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The Age of “Deep Learning”

News & Analysis

Microsoft, Google Beat Humans at
Image Recognition

Deep learning algorithms compete at ImageNet

challenge
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PORTLAND, Ore. -- First computers beat the best of us at chess,
then poker, and finally Jeopardy. The next hurdle is image
recognition — surely a computer can't do that as well as a human.
Check that one off the list, too. Now Microsoft has programmed the
first computer to beat the humans at image recognition.

The competition is fierce, with the ImageNet Large Scale Visual
Recognition Challenge doing the judging for the 2015
championship on December 17. Between now and then expect to
see a stream of papers claiming they have one-upped humans too.
For instance, only 5 days after Microsoft announced it had beat the
human benchmark of 5.1% errors with a 4.94% error grabbing
neural network, Google announced it had one-upped Microsoft by
0.04%.

The top row is a representative of the categories that Microsoft's algorithm
found in the database and the image columns below are examples that fit.
(Source: Microsoft)




The Deep Learning “Philosophy”

* Learn a feature hierarchy all the way from pixels to classifier
e Each layer extracts features from the output of previous layer

* Train all layers jointly
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Performance Improves with More Data
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Old Idea... Why Now?

. We have more data - from Lena to ImageNet.

. We have more computing power, GPUs are
really good at this.
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Last but not least, we have new ideas
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Big Data: ImageNet Deep Convolutional Neural Network Backprop on GPU Learned Weights



Image Classification
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- What the computer sees

- 82% cat
15% dog
2% hat

1% mug

image classification

Predict a single label (or a distribution over labels as shown here to indicate our confidence)
for a given image. Images are 3-dimensional arrays of integers from 0 to 255, of size Width x
Height x 3. The 3 represents the three color channels Red, Green, Blue.

From: A. Karpathy



Challenges

Viewpoint variation Occlusion

From: A. Karpathy



The Data-Driven Approach
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An example training set for four visual categories.

In practice we may have thousands of categories and

hundreds of thousands of images for each category. From: A. Karpathy



Inspiration from Biology

input retina LGN V1 V2 V3 LOC



The Visual System as a Hierarchy of Feature
Detectors

Hubel & Weisel featural hierarchy

topographical mapping
hyFer—complex ‘
cells :
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Convolution
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Mean Filters

hli,j]




Gaussian Filters




Gaussian Filters
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Figure 4.15: A 3-D plot of the 7 x 7 Gaussian mask.

7 x 7 Gaussian mask
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The Effect of Gaussian Filters




The Effect of Gaussian Filters




Kernel Width Affects Scale

Width=7

Width=13 Width=19




1on

Edge detect




Edge detection




Using Convolution for Edge Detection

Roberts Operator
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A Variety of Image Filters

Laplacian of Gaussians (LoG) (Marr 1982)

x*
Difference of Gaussians
i Operator in One Dimension
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A Variety of Image Filters

Gabor filters (directional) (Daugman 1985)




A Variety of Image Filters
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Traditional vs Deep Learning Approach

Traditional approach

Manually crafted Trainable
i | — e
features classifier
- Trainable Trainable
- feature extractor classifier

From: M. Sebag



Convolutional Neural Networks (CNNs)

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28 ,

32x32 S2: f. maps

6@14x14

I
‘ Full conAection ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

(LeCun 1998)
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Fully- vs Locally-Connected Networks

Fully-connected: 400,000 hidden units = 16 billion parameters
Locally-connected: 400,000 hidden units 10 x 10 fields = 40 million parameters

Local connections capture local dependencies

From. M. A. Ranzato



Weight Sharing

We can dramatically reduce the number of parameters by making one reasonable
assumption: That if one feature is useful to compute at some spatial position (x1,y1), then
it should also be useful to compute at a different position (x2,y2).
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locally-connected units
with 3x3 receptive field

l ! convolutional units

with 3x3 receptive field



Convolutional Neural Networks
(CNN, ConvNet, DCN)

* CNN = a multi-layer neural network with
— Local connectivity
— Share weight parameters across spatial positions

* One activation map (a depth slice), computed

with one set of weights
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Image credit: A. Karpathy




Using Several Trainable Filters

Normally, several filters are packed together and learnt automatically

during training

— 32x32x3 image
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Pooling

Max pooling is a way to simplify the network architecture, by
downsampling the number of neurons resulting from filtering operations.

maXx 6 8




Combining Feature Extraction and Classification
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AlexNet (2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

* 8 layers total

* Trained on Imagenet Dataset (1000
categories, 1.2M training images, 150k
test images)

Softmax Output

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool
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Layer 4: Conv

Layer 3: Conv

Layer 2: Conv + Pool
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Layer 1: Conv + Pool
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Input Image
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1st layer: 96 kernels (11 x 11 x 3)

AlexNet Architecture

Normalized, pooled
2nd layer: 256 kernels (5 x 5 x 48)
Normalized, pooled
3rd layer: 384 kernels (3 x 3 x 256)
4th layer: 384 kernels (3 x 3 x 192)
5th layer: 256 kernels (3 x 3 x 192)
Followed by 2 fully connected layers, 4096 neurons each
Followed by a 1000-way SoftMax layer
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GPU #1

Training on Multiple GPU’s

intra-GPU connections

GPU #2
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Output Layer:
Softmax

probabilities

]




Rectified Linear Units (ReLU’s)

Problem: Sigmoid activation takes on values in (0,1). Propagating the
gradient back to the initial layers, it tends to become 0 (vanishing

gradient problem).

From a practical perspective, this slows down the training procedure of
the initial layers of the network.

sigmoid(z) = 1+t—z ReLU(z) = max(0, z)
sigmoid (z2) | ' ReLU (2)
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Training error rate

0.75

0.25 1

Rectified Linear Units (ReLU’s)

Epochs

A 4 layer CNN with
Rel.Us (solid line)
converges six times
faster than an
equivalent network
with tanh neurons
(dashed line) on
CIFAR-10 dataset



Mini-batch Stochastic Gradient Descent

Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient



Data Augmentation

The easiest and most common method to reduce overfitting on
image data is to artificially enlarge the dataset using label-preserving
transformations

AlexNet uses two forms of this data augmentation.

 The first form consists of generating image translations and
horizontal reflections.

« The second form consists of altering the intensities of the RGB
channels in training images.



Dropout

Set to zero the output of each hidden neuron with probability 0.5.

The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

Reduces complex co-
adaptations of neurons,
since a neuron cannot
rely on the presence of
particular other neurons.

Standard Neural Net After applying dropout.



ImageNet

« ~14 million labeled images, 20k
classes

* Images gathered from Internet
 Human labels via Amazon Turk

« Challenge: 1.2 million training images,
1000 classes




ImageNet Challenges

Traditional CV @ Deep Leaming
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Deep learning!



ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) — 26.2% error




Revolution of Depth

ICCV D
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ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.




A Hierarchy of Features
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The deep network gradually learns more complex and abstract notions

From: B. Biggio
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Each 3x3 block shows

the top 9 patches for

one filter
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Feature Analysis

A well-trained ConvNet is an excellent feature extractor.

* Chop the network at desired layer and use the output as a feature
representation to train an SVM on some other dataset (Zeiler-Fergus 2013):

Cal-101 Cal-256

(30/class) | (60/class)
SVM (1) 448+ 0.7 {24604
SVM (2) 66.2 £ 0.5 [39.6 +£0.3
SVM (3) 72.3 04 [46.0+0.3
SVM (4) .6+04 |pL3X0.1
SVM (5) 86.2 +0.8(65.6+0.3
SVM (7) 85.51+04|71.7+0.2
Softmax (5) {82.94+ 0.4 [65.7+0.5
Softmax (7) {85.4+0.4|72.6 + 0.1

Improve further by taking a pre-trained ConvNet and re-training it on a
different dataset (Fine tuning).




Other Success Stories of Deep Learning

Today deep learning, in its several manifestations, is being applied
in a variety of different domains besides computer vision, such as:

* Speech recognition

* Optical character recognition
* Natural language processing
 Autonomous driving

 Game playing (e.g., Google’s AlphaGo)
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Platforms:
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 PyTorch

e TensorFlow




