 window and cells with 8 x 8 pixels there are 16 cells vertically
and 8 horizontally.

With an 8-pixel block stride there are then 15 blocks vertically and 7
horizontally, and with 4 cells per block and 9 orientation bins per histogram.

The length of the HOG feature vector is:
15x7x4x9 =3780

Block 2

Block 1 Concatenate histograms

= Make ita 1D vector of length 3780.

%

L“IMM .......... H.IJL}UM

Cells

From: m. Shah



HOG Features Visualization




The HOG Detector: Classification

Feature done, we are ready for classification.

) Train Predict presence/absence
Detection Phase classifier | | ©f obiect class in each

image window

Scan image(s) at all
scales and locations

Extract features over
windows

® Train a windows classifier

® Use the trained classifier to

— ""umple predict presence/absence of a
detections in 3-D person (object class) in each
position & scale space ] ] )
window in the image.

Object detections with
bounding boxes



Classification

Learning phase

* Represent each example window by a HOG (Histogram of Oriented
Gradients) feature vector:

with d = 3780
X; € Rd,

 Train a linear SVM classifier

Testing (Detection)
e Sliding window SVM

From: A. Zisserman



Evaluation Data Sets

MIT pedestrian database

INRIA person database

507 positive windows
Negative data unavailable

1208 positive windows
1218 negative images

200 positive windows
Negative data unavailable

Test | Train

Test | Train

566 positive windows
453 negative images

Overall 709 annotations+
reflections

Overall 1774 annotations+
reflections

From: A. Zisserman



Training data

» Positive data — 1208 positive window examples

From: A. Zisserman



Support Vector Machines



Several possible decision boundaries
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Several possible decision boundaries

The SVM finds this one — the boundary furthest from the two clusters
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Distance to the closest training point is called the margin
(equal on both sides of the boundary)



Several possible decision boundaries

The SVM finds this one — the boundary furthest from the two clusters
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(equal on both sides of the boundary)



Several possible decision boundaries

The SVM finds this one — the boundary furthest from the two clusters
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The circled points are called All other points can move freely.
SUPPORT VECTORS Solution only dependent on SVs.



Normalizing the weights

Note that w'x + 5=0 and c(w'x + b) =0 define the same plane.
Hence we have the freedom to choose the normalization of w and b.
Choose normalization such that (canonical form):

e wix+h=+1 for the positive support vectors

e wx+b=-1 for the negative support vectors



Support Vector Machines
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Learning SVMs

Learning the SVM can be formulated as an optimization problem:

1 ifyy=+1

1 gy=—1 fori=1... N

2 _ -
max —— subject to w 'x;+0b
W | [wl]

IN TV

or, equivalently:

min lw||? subject to y; (WTX,Z' + b) Elfori=1...NN

This is a (convex) quadratic optimization problem subject to linear constraints
and there is a unique minimum!



How to manage outliers: Slack variables

(aka soft margins)

outlier
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How to manage outliers: Slack variables
(aka soft margins)

p &7 0.6
X X X // X Xx\)("
)S(X X /// )S(XX :’
’ I
X X ) A Q X X ' @
X~ ® % X I
x . GO o 1|
7/ I
x .’ . o © X ~—Jo
g ¢ Q ¢ éi:ls



How to manage outliers: Slack variables
(aka soft margins)

I NI
minimize EHWH +CZ§I.
i=1

subjectto  y.(W'x, +b)21-¢&

£ 20 i=1...N

The only parameter C controls the tradeoff between the accuracy w.r.t. to
the training data and the maximization of the margin.

It can be interpreted also as a regularization term:
* small C allows constraints to be easily ignored — large margin
* large C makes constraints hard to ignore — narrow margin

(= enforces all constraints: hard margin



Example

Linear, C=0.05
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The HOG Detector — Post-processing



Post-processing

Perform Non-Maxima Suppression (NMS).

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple

detections in 3-D
position & scale space | Non-maxima suppression (NMS)

Object detections with Greedy algorithm,

bounding boxes * At each iteration pick the highest scoring box.

From: S. Fidler



Post-processing

Perform Non-Maxima Suppression (NMS).

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space | Non-maxima suppression (NMS)

overlap = area(box, N boxz)/ area(box, U box,)

e Remove all boxes that overlap more than 50% with the chosen box.

From: S. Fidler



Done!

Detection Phase

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D

position & scale space
e Y

Object detections with
bounding boxes

Post-processing

(Any idea how you would get rid of that tree detection or

the upper right?)

From: S. Fidler



Are We Done?

Single, rigid template usually not enough to
represent a category

— Many objects (e.g. humans) are artlculated or have parts
that can vary in configuration i

i ¥ /\n b

/‘o’: \‘V ‘\‘\

'WERIE Y

— Many object categories look very different from different
viewpoints, or from instance to instance

From: N. Snavely



Part-Based Model

Our first innovation involves enriching the Dalal-
Triggs model using a star-structured part-based model
defined by a “root” filter (analogous to the Dalal-Triggs
filter) plus a set of parts filters and associated deforma-
tion models.

From: N. Snavely



Two-component Bicycle Model

component
“frontal” component

((Side”

From: N. Snavely



Mixture Model

model

feature map

response of root filter

color encoding of filter
response values

low value high value

combined score of
root locations

From: N. Snavely



Latent SVMs

e Rather than training a single linear SVM
separating positive examples...

e ... cluster positive examples into “component
s” and train a classifier for each (using all
negative examples)

From: N. Snavely
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OpenCV Tutorials

* Sliding Windows for Object Detection with Python and OpenCV (Link).
e Histogram of Oriented Gradients with Python and OpenCV (Link).

e Pedestrian Detection with Python and OpenCV (Link).


https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/

