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T is the mean
of the orange
points

Linear subspaces
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convert x into v,, v, coordinates

X > ((x—7) vy, (X—T) - Vvg)

What does the v, coordinate measure?
- distance to line
- use it for classification—near 0 for orange pts

What does the v, coordinate measure?
- position along line
- use it to specify which orange point it is

Suppose the data points are arranged as above

Idea: fit a line, classifier measures distance to line



Dimensionality reduction
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* We can represent the orange points with only their v,
coordinates (since v, coordinates are all essentially 0)

« This makes it much cheaper to store and compare points

« Abigger deal for higher dimensional problems



Linear subspaces

1 Consider the variation along direction v
P among all of the orange points:
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> var(v) = Y [(x-%)Tv|

= ZVT(X —X)(x—-x)Tv

= v71 Z(X—i)(x—i)T A%

= vIAv where A = Z(X —X)(x—-%)T
X

Solution: v, is eigenvector of A with largest eigenvalue
Vv, is eigenvector of A with smallest eigenvalue




Principal component analysis

e Suppose each data point is N-dimensional
— Same procedure applies:

var(v) = Y lx-x)" v

= vIAv where A = d (x—x)(x - %) T
X

— The eigenvectors of A define a new coordinate system

* eigenvector with largest eigenvalue captures the most variation among
training vectors x

* eigenvector with smallest eigenvalue has least variation

— We can compress the data using the top few eigenvectors

. 1 ”
e corresponds to choosing a "linear subspace
— represent points on a line, plane, or “hyper-plane”

* these eigenvectors are known as the principal components



The space of faces

* Animage is a point in a high dimensional space
— An N x M image is a point in RN\M
— We can define vectors in this space as we did in the 2D case



>

* The set of faces is a “subspace” of the set of images
— We can find the best subspace using PCA

— This is like fitting a “hyper-plane” to the set of faces
* spanned by vectors vy, V,, ..., Vy

* anyface x~X-+ajvy+asve+ ...+ apvi



Eigenfaces

* PCA extracts the eigenvectors of A
— Gives a set of vectors vy, v,, Vg, ...
— Each vector is a direction in face space

e what do these look like?
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Top eigenvectors: u,,...u,




Projecting onto the eigenfaces

* The eigenfaces vy, ..., v, span the space of faces
— A face is converted to eigenface coordinates by

X-)((X—f)°V1, (X_i)'VZw"a (X_i)°VK)

J A\ J

ay az aK

XXX+t ayvy+arvyg + ...+ agvKg \




Recognition with eigenfaces

Process the image database (set of images with labels)

e Run PCA—compute eigenfaces
e (Calculate the K coefficients for each image

. Given a new image (to be recognized) x, calculate K coefficients

x — (a1,a2,...,05K)
Detect if x is a face
|x — (X 4+ a1vy +arvo+ ...+ agvk)||l < threshold
If it is a face, who is it?

* Find closest labeled face in database
— nearest-neighbor in K-dimensional space



Choosing the dimension K
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* How many eigenfaces to use?
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In this case, we say that we
“‘preserve” 90% or 95% of the
information in our data.

* Look at the decay of the eigenvalues

— the eigenvalue tells you the amount of variance “in the direction”

of that eigenface

— ignore eigenfaces with low variance



Limitations

« PCA assumes that the data has a Gaussian
distribution (mean y, covariance matrix )
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The shape of this dataset is not well described by its principal components



Limitations

 The direction of maximum variance is not
always good for classification



