Generative Adversarial
Networks (GANS)

By: Ismail Elezi
Ismail.elezi@gmail.com

Supervised Learning vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Supervised Learning vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

Supervised Learning vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, DOG. DOG. CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

Supervised Learning vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, CAT,
TREE, SKY

Examples: Classification,
regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.

Supervised Learning vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised Learning vs Unsupervised Learning

Unsupervised Learning : o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering

Supervised Learning vs Unsupervised Learning

Unsupervised Learning Bt M
L2 Loss function: i%:@

|z — &[> +——

Data: x i HEQSQE

Just data, no labels! Reconstructed | % | bl < M8
’ inpUt data . } Encoder: :-Iayer conv

Decoder Decoder: ;’f-layer upconv

Goal: Learn some underlying Features | 2 | . .nput*dgan.

hidden structure of the data P s e . ok

T BNLaeNE

. Input data | T] m!s'zn
Examples: Clustering, sbrid « S

dimensionality reduction, feature Autoencoders
learning, density estimation, etc. (Feature learning)

Supervised Learning vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Unsupervised Learning
Training data is cheap
Data: x \ Holy grail: Solve

Just data, no labels! unsupervised learming
’ => understand structure

of visual world
Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Generative Models
Given training data, generate new samples from same distribution

4 "

Training data ~ p,_,..(X) Generated samples ~p_ . (X)

Wantto learnp__ . (x) similarto p . (X)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve forp_ . (X)
- Implicit density estimation: learn model that can sample from p_ . (x) w/o explicitly defining it

Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density LELCIRTIE
- ; GSN
Fully Visible Belief Nets \

- NADE /
- MADE Variational Markov Chain
- PixelRNN/CNN

: Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Generative Adversarial Networks

Generative Adversarial Networks

Train 2 models simultaneously [1]
* G: Generator

-> learns to generate data Training set|
» D: Discriminator

/ @uriminator
A~

Real (1)
-> learns p(x not being generated) Rasdan — i
nois.e‘ (2) - LFake (0)

e %

() ﬁ s) nerator %ake image

Sources: hitps.//deepleaming4j.org/generative-adversarnal-network;
http:/Avww.dpkingma.com/sqgvb_mnist demo/demo.html

=>» Both differentiable functions D&G learn while competing
=» The latent space Z serves as a source of variation
to generate different data points

=>» Only D has access to real data
Credit: Thilo Stadelmann

Minimax Game on GANs

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min max

ns [EmNPdata log Dy, () + E,np(2) log(1 — Dy, (Go, (z)))]

Minimax Game on GANSs

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Ea,diam log Dg,(z) + E,p(z) log(1 — Dy, (Gog (Z)))]
0, 6a A L i

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

Minimax Game on GANs

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [wavpdam log Do, () + Eznp(z) log(1 — De, (G, (z)))]
0, 6a — [j

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Minimax Game on GANSs

Minimax objective function:

n;in I%a'x [Exwpdata log Dod (z) +]EZNP(Z) log(l o ng (Geg (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

néa‘x []Ex’vpdata log Dod (m) +]EZNP(Z)]'Og(]' _ ng (Geq (Z)))]

2. Gradient descent on generator
n;in Eoonis) log(1 — ng(Ggg (2)))

Minimax Game on GANSs

Minimax objective function:
min max |Epnpy,,, 108 Do,(7) + Eanp(e) 108(1 — Do, (Go, (2))]

0, 04

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

n%ax []Ew'vpdam log Dy, () + E,np(2) log(1 — Ded(Geg (z)))] dominated by region
g where sample is

2. Gradient descent on generator 4 already 90\0d
rr;in K. np2) log(1 — ng(Ggg (2)))

When sample is likely:
fake, want to learn
In practice, optimizing this generator objective from it to improve L»

does not work well! generator. But >
gradient in this region-

is relatively flat!

o
~N
o
o
@
o
@
o

Alternative Cost Function

Minimax objective function:
min max []E,L.dim log Do, () + Exnp(z) log(1 — Dg, (G, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

" [Evapdam log Dy, (z) + E;~p(z) log(1 — Dy, (Go, (z)))]

2. Instead: Gradient ascent on generator, different :
objective 2

‘ maxE, ;) log(Dy, (G, (2))) (s
-° /

Instead of minimizing likelihood of discriminator being correct, now High gradi&nt signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

- logll - D{G{z)))

e

<3}

0.0

Low: gradient signal

GAN Training Algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(2).

e Sample minibatch of m examples {z(V),...,2(™)} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

1 m : ”
Vo, — > | log Do,(a) + log(1 — Do, (Go, (z)))]

1=1

end for
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

1 T .
Vo,— Y _ log(Dy,(Go,(2")))
¢=1

m “

end for
lan Goodfellow et al, Generative Adversarial Networks, NIPS 2014

class Generator(nn.Module):
def init (self, latent, img shape):
super(Generator, self). init ()

self.model = nn.Sequential(

nn.
nn.
nn.
nn.
nn.
.ReLU(),

nn

nn.
nn.
nn.
nn.

)

Linear(latent, 128),
ReLU(),

Linear(128, 256),
ReLU(),

Linear(256, 512),

Linear(512, 1024),

ReLU(),

Linear(1024, int(np.prod(img shape))),
Tanh()

def forward(self, z, img shape):
img = self.model(z)
img = img.view(img.size(®), *img shape)

return

ima

class Discriminator(nn.Module):
def init (self, img shape):
super(Discriminator, self). init ()

self.model = nn.Sequential(

nn.
.ReLU(),
nn.
nn.
nn.
.ReLU(),
nn.
nn.

nn

nn

)

Linear(int(np.prod(img shape)), 512),

Linear(512, 256),
RelLU(),
Linear(256, 128),

Linear(128, 1),
Sigmoid()

def forward(self, img):
img flat = img.view(img.size(0), -1)

prob =

return

self.model(img flat)
prob

class Generator(nn.Module):
def init (self, latent, img shape):
super(Generator, self). init ()

self.model = nn.Sequential(

nn.
.ReLU(),
nn.
.ReLU(),
nn.
nn.
nn.
.ReLU(),
nn.
nn.

nn

nn

nn

)

Linear(latent, 128),
Linear(128, 256),
Linear(256, 512),
ReLU(),

Linear(512, 1024),

Linear(1024, int(np.prod(img shape))),
Tanh()

def forward(self, z, img shape):
img = self.model(z)
img = img.view(img.size(®), *img shape)

return

ima

class Discriminator(nn.Module):
def init (self, img shape):
super(Discriminator, self). init ()

self.model = nn.Sequential(

nn.
.ReLU(),
nn.
.ReLU(),
nn.
nn.
nn.
.Sigmoid()

nn

nn

nn
)

Linear(int(np.prod(img shape)), 512),
Linear(512, 256),
Linear(256, 128),

ReLU(),
Linear(128, 1),

def forward(self, img):
img flat = img.view(img.size(0), -1)

prob =

return

self.model(img flat)
prob

adversarial loss = torch.nn.BCELoss()

generator = Generator(latent=opt.latent, img shape=img shape)

discriminator = Discriminator(img shape=img shape)

optimizer G = torch.optim.Adam(generator.parameters(), lr=opt.learning rate, betas=(opt.beta 1, opt.beta 2))
optimizer D = torch.optim.Adam(discriminator.parameters(), lr=opt.learning rate, betas=(opt. beta 1, opt.beta _2))

for epoch in range(opt.n _epochs):
for i, (inputs,) in enumerate(dataloader):
inputs = inputs.to(device)

create the labels for the fake and real images

real = torch.ones(inputs.size(0), requires grad=False)
fake = torch.zeros(inputs.size(0), requires grad=False)
real, fake = real.to(device), fake.to(device)

train the generator
optimizer G.zero grad()

= torch.FloatTensor(np.random.normal(®, 1, (inputs.shape[@], opt.latent))).to(device)
generated images = generator(z, img shape)

measure the generator loss and do backpropagation

g loss = adversarial loss(discriminator(generated images), real)
g loss.backward()

optimizer G.step()

train the discriminator

optimizer D.zero grad()

real loss = adversarial loss(discriminator(inputs), real)

fake loss = adversarial loss(discriminator(generated images.detach()), fake)
d loss = (real loss + fake loss) / 2

d loss.backward()
optimizer D.step()

Generating Digits

https://github.com/TheRevanchist/Generative_Adversarial_Networks/tree/master/gan

Conditional GANSs

What if we want to generate only images of one particular class.

|dea: Give the labels of the classes (in one-hot format) to both the generator
and discriminator.

For the generator concatenate the noise coming from latent space with the
one hot vector. Similarly, the discriminator receives in input both the image
and its label.

Conditional GANs

/Dnscnminator Dixty) \

000060
00000 ©0000,

Mirza and Osindero, Conditional Generative Adversarial Networks, NIPS 2014

class Generator(nn.Module):

def init (self, latent, n classes, img shape):

super(Generator, self). init ()

self.model = nn.Sequential(

nn.Linear(latent + n classes, 128),
nn.RelLU(),

nn.Linear(128, 256),

nn.RelLU(),

nn.Linear(256, 512),

nn.ReLU(),

nn.Linear(512, 1024),

nn.ReLU(),

nn.Linear(1024, int(np.prod(img shape))),
nn.Tanh()

)

def forward(self, z, labels, img shape):

image and label = torch.cat((z, labels), dim=1)

img = self.model(image and label)
img = img.view(img.size(0), *img shape)

return

img

class Discriminator(nn.Module):
def init (self|, n classes, img shape):
super(Discriminator, self). init ()

self.model = nn.Sequential(

)

nn.
nn.
.Linear(512, 256),
nn.
nn.
nn.
.Linear(128, 1),
nn.

nn

nn

Linear(int(np.prod(img _shape) + n classes), 512),
ReLU(),

RelLU(),
Linear(256, 128),
ReLU(),

Sigmoid()

def forward(self, img, labels):
img flat = img.view(img.size(0), -1)
image and label = torch.cat((img flat, labels), dim=1)
prob = self.model(image and label)
return prob

adversarial loss = torch.nn.BCELoss()

generator = Generator(latent=opt.latent, n classes=opt.n classes, img shape=img shape)

discriminator = Discriminator/n classes=opt.n classes, img shape=img shape)

optimizer G = torch.optim.Adam(generator.parameters(), lr=opt.learning rate, betas=(opt.beta 1, opt.beta 2))
optimizer D = torch.optim.Adam(discriminator.parameters(), lr=opt.learning rate, betas=(opt.beta 1, opt.beta 2))

start training
current_epoch = 0
for epoch in range(opt.n_epochs):
for i, (inputs, labels) in enumerate(dataloader):
inputs = inputs.to(device)
labels = one hot embedding(labels, opt.n classes).to(device)

create the labels for the fake and real images

real = torch.ones(inputs.size(0), requires grad=False)
fake = torch.zeros(inputs.size(0), requires grad=False)
real, fake = real.to(device), fake.to(device)

train the generator

optimizer G.zero grad()

z = torch.FloatTensor(np.random.normal(@, 1, (inputs.shape[@], opt.latent))).to(device)
generated images = generator(z, labels, img shape)

measure the generator loss and do backpropagation

g loss = adversarial loss(discriminator(generated images, labels), real)
g loss.backward()

optimizer G.step()

train the discriminator

optimizer D.zero grad()

real loss = adversarial loss(discriminator(inputs, labels), real)

fake loss = adversarial loss(discriminator(generated images.detach(), labels), fake)
d loss = (real loss + fake loss) / 2

d loss.backward()
optimizer D.step()

Generating Digits

OC~mNoO=d %
V- N a
QNN BN N &N
Q~¥03Ho e

Q~ad > nD

A NN~ NN NG o~
QM F ey
QN+ %o
D~y MR NN ~oe

D~ Y T 3V NSy o

O~UM YW
Q% s
allz.lz.d.r.aio
O my M T 58
0/23956

AATRI S ' o B AT, RN
O~ mF o
QNN NS
D~) o+ O
O~N©m ™V

https://github.com/TheRevanchist/Generative_Adversarial_Networks/tree/master/cgan

Any idea how to improve GANs?

Deep Convolutional GANs (DCGAN)

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use RelU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford, Metz and Chintala, Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks, ICLR 2016

Deep Convolutional GANs (DCGAN)

Radford, Metz and Chintala, Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks, ICLR 2016

class Generator(nn.Module):
def _init_ (self, latent, channels, num_filters):
super(Generator, self). init ()

self.model = nn.Sequential(

nn.
nn.
.BatchNorm2d(num_filters * 8),
nn.
nn.
nn.
.ConvTranspose2d{num_filters * 4, num_filters * 2, 4, 2, 1, bias=False),
nn.
nn.
.ConvTranspose2d(num_filters * 2, num _filters, 4, 2, 1, bias=False),

nn

nn

nn

nn.
nn.
nn.
.Tanh()

nn

)

ConvTranspose2d(latent, num filters * 8, 4, 1, 0, bias=False),
ReLU(True),

ConvTranspose2d(num_filters * 8, num _filters * 4, 4, 2, 1, bias=False),
ReLU(True),
BatchNorm2d(num_filters * 4),

RelLU(True),
BatchNorm2d(num_filters * 2),

RelU(True),
BatchNorm2d(num filters),
ConvTranspose2d(num_filters, channels, 4, 2, 1, bias=False),

def forward(self, z):
img = self.model(z)

return

img

class Generator(nn.Module):
def _init_ (self, latent, channels, num_filters):
super(Generator, self). init ()

self.model = nn.Sequential(

nn.
nn.
.BatchNorm2d(num_filters * 8),
nn.
nn.
nn.
.ConvTranspose2d{num_filters * 4, num_filters * 2, 4, 2, 1, bias=False),
nn.
nn.
.ConvTranspose2d(num_filters * 2, num _filters, 4, 2, 1, bias=False),

nn

nn

nn

nn.
nn.
nn.
.Tanh()

nn

)

ConvTranspose2d(latent, num filters * 8, 4, 1, 0, bias=False),
ReLU(True),

ConvTranspose2d(num_filters * 8, num _filters * 4, 4, 2, 1, bias=False),
ReLU(True),
BatchNorm2d(num_filters * 4),

RelLU(True),
BatchNorm2d(num_filters * 2),

RelU(True),
BatchNorm2d(num filters),
ConvTranspose2d(num_filters, channels, 4, 2, 1, bias=False),

def forward(self, z):
img = self.model(z)

return

img

class Discriminator(nn.Module):
def init (self, channels, num filters):
super(Discriminator, self). init ()

self.model = nn.Sequential(

nn
nn

nn

nn

nn

)

.Conv2d(channels, num filters, 4, 2, 1),
.LeakyReLU(0.2, inplace=True),

nn.
nn.

BatchNorm2d (num filters),
Conv2d(num_filters, num filters * 2, 4, 2, 1),

.LeakyReLU(0.2, inplace=True),
.BatchNorm2d (num_filters * 2),
nn.
nn.
nn.
.Conv2d(num_filters * 4, num_filters * 8, 4, 2, 1),
nn.
nn.
nn.
nn.

Conv2d(num_filters * 2, num_filters * 4, 4, 2, 1),
LeakyReLU(0.2, inplace=True),
BatchNorm2d (num _filters * 4),

LeakyReLU(0.2, inplace=True),

BatchNorm2d (num_filters * 8),
Conv2d(num filters * 8, 1, 4, 1, 0, bias=False),
Sigmoid()

def forward(self, img):

prob =
return

self.model(img)
prob.view(-1, 1).squeezel(l)

class Generator(nn.Module):
def _init_ (self, latent, channels, num_filters):
super(Generator, self). init ()

self.model = nn.Sequential(
nn.ConvTranspose2d(latent, num filters * 8, 4, 1, 0, bias=False),
nn.RelLU(True),
nn.BatchNorm2d (num_filters * 8),
nn.ConvTranspose2d(num_filters * 8, num filters * 4, 4, 2, 1, bias=False),
nn.ReLU(True),
nn.BatchNorm2d(num filters * 4),
nn.ConvTranspose2d(num_filters * 4, num filters * 2, 4, 2, 1, bias=False),
nn.RelLU(True),

nn.BatchNormZd(num_filters * 2) . ifcg;itiozgeibjiié;fz;t‘ﬁz;;..funct.wn, two networks and for the two optimizers
nn.ConvTranspose2d(num_filters * 2, num_filters, 4, 2, 1, bias=False), adversarial_loss = torch.nn.BCELoss()
nn.RelLU(True), else:)
nn BatchNormzd(num filters) adversarial_loss = torch.nn.MSELoss()

> —— '
nn.ConvTranspose2d(num_filters, channels, 4, 2, 1, bias=False), generator = Generator(latent=opt.latent, channels=opt.channels, num_filters=opt.num filters)
nn Tanh() discriminator = Discriminator(channels=opt.channels, num filters=opt.num filters)

optimizer G = torch.optim.Adam(generator.parameters(), lr=opt.learning rate, betas=(opt.beta 1, opt.beta 2))

) optimizer D = torch.optim.Adam(discriminator.parameters(), lr=opt.learning rate, betas=(opt.beta 1, opt.beta 2))
put the nets on gpu
def forward(self, z): device = torch.device("cuda:0" if torch.cuda.is available() else "cpu")
img = self model(z) generator, discriminator = generator.to(device), discriminator.to(device)
N > generator.apply(weights_init)
return img discriminator.apply/weights_init)
class Discriminator(nn.Module): for epoch in range(opt.n epochs):
def init (self, channels, num filters): for i, (inputs, _) in enumerate(dataloader):
super(Discriminator, self). init () inputsi=iinputs-to(device)
S # create the labels for the fake and real images

self.model = nn.Sequentlal(real = torch.ones(inputs.size(0), requires_grad=False)
nn.Conv2d(channels, num filters, 4, 2, 1), fake = torch.zeros(inputs.size(0), requires grad=False)
nn.LeakyReLU(O.Z, inplace=True), real, fake = real.to(device), fake.to(device)
nn.BatchNorm2d (num _filters), # train the generator
nn.Conv2d{num_filters, num_filters * 2, 4, 2, 1), optimizer G.zero grad()
nn.LeakyReLU(ﬂ.Z, inplace=True), z = torch.FloatTensor(np.random.normal(®, 1, (inputs.shape[0], opt.latent, 1, 1))).to(device)
nn.BatchNorm2d (num_filters * 2), generated tmogassgencratoriz)
nn.Conv2d(num_filters * 2, num filters * 4, 4, 2, 1), # measure the generator loss and do backpropagation
nn.LeakyRelLU(0.2, inplace=True), g_{oss ; agver;?;‘ialvloss(discriminator(generatedvimages), real)
nn.BatchNorm2d(num filters * 4), 91055 hackyar)

e $ optimizer G.step()
nn.Conv2d(num_filters * 4, num_filters * 8, 4, 2, 1), £ - £
nn.LeakyReLU(0.2, inplace=True), # train the discriminator
nn.BatchNorm2d (num_filters * 8), gz;im{;:;_?.sx?g;ig;{ loss(discriminator(inputs), real)
nn.anvZ(_i(num_fllters *8, 1, 4, 1, 0, bias=False), fake loss = adversarial loss(discriminator(generated images.detach()), fake)
S d()

nn.51gmol d loss = (real_loss + fake loss) / 2

)
d_loss.backward()

optimizer D.step

def forward(self, img):
prob = self.model(img)
return prob.view(-1, 1).squeeze(l)

Deep Convolutional GANs (DCGAN)

e . ‘* Jl__"_r.] : oy

—
-

- o" r ¢ -
I o L~ L :
. % { A E
- : i
b ! iJ‘” :. h
H N V £)
. v"‘ -
. =

o

, - h
N - : 4 .s"" - |
: ; oty o 0 4
‘ ;") I . J E’
» .i ’ . o * 5
. ¥ e 3 -

Radford, Metz and Chintala, Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks, ICLR 2016

o

smiling man

- H+Ifd-

man woman &
with glasses without glasses without glasses woman with glasses

Results of doing the same

i ﬁ + . ‘\‘ i T
. ? s e
. - . + v{ _— <

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y. The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator. uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Figure 8: A "turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform

their pose.

Radford, Metz and Chintala, Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks, ICLR 2016

However, During Training

Mode Collapse

Ty

[S o SR S S

https://github.com/TheRevanchist/Generative_Adversarial_Networks/tree/master/dcgan

Possible Fixes to Mode Collapse

(Not scientific) Soft labeling, instead of giving to the discriminator labels
1/0, give to it 0.8/0.2

(Definitely not scientific) Checkpoint the net, and every time mode
collapse occurs, load the net from the previous checkpoint.

(A bit more scientific) LSGAN, other types of cost functions.

(Scientific) Wasserstein GAN

(Even more scientific) Improved Wasserstein GAN, Dirac Gan etc

The GAN Zoo

arial Ne!
Isic Latent Space of Object Sh wia 3D G

RS
".-(evmu o Phottreakst

of Wasserstein GANs
8 UM Eenerative rk to Enable Real-time Color Correction of
Monocisar Un mages

https://github.com/hindupuravinash/the-gan-zoo

Does it Really Matter?!

Are GANs Created Equal? A Large-Scale Study

Mario Lucic®™ Karol Kurach® Marcin Michalski Olivier Bousquet Sylvain Gelly
Google Brain

Abstract

Generative adversarial networks (GAN) are a powerful subclass of generative
models. Despite a very rich research activity leading to numerous interesting
GAN algorithms, it is still very hard to assess which algorithm(s) perform better
than others. We conduct a neutral, multi-faceted large-scale empirical study on
state-of-the art models and evaluation measures. We find that most models can
reach similar scores with enough hyperparameter optimization and random restarts.
This suggests that improvements can arise from a higher computational budget and
tuning more than fundamental algorithmic changes. To overcome some limitations
of the current metrics, we also propose several data sets on which precision and
recall can be computed. Our experimental results suggest that future GAN research
should be based on more systematic and objective evaluation procedures. Finally,
we did not find evidence that any of the tested algorithms consistently outperforms
the non-saturating GAN introduced in [9].

Lucic et al, Are GANs Created Equal? A Large-Scale Study, NIPS 2018

Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

Goodfellow, CVPR tutorial, 2018

3.5 Years of Progress on Faces

2014 2015 2016

(Brundage et al, 2018)

Goodfellow, CPVP tutorial, 2018

<2 Years of Progress on ImageNet

- o
¢ C

Odena et al o \. RN TNIE
q Wi - ; vul»v
i

¥ \‘ 4] . -

¢ \ - % X

) hY I " 3

N‘\] -
L T ey, RN

N

201 RN
016 N2

Miyato et al
2017

Zhang et al
2018

Goodfellow, CPVP tutorial, 2018

State of the art FID on ImageNet: 1000 categories, 128x128 pixels

.l
ot th)
X ¥

Stone Wall

Indigo Bunti '
s e (Zhang et al., 2018) Saint Bernard —

Goodfellow, CPVP tutorial, 2018

GANSs for Time Series

i
:“ T/\'T\?/;AT é;fi ?(}9(}9??_@
Lereer _Gweew

4 +4 Y
I —

; y \a\en\!noise gpace

Hyland et al, Real-valued (medical) time series generation with recurrent conditional GANs, arXiv 2017

Reasons to dislike GANs

* They are a devil to train!
— The discriminator nearly always wins
— Sometimes, training longer makes it worse
— Sometimes, more data doesn’'t make it better

* Do they really generate a distribution?

« Generality penalty: for any given problem,
application-tailored solutions might work better

Efros, ICCV tutorial, 2017

Loss Function

D

G's perspective: D is a loss function.

Rather than being hand-designed, it is learned.

Efros, ICCV tutorial, 2017

Cycle-Consistent Adversarial Networks

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks

[Mark Twain, 1903]

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks

Reconstruction \
error

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Cycle Consistency Loss

G(x) (G(x)) bangé cycle loss

Reconstruction \
error

Cycle Consistency Loss

—e Reconstruction
Reconstruction \ \S e
error

Photo ra
@ Alexel E

Collection Style Transfer

Ph,

Cezanne

‘“}}J\n.(? :) !

s

' ;e ’ e -

i [i P 6 '..‘hhl Y a

. SLIEET g S P LY | R e - LR
‘>$ rs | - ._ . 3 " z Y : 3
-
-

J

MAUITTYY

Monet’s paintings = photos

CG2Real: GTAS — real streetview

Real2CG: real streetview — GTA

GTAS images Segmentation labels

Input Output

A A .Lt!
wes w STRESd

(S LS N W

label — facade

[T
LB 2 B B
_ 8 B B

D

facade — label

Output

YEANERA
iy
1200 0

7

edges — shoes

l!?"

shoes — edges

zebra — horse

For much more look at: https://github.com/junyanz/pytorch-Cycle GAN-and-pix2pix

Domain Adaptation with CycleGAN

4

Train on CycleGAN data Test on real images
| meanloU | Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0
FCN in the wild [Previous STOA] 27.1 -

Train on CycleGAN, test on Real 34.8 82.8

y

Soprana
Tenor

Soprano

Alto

Bass

GAN-story

SOS
ABBA

v, Andrew King

G —————=="=

I. da da da da da da

D= = = = Tre o o o

e I o o S S
gaz=== S22 SASsSsisgsssessss

1. da da da da da

= s

1. da da da da da da

e : ! I]

2018

aze
»AVE VERUM CORPUS*®
MOTETTE
fiir 4 Singstimmen, 2 Vielinen, Viola. Biss und Orgel
Mozarts Werke. Serie 3.8V a1,

Al TROBAR®,

Koch Vere. N? 618,

Vasmponiet 17, Jen] 4791 i ot

Vialino [

Violino I

Viola.

v

Basso
wl Orgzano.

Problems

1) Our images are 2000 x 2000. At 700 (+ delta) by 700 (+delta) images,
even a VOLTA V100 runs out of memory

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory
- Solution 1: train in patches, generate large images.

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory
- Solution 1: train in patches, generate large images. It doesn’t work.

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory
- Solution 1: train in patches, generate large images. It doesn’t work.
- Solution 2: make the nets more efficient. Train on float16 (NVIDIA
Apex) and use gradient checkpointing.

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory
- Solution 1: train in patches, generate large images. It doesn’t work.
- Solution 2: make the nets more efficient. Train on float16 (NVIDIA
Apex) and use gradient checkpointing. It works.

igression: Half precision training

USING FP16_OPTIMIZER

optimizer = lo:ch.optin.sco(nodol.p;r;n.lox-(), lrele-3)
.','.': :] ‘ | £ L \yr True

for t in range (500) ;
Y _pred = model (x)

loss = torch.nn.!unctloncl.nao_lo-l(y_prod, y)

optxnlxor.loro_qrnd()

Dackwardil

optimizer.step()

—

igression: Gradient Checkpointing

. . . |
- - -
(- - - -
- - - -

C

igression: Gradient Checkpointing

C

igression: Gradient Checkpointing

Digression: Gradient Checkpointing

\ {

. .
- -

T T

https://github.com/TheRevanchist/pytorch-Cycle GAN-and-pix2pix

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory
- Solution 1: train in patches, generate large images. It doesn’t work.
- Solution 2: make the nets more efficient. Train on float16 (NVIDIA
Apex) and use gradient checkpointing. It works.
2) Bigger images, less likely that we will be able to generate meaningful
images (mode collapse)

Problems

1) Our images are 2000 x 2000. At 700 by 700 images, even a VOLTA V100
runs out of memory

- Solution 1: train in patches, generate large images. It doesn’t work.
- Solution 2: make the nets more efficient. Train on float16 (NVIDIA
Apex) and use gradient checkpointing. It works.

2) Bigger images, less likely that we will be able to generate meaningful
images (mode collapse)

- Solution 1: more careful training and hyperparameter optimization.

- Solution 2: different loss functions, maybe Wasserstein GANs (or
the improved version of it), researchy stuff.

- Solution 3: progressive training and/or BigGan-inspired approach.

Thank Youl!

Christie's & L
@Christiesinc

#AuctionUpdate The first Al artwork to be sold in a major auction
achieves $432,500 after a bidding battle on the phones and via
ChristiesLive bit.ly/2PVN2ly

2,362 4:22 PM - Oct 25, 2018

© 1,571 people are talking about this >

