Hopfield Network

Single Layer Recurrent Network
Bidirectional Symmetric Connection
Binary / Continuous Units
Associative Memory

Optimization Problem




Hopfield Model — Discrete Case

Recurrent neural network that uses McCulloch and Pitt’s (binary) neurons.
Update rule is stochastic.

0.01.0

Eeach neuron has two “states”: V-, V1
Vit=-1,VvH=1
Usually :
Vit=0, VH=1
Input to neuron i is : o %:iwij Vj il
Where:
*  w; = strength of the connection from jto i
. V; = state (or output) of neuron j

. |, = external input to neuron |



Hopfield Model — Discrete Case

Each neuron updates its state in an asynchronous way, using the following rule:

(-1 if Hi=XwV,+1; <0
vV ! . j#i
+1 if Hi=X>w,V,+1; >0

J#i

The updating of states is a stochastic process:
To select the to-be-updated neurons we can proceed in either of two ways:

. At each time step select at random a unit i to be updated
(useful for simulation)

. Let each unit independently choose to update itself with
some constant probability per unit time

(useful for modeling and hardware implementation)



Dynamics of Hopfield Model

In contrast to feed-forward networks (wich are “static”) Hopfield networks are

dynamical system.
The network starts from an initial state

and evolves in state space following a trajectory:

V(1) V(3)
Vi(5)

V(2) V(4)
V(6)

V(0)

Until it reaches a fixed point:

V(t+1) = V(1)



Dynamics of Hopfield Networks

What is the dynamical behavior of a Hopfield network ?
Does it coverge ?
Does it produce cycles ?

Examples

e

W0

(a) (b)



Dynamics of Hopfield Networks

To study the dynamical behavior of Hopfield networks we make the
following assumption:

W; =W, Vi,J=1..n

In other words, if W = (w;) is the weight matrix we assume:
W =w"'

In this case the network always converges to a fixed point.

In this case the system posseses a Liapunov (or energy) function that
is minimized as the process evolves.



The Energy Function — Discrete Case

Consider the following real function:

and let AE = E(t+1)—E(t)

Assuming that neuron h has changed its state, we have:

AE=— Sw,V,+1,| AV,

j=h

J

Hh

But H and AV, have the same sign.
Hence
AE <0 (provided that W =W ")



Schematic configuration space

model with three attractors



Hopfield Net As Associative Memory

Store a set of p patterns x*, u = 1,...,p ,in such a way that when presented with
a new pattern x, the network responds by producing that stored pattern which
most closely resembles x.

C N binary units, with outputs s,,...,S\
. Stored patterns and test patterns are binary (0/1,£1)
. Connection weights (Hebb Rule)
Hebb suggested changes in synaptic strengths proportional to the
correlation between the firing of the pre and post-synaptic neurons.
1 P
Wy = — xi"xf‘
u=1
. Recall mechanism

]
Synchronous / Asynchronous updating

. Pattern information is stored in equilibrium states of the network



Example With Two Patterns

Two patterns
X1 =(-1,-1,-1,+1)
X2 =(+1,+1,+1,+1)

Compute weights

1 & Uy H
4 u=1
Weight matrix _ _
2 2 2 0
112 2 2 0
W= —
412 2 2 0
WG 2
Recall

s; = Sgn (ZWU sj]
j

Input (-1,-1,-1,+1) —  (-1,-1,-1,+1) stable
Input (-1,+1,+1,41) — (+1,+1,+1,+1) stable
Input (-1,-1,-1,-1) — (-1,-1,-1,-1) spurious



Associative Memory Examples

A) EIGHT EXEMPLAR PATTERNS

B) OUTPUT PATTERNS FOR NOISY "3" INPUT

An example of the behavior of a Hopfield net when used as a content-addressable

memory. A 120 node net was trained using the eight examplars shown in (A). The

pattern for the digit “3” was corrupted by randomly reversing each bit with a proba-
bility of 0.25 and then applied to the net at time zero.

Outputs at time zero and after the first seven iterations are shown in (B).



Associative Memory Examples

Example of how an associative memory

can reconstruct images. These are binary
images with 130 x 180 pixels. The images
on the right were recalled by the memory

after presentation of the corrupted images
shown on the left. The middle column
shows some intermediate states. A
sparsely connected Hopfield network with

seven stored images was used.




Storage Capacity of Hopfield Network

There is a maximum limit on the number of random patterns
that a Hopfield network can store

P..=0.15N
If p < 0.15N, almost perfect recall

If memory patterns are orthogonal vectors instead of random
patterns, then more patterns can be stored. However, this is
not useful.

Evoked memory is not necessarily the memory pattern that is
most similar to the input pattern

All patterns are not remembered with equal emphasis, some
are evoked inappropriately often

Sometimes the network evokes spurious states



Hopfield Model — Continuous Case

The Hopfield model can be generalized using continuous activation functions.
More plausible model.
In this case:

V, =0s (ui):gﬂ (ZJ:WU Vj + Iij
where g, is a continuous, increasing, non linear function.

Examples

u e—ﬂu

tanh (,Bu)zgi e |-11]

U4 e P

1
0, @)= —r <ol



Funzione di attivazione

f (x)=tanh (B x)



Updating Rules

Several possible choices for updating the units :

Asynchronous updating: one unit at a time is selected to have its output set

Synchronous updating: at each time step all units have their output set

Continuous updating: all units continuously and simultaneously change their outputs




Continuous Hopfield Models

Using the continuous updating rule, the network evolves according to the following
set of (coupled) differential equations:

where T, are suitable time constants ( 7; > 0).

Note When the system reaches a fixed point (dV, /dt =0 V | ) we get
Vi =0p (Ui)

Indeed, we study a very similar dynamics

du.
ri%:—Uﬁzjjwij gﬂ(uj)+ l.



The Energy Function

As the discrete model, the continuous Hopfield network has an “energy” function,
provided that W = WT:

E :-%;gwijvivj +;j§i g, (V)dv -2 1.V,

Easy to prove that

=y

dt

with equality iff the net reaches a fixed point.



Modello di Hopfield continuo

(energia)
L dV d
TS G s g T, (vi%—zindit
:_IZJW,J Y Wy 2 -1(v)dV _zi
=—Z [ZWV E_IF +IJ

S dVv, du,
~ ' dt dt
du, )’
= — g (u ) —1| <0
Ziz-l gﬁ( I)( dt )
Perché g, € monotona crescente e 7; > 0.

N.B. daE _, du;

— & =)
dt dt

cioé U; e un punto di equilibrio



Modello di Hopfield continuo
(relazione con il modello discreto)

Esiste una relazione stretta tra il modello continuo e quello discreto.
Si noti che :

V, = gﬂ(ui): 91(,Bui) g(ﬂui)

o«
quindi : U =—¢g (Vi)
Il 2° termine in E diventa :

;Zivofgl(v.)dV

L’integrale & positivo (0 se V=0).
Per — il termine diventa trascurabile, quindi la funzione E del modello continuo
diventa identica a quello del modello discreto



Optimization Using Hopfield Network

Energy function of Hopfield network
1
E=—-—2>>w;V,\V, -2 1LV,
20 i
The network will evolve into a (locally / globally) minimum energy state

Any quadratic cost function can be rewritten as the Hopfield network Energy
function. Therefore, it can be minimized using Hopfield network.

Classical Traveling Salesperson Problem (TSP)

Many other applications

. 2-D, 3-D object recognition
- Image restoration

C Stereo matching

. Computing optical flow



The Traveling Salesman Problem

Problem statement: A travelling salesman must visit every city in his territory exactly

once and then return to his starting point. Given the cost of travel between all pairs
of cities, find the minimum cost tour.

u NP-Complete Problem

u Exhaustive Enumeration:
N nodes, N! enumerations,
(n—1)! distinct enumerations
(n_2—1)! distinct undirected enumerations

Example:
n=10,191/2=1.2x 10"



The Traveling Salesman Problem

TSP: find the shortest tour connecting a set of cities.

Following Hopfield & Tank (1985) a tour can be represented by a permutation

matrix:

«<——> Tour: BACD

o

=
o O W
©c o o »

O O © >»
o
© o o



City

The Traveling Salesman Problem

(@) (b)

The TSP, showing a good (a) and a bad (b) solution to the same problem

Network to solve a four-city TSP. Solid
and open circles denote units that are
on and off respectively when the net is
representing the tour 3-2-4-1.

The connections are shown only for unit
n,,; solid lines are inhibitory connections

of strength —d., and dotted lines are uni-

i’
form inhibitory connections of strength —y.

All connections are symmetric. Thresholds

are not shown.



Artificial Neural Network Solution

Solution to n-city problem is presented in an n x n permutation matrix V

X = city

| = stop at wich the city is visited
Voltage output: Vy;
Connection weights: Ty; y,
n? neurons

Vy ;= 1if city X is visited at stop i

d,, = distance between city X and city Y



Artificial Neural Network Solution

Data term:

We want to minimize the total distance

_—Z 2 X Oy Vx|( \Zm +VY,i—1)

YX i

Constraint terms:

Each city must be visited once

—% 2 2 VxiVx
i j=i
Each stop must contain one city
B
== Z 2 VxiVyi
2 Y =X

The matrix must contain n entries

-Szzvon)



Artificial Neural Network Solution

. A, B, C, and D are positive constants
. Indici modulo n

Total cost function

La funzione energia della rete di Hopfield é:

1
E = __Z Z TXi,YjVXiVYj _; IXiVXi

2XYij



Weights of the Network

The coefficients of the quadratic terms in the cost function define the weights

of the connections in the network

TXi Yj — A5XY (1 - 5ij )

- B5ij (1_5XY)
- C
— Dd XY (5j,i+1 +5j,i—1)

-
éj:{
0

{Inhibitory connection in each row}
{Inhibitory connection in each column}
{Global inhibition}

{Data term}

1=]
E

{Corrente esterna eccitatoria}



Experiments

10-city problem, 100 neurons

Locations of the 10 cities are chosen randomly with uniform p.d.f. in unit square

Parameters: A =B =500, C =200, D =500
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TSP — Un’altra formulazione

Un altro modo per esprimere i vincoli del TSP (cioé matrice di permutazione) € il

seguente :

A 2
_Z (Z j vincolo sulle righe
2 X \Ui

[\)|w

9
Z (Z j vincolo sulle colonne
i

La funzione energia diventa :

—Z Z ZdXY |(Y|+1+VYi—1)+E2+E3

2 X YzX i

Vantaggio : minor numero di parametri (A,B,D)



Problema delle n regine

Si pud costruire una rete n x nin cui il neurone (1, j ) é attivo se e solo se una

regina occupa la posizione (i, j )

Ci sono 4 vincoli :
1. solo una regina in ciascuna riga
2. solo una regina in ciascuna colonna
3. solo una regina in ciascuna diagonale

4. esattamente n regine sulla scacchiera



Problema delle n regine

La matrice dei pesi si determina cosi :

~Tiia=Al-6,)8 +
B &, (1-6, )+
C +
D (5i+j,k+| = 5i—j,k—|)(1_5ik)

A = peso inibitorio sulle righe

B = peso inibitorio sulle colonne
C = peso inibitorio “globale”

D = peso inibitorio sulle diagonali



Reti di Hopfield per ottimizzazione

Problemi associati con il modello di Hopfield originale :

1) numero di connessioni O(n*) e numero di unita O(n?)
2) difficolta per la determinazione dei parametri A, B, C, D
3) le soluzioni ottenute sono raramente “matrici di permutazione”

4) difficolta nell’evitare i minimi locali



The Maximum Clique Problem (MCP)

You are given:
C An undirected graph G = (V,E) , where
-V={1,....,n}
-EC VXV
and are asked to
. Find the largest complete subgraph (clique) of G
The problem is known to be NP-hard, and so is problem of determining just

the size of the maximum clique. Pardalos and Xue (1994) provide a review
of the MCP with 260 references.



The Maximum Clique Problem (MCP)

Affrontando il problema MCP in termini di rete neurale:

. Trasformare MCP da problema discreto a problema continuo

discreto

continuo

Nell’esempio del TSP con il modello di Hopfield, non & detto che ci sia il percorso

inverso (potremmo ottenere ad esempio una matrice che non ha significato); in

questo nuovo problema MCP, la bidirezionalita & d’obbligo.



Some Notation

Given an arbitrary graph G = (V,E) with n nodes:

. If C < V, x° will denote its characteristic vector which is defined as

" :{1/\0\, if ieC

0, otherwise

* S, is the standard simplex in R" :

n
SnZ{XE R":> x;=1and x; 20,Vi}

i=1

. A=(aij) is the adjacency matrix of G:

a.: =
Y10, otherwise



The Lagrangian of a graph

Si consideri la funzione continua:

dove X'é il vettore trasposto e A & la matrice di adiacenza.
Lagrangiano del grafo:
f (x) = > XX
i, jeE

esempio:

f (X0 X0, X5 ) = XX + X, Xq



The Motzkin-Straus Theorem

In the mid-1960s, Motzkin and Straus (1965) established a remarkable
connection between the maximum clique problem and the following stan-
dard quadratic program:

maximize f(x) = x"Agx (4.1)

subjectto xe A C R", ‘
where nis the order of G. Specifically, if x* is a global solution of equation 4.1,
they proved that the clique number of G is related to f(x*) by the following
formula:

LLJ(G) = -

o) (4.2)



Additionally, they showed that a subset of vertices C is a maximum clique
of G if and only if its characteristic vector x“, which is the vector of A
defined as

c 1/1C|, ifi eC

0, otherwise,
is a global maximizer of f on A% Gibbons, Hearn, Pardalos, and Ramana
(1997), and Pelillo and Jagota (1995), extended the Motzkin-Straus theo-

rem by providing a characterization of maximal cliques in terms of local
maximizers of f on A.



Continuous Formulation of MAX-CLIQUE

Il ponte che crea Motzkin-Straus € unidirezionale; solo se il vettore restituito &
nella forma di vettore caratteristico allora c’é bidirezionalita.
Nell’esempio visto ci sono due massimi globali :

Si dimostra che sono massimi globali anche tutti i punti del segmento x’ - x”

. Pl o o) : N
ovvero tutti i punti (E’E’Tj Vae [0,1] ; non essendo vettori caratteristici

(soluzioni spurie) non e possibile estrarre la cligue massima. La soluzione con-

: 1 . - :
siste nel sommarez alla diagonale principale di A

A'=A+%I => f(X)=x"A'X = f(X)zXT(A+%Ijx



The regularized Motzkin-Straus Theorem (Bomze, 1997)

Teorema
Dato C = V e x° vettore caratteristico allora:

- C & una clique massima di G <= x° & un massimo globale di f in S,

- C & una clique massimale di G <= x¢ & un massimo locale di f in of

- tutti i massimi locali sono stretti e sono vettori caratteristici



Evolutionary Games

Developed in evolutionary game theory to model the evolution of behavior in
animal conflicts.
Assumptions

. A large population of individuals belonging to the same species which

compete for a particular limited resource

. This kind of conflict is modeled as a game, the players being pairs of

randomly selected population members

. Players do not behave “rationally” but act according to a pre-programmed

behavioral pattern, or pure strategy
. Reproduction is assumed to be asexual

. Utility is measured in terms of Darwinian fitness, or reproductive success



Notations

J = { 1---,n } is the set of pure strategies
X; (t) is the proportion of population members playing strategy i at time t
The state of population at a given instant is the vector X = (Xl, ! Xn)

Given a population state X , the support of X, denoted G(X) , is defined as
the set of positive components of X, i.e.,

o(x)={ied : x>0}



Payoffs

Let A= (aij ) be the N x N payoff (or fitness) matrix.

aij represents the payoff of an individual playing strategy | against an opponent

playing strategy j (i, je J) :

If the population is in state X, the expected payoff earnt by an | — strategist is:

7 (%)= 2.3 X; = (AX),



Replicator Equations

Developed in evolutionary game theory to model the evolution of behavior in
animal conflicts (Hofbauer & Sigmund, 1998; Weibull, 1995).

Let W =(w; ) be a non-negative real-valued nx n matrix, and let
7i (1) = jilvvu X; (t)

Continuous-time version:

4501050 Ex 050

Discrete-time version:




Replicator Equations & Fundamental Theorem of Selection

S

o Is invariant under both dynamics, and they have the same stationary points.

Theorem: If W =W/ then the function
F (x) = x'W X

IS strictly increasing along any non-constant trajectory of
both continuous-time and discrete-time replicator dynamics



Mapping MCP’s onto Relaxation Nets

To (approximately) solve a MCP by relaxation, simply construct a net having n
units, and a {0,1} -weight matrix given by

W:A+%In

where A is the adjacency matrix of G.

Example:




Mapping MCP’s onto Relaxation Nets

The system starting from u(0) will maximize the Motzkin-Straus function and will
converge to a fixed point u” which corresponds to a (local) maximum of f.

The value

1

()

can be regarded as an approximation of the maximum clique size.

Con (Q—measure si misura la qualita

ave &

dove f,,. & il termine di confronto rispetto alla media, fzz & la replicator
equation e ¢ ¢ il valore ottimale. Quando Q — 1 il risultato & buono.



Experimental Setup

Experiments were conducted over random graphs having:

. size: N =10, 25, 50, 75, 100

* density: $=0.10, 0.25, 0.50, 0.75, 0.90

Comparison with Bron-Kerbosch (BK) clique-finding algorithm (1974).

For each pair (n, & ) 100 graphs generated randomly with size n and density =0.
The case N =100 and § = 0.90 was excluded due to the high cost of BK algorithm.

Total number of graphs = 2400.

10 25 50 75 100
5

0.10 099 (54) | 009(36) | 099(53) | 097(59) | 092(82)
0.25 099 (54) | 0099(64) | 099(84) | 1.00(e8) | 097 (112)
0.50 100(56) | 0.99(118) | 0.99(153) | 0.96(160) | 0.90 (187)
0.75 100(99) | 1.00(175) | 1.00(268) | 1.00(284) | 1.00 (369)
0.90 100 (119) | 1.00 (224) | 1.00(367) | 0.99 (513)

Values of Q-measure for various sizes and densities




lsomorfismo di graf

Definition 1. The association graph derived from graphs G' = (V', E’) and
G" = (V", E") is the undirected graph G = (V, E) defined as follows:

V=V xV
and

E={((Lh).(.k) eV xViizj h#k and(i.j) € E & (h.k) e E"}.

Theorem 1. Let G' = (V' E')and G" = (V", E") be two graphs of order n, and
let G be the corresponding association graph. Then G' and G are isomorphic if and
only if o(G) = n. In this case, any maximum clique of G induces an isomorphism
between G' and G”, and vice versa. In general, maximal and maximum cligues in G
are in one-to-one correspondence with maximal and maximum common subgraph
isomorphisms between G' and G”, respectively.



O, O
(2 (5)

Figure 1: A pair of isomorphic graphs.
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0.1

Components of state vector

0.05 < (3.D) and (4,0)

0 + } A } f
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Iterations

Figure 2: Evolution of the components of the state vector x(t) for the graphs in
Figure 1, using the replicator dynamics (see equation 3.2).



Percentage of correct isomorphism

Risultati
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Expected connectivity
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