Relaxation Labeling
Processes
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The labeling problem involves a set of objects B =
by, ..., b,} and a set of possible labels A = {1, ...,
m}.!  The purpose is to label each object of B with
one label of A. To accomplish this, two sources of
information are exploited. The first one relies on /o-
cal measurements which capture the salient features
of each object viewed in 1solation; classical pattern
recognition techniques can be practically employed
to carry out this task. The second source of informa-
tion, instead, accounts for possible interactions among
nearby labels and, in fact, incorporates all the con-
textual knowledge about the problem at hand. This
1s quantitatively expressed by means of a real-valued
four-dimensional matrix of compatibility coefficients
R = {r;j (A, ;)}. The coefficientr;; (A, ;1) measures the
strength of compatibility between the hypotheses “b;
has label 2" and “b; has label z:” high values corre-
spond to compatibility and low values correspond to
incompatibility.



The initial local measurements are assumed to pro-
vide, for each object b; € B, an m-dimensional vec-
tor ;3;0) = (pgﬁ)('l), pfm(m))T (where “T"” denotes
the usual transpose operation), such that pﬁm(;\.) >
0,i=1...n,ieA, and 3, p(V)=1,i=1...n.
Each p?)(;a) can be regarded as the nitial, non-
contextual degree of confidence of the hypothesis “b;
is labeled with label A.” By simply concatenating

P2 Y, .. p© we obtain a weighted labeling

assignment for the objects of B that will be denoted by
p'?9 e IR™ . A relaxation labeling process takes as input
the initial labeling assignment ») and iteratively up-

dates 1t taking into account the compatibility model R.



At this point, we introduce the space of weighted
labeling assignments:

]K — {ﬁEIR}”” |pg(}n.):_}0.. lef’.?.. )'.EA

m
and Zpg(l) =1.i=1 ...;r?}
Ar=1

which is a linear convex set of IR"". Every vertex of IK
represents an unambiguous labeling assignment, that 1s
one which assigns exactly one label to each object. The
set of these labelings will be denoted by IK*:

K* ={pelk|pix)=0o0rl, i=1...n, LeA}.
Moreover, a labeling p in the mterior of IK (i.e.,

0 < p; (1) < 1, torall 7 and )) will be called strictly
ambiguous.



Now, let p € IK be any labeling assignment. To
develop a relaxation algorithm that updates p in accor-
dance with the compatibility model, we need to define,
for each object 5; € B and each label A € A, what
1s called a support function. This should quantify the
degree of agreement between the hypothesis that 5;
is labeled with A, whose confidence 1s expressed by
pi (1), and the context. This measure 1s commonly de-
fined as follows (see, e.g., [4, 20, 21] for alternative
definitions):

m

qi(r:p) = ZZFU (A, ) pj(n). (D

J=1 u=l1



In practical applications, some simplifying assumptions are
made. First, it is usually assumed that objects interact only
within a small neighborhood; for each ¢ = 1.--n we will
denote by A; the neighborhood of object b;, that 1s the
set of relative positions that are supposed to influence the
object on site 1.

support formula (2) is replaced with

(f) Z Z 7’6)&;.;?314.5 i (3)

dEA; p=1

Now, 75, denotes the compatibility between labels A and ,
when g is at offset 4 from A.

We will find it convenient to abandon the matrix notation
for compatibilities, regarding them as real vectors: r € RD,




Putting together the g; (1; p)’s, as for the p;(X1)’s, we
obtain an nm-dimensional support vector that will be
denoted by ¢(p).> Support factors have an obvious in-
terpretation: ¢; (1) 1s high when high-confidence neigh-
boring labels are “‘compatible” with A on b, ; conversely,
it 1s low when high-confidence neighboring labels are
“incompatible” with A. Furthermore, notice that low-
confidence nearby labels have little or no imfluence on
the support measure, and this 1s what one should ex-
pect.



The above discussion suggests a way to properly
adjust the labeling p: increase p; (1) when g; (1) 1s high
and decrease 1t when g, (A) 1s low. This naturally leads
to the following updating rule

m

pi(4) 3:Pf(}k)f}f(}k)/ZPE(H)Q’?(H) (2)

=1

where the denominator serves simply to ensure that
the updated vectors are still in IK. Formulas (1) and
(2) define the original nonlinear relaxation operator of
Rosenfeld et al. [1] which was in fact originally moti-
vated by making recourse to the simple-minded, heuris-
tic arguments just developed.



The relaxation algorithm will be best viewed as a
continuous mapping 7 of the assignment space onto
itself. It starts out with p© and iteratively produces
a sequence of points p©, p, 5@ . e K, where
p't) = T(p"), t+ > 0. The process continues un-
til (at least in theory) a fixed, or equilibrium, point 1s
reached, which means that 7 (p”) = p”, for some ¢.
It can be easily shown that a labeling p 1s an equilib-
rium point for 7 1if and only 1f the following relation
holds [22]:

q;(X) =c; whenever p;(A) >0, i=1...n, A€A

(3)

for some nonnegative constants cp...., ¢y, (note
that unambiguous labelings are therefore equilibrium
points for 7 ; the converse, of course, need not be true).



Consistency and its properties

In this section, we briefly review Hummel and Zucker’s
theory of constraint satisfaction [6] which commences
by providing a general definition of consistency. By
analogy with the unambiguous case, which 1s more eas-
ily understood, a weighted labeling assignment p € IK
is said to be consistent if

m m

Y (g p) =Y (Mg (i p). i=1...n

;‘521 ;J-.,:l

forall v € IK. Furthermore, 1f strict inequalities hold in
(4), forall v # p, then p1s said to be strictly consistent.
It can be seen that a necessary condition for p to be
strictly consistent is that 1t is an unambiguous one, that
is p € IK*. Consistency is also usefully characterized
by the following condition: (v — p) - g(p) < 0 for all
v € IK, where “-” denotes the standard inner product
operator.



Geometrical interpretation

Given a labeling p € IK, the tangent set at p, de-
noted by 77, 1s defined as the set of possible directions
along which one can move an infinitesimal amount
away from p, while remaining in IK. It turns out that
the tangent set at p 1s given by:

m

Ty = {deR™| > dip)=0, i=1...n.

r=l1

piM)=0=>d;(L) =0, i=1...n, A€A

Owing to the convexity of IK, all the tangent vectors
at p are of the form y(v — p), for some y > 0 and
v € IK. Accordingly, consistency is equivalent to the
condition d - §(p) < 0, foralld € Tj.




Theorem 3.1. A labeling p € IK is consistent if and
onlyifforalli = 1...n thefollowing conditions hold.

1) gi(X) = cj, whenever p;j(i) >0
2) gi (L) < c;, whenever p;j(i) =0

for some nonnegative constants ci. .. .. Cy.

Corollary 3.2. Let p € IK be consistent. Then p is
a fixed point for the nonlinear relaxation operator 7T .
Moreover, if p is strictly ambiguous the converse also

holds.



The "average local consistency”

In [6], Hummel and Zucker introduced the average
local consistency, defined as

m

A(p) = ZZ;)E 1)g; () (%)

i=1 r=1

and proved the following fundamental result.

Theorem 3.3 (Hummel-Zucker, [6]). Suppose that
the compatibility matrix R is symmetric (i.e.,
rij(h, ) =rji(p, &) foralli, j, i, ju). Then any local
maximum p € IK of A is consistent.



Note that, in general, the converse of Theorem 3.3 need
not be true since, to prove this, second-order deriva-
tive information would be required. However, the next
proposition asserts that, by demanding that p be strictly
consistent, this does happen.

Proposition 3.4. Let e € IK* be strictly consistent,
and suppose that R is symmetric. Then e is a strict
local maximum of the average local consistency A.



The relaxation algorithm:
the symmetric case

Theorem 4.1 (Baum-Eagon [24]). Let P(x) be a
homogeneous polynomial in the variables {x; (i)} with
nonnegative coefficients, and let x be a point of the
domain IK. Define the mapping M as follows:

dP = dP
(Mx))i (1) = i (1) o (1 Z:(;’) (1)

Then P(M(x)) > P(x), unless M(x) =



Theorem 5.1. The nonlinear relaxation operator T
is a growth transformation for the average local con-
sistency A, provided that compatibility coefficients are
nonnegative and symmetric.

More explicitly, the preceding theorem asserts that
the nonlinear relaxation scheme strictly increases the
average local consistency on each iteration, i.e.,

APy > 4(p"), t=0,1,... (9)

until a fixed point 1s reached. Even more interestingly,
from (8) we can assert that 4 (5'"”) is also smaller than
the value of 4 at each labeling assignment lying on the
segment joining " to pY*V, for each time step # > 0.



Theorem 5.2. Lete € IK* be strictly consistent and
suppose that the compatibility matrix R is nonnegative
and symmetric. Then e is an asymptotically stable equti-
librium point for the nonlinear relaxation scheme T
and, consequently, is a local attractor:



The asymmetric case

Theorem 6.3. Let p'¥ be a strictly ambiguous labe-
ling. and suppose that the sequence { p\"} produced by
the nonlinear relaxation process I converges to the
fixed point p* € IK. Then p* is consistent.

Theorem 6.4. Lete € IK* be a strictly consistent la-
beling. Then e is an asymptotically stable equilibrium
point for the nonlinear relaxation scheme I .



Learning the compatibility
coefficients



The learning problem

The learning algorithm developed in this paper is based on
the assumption that a set of instances of the problem we intend
to solve is available. To be more specific, it 1s supposed that
a number of learning samples exist:

L=ALy,-- Ly}

where each sample L. (v = 1--- N) is a set of labeled objects
of the form

L, ={(b],N):1<i<n,b € B,A] € A}.

Clearly, the b;’s can well be feature vectors describing real
objects.



For ecach v = 1---N let pt¥v) € R"™™ denote the
unambiguous labeling assignment for the objects of L., that is

Ly _ O, ifa# A,
i T, ifa= AL

Furthermore, suppose that we have some mechanism for
constructing an initial labeling p{/+) on the basis of the objects
in L., and let p'¥) denote the labeling produced by the
relaxation algorithm when p'f>) is given as input. The same
mechanism for deriving the initial labelings should be used
both in the “learning” and in the “testing” phases.



A relaxation process is a function that, given as input a
vector of compatibility coefficients = and an initial labeling
pD), produces iteratively the final labeling p{f), ie., pf')
Relax(r,p")). In our approach we consider the relaxation
operator as a function of the compatibility coefficients only, the
initial labeling being considered as a constant. To emphasize
this dependence we will write pgf}(r) to denote the A
component of the final labeling.



A quadratic error function

Within this framework, a natural way to derive compatibility
coefficients is to choose them so that p{™) be as close as
possible to the desired labeling p‘f~), for each y = 1--- N.
To do so, we can define an error function measuring the loss
incurred when p(¥+) is obtained instead of p{“~), and attempt
to minimize it. As an example, a quadratic error function may
be adopted.:

EErQ}(") Z z Pffw pm ”)2 (4)

t—l)k 1

which measures the (squared) Euclidean distance between
pr-) and p'f~), when r is used. Also, the total error achieved
can be defined as

E(Q} (r) = Z E{QJ (5)

=1



A logarithmic error function

An alternative error function comes from information the-

ory. Notice, in fact, that both p{f>} and p'Z~) are composed

of n. discrete probability distributions: p(-F“’) and Pf,;L"j,

respectively (i = 1---n,). Of course, we wish that each

PE F5) be as close as possible to p(.L‘f]

;77 A well-known infor-
mation—theoretic divergence measure between two probability
distributions is Kullback's I directed divergence [33], which
has been successfully employed also in certain connection-
ist learning procedures [34], [35]. Kullback’s divergence is
defined as’

(L+)

L'fl' "I' “r pl



Since p( s a simple class indicator vector, containing all

zeros except at the position corresponding to A/, (6) reduces
to

Ip"1p{" (r)) = —Inp{ 7 (r). (7)

The “logarithmic™ error achieved for sample v is

E([ Zlnp (r) (8)
and the total error is
N
ED(ry=Y " E{P(r). 9)
v=1

In the following, F will be used to denote either E(@) or E(),



The learning algorithm

One popular algorithm for solving linearly constrained
minimization problems is Rosen’s gradient projection method
[24]. It is basically an extension of the steepest descent
procedure for unconstrained problems, to accommodate the
presence of constraints. Here, we make use of a simplified
form of the algorithm developed in [23].

The algorithm begins with an initial feasible point r(®) and
iteratively produces a sequence of points {r{¥)} so that the
objective function E decreases:

Er*+)) < B(r). (11)

At the kth stage a new point is derived according to the
following formula

1) — k) pku(k), (12)
where ul*) is the projection of the gradient of the objective
function £ onto the intersection of hyperplanes defined by
the active constraints (i.e. the constraints that are satisfied
as equalities by the current point -r“‘]), and p; is a suitable
positive step length, determined so that the new point remains
feasible.



Algorithm 1.
[nput: An 1mtial feasible compatibility vector r0);
Output: An “optimal” compatibility vector.

)
2)

3)

4)

5)

k = []‘,

determine the indices of active constraints, that is .J (k) —
L) B

{(d, o, B) : rily = OF;

evaluate the vector u'*’, as follows:

SE(r“"J) . (k)
Wita = TOraag OO ET
0, if (d, o, 8) € J*,
if wl®) £ 0

4.1) determine a suitable step length pp;
4.2) move to the next point using the relation r{*+1) =
r{k) — pku{.‘cj

-
k]

4.3) k= k+1;
4.4) goto 2);
else

5.1y if IE(r™%))/drgas > 0 Y(d, o, A) € J*) EXIT;
5.2) else
5.2.1) delete from J*) the index corresponding to

the most negative value;
5.2.2) goto 3);



An application:
Part-of-speech Disambiguation

In this application, the objects to be labeled are words of
a sentence W = w;--- w, and the labels are the parts-of-
speech. The word labeling task can be accomplished by a
two-step procedure. First, by means of some local analysis,
one derives an initial labeling assignment p'?), The simplest
way of doing this consists of using a dictionary look-up
which provides for each word the list of its potential parts-
of-speech, but more sophisticated methods that exploit the
orthographic structure of words have been developed [54].
Due to the presence of homographs in natural language, that
is words belonging to more than one syntactic class, local
information does not suffice to achieve good labeling results;
therefore, in the second step of the word-labeling procedure.
contextual constraints are taken into account. This task can be
accomplished by a relaxation labeling process [55], where the
compatibility coefficients express the strength of agreement
between neighboring syntactic classes.



In the experiments presented here, the initial labelings p'/)’s
were constructed by uniformly distributing the probability
mass among the labels found into a dictionary look-up. More
precisely, let A; C A be the set of possible labels for word
w;, as found by consulting the dictionary; then

) ) 1/IAG] af A E A,
@A, otherwise.

The final labelings p{f’s, instead, were obtained by stopping
the relaxation process after the first iteration. The neighbor-
hood chosen for disambiguation contained only the right offset
position (i.e., A; = {+1}), while the label set A consisted
of the main parts-of-speech: verb, noun, adjective, adverb,
determiner, conjunction, prcposition, pronoun, plus a special
miscellaneous label.



In the first phase of our experiments, we took a 3,500-word

sample text containing sentences extracted from some issues
of the EEC Italian Official Journal. This was part of a larger
corpus that was subject to a semi-automatic labeling within
the ESPRIT Project 860 “Linguistic analysis of the European
languages” {56]. We divided the sample text into three separate
parts. The first one (containing about 1,500 words) was used
to derive two different statistical compatibility vectors to be
used as the initial points for the learning algorithm. More
specifically, we determined correlation-based coefficients

NONS Ps(X, ) = POA)P(p)

= (29)
= POy - POV (PG) - PUn?)
and Peleg’s compatibilities [18]
0y _ Ps(A, 1)
"% = POVP() G0



50 100

E %
0 30
1] Iterations 100 0 Iterations 100
(&)
50 100
E %
———————
0 30
0 Itarations 100 4] Iterations 100
(b}
50 100
E %
— ]
0 = 30
0 Iterations 100 1) Iterations 100
{cl
Fiz. 1. Behavior of the guadratic error function (on the left side) and the corresponding disambiguation accuracy (on the right side) during the leaming

process, using different starting points: (a) Peleg’s measure: (b) correlation; (¢} random point.
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Fig. 2. Behavior of the logarithmic error function (on the left side) and the corresponding disambiguation accuracy {on the right side} during the learning
process, using different starting points: (1) Peleg's measure; (b) correlation; (¢) random point.



Generalization results

TABLE 1
DISAMBIGUATION ACCURACY OF RELAXATION LLABELING OVER A
1,000-WorD TEST SAMPLE. USING BOTH THE INITIAL POINTS
AND THE BEST PoINTS FOUND BY THE LEARNING ALGORITHM

Initial Points Optimal
Points
Quadratic Logarithmic
Error Error
Peleg 72.0% 88.2% 02.6%
Correlation 73.5% 03.4% 94.1%

Random 42.6% £9.7% 91.9%
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